新人教版八年级数学下册19.1.1变量与函数(第1课时)同步练习及答案解析
2021年人教版数学八年级下册学案 19.1.1《 变量与函数 》(含答案)
第十九章一次函数19.1 函数19.1.1 变量与函数第1课时常量与变量学习目标:1、认识变量、常量;2、学会用含一个变量的代数式表示另一个变量重难点:1、了解常量与变量的关系;2、较复杂问题中常量与变量的识别.学习过程一、课前学习一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.行驶时间为t小时.1、根据题意填写下表:2、在以上这个过程中,变化的量有.不变的量有__________.3、试用含t的式子表示s 。
二、学习探究1、每张电影票售价为10元,如果第一场售出票150张,第二场售出205张,第三场售出310张.三场电影的票房收入分别为、、元.设一场电影售票x张,票房收入y元.•用含x的式子表示y= 。
y随x的变化而(填“变化”或“不变化”)。
2、当圆的半径为10cm时,圆的面积为 cm2;当圆的半径为20cm时,圆的面积为 cm2;当圆的半径为30cm时,圆的面积为 cm2;当圆的半径为r时,圆的面积S= ;S随r的变化(填“变化”或“不变化”)。
3、用10m长的绳子围成矩形,试改变矩形长度.观察矩形的面积怎样变化.•记录不同的矩形的长度值时计算相应的矩形面积的值,探索它们的变化规律:设矩形的长度为xm,面积为Sm2.怎样用含有x的式子表示S?因矩形对边相等,所以它一条长与一条宽的和应是周长10m的一半,即 m.若长为1m,则宽为(m)据矩形面积公式:S=(m2)若长为2m,则宽为(m)面积S=若长为xm,则宽为(m)面积S=从以上三个题中可以看出,在探索变量间变化规律时,可利用以前学过的一些有关知识公式进行分析寻找,以便尽快找出它们的之间关系,确定关系式.结论:在一个变化过程中,数值发生变化的量为,数值始终不变的量为。
注意:常量与变量必须存在于一个变化过程中。
判断一个量是常量还是变量,需这两个方面:1、看它是否在一个变化的过程中;2、看它在这个变化过程中的取值情况。
第2课时函数学习目标:1、经过回顾思考认识变量中的自变量与函数.2、进一步理解掌握确定函数关系式.3、会确定自变量取值范围.重难点:1、进一步掌握确定函数关系的方法.2、确定自变量的取值范围.学习过程一、课前预习我们来回顾一下上节课所研究的每个问题中是否各有两个变化?同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢?1、若小汽车在高速路上行驶的平均速度为每分钟2千米,请填写下表:行驶时间(分) 5 15 20 30 45 60 70 80 100行驶里程x(km)2、若这辆小车行驶时油箱内的油量为50升,行驶中不再加油,行驶时每分钟耗油0.1升,请填写下表:行驶时间(分) 5 15 20 30 45 60 70 80 100剩余油量y(升)3、油箱中的油量y(L)随行驶里程x(km)的增加而减少,(1)写出表示y与x的函数关系式.。
2021年人教版数学八年级下册19.1.1《变量与函数》精选练习 (含答案)
19.1.1《变量与函数》精选练习一、选择题1.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )A.Q和x是变量B.Q是自变量C.50和x是常量D.x是Q的函数2.函数中自变量的取值范围是()A. B. C. D.3.函数y=+x-2的自变量x的取值范围是( )A.x≥2B.x>2C.x≠2D.x≤24.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是( )A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.随着所挂物体的重量增加,弹簧长度逐渐边长D.所挂物体的重量每增加1kg,弹簧长度增加0.5cm5.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是()A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1 kg,弹簧长度y增加0.5cmD.所挂物体质量为7 kg时,弹簧长度为23.5cm6.在实验课上,小亮利用同一块木板测得小车从不同高度(h)与下滑的时间(t)的关系如下表:以下结论错误的是()A.当h=40时,t约2.66秒B.随高度增加,下滑时间越来越短C.估计当h=80cm时,t一定小于2.56秒D.高度每增加了10cm,时间就会减少0.24秒7.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm8.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是( )A. B. C. D.9.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是( )A.①②B.③④C.②③D.①④10.某蓄水池的横断面示意图如图,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A. B. C. D.11.小芳在本学期的体育测试中,1分钟跳绳获得了满分,她的“满分秘籍”如下:前20秒由于体力好,小芳速度均匀增加,20秒至50秒保持跳绳速度不变,后10秒进行冲刺,速度再次均匀增加,最终获得满分,反映小芳1分钟内跳绳速度y(个/秒)与时间t(秒)关系的函数图象大致为()A. B.C. D.12.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A. B. C. D.二、填空题13.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表:上表反映了两个变量之间的关系,其中,自变量是香蕉数量;因变量是售价 .14.直角三角形两锐角的度数分别为x,y,其表达式为y=90-x,其中变量为__________,常量为__________.15.使式子有意义的x的取值范围是_____.16.已知函数y=x2-9,当x=5时,y=_______;反之,当y=16时,x=______.17.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y元,那么y(元)与x(件)的函数表达式是_________________.18.关于x,y的关系式:(1)y-x=0;(2)x=2y;(3)y2=2x;(4)y-x2=x,其中y是x的函数的是 .三、解答题19.如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图:(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?(2)分段描述汽车在第0分种到第28分钟的行驶情况;(3)汽车在点A的速度是多少?在点C呢?20.如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.21.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y (m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.22.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是、(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.23.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30).(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少. 24.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格。
怀安县第八中学八年级数学下册 19.1.1 变量与函数同步练习含解析新人教版
变量与函数知识要点:1. 一般地,如果在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.2.常量:其值在变化过程中始终保持不变的量叫常量.3.变量:其值在变化过程中会发生变化的量叫变量 一、单选题1.对圆的周长公式2C r π=的说法正确的是( ) A .π,r 是变量,2是常量 B .C ,r 是变量,π,2是常量 C .r 是变量,2,π,C 是常量D .C 是变量,2,π,r 是常量2.一辆汽车以50 km/h 的速度行驶,行驶的路程s km 与行驶的时间t h 之间的关系式为s =50 t ,其中变量是( ) A .速度与路程B .速度与时间C .路程与时间D .三者均为变量3.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )A .B .C .D .4.某商店售货时,在进货价的基础上加一定的利润,其数量x 与售价y 如下表示,根据表中所提供的信息,售价y 与售货数量x 的函数解析式为( ) 数量x(千克 )1 2 3 4 ··· 售价y(元)8+0.416+0.824+1.232+1.6··· A .y=8.4xB .y=8x+0.4C .y=0.4x+8D .y=8x5.矩形的周长为18cm ,则它的面积S (2cm )与它的一边长x (cm )之间的函数关系式是A .S=x(9-x)(0<x<9)B .S=x(9+x)(0<x≤9)C .S=x(18-x)(0<x≤9)D .S=x(18+x)(0<x<9)6.变量x 与y 之间的关系式y =12x 2﹣2,当自变量x =2时,因变量y 的值是( ) A .﹣2 B .﹣1C .0D .17.函数y=12x -的自变量x 的取值范围是( )A .x≠2B .x <2C .x≥2D .x >28.一辆汽车以50/km h 的速度行驶,行驶的路程()s km 与行驶的时间t(h)之间的关系式为50s t =,其中变量是( ) A .速度与路程 B .速度与时间C .路程与时间D .速度9.函数2015y x= 中,自变量x 的取值范围是( ) A .x >0B .x <0C .x ≠0的一切实数D .x 取任意实数10.根据图示的程序计算计算函数值,若输入的x 值为3/2,则输出的结果为( )A .7/2B .9/4C .1/2D .9/2二、填空题11.图书馆现有1500本图书供学生借阅,如果每个学生一次借3本,则剩下的数y (本)和借书学生人数x (人)之间的函数关系式是_____________.12.圆的面积公式2S R π=中,变量是________ ,常量是________.13.齿轮每分钟转120转,如果用n 表示转数,t(min)表示时间,那么用t 表示n 的关系式为n =________.14.长方形的周长为24cm ,其中一边长为()x cm ,面积为()2y cm ,则y 与x 的关系可表示为___.15.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体质量x的一组对应值.所挂物体质量x/kg0 1 2 3 4 5弹簧长度y/cm 18 20 22 24 26 28①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?16.已知池中有600m3的水,每小时抽50m3.(1)写出剩余水的体积Vm3与时间th之间的函数表达式;(2)写出自变量t的取值范围;(3)8h后,池中还剩多少水?(4)多长时间后,池中剩余100m3的水?17.求出下列函数中自变量x的取值范围(1)114y x=+(2)31xyx+=+(3)21y x=+(4)531yx-=-18.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.19.如图所示,正方形ABCD的边长为4 ,E、F分别是BC、DC边上一动点,E、F同时从点C均以1 的速度分别向点B、点D运动,当点E与点B重合时,运动停止.设运动时间为(),运动过程中△AEF的面积为,请写出用表示的函数关系式,并写出自变量的取值范围.答案 1.B 2.C 3.C 4.A 5.A 6.C 7.D 8.C 9.C 10.C 11.y=1500-3x 12.S 、R π 13.120t14.()12y x x =-15.(1)上表反映了弹簧长度与所挂物体质量之间的关系; 其中所挂物体质量是自变量;(2)当所挂物体重量为3千克时,弹簧长24厘米; 当不挂重物时,弹簧长18厘米;(3)根据上表可知所挂重物为7千克时(在允许范围内)时的弹簧长度=18+2×7=32(厘米). 16.解:(1)由已知条件知,每小时抽50立方米水, 则t 小时后放水50t 立方米, 而水池中总共有600立方米的水, 那么经过t 时后,剩余的水为600﹣50t ,故剩余水的体积V 立方米与时间t (时)之间的函数关系式为:V=600﹣50t ; (2)由于t 为时间变量,所以 t≥0 又因为当t=12时将水池的水全部抽完了. 故自变量t 的取值范围为:0≤t≤12; (3)根据(1)式,当t=8时,V=200故8小时后,池中还剩200立方米水; (4)当V=100时,根据(1)式解得 t=10. 故10小时后,池中还有100立方米的水. 17.(1)114y x =+, 自变量x 的取值范围是全体实数;(2)y =根据题意得,3010x x +≥⎧⎨+≠⎩∴3x ≥-,且1x ≠-.∴自变量x 的取值范围是3x ≥-,且1x ≠-.(3)y =根据题意得,2x+1≥0, 解得,21x ≥-; ∴自变量x 的取值范围是21x ≥-; (4)531y x -=- 根据题意得,310x -≠, ∴13x ≠, ∴自变量x 的取值范围是13x ≠. 18.解:(1)该汽车平均每千米的耗油量为(35﹣25)÷80=0.125(升/千米), ∴行驶路程x (千米)与剩余油量Q (升)的关系式为Q=35﹣0.125x ; (2)当x=60时,Q=35﹣0.125×60=27.5(升), 答:当x=60(千米)时,剩余油量Q 的值为27.5升; (3)他们能在汽车报警前回到家, (35﹣3)÷0.125=256(千米),由256>200知他们能在汽车报警前回到家. 19.设运动时间为x (s ),∵点E ,F 同时从点C 出发,以每秒21cm 的速度分别向点B ,D 运动,∴CE=x,CF=x,BE=4-x,DF=4-x,∴△AEF的面积=正方形ABCD的面积-△ABE的面积-△ADF的面积-△ECF的面积,即:y=16-•AB•BE-•AD•DF-•EC•FC=16-•4•(4-x)-•4•(4-x)-•x•x=.章末复习【知识与技能】使学生理解一次函数的意义,掌握根据条件确定一次函数表达式的方法,会画一次函数图象.探究并掌握一次函数性质,并用之解决实际问题.【过程与方法】通过例题讲解,学会一次函数性质及应用.【情感态度】体会函数作为数学模型在分析解决实际问题中的重要作用.【教学重点】应用一次函数的概念、图象和性质解题.【教学难点】一次函数在实际问题中的应用.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示结构框图,让学生对所学知识有个系统地了解,教学时,可以边回顾边构建结构图,逐步加深印象.二、释疑解惑,加深理解1.在研究函数问题时,要专注函数自变量的取值范围,函数表达式本身以及实际问题中自变量代表的意义对自变量有所限制,不可忽视.2.在本章学习过程中,我们经历了从具体情境中抽象出数学问题,用函数表达式表示问题中的数量关系,进而得到函数模型这一过程,注意体会函数是刻画现实世界数量关系的有效模型.3.对于一次函数,通过图象可以数形结合地研究函数,有助于全面掌握函数的特征以及利用性质解决问题.三、典例精析,复习新知例1 函数13x y x -=-中自变量x 的取值范围是( ) A.x≥1且x≠3 B.x≥1 C.x≠3 D.x>1且x≠3 【分析】根据题意得,x-1≥0且x-3≠0,解得x≥1且x≠3,故选A.例 2 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是( )【分析】根据每段中离家的距离随时间的变化情况即可进行判断,故选B. 例3 (1)正比例函数y=1/2x 的图象经过第 象限,y 随x 的增大而 ; (2)已知y=(2m-1)23mx -是正比例函数,且y 随x 的增大而减小,则m 的值是 .【分析】(1)因为k=1/2>0,所以由正比例函数的性质可知,它的图象经过第一、三象限,y 随x 的增大而增大;(2)y=(2m-1)23m x-是正比例函数的条件是m 2-3=1且2m-1≠0,要使y 随x 的增大而减小还应满足条件2m-1<0,综合这些条件得:当m 2-3=1,2m-1<0时,y=(2m-1) y=(2m-1)23m x -是正比例函数,且y 随x 的增大而减小,故(1)一、三;增大;(2)-2.例 4 甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地距离y (千米)与时间x(小时)之间的函数关系;折线BCD 表示轿车离甲地距离y(千米)与x(小时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).【分析】(1)先求出货车的速度,再根据货车迟到0.5小时求解;(2)运用待定系数法求解;(3)设轿车从甲地出发x小时后再与货车相遇,根据轿车(x-4.5)小时行驶的路程+货车x小时行驶的路程=300千米列出方程,即可求解.解:(1)根据图象信息:货车的速度V货=3005=60(千米/时),由图象可知货车比轿车迟到0.5小时,∴此时货车距乙地的路程为0.5×60=30(千米);(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴2.5k+b=80,4.5k+b=300,解得k=110,b=-195.∴CD段函数解析式为:y=110x-195(2.5≤x≤4.5);(3)设轿车从甲地出发x小时后再与货车相遇,∵v货车=60千米/时,v 轿车=300-804.5-2.5=110(千米/时)∴110(x-4.5)+60x=300,解得x≈4.68(小时).答:轿车从甲地出发约4.68小时后再与货车相遇.【教学说明】典型例题的分析,对学生解题起着非常重要的指导作用,教师在讲评的过程中有必要让学生明白本章的重点有哪些,需要注意些什么问题,逐步熟能生巧.四、复习训练,巩固提高1.根据下图所示程序计算函数值,若输出的函数值为4/25,则输入的x的值为()A.29/25B.±2/5C.2/5D.25/42.函数y1=|x|,y2=1/3x+4/3,当y1>y2时,x的范围是()A.x<-1B.-1<x<2C.x<-1或x>2D.x>23.(0,1)向下平移2个单位后的坐标是,直线y=2x+1向下平移2个单位后的解析式是 .直线y=2x+1向右平移2个单位后的解析式是 .4.星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(立方米)与时间x(小时)的函数关系如图所示.(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?(2)当x≥0.5时,求储气罐中储气量y(立方米)与时间x(小时)的函数解析式;(3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.【教学说明】这部分安排了本章几个重点知识的运用,目的是为了检验学生的掌握程度,便于及时查漏补缺.【答案】1.C 2.C 3.(0,-1),y=2x-1,y=2x-34.解:(1)由图可知,星期天8:00~8:30,注入了10000-2000=8000立方米的天然气.(2)当x≥0.5时,储气罐中的储气量y(立方米)与时间x(小时)的函数解析式为y=-200x+10100.(3)可以,∵给18辆车加气需18×20=360(立方米),储气量为10000-360=9640(立方米),于是有:9640=-20x+10100,解得x=2.3,而从8:00到10:30相差2.5小时,显然有:2.3<2.5,故第18辆车在当天10:30之前可以加完气.五、师生互动,课堂小结本节课你能完整回顾本章所学过的一次函数的相关的知识吗?你认为哪些内容是大家要掌握的?还有哪些方面的疑难问题?请与大家共同讨论.【教学说明】通过师生共同回顾本章知识,放手让学生自由讨论、交流形成共识,欠缺的地方教师做必要的补充强调.1.布置作业:从复习题中选取.2.完成练习册中“本章重点知识专项训练”.本节课从归纳本章主要内容入手,以精选例题为范本,学生的实际运用为主线,通过学生的归纳整理使本章所学内容进一步深化,能力逐渐提高.4.4 用待定系数法确定一次函数表达式要点感知通过先设定函数表达式(确定函数模型),再根据条件确定表达式中的未知系数,从而求出函数的表达式的方法称为__________法.在求一次函数y=kx+b(k,b为常数,k≠0)的表达式时,关键是要确定________、________的值.预习练习1-1 已知一次函数y=kx+k-3的图象经过点(2,3),则k的值为__________.1-2 如果正比例函数y=kx的图象经过点(1,-2),那么k的值等于__________.知识点1 用待定系数法求一次函数解析式1.若正比例函数的图象经过点(-1,2),则这个图象必经过点( )A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)2.若点(3,1)在一次函数y=kx-2(k≠0)的图象上,则k的值是( )A.5B.4C.3D.13.直线y=kx+b经过点A(0,3),B(-2,0),则k的值为( )A.3B.32C.23D.-324.如图,直线AB对应的函数表达式是( )A.y=-32x+3 B.y=32x+3 C.y=-23x+3 D.y=23x+35.直线l过点M(-2,0),该直线的解析式可以写为_________________(只写出一个即可).6.一次函数y=3x+b的图象过坐标原点,则b的值为__________.7.设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.知识点2 利用一次函数表达式解决实际问题8.小明的父亲是某公司市场销售部的营销人员,他的月工资等于基本工资加上他的销售提成,他的月工资收入与其每月的销售业绩满足一次函数关系,其图象如图所示.根据图象提供的信息,小明父亲的基本工资是( )A.600元B.750元C.800元D.860元9.某公司销售人员的个人月收入与其每月的销售量成一次函数关系,图象如图所示,则此销售人员的销售量为3千件时的月收入是多少元?10.一次函数y=kx+b(k≠0)的图像如图所示,则下列结论正确的是( )A.k=2B.k=3C.b=2D.b=311.已知一次函数y=kx+b(k≠0)经过(2,-1),(-3,4)两点,则它的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限12.一次函数y=mx+|m-1|的图象过点(0,2),且y随x的增大而增大,则m=( )A.-1B.3C.1D.-1或313.如图,过点A的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )A.y=2x+3B.y=x-3C.y=2x-3D.y=-x+314.某汽车客运公司规定旅客可以随身携带一定重量的行李,若超过规定的重量,则需要购买行李票,行李票费用y(元)与行李重量x(千克)之间函数关系的图象如图所示.(1)求y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行李?15.在直角坐标系xOy中,直线l过(1,3)和(3,1)两点,且与x轴、y轴分别交于A,B两点.(1)求直线l的函数表达式;(2)求△AOB的面积.16.一次函数y=kx+b,当3≤x≤4时,3≤y≤6,则bk的值是__________.17.一个有进水管与出水管的容器,从某时刻开始的3分钟内只进水不出水,在随后的9分钟内既进水又出水,每分钟的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.参考答案要点感知 待定系数 k b 预习练1-1 2 1-2 -21.D2.D3.B4.A5.答案不唯一,如y=x+26.07.把A(1,3),B(0,-2)代入y=kx+b 得 3,2.k b b +==-⎧⎨⎩解得5,2.k b ==-⎧⎨⎩故k ,b 的值分别为5,-2. 8.C9.设直线解析式为y=kx+b ,因图象过(1,800),(2,1 100), ∴800,21100.k b k b +=+=⎧⎨⎩解得300,500.k b ==⎧⎨⎩∴解析式为y=300x+500,当x=3时y=1 400.答:此销售人员的销售量为3千件时的月收入是1 400元. 10.C 11.C 12.B 13.D14.(1)设一次函数y=kx+b (k ≠0),∵当x=60时,y=6,当x=90时,y=10,∴606,9010.k b k b +=+=⎧⎨⎩解得2,152.k b ==-⎧⎪⎨⎪⎩∴所求函数表达式为y=215x-2(x ≥15). (2)当y=0时,215x-2=0,∴x=15. 故旅客最多可免费携带15千克行李.15.(1)设直线l 的函数表达式为y=kx+b(k ≠0),把(3,1),(1,3)代入,得31,3.k b k b +=+=⎧⎨⎩解得1,4.k b =-=⎧⎨⎩ ∴直线l 的函数表达式为y=-x+4. (2)当x=0时,y=4,∴B(0,4).当y=0,-x+4=0.解得x=4, ∴A(4,0).∴S △AOB =12AO ·BO=12×4×4=8. 16.-2或-517.①0≤x <3时,设y=mx ,则3m=15,解得m=5. 所以,y=5x ; 当y=5时,x=1. ②3≤x ≤12时,设y=kx+b(k ≠0),∵函数图象经过点(3,15),(12,0),∴315,120.k b k b +=+=⎧⎨⎩解得5320.k b ⎪⎪-⎧⎨⎩=,=∴y=-53x+20. 当y=5时,x=9.即当容器内的水量大于5升时,时间x 的取值范围是1<x <9.。
2021年人教版数学八年级下册19.1.1 《变量与函数》同步练习(含答案)
人教版数学八年级下册19.1.1 《变量与函数》同步练习一、选择题1.下面说法中正确的是( )A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.在圆的面积计算公式S=πR2中,变量是( )A.SB.RC.π,RD.S,R3.在圆的周长C=2πr中,常量与变量分别是( )A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.D.2是常量,C、r是变量4.某超市某种商品的单价为60元/件,若买x件该商品的总价为y元,则y=60x,其中常量是( )A.60B.xC.yD.不确定5.某品牌豆浆机成本为70元,销售商对其销量定价的关系进行了调查,结果如下( )A.定价是常量,销量是变量B.定价是变量,销量是不变量C.定价与销售量都是变量,定价是自变量,销量是因变量D.定价与销量都是变量,销量是自变量,定价是因变量6.在国内投寄平信应付邮资如下表:下列表述:①若信件质量为27克,则邮资为2.40元;②若邮资为2.40元,则信件质量为35克;③p是q的函数;④q是p的函数.其中正确的是( )A.①④B.①③C.③④D.①②③④7.在圆的周长C=2πr中,常量与变量分别是( ).A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.2是常量,C、r是变量8.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):下列说法错误的是( )A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s9.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是( )A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1 kg,弹簧长度y增加0.5cmD.所挂物体质量为7 kg时,弹簧长度为23.5cm10.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是( )A.x与y都是变量,且x是自变量,y是函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y是x的反比例函数二、填空题11.在关系式V=30-2t中,V随着t的变化而变化,其中自变量是________,因变量是________,当t=________时,V=0.12.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表:上表反映了两个变量之间的关系,其中,自变量是香蕉数量;因变量是售价 .13.完成以下问题:(1)某人持续以a米/分钟的速度t分钟内跑了s米,其中常量是,变量是;(2)在t分钟内,不同的人以不同的速度a米/分钟跑了s米,其中常量是,变量是;(3)s米的路程不同的人以不同的速度a米/分钟各需跑t分钟,其中常量是,变量是;(4)根据以上叙述,写一句关于常量与变量的结论:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量 .14.一石激起千层浪,一枚石头投入水中,会在水面上激起一圈圈圆形涟漪,如上如图所示(这些圆的圆心相同).(1)在这个变化过程中,自变量是的半径,因变量是的面积(或周长).(2)如果圆的半径为r,面积为S,则S与r之间的关系式是 .(3)当圆的半径由1cm增加到5cm时,面积增加了 .15.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.三、解答题16.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.17.下表是某公共电话亭打长途电话的几次收费记录:(1)上表反映了哪两个变量间的关系?哪个是自变量?哪个是因变量?(2)如果用x表示时间,y表示电话费,那么随x的变化,y的变化趋势是什么?(3)丽丽打了5分钟电话,那么电话费需付多少元?18.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30).(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少.19.科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关,当气温是0 ℃时,音速是331米/秒;当气温是5 ℃时,音速是334米/秒;当气温是10 ℃时,音速是337米/秒;当气温是15 ℃时,音速是340米/秒;当气温是20 ℃时,音速是343米/秒;当气温是25 ℃时,音速是346米/秒;当气温是30 ℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)当气温是35 ℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?参考答案1.答案为:C2.答案为:D3.答案为:B4.答案为:A5.答案为:C6.答案为:A7.答案为:B8.答案为:C9.答案为:A10.D11.答案为:t V 1512.答案为:两;香蕉数量;售价.13.答案为:(1)a;t、s;(2)a;t、s;(3)s;a、t.14.答案为:圆的半径、圆的面积(或周长);s=πr²;24π.15.答案为:(1)年份,入学儿童人数;(2)2021;16.解:(1)x,t;y;(2)19.5.17.解:(1)反映的是时间和电话费两个变量之间的关系,时间是自变量,电话费是因变量;(2)根据表格中的数据得出:每增加1分钟,电话费增加0.6元;(3)由表格中的数据直接得出:丽丽打了5分钟电话,电话费需付3元.18.解:(1)反映了提出概念所用的时间x和对概念接受能力y两个变量之间的关系;其中x是自变量,y是因变量.(2)提出概念所用的时间为13分钟时,学生的接受能力最强.(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强.当x在13分钟至20分钟的范围内,学生的接受能力逐步降低.(4)估计当提出概念所用的时间为23分钟时,学生的接受能力为49.9.19.解:(1)列表如下:(2)两个变量是:传播的速度和温度;温度是自变量,传播的速度是因变量.(3)当气温是35 ℃时,估计音速y可能是352米/秒.(4)两个变量之间的关系为y=331+0.6x.。
人教版八年级下册数学课时练《19.1.1 变量与函数》(含答案)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!人教版八年级数学下册第十九章一次函数《19.1.1变量与函数》课时练一、选择题(共30分)1.(本题3分)下列关系式中,y 不是x 的函数的是()A .1y x =+B .22y x =C .y x =D .22y x =-2.(本题3分)设min (x ,y )表示x ,y 二个数中的最小值.例如min {0,2}=0,min {12,8}=8,则关于x 的函数y =min {3x ,-x +4}可以表示为()A .y =()3(1)41x x x x <ìí-+³îB .y =()4(1)31x x x x -+<ìí³îC .y =3xD .y =-x +43.(本题3分)如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的解析式为().A .32y x =B .23y x =C .12y x=D .18=y x 4.(本题3分)从边长为4cm 的正方形中挖去一个半径是x cm 的圆面,剩下的面积是2y cm ,则y 与x 的函数关系是()A .216y x p =-B .()22y x p =-C .()24y x p =+D .216y x p =-+5.(本题3分)在函数y =12x x --中,自变量x 的取值范围是()A .x ≥1B .x ≠2C .x ≥2D .x ≥1且x ≠26.(本题3分)在函数1y x =-中,自变量x 的取值范围是()A .1³xB .1x ¹C .1x >D .1x ³-7.(本题3分)当实数x 的取值使得2x -有意义时,函数y =4x +1中y 的取值范围是()A .y ≥-7B .y ≥9C .y >9D .y ≤98.(本题3分)弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系:x (kg )012345y (cm )1010.51111.51212.5下列说法不正确的是()A .x 与y 都是变量,且x 是自变量,y 是因变量B .物体质量每增加1kg ,弹簧长度y 增加0.5cmC .所挂物体质量为7kg 时,弹簧长度为13.5cmD .y 与x 的关系表达式是0.5y x=9.(本题3分)从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A .物体B .速度C .时间D .空气10.(本题3分)根据如图所示的程序计算函数y 的值,若输入x 的值是8,则输出y 的值是﹣3,若输入x 的值是﹣8,则输出y 的值是()A .10B .14C .18D .22二、填空题(共15分)11.(本题3分)下列各项:①2y x =;②21y x =-;③22(0)y x x =³;④3(0)y xx =¹;具有函数关系(自变量为x )的是_____________.(填序号)12.(本题3分)周长为10cm 的等腰三角形,腰长y (cm )与底边长x (cm )之间的函数关系式是_____.13.(本题3分)在函数5x y x-=中,自变量x 的取值范围是______.14.(本题3分)若对于所有的实数x ,都有()()222x x f xf x -+=,则()2f =______.15.(本题3分)一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm .如果挂上的物体的总质量为x 千克时,弹簧的长度为为ycm ,那么y 与x 的关系可表示为y =______.三、解答题(共75分)16.(本题7分)小明在劳动技术课中要制作一个周长为80cm 的等腰三角形.请你写出底边长y (cm )与腰长x (cm )的函数关系式,并求自变量x 的取值范围.17.(本题8分)为了增强居民的节水意识,某城区水价执行“阶梯式”计费,每月应缴水费y(元)与用水量x(t)之间的函数关系如图所示.若某用户去年5月缴水费18.05元,求该用户当月用水量.18.(本题8分)在等腰△ABC 中,底角为x (单位:度),顶角y (单位:度).(1)写出y 与x 的函数解析式;(2)求自变量x 的取值范围.19.(本题9分)如图,长方形ABCD 中,AB=4,BC=8.点P 在AB 上运动,设PB=x ,图中阴影部分的面积为y.(1)写出阴影部分的面积y 与x 之间的函数解析式和自变量x 的取值范围;(2)点P 在什么位置时,阴影部分的面积等于20?20.(本题10分)为了净化空气,美化校园环境,某学校计划在A ,B 两种树木中选择一种进行种植,已知A 种树木的单价是80元/棵,B 种树木的单价是72元/棵,且购买A 种树木有优惠,优惠方案是:购买超过20棵时,超出部分可以享受八折优惠.设学校准备购买树木x 棵(20x >),购买A 种树木和B 种树木花费的总金额分别为A y (元)和B y (元).(1)分别求出A y 、B y 与x 之间的函数关系式;(2)请你帮助该学校判断选择购买哪种树木更省钱.21.(本题10分)“五一”期间,小明和父母一起开车到距家200km 的景点旅游,出发前,汽车油箱内储油45L ,当行驶150km 时,发现油箱余油量为30L (假设行驶过程中汽车的耗油量是均匀的).(1)这个变化过程中哪个是自变量?哪个是因变量?(2)求该车平均每千米的耗油量,并写出行驶路程()x km 与剩余油量()Q L 的关系式;(3)当280x km =时,求剩余油量Q 的值.22.(本题11分)小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y 与所挂物体质量x 的几组对应值.所挂物体质量/kg x 012345y303234363840弹簧长度/cm(1)上表所反映的变化过程中的两个变量,___________是自变量,___________是因变量;(请用文字语言描述)(2)请直接写出y与x的关系式;(3)当弹簧长度为100cm(在弹簧承受范围内)时,求所挂重物的质量.23.(本题12分)在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm.)所挂物体质0123456量x/kg弹簧长度1212.51313.51414.515 y/cm(1)有下列说法:①x与y都是变量,且x是自变量,y是x的函数;②所挂物体质量为6kg时,弹簧伸长了3cm;③弹簧不挂重物时的长度为6cm;④物体质量每增加1kg,弹簧长度y增加0.5cm.上述说法中错误的是(填序号)(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式及自变量的取值范围.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.参考答案1.B 2.A 3.A 4.D 5.D 6.A 7.B 8.D 9.C 10.C11.①②④12.y=-()15052x x +<<13.0x ¹14.015.10+1.5x16.802,2040y x x =-<<17.9吨18.(1)y=180-2x ;(2)由三角形内角和得0°<x <90°.19.(1)阴影部分的面积为:y=32-4x (0<x≤4);(2)PB=320.(1)()=6432020A y x x +>,()7220B y x x =>;(2)当2040x <<时,学校选择购买B 种树木更省钱;当40x =时,学校选择购买两种树木的花费一样;当40x >时,学校选择购买A 种树木更省钱.21.(1)(1)行驶路程x ,剩余油量Q ;(2)450.1Q x =-;(3)当280x =(千米)时,剩余油量Q 的值为17L22.(1)所挂物体质量,弹簧长度;(2)y =2x +30;(3)35kg 23.(1)③④;(2)y =0.5x +12(0≤x ≤18);(3)弹簧长度是17cm ;(4)所挂物体的质量为16kg .。
最新人教版初中八年级数学下册第19章变量与函数 课后同步练习题含答案解析
第十九章 一次函数19.1 函数19.1.1 变量与函数1. 下列说法中,不正确的是( )A.函数不是数,而是一种关系B.多边形的内角和是边数的函数C.一天中时间是温度的函数D.一天中温度是时间的函数 2. 下列各表达式不是表示y 是x 的函数的是( )A. B. C. D. 3. 指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5元/千克,买a 千橘子的总价为m 元,其中常量是 ,变量是 ;(2)周长C 与圆的半径r 之间的关系式是C =2πr ,其中常量是 ,变量是4. 若球体体积为V ,半径为R ,则V = 其中变量是 、 ,常量是 .5. 计划购买50元的乒乓球,所能购买的总数n (个)与单价 a (元)的关系式是 ,其中变量是 ,常量是6. 汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是 ,其中的常量是 ,变量是 .7. 表格列出了一项实验的统计数据,表示小球从高度x (单位:m )落下时弹跳高度y (单位:m )与下落高的关系,据表可以写出的一个关系式是 .8. 下列关于变量x ,y y =2x +3y =x 2+3y =2|x|;④;⑤y 2-3x =10,其中表示y 是x 的函数关系的是 . 9. 设路程为s ,时间为t ,速度为v ,当v =60时,路程和时间的关系式为 ,这个关系式中, 是常量, 是变量, 是 的函数.10. 油箱中有油30kg,油从管道中匀速流出,1h 流完,则油箱中剩余油量Q (kg )与流出时间t (min )之间的函数关系式是 ,自变量t 的取值范围是 .11. 下列问题中,一个变量是否是另一个变量的函数?如果是,请指出自变量. (1)改变正方形的边长 x ,正方形的面积 S 随之变化;(2)秀水村的耕地面积是106 m 2,这个村人均占有耕地面积 y (单位:m 2)随这个村人数 n 的变化而变化;(3)P 是数轴上的一个动点,它到原点的距离记为 x ,它对应的实数为 y ,y 随 x 的变化而变化.343R π23x y =x y 1=(0)y x x =≥xy 18=y =12. 已知函数 (1)求当x =2,3,-3时,函数的值; (2)求当x 取什么值时,函数的值为0.13. 汽车的油箱中有汽油50L ,如果不再加油,那么油箱中的油量y (单位:L )随行驶里程x (单位:km )的增加而减少,平均耗油量为0.1L/km. (1)写出表示y 与x 的函数关系的式子. (2)指出自变量x 的取值范围;(3)汽车行驶200 km 时,油箱中还有多少油?参考答案: 1. C 2. C3. (1) 5 a ,m (2) 2,π C , r4. V R5. a ,n 506. Q=40-5t 40,5 Q ,t7. y =0.5x8.9. s =60t 60 t 和s s t43,π50n a =130Q t=-42.1x y x -=+10. 11. 解:(1)S 是x 的函数,其中x 是自变量. (2)y 是n 的函数,其中n 是自变量. (3)y 不是x 的函数.12. 解:(1)当x =2时,y = ; 当x =3时,y = ;当x =-3时,y =7. (2)令 解得x = 即当x = 时,y =0. 13. 解:(1) 函数关系式为: y = 50-0.1x(2) 由x ≥0及50-0.1x ≥0 得 0 ≤ x ≤ 500 ∴自变量的取值范围是0 ≤ x ≤ 500(3)当 x = 200时,函数 y 的值为y =50-0.1×200=30. 因此,当汽车行驶200 km 时,油箱中还有油30L.19.1.2函数的图象(1)函数的图象一、选择题1.图中,表示y 是x 的函数图象是()2.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()5242-2=22+1⨯42=01x x -+,1212A.39.0℃B.38.2℃C.38.5℃D.37.8℃3.如图,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t(小时)与山高h(千米)间的函数关系用图象表示是()4.你一定知道“乌鸦喝水”的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水,但是还没解渴,瓶中水面下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地叫着飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是 ( )二、填空题5.星期日晚饭后,小红从家里出去散步,如图所示,描述了她散步过程中离家的距离s(m)与散步所用的时间t(min)之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分;(2)小红在公共阅报栏看新闻一共用了______分;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分;(4)小红从邮亭走回家用了______分,平均速度是______米/秒.三、解答题6.如图,下面的图象记录了某地一月份的温度随时间变化的情况,请你仔细观察图象回答下面的问题:(1)在这个问题中,变量分别是______,时间的取值范围是______;(2)20时的温度是______℃,温度是0℃的时刻是______时,最暖和的时刻是_______时,温度在-3℃以下的持续时间为______小时;(3)你从图象中还能获得哪些信息?(写出1~2条即可)答:__________________________________________________.7.大家知道,函数图象特征与函数性质之间存在着必然联系.请根据图中的函数图象特征及表中的提示,说出此函数的变化规律.此外,你还能说出此函数的哪些性质?8.(广州育才中学模拟)甲车速度为20米/秒,乙车速度为25米/秒。
人教版八年级数学下册19.1.1《变量与函数(1) 》习题含答案
19.1 函数19.1.1 变量与函数第1课时《常量和变量》习题含答案1、一种练习本每本0.5元,x本共付y元钱,那么0.5和y分别是()A、常量、常量B、常量、变量C、变量、常量D、变量、变量2、在圆的周长公式C=2πr中,下列说法正确的是()A、π,r是变量,2是常量B、 C是变量,2,π,r是常量C、 r是变量,2,π,C是常量D、 C,r是变量,2,π是常量3、一长方体的宽为b(定值),长为x(x>b),高为h,体积为V,则V=bxh,其中变量是()A、xB、h、xC、V 、xD、x、h、V均为变量4、以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t 秒之间的关系式是h=v0t-4.9t2,在这个关系式中,常量、变量分别为()A、常量是4.9,变量是t,hB、常量是v0,2,变量是t,hC、常量是-4.9,v0,变量是t,h5、三角形的一边长为6cm,三角形的面积S(cm2)与这边上的高h(cm)之间的关系式为 .6、表格列出了一项实验的统计数据,表示小球从高度x(m)落下时,弹跳高度y(m)与小球高度x(m)的关系,据表写出y与x的关系式是 ,其中变量为,常量为 .7、一架雪橇沿一斜坡滑下,它在时间t(秒)滑下的距离S(米),由下面式子S=10t+2t2,假如滑到坡底的时间为8秒,斜坡长为米,其中式子中的变量是,常量是.8、如图,等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,AC 与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N 点重合.试求出重叠部分的面积y cm2与MA的长度x cm之间的关系式,并指出其中的常量与变量.第8题图x 50 80 100 150y 25 40 50 759、由图形列表如下,设图形的周长为L,梯形的个数为n,回答问题:梯形个数n 1 2 3 4图形的周长L 5 9 13 17(1)写出L与n的关系式.(2)在这个变化过程中,变量、常量各是什么?(3)有11个梯形时,图形的周长是多少?10、在一个半径为20cm的圆上,从中挖去一个圆,当挖去圆半径由小变大时,剩下的一个圆环面积也随之发生变化,若挖去的圆的半径为x(cm),圆环的面积y(cm2).(1)在这个变化过程中,变量、常量各是什么?(2)写出y与x的关系式;(3)当挖去的圆的半径由1cm变化到10cm时,圆环的面积将发生怎样的变化?参考答案1、B2、D3、D4、C5、S=3h6、y=0.5x,变量是x,y,常量是0.57、208,变量是s,t,常量是10,28、由题意知,开始时A点与M点重合,让△ABC向右运动,两图形重合的长度为AM=xcm.∵∠BAC=45°,∴S阴影=12·AM·h=12AM2=12x2,则y=12x2,0≤x≤10.其中的常量为12,变量为重叠部分的面积ycm2与MA的长度xcm.9、(1)L=4n+1(2)变量是L,n,常量是4,1(3)4510、(1)变量是:挖去的圆的半径x,圆的面积y;(2)y=400π-πx2(3)圆环的面积将由399πcm2减小到300πcm2.。
人教版数学八年级下册19章-19.1.1变量与函数-第1课时练习(教师版).docx
初中数学试卷桑水出品八年级下册第十九章19.1.1变量与函数第1课时(练)一、选择题(每小题5分,共20分)1.一辆汽车以50 km/h的速度行驶,则行驶的路程s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是()A.50与sB.50与tC.s与tD.三者均为变量【答案】C【解析】此变化过程中保持不变的量是50,变化的量是s与t .故选C考点:常量和变量.2.圆的周长公式为C=2πr,下列说法正确的是()A.常量是2B.变量是C,π,rC.变量是C,rD.常量是2,r【答案】C【解析】此变化过程中保持不变的量是2π,变化的量是C,r .故选C考点:常量和变量.3.下表是某报纸公布的世界人口数据情况:上表中的变量()A.仅有一个,是时间(年份)B.仅有一个,是人口数C.有两个,一个是人口数,另一个是年份D.一个变量也没有【答案】C【解析】此变化过程中变化的量是一个是人口数,另一个是年份, 故选C考点:常量和变量4.自由下落物体下落的高度h与下落的时间t之间的关系为h=gt2(g=9.8m/s2),在这个变化中,变量为()A.h,t B.h,g C.t,g D.t【答案】A【解析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为h、t.故选:A考点:变量.二、填空题(每小题5分,共20分)5.三角形的一边长为8 cm,它的面积S(cm2)与这边上的高h(cm)之间的关系为________,其中常量是________,变量是________.【答案】S=4h4h,S【解析】试题分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为h、S,不变的量为4.考点:常量和变量,三角形面积.6.已知x,y满足x-3y=1,用y表示x为______,其中变量为________,常量为________.【答案】x=3y+1x,y3,1【解析】试题分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为x,y,不变的量为x,y考点:常量和变量,函数.7.观察下表并填空:y与n【答案】y=2n·(2n-1)n,y【解析】试题分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,y=2n·(2n-1),变量为n,y考点:函数,常量和变量8.如果水的流速是50米/分,那么每分钟的流水量Q(立方米)与所选择的水管半径r(米)之间的关系式是Q =50πr2,其中变量是________,常量是________.【答案】r与Q50与π【解析】试题分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为r与Q, 常量是50与π.考点:常量和变量.三、简答题(每题30分,共60分)9.小刘在过14岁生日的时候,看到了爸爸为他记录的以前各周岁时的体重数值(如下表),你能看出小刘各周岁时的体重是如何变化的吗?在哪一段时间内体重增加最多?周岁1 2 3 4 5 6 7 8 9 10 11 12 13体重(千克)9.3 11.8 13.5 15.4 16.7 18.0 19.6 21.5 23.2 25.0 27.6 30.2 32.5【答案】随着年龄的增大,小刘的体重在增加.在10周岁以后体重增加较快.【解析】试题分析:此变化过程中变化的量是一个是年龄,另一个是体重.由表格得随着年龄的增大,小刘的体重在增加.在10周岁以后体重增加较快.考点:常量和变量.10.如图,长方形ABCD,试指出,当点P在边AD上从A向D移动时,•哪些线段的长度始终保持不变,哪些则发生了变化?哪些三角形的面积始终保持不变,•哪些也发生了变化?试分别举出如上述情况的两条线段与两个三角形.【答案】PA、PB、PC、PD的长度都是变化的,AB、BC、CD•的长度都是不变的;△PAB和△PCD的面积是变化的,△PBC的面积是不变的。
人教八年级数学下册-变量与函数(附习题)
C.p和t是变量
D.数100和t都是常量
2.分别指出下列式子中的变量和常量:
(1)圆的变周量长l=2π常r(其量中l为周长,r为半径);
(2)式变子量m=(n-常2)量×18变0°量(m为多边形的内角
和,n为边数);
变量
常量
变量 常量 (3)若矩形的宽为x,面积为36,则这个矩形的
长为y= 36 . 变量
2.能列出函数解析式表示两个变量之间 的关系.
3.能根据函数解析式求函数自变量的取 值范围.
4.能根据问题的实际意义求函数自变量 的取值范围.
推进新课
知识点 1 函数的概念及函数值
思考下面两个问题, 你学到了什么?
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
小圆半径 小圆面积 圆环面积
课堂小结
变量
数值发生变化的量
常量
数值始终不变的量
拓展延伸 心理学家发现,学生对概念的接受能力y
与提出概念所用的时间x(单位:分)之间有如 下关系(其中0≤x≤30):
提出概念所用的时间(x) 2 5 7 10 12 13 14 17 20 对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55
13分钟
第2课时 函数
新课导入
上节课我们学习了变量与常量, 这节课我们进一步学习函数及函数自 变量的取值范围问题.
试判断下面所给的两个例子中两 个变量是否也存在一一对应的关系.
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
人教版八年级下册数学19.1.1变量与函数练习题及答案
19.1.1变量与函数练习题一、单选题1.下列关系式中,y 不是x 的函数的是( )A .31y x =+B .2y x=C .12y x =-D .y x =2.下列关系式中,变量x=-1时,变量y=6的是( ) A .y=3x+3B .y=-3x+3C .y=3x –3D .y=-3x –33.在以x 为自变量, y 为函数的关系式y=5πx 中,常量为( ) A .5B .πC .5πD .πx4.己知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y 的值( ) A .3B .1C .-1D .-35.长方形的周长是12cm ,期中一条边为x cm(x >0),面积为y cm ²,则这个长方形的面积y 与边长x 的关系可以表示为( ) A .y=(6-x)xB .y=x ²C .y=x(12-x)D .y=2(6-x)6.关于函数y =,下列说法正确的是( ) A .自变量x 的取值范围是5x ≥ B .5x =时, 函数y 的值是0 C .当5x >时,函数y 的值大于0D .A 、B 、C 都不对7.设路程()s km ,速度(/)v km h ,时间t(h),当s 50=时,50t v=.在这个函数关系中( ) A .路程是常量,t 是s 的函数 B .路程是常量,t 是v 的函数 C .路程是常量,v 是t 的函数D .路程是常量,t 是v 的函数8.弹簧挂上物体后会伸长,若一弹簧长度(cm)与所挂物体质量(kg)之间的关系如下表:则下列说法错误..的是( ) A .弹簧长度随物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量B .如果物体的质量为x kg ,那么弹簧的长度y cm 可以表示为y=12+0.5xC .在弹簧能承受的范围内,当物体的质量为7kg 时,弹簧的长度为16cmD .在没挂物体时,弹簧的长度为12cm9.如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的解析式为( ). A .32y x =B .23y x =C .12y x =D .18=y x10.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为( )A .y =x +12B .y =0.5x +12C .y =0.5x +10D .y =x +10.5 二、填空题11.在函数y =中, 自变量x 的取值范围是 .12.某等腰三角形的周长是50cm ,底边长是xcm ,腰长是ycm ,则y 与x 之间的关系式是________________.13.函数y=11-+x x 中自变量x 的取值范围是 14.变量y 与x 之间的函数关系式是2112y x =-,则当自变量2x =-时,函数y =_____________. 15.将长为20cm 、宽为8cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm ,设x 张白纸粘合后的总长度为ycm ,y 与x 之间的关系式为_______.16.小明应用计算机设计了一个计算程序,输入和输出的数据如下表:当输入数据是时,输出的数据是_____.17.汽车开始行驶时,油箱中有油30升,如果每小时耗油4升,那么油箱中的剩余油量y(升)和工作时间x (时)之间的函数关系式是____________;18.若函数y=⎩⎨⎧≤+),2(2),2(22>x x x x 则当函数值y=8时,自变量x 的值等于________.三、解答题19.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,______是自变量,______是因变量;(2)观察表中数据可知,每月乘客量达到_______人以上时,该公交车才不会亏损; (3)请你估计当每月乘车人数为3500人时,每月利润为多少元?20.在一次实验中,小英把一根弹簧的上端固定,在其下端悬挂物体,下面是弹簧长度y 与所挂物体质量x 的一组对应值(以下情况均在弹簧所允许范围内)(1)在这个变化过程中,自变量是 ______ ,因变量是 ______ ;(2)当所挂物体重量为3 千克时,弹簧长度为 ______ cm ;不挂重物时,弹簧长度为 ______ cm ; (3)请写出y 与x 的关系式,若所挂重物为7 千克时,弹簧长度是多长?21.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水吨,应x (10)x >缴水费元.(1)写出与之间的关系式;(2)某户居民若5月份用水16吨,应缴水费多少元?y y x19.1.1变量与函数练习题答案一、单选题1.D 2.B 3.C 4.A 5.A 6.C 7.B 8.C 9.A 10.B 二、填空题11.4x ≥- 12.y =502x-(0<x <25) 13.x ≥-1且x ≠1 14.1 15.y=17x+3 16.55117.y=30-4x 18.-6或4 19.(1)x , y ;(2)观察表中数据可知,每月乘客量达到2000;(3)每月乘车人数为3500人时,每月利润为3000元. 20.(1)自变量是所挂物体的质量,因变量是弹簧的长度;(2)当所挂物体重量为3千克时,弹簧长度为24cm ;不挂重物时,弹簧长度为18cm ;(3)y=2x+18,32 21.(1)依题意有y =1.2×10+(x –10)×1.8=1.8x –6. 所以y 关于x 的函数关系式是y =1.8x –6(x >10);(2)用水16吨,即x =16,代入(1)种关系式可得应缴水费y =1.816–6=22.8.⨯。
人教版八年级数学下《19.1.1变量与函数》练习含答案
《变量与函数》练习一、选择——基础知识运用1.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C、R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量2.一长方体的宽为b(定值),长为x(x>b),高为h,体积为V,则V=bxh,其中变量是()A.x B.h C.V D.x、h、V均为变量3.设路程s,速度v,时间t,在关系式s=vt中,说法正确的是()A.当s一定时,v是常量,t是变量B.当v一定时,t是常量,s是变量C.当t一定时,t是常量,s,v是变量D.当t一定时,s是常量,v是变量4.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量。
上述判断正确的有()A.1个B.2个C.3个D.4个5.已知y与x之间有下列关系:y=x2-1.显然,当x=1时,y=0;当x=2时,y=3。
在这个等式中()A.x是变量,y是常量B.x是变量,y是常量C.x是常量,y是变量D.x是变量,y是变量二、解答——知识提高运用6.饮食店里快餐每盒5元,买n盒需付S元,则其中常量是,变量是。
7.汽车行驶的路程s、行驶时间t和行驶速度v之间有下列关系:s=vt。
如果汽车以每时60km 的速度行驶,那么在s=vt中,变量是,常量是;如果汽车行驶的时间t规定为1小时,那么在s=vt中,变量是,常量是;如果甲乙两地的路程s为200km,汽车从甲地开往乙地,那么在s=vt中,变量是,常量是。
8.海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐。
潮汐与人类的生活有着密切的联系.某港口某天从0时到12时的水深情况如下表,其中T表示时刻,h表示水深。
上述问题中,字母T,h表示的是变量还是常量,简述你的理由。
9.写出下列各问题中的关系式中的常量与变量:(1)时针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程S(千米)与行驶时间t(时)之间的关系式s=40t。
人教版八年级数学下19.1.1 变量与函数第1课时作业同步练习含答案
第十九章一次函数19.1 变量与函数(1)第1课时【巩固提优】1.在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.C,π,r D.C,2π,r2.在圆的面积公式S=πR2中,常量与变量分别是()A.2是常量,S、π、R是变量B.π是常量,S、R是变量C.2是常量,R是变量D.2是常量,S、R是变量3.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是()A.a B.p C.S D.p,a4.小王从北京给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个问题中,变量是()A.小王、爷爷B.电话费、时间C.时间D.爷爷5.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η,t都是变量B.数100和η都是常量C.η和t是变量D.数100和t都是变量6.如图,长方形ABCD的长AD=10 cm,宽AB=6 cm,正方形PQRH的四个顶点分别在AD和CB上,如果正方形PQRH向右平移,在这个运动过程中,以下结论正确的是() A.正方形的边长是变量B.BP的长是常量C.长方形QBAR的面积是常量D.长方形QCDR与长方形ABPH的面积随BP的变化而变化第6题图第8题图7.每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,是常量,是变量.8.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:Vπr2h)9.假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为(填“常量”或“变量”).10.在3x﹣y=7中,变量是,常量是.把它写成用x的式子表示y的形式是.(1) 支撑物高度为40 cm 时,小车下滑的时间是多少? (2) 如果用h 表示支撑物高度,t 表示小车下滑时间,随着h 逐渐变大,t 的变化趋势是什么? (3) h 每增加10cm ,t 的变化情况相同吗? (4) 估计当h = 60cm 时,t 的值是什么?【能力拔高】 12.(1)设圆柱的底面半径r 不变,圆柱的体积V 与圆柱的高h 的关系式是2V r h π=,在这个式子中常量和变量分别是什么?(2)设圆柱的高h 不变,圆柱的体积V 与圆柱的底面半径r 的关系式2V r h π=中,常量和变量分别又是什么?13.在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体.下面是他测得的弹簧(2)填空:①当所挂的物体为3kg 时,弹簧长是 .不挂重物时,弹簧长是 . ②当所挂物体的质量为8kg (在弹簧的弹性限度范围内)时,弹簧长度是 . 14.△ABC 底边BC 上的高是6cm ,当三角形的顶点C 沿底边BC 向点B 运动时,三角形的面积发生了变化,如图所示(1)如果三角形的底边BC 长为x cm ,那么三角形的面积y cm 2可以表示为 ; (2)在这个变化过程中,常量是 ,变量是 ; (3)当底边长从12cm 变化到3cm 时,三角形的面积从 cm 2变化到 cm 2.CC BC C A参考答案1.B 2.B 3.B 4.B 5.C 6.D 7.10;x,y 8.V,h 9.常量10.x,y;y=3x-7 11.(1)2.13s;t值逐渐变小;不相同;(4)t的值约是1.65.12.(1)常量是π,2,底面半径r,变量是圆柱的高h与圆柱的体积V;(2)常量是π,圆柱的高h,变量是圆柱的底面半径r与圆柱的体积V.13.(1)弹簧长度y与2物体质量x;(2)①26;20;②36cm14.(1)y=3x ;(2)3;x与y (3)36,9。
2020年人教版数学八年级下册19.1.1变量与函数同步练习(解析版)
19.1 函 数 19.1.1 变量与函数基础闯关全练1.一辆汽车以50 km/h 的速度行驶,行驶的路程s(km)与行驶的时间t(h)之间的关系式为s=50t ,其中变量是 ( )A .速度与路程B .速度与时间C .路程与时间D .三者均为变量 2.圆锥的底面半径r=2 cm ,当圆锥的高h 由小到大变化时,圆锥的体积V 也随之发生了变化,在这个变化过程中,变量是______.(圆锥的体积公式:V=31πr ²h ) 3.下列各关系中,不是函数关系的是 ( ) A .y=-x(x ≤0) B .y=±x (x ≥0)C .y=x (x ≥0)D .y=-x (x ≥O )4.某地海拔高度h 与温度T 之间的关系可用T=21-6h 来表示(温度单位:℃,海拔高度单位:km ),则该地区某海拔高度为2 km 的山顶上的温度为 ( )A .15℃B .9℃C .3℃D .7℃5.在函数y=3x+4中,当x=1时,函数值为_______,当x=_______时,函数值为10.6.函数y=11-x 中,自变量x 的取值范围是 ( )A .x ≠0B .x <1C .x >1D .x ≠1 7.下列函数中,自变量x 的取值范围是x >3的是 ( ) A .y=x-3 B .y=31-x C .y=3-x D .y=31-x 能力提升全练1.如图19-1-1-1所示,圆柱的高是3 cm ,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是________,因变量是____;(2)当底面半径由1 cm 变化到10 cm 时,圆柱的体积增加了____cm³.2.若函数y=⎩⎨⎧≤+),2(2),2(22>x x x x 则当函数值y=8时,自变量x 的值等于________.3.某剧院的观众席的座位分布呈扇形,且按下列方式设置:(1)按照上表所示的规律,当x 每增加1时,y 如何变化:(2)写出座位数y 与排数x 之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说出你的理由.三年模拟全练一、选择题1.下列关于变量x,y的关系:①y=x;②y²=X;③2x²=y,其中y是x的函数的有( )A.3个 B.2个 C.1个 D.O个2.下表反映的是某地区用电量x(千瓦时)与应交电费)y(元)之间的关系,下列说法不正确的是 ( )A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y不是x的函数二、填空题3.在函数y=1-x中,自变量x的取值范围是_______________________.4.声音在空气中传播的速度y(m/s)与气温x(℃)之间存在如下关系:y=x53+331.当气温x=22℃时,某人看到闪电5s后才听到雷声(光传播的时间忽略不计).则此人与闪电发生地相距____________m.五年中考全练一、选择题1.函数y=11-+xx中自变量x的取值范围是 ( )A.x≥-1且x≠1 B.x≥-1 C.x≠1 D.-1≤x<1 2.根据如图19-1-1-2所示的程序计算函数y的值,当输入x的值是4或7时,输出的y的值相等,则6等于 ( )A.9 B.7 C.-9 D.-73.一名司机驾驶汽车从甲地去往乙地,他以80千米/小时的平均速度用了4小时到达乙地,当他按原路匀速返回时,汽车的速度v(千米/小时)与时间t(小时)的函数关系是 ( )A.v=320t B.v=t320 C.v=20t D.v=t20二、填空题4.函数y=11+x中自变量x的取值范围是__________.核心素养全练1.已知函数ƒ(x)=1+x2,其中ƒ(a)表示x=a时的函数值,如ƒ(1)=1+12,ƒ(2)=1+22,ƒ(a)=1+a2,则ƒ(1)•ƒ(2)•ƒ(3)•…•ƒ(100)=______.2.将一张长方形的纸对折,如图19-1-1-3①,可得到一条折痕,继续对折,对折时每条折痕与上次的折痕保持平行,如图19-1-1-3②,连续对折三次后,可以得到7条折痕,如图19-1-1-3③.回答下列问题:(1)对折四次可以得到_______条折痕:(2)写出折痕的条数y与对折次数x之间的函数关系式:(3)求出对折10次后的折痕条数. 第十九章一次函数19.1 函数19.1.1 变量与函数1.C在s=50t中路程随时间的变化而变化,所以行驶时间是自变量,行驶路程是因变量,速度为50 km/h,是常量.故选C.2.答案V,h解析在变化过程中,底面半径r=2 cm,不发生改变,是常量,体积V随高度h的变化而变化,故V,h为变量.3.B B选项,当x取正值时,y有两个对应值,故B选项中的关系不是函数关系.4.B把h=2代入T=21-6h,得T=21-6×2=9.故选B.5.答案7;2解析当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10.解得x=2.6.D根据分式有意义的条件得x-1≠0,解得x≠1.故选D.7.D A.x的取值范围是一切实数;B.x的取值范围是x≠3;C.x的取值范围是x ≥3;D.x的取值范围是x>3.1.答案(1)底面半径;体积(2)297π解析(1)根据函数的定义可知,对于底面半径的每个值,都有一个确定的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变量是体积.(2)体积增加了(π×10²-π×1²)×3=297πcm³.2.答案4或-6解析①当x≤2时,x²+2=8,解得x=-6;②当x >2时,2x=8,解得x=4. 综上,x 为-6或4.3.解析(1)由题表中的数据,可知当x 每增加1时,y 增加3. (2)由题意可得y=50+3(x-1)=3x+47(x 为正整数). (3)某一排不可能有90个座位. 理由:当y=3x+47=90时,解得x=343.因为x 是正整数,而343不是正整数,故某一排不可能有90个座位,一、选择题1.B 对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,对于①y=x ,③2x ²=y ,当x 每取一个值时,y 都有唯一确定的值与之对应,故选B .2.D .∵对于x 的每一个取值,y 都有唯一确定的值和它对应,∴y 是x 的函数,选项D 不正确,故选D . 二、填空题 3.答案x ≥1解析根据题意得x-1≥0,解得x ≥1.4.答案1721解析∵y=53x+331,∴当x=22时,y=53×22+331=344.2.∵某人看到闪电5 s 后才听到雷声,∴根据“路程=时间×速度”可得,路程s=5×344.2=1721 m .一、选择题1.A 由二次根式的定义,可知x+1≥0,即x ≥-1;由分式的分母不为零可得x-1≠0,即x ≠1,所以自变量x 的取值范围是x ≥-1且x ≠1,故选A .2.C ∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得b=-9.故选C . 3.B 根据公式“路程=速度×时间”可算得甲、乙两地之间的距离为320千米,再根据公式“速度=时间路程”可得v=t320, 二、填空题 4.答案x >-1解析由二次根式的定义可知,x+1≥0,由分式的分母不为零可知,1+x ≠0,故可得x >-1.1.答案5151解析∵ƒ(1)=1+xx x 22+=, ∴ƒ(1)•ƒ(2)•ƒ(3)•…•ƒ(100)=211021011001029910198100352413⨯⨯=⨯⨯⨯⋅⋅⋅⨯⨯⨯=5151. 2.解析(1)第一次对折:1=2-1.第二次对折:3=2²-1.第三次对折:7=2³-1.第四次对折:15=2⁴-1.所以对折四次可以得到15条折痕. (2)根据(1)可得到y=2ˣ-1(x 为正整数). (3)当x=10时,y=2¹⁰-1=1023,所以对折10次后的折痕条数为1023.。
新人教版八年级下《19.1.1变量与函数》课时练习含答案
14.某蓄水池的横断面示意图如图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下
面的图象能大致表示水的深度 h 和放水时间t 之间的关系的是( )
h
h
h
h
h
答案:A 知识点:函数的图像
O
tO
tO
tO
t
A.
B.
C.
D.
后,因怕耽误了上课,他比修车前加快了骑车的速度,下面四幅图中最能反映小明这段行程的是(
)
s
s
s
s
O A
t
O
B
t O C
t O D
t
答案:C 知识点:函数的图像
解析: 解答:开始的时候,小明速度不变,也就是直线的倾斜度不变;行驶至途中,车子因为故障停止前进,所以路程不
变,时间继续增加,因此这段过程应该是水平线;第三段加快速度,意味着直线倾斜度变大.综合看三段过程,整 个过程分为三个阶段,其中还有一段是水平的,所以应该选则 C 答案. 分析:这类函数图像问题,要注意横纵坐标的比值表示速度,速度变大直线变陡,速度变小直线变平.若是停止运
0,
1 3
-1,所以在函数图像上的有①③
分析:将 x 取相应的值,代入函数表达式,若 y 值与对应点的纵坐标一致,则该点在函数图像上;反之,则不在函
数图像上 5.下列给出的四个点中,在函数y=3x+1的图像上的是( ) A.(1,4) B.(0,-1) C.(2,-7) D.(-1,2)
答案:A
知识点:函数的图像
答案:A 知识点:函数自变量的取值范围 解析:
解答:二次根式有意义的条件是根号下被开方数非负,所以 x+2≥0,即 x≥ 2
人教版八年级数学下册第十九章19.1.1变量与函数同步练习题(含答案)
人教版八年级数学下册第十九章19.1.1变量与函数同步练习题一、选择题1.在圆的面积公式S =πr 2中,常量是(B )A .SB .πC .rD .S 和r2.小王计划用100元钱买乒乓球,所购买乒乓球的个数W(单位:个)与单价n(单位:元/个)的关系式W =100n 中(A )A .100是常量,W ,n 是变量B .100,W 是常量,n 是变量C .100,n 是常量,W 是变量D .无法确定3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是(D )A .金额B .数量C .单价D .金额和数量4.一个长方形的面积是10 cm 2,其长是a cm 2,宽是b cm 2,下列判断错误的是(B )A .10是常量B .10是变量C .b 是变量D .a 是变量5.下列关系式中,y 是x 的函数的是(B )A .2x =y 2B .y =3x -1C .||y =23xD .y 2=3x -56.下列变量间的关系不是函数关系的是(C )A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径7.已知两个变量之间的函数关系式为y=-x+2,则当x=-1时,对应的y的值为(B)A.1 B.3C.-1 D.-38.在函数y=1x+3+4-x中,自变量x的取值范围是(D)A.x<4 B.x≥4且x≠-3C.x>4 D.x≤4且x≠-39.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是(D)A.y=60-2x(0<x<60)B.y=60-2x(0<x<30)C.y=12(60-x)(0<x<60)D.y=12(60-x)(0<x<30)10.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值是(C)A .5B .10C .19D .2111.函数y =2x -4的自变量x 的取值范围是(D )A .x <2B .x ≤2C .x >2D .x ≥2二、填空题12.如图,圆锥的底面半径r =2 cm ,当圆锥的高h 由小到大变化时,圆锥的体积V 也随之发生了变化,在这个变化过程中,变量是V ,h(圆锥体积公式:V =13πr 2h).13.某地某一时刻的地面温度为10 ℃,高度每增加1 km ,温度下降4 ℃,则有下列说法:①10 ℃是常量;②高度是变量;③温度是变量;④该地某一高度这一时刻的温度y(℃)与高度x(km )的关系式为y =10-4x.其中正确的是(D )A .①②③B .②③④C .①③④D .①②③④14.n 边形的内角和α°的公式是α=(n -2)·180,其中变量是n ,α,常量是2,180.15.用黑、白两种颜色的正六边形地板砖镶嵌成若干图案(如图),则第n 个图案中白色地板砖的总块数N(块)与n 之间的关系式是N =4n +2,其中常量是4,2,变量是N ,n .16.若92号汽油的售价为6.8元/升,则付款金额y(元)随加油数量x(升)的变化而变化,其中,x是自变量,y是x的函数,其解析式为y=6.8x.17.函数y=1x-6中,自变量x的取值范围是x≠6.18.某公交车每月的利润y(元)与乘客人数x(人)之间的函数关系式为y=2.5x -6 000,该公交车为使每月不亏损,则每月乘客量x应满足的条件是x≥2__400且x为整数.19.对于函数y=6xx+3,当y=2时,x=32.20.若物体运动的路程s(米)与时间t(秒)的函数关系式为s=3t2+2t+1,则当t=4秒时,该物体运动的路程为57米.21.函数y=x+2x中,自变量x的取值范围是x≥-2且x≠0.22.函数y=x-2+(x-3)0中,自变量x的取值范围是x≥2且x≠3.三、解答题23.写出下列问题中的变量和常量:(1)购买单价为5元的钢笔n支,共花去y元;(2)全班50名同学,有a名男同学,b名女同学;(3)汽车以60 km/h的速度行驶了t h,所走过的路程为s km.解:(1)y,n是变量,5是常量.(2)a,b是变量,50是常量.(3)s,t是变量,60是常量.24.如图,已知m∥n,直线m,n之间的距离是3,△ABC的顶点A在直线m上,边BC在直线n上,设BC边的长为x,△ABC的面积为S,请用含x的式子表示S,并指出式子中的常量与变量.解:S=12×3x=32x.常量:3 2;变量:S,x.25.已知水池中有800立方米的水,每小时抽水50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数解析式;(2)写出自变量t的取值范围;(3)10小时后,池中还有多少水?解:(1)Q=800-50t.(2)令y=0,则0=800-50t,解得t=16.∴0≤t≤16.(3)当t=10时,Q=800-50×10=300.答:10小时后,池中还有300立方米水.。
人教版八年级数学下册 变量与函数同步练习卷(含解析)
人教版八年级下册:19.1 函数 同步练习卷一、选择题1.小李驾车以70km/h 的速度行驶时,他所走的路程()km s 与时间()h t 之间可用公式70s t =来表示,则下列说法正确的是( ) A .数70和s ,t 都是变量 B .s 是常量,数70和t 是变量 C .数70是常量,s 和t 是变量D .t 是常量,数70和s 是变量2.函数2y x =-的自变量x 的取值范围是( ) A .2x ≠B .2x <C .2x >D .2x ≥3.下列关系式中y 不是x 的函数是( ) A .()0y x x =±> B .()20y x x =-> C .2yxD .()()20y x x =>4.当2x =时,函数的21y x =-+值是( ) A .2B .2-C .12D .12-5.刘老师每天从家去学校上班行走的路程为1200米,某天他从家去学校上班时以每分钟40米的速度行走了前半程,为了不迟到他加快了速度,以每分钟50米的速度行走完了剩下的路程,那么刘老师距离学校的路程y (米)与他行走的时间t (分)(15t >)之间的函数关系为( ) A .501350y t =-+ B .50150y t =- C .401350y t =-+D .101350y t =-+6.如图所示能表示y 是x 的函数是( )A .B .C .D .7.下列关系不是函数关系的是 ( ) A .长方形的宽一定时,它的长与面积. B .正方形的周长与面积.D.等腰三角形顶角的度数与底角的度数.8.点燃的蜡烛每分钟燃烧的长度一定,长22cm的蜡烛,点燃10分钟,变短了4cm,设点燃x分钟后,还剩y cm,下列说法正确的有()A.蜡烛每分钟燃烧0.6cmB.y与x的关系式为y=22﹣4xC.第23分钟时,蜡烛还剩12.8cmD.第51分钟时,蜡烛燃尽9.小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后.用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A.B.C.D.10.甲、乙两地之间是一条直路,在全民健身活动中,王强跑步从甲地往乙地,李刚骑自行车从乙地往甲地,两人同时出发,李刚先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发0.5小时后相遇B.李刚到达目的地时两人相距8kmC.甲乙两地相距12kmD.王强比李刚晚0.75h到达目的地11.对于圆的周长公式c=2πr,其中自变量是______,因变量是______.12.在男子1000米的长跑中,运动员的平均速度v=1000,则这个关系式中自变量是___.t13.等边三角形的边长为x,此三角形的面积S表示成x的函数为______.14.校园里栽下一棵小树高1.8m,以后每年长0.4m,则n年后的树高L与年数n之间的关系式为______.15.已知A,B两地相距80km,甲、乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车.图中DE,OC分别表示甲、乙离开A地的路程s(km)与时间(h)的函数关系的图象,则甲与乙的速度之差为______,甲出发后经过______小时追上乙.16.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,则下列说法中正确的序号为______.①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米/分钟;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度三、解答题17.科学家认为二氧化碳2CO的释放量越来越多是全球变暖的原因之一.下表1950~1990年全世界所()释放的二氧化碳量:年份1950 1960 1970 1980 1990CO释放量/百万吨6002 9475 14989 19287 22588 2(2)说一说这两个变量之间的关系.18.如图所示,一个四棱柱的底面是一个边长为10cm 的正方形,它的高变化时,棱柱的体积也随着变化. ①在这个变化中,自变量、因变量分别是______、______;②如果高为()cm h 时,体积为()3cm V ,则V 与h 的关系为______;③当高为5cm 时,棱柱的体积是______;④棱柱的高由1cm 变化到10cm 时,它的体积由______变化到______.19.周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时候达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园,如图是他们离家路程()km s 与小明离家时间()h t 的关系图,请根据图回答下列问题:(1)图中自变量是____________,因变量是____________; (2)小明家到滨海公园的路程为______________km ;(3)小明从家出发____________小时后爸爸驾车出发,爸爸驾车经过_____________小时追上小明.20.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间有如下关系:提出概念所用时间257101213141720()x对概念的接受能力47.853.556.359.059.859.959.858.355.0()y(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是7分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?21.小华骑自行车上学,当他骑了一段路时,想起要买本书,于是又这回到刚经过的某书店,买到书后继续去学校,以下是他本次上学所用的时间与离家距离的关系示意图,根据图中提供的信息回答下列问题:(1)小华家到学校的路程是______m,小华在书店停留了_____min.(2)在整个上学的途中哪个时间段小华的骑车速度最快?最快的速度是多少?(3)本次上学途中,小华一共骑行了多少米?(4)如果小华到校后立刻以300m/min的速度回家,请在原图上画出小华回家所用时间与离家距离的关系图象.22.甲、乙两车分别从B,A两地同时出发,甲车匀速前往A地;乙车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;设甲、乙两车距A地的路程为y(千米),乙车行驶的时间为x(时),y(1)求乙车从B地到达A地的速度;(2)求乙车到达B地时甲车距A地的路程;(3)求乙车返回前甲、乙两车相距40千米时,乙车行驶的时间.参考答案1.C根据常量和变量的定义(在某一变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量)即可得. 【详解】解:在70s t =中,数70是常量,s 和t 是变量, 故选:C . 【点睛】本题考查了常量和变量,熟记定义是解题关键. 2.D 【解析】 【分析】根据二次根式有意义的条件求解即可. 【详解】 解:∵20x -≥ ∴2x ≥ 故选D 【点睛】本题考查了二次根式有意义的条件,函数的定义,掌握二次根式有意义的条件是解题的关键. 3.A 【解析】 【分析】根据函数的定义逐项分析即可. 【详解】在选项B,C,D 中,每给x 一个值,y 都有1个值与它对应,所以B,C,D 中y 是x 的函数, 在A 中,给x 一个正值,y 有2个值与之对应,所以y 不是x 的函数. 故选A 【点睛】本题考查了函数的定义,掌握函数的定义是解题的关键.一般的,在一个变化过程中,假设有两个变量x 、y ,如果对于任意一个x 都有唯一确定的一个y 和它对应,那么就称x 是自变量,y 是x 的函数. 4.B将2x=代入函数解析式即可求得.【详解】当2x=时,21yx=-+2221-+==-故选B【点睛】本题考查了已知自变量的值,求函数的值,正确的计算是解题的关键.5.A【解析】【分析】由题意可得前半程所需时间为15分钟,则剩下路程所需时间为(t﹣15)分,再由1200﹣y=600+50(t ﹣15),可求函数关系式.【详解】解:∵以每分钟40米的速度行走了前半程,∴以每分钟40米的速度行走了600米,∴600÷40=15(分),∴剩下路程所需时间为(t﹣15)分,∴1200﹣y=600+50(t﹣15),整理得y=﹣50t+1350,故选:A.【点睛】本题考查函数关系式,能够通过题中条件获取信息,并能将所得信息转化为数学关系式是解题的关键.6.D【解析】【分析】对于自变量的每一个确定的值,函数值有且只有一个值与之对应,根据函数的概念即可求出答案.【详解】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以能表示y是x的函数是:.故选:D.【点评】本题主要考查了函数的概念.函数的意义反映在图象上简单的判断方法是:作垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.7.C【解析】【分析】根据函数的概念可直接进行排除选项.【详解】长方形的面积=长×宽,当宽一定时,它的长与面积成函数关系故A正确;正方形面积=正方形的周长的平方的十六分之一,故B正确;等腰三角形的面积=底边长×底边上的高×0.5,当底边上的高不确定时,等腰三角形的底边长与面积不成函数关系,故C不正确;等腰三角形顶角的度数是180与底角的度数2倍的差,等腰三角形顶角的度数与底角的度数成函数关系,故D正确.故选C.【点睛】本题主要考查函数的概念,熟记掌握函数的概念是解题的关键.8.C【解析】【分析】根据题意可得这根蜡烛总长度是22cm,燃烧10分钟后变短了4cm,可得每分钟燃烧410cm,据此可得各选项答案.【详解】解:A、燃烧10分钟后变短了4cm,可得每分钟燃烧4100.4cm,故不正确,不合题意;B、点燃的蜡烛每分钟燃烧的长度一定,长22cm的蜡烛,点燃10分钟,变短了4cm,设点燃x分钟后,还剩C、第23分钟时,蜡烛还剩y=22﹣0.4×23=12.8cm,故正确,符合题意;D、第51分钟时,蜡烛还剩y=22﹣0.4×51=1.6cm,故不正确,不合题意;故选:C.【点睛】本题主要考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数关系式,利用函数解析式解答问题.9.D【解析】【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得离家的距离.【详解】解:20分钟到报亭离家的距离随时间的增加而增加;看报10分钟,离家的距离不变;15分钟回家离家的距离随时间的增加而减少,故D选项符合题意.故选:D【点睛】本题考查了函数图象,根据横轴和纵轴表示的量,得出时间与离家距离的关系是解题关键.10.B【解析】【分析】根据图象可得两地之间的距离,再分别算出两人的行进速度,据此可得各项数据进而判断各选项.【详解】解:由图可知:当时间为0h时,两人相距12km,即甲乙两地相距12km,故C不符合题意.当时间为0.5h时,甲乙两人之间距离为0,即此时两人相遇,故A不符合题意;∵李刚比王强先到目的地,∴王强全程花费的时间为1.5h,∴王强的速度为12÷1.5=8km/h,∵12÷0.5=24km/h,∴李刚的速度为16km/h,∴李刚到达目的地时两人相距0.75×8=6km,王强比李刚晚0.75h到达目的地,故B选项符合题意,D选项不符合题意;故选B.【点睛】本题考查了动点问题的函数图象,解题时要充分理解题意,读懂函数图象的意义.11.r c【解析】【详解】试题解析:∵圆的周长随着圆的半径的变化而变化,∴对于圆的周长公式2πC r=,其中自变量是r,因变量是C.故答案为,.r C12.t【解析】【分析】分析:根据函数的定义:设x和y是两个变量,对于x的每一个值,y都有唯一确定的值和它对应,我们就说y是x的函数,其中x是自变量.据此解答即可.【详解】解:在男子1000米的长跑中,运动员的平均速度v=1000t,则这个关系式中自变量是t,故答案为:t.【点睛】本题考查了函数的定义,理解掌握函数的定义是解体的关键.13.2=S【解析】【分析】作出三角形的高,利用直角三角形的性质及勾股定理可求得高,那么三角形的面积=12×底×高,把相关数值代入即可求解.【详解】解:如图,ABC为等边三角形,边长为x,作AD⊥BC于点D,则∠ADB=90°,∵ABC 为等边三角形 ∴BD =CD =12BC =12x在Rt △ABD 中,∠ADB =90°,AB =x ,BD =12x ∴223AD AB BD x =- ∴2113322S BC AD x =⨯⋅⋅==,∴S 表示成x 的函数为23=S x . 故答案为:23=S x . 【点睛】本题考查三角形的面积的求法,找到等边三角形一边上的高是重点. 14.L =0.4n +1.8 【解析】 【分析】由小树每年长0.4m,则n 年长0.4n m,再由栽下时小树高1.8 m,据此求解即可. 【详解】解:∵每年长0.4m ∴n 年长0.4n m ∵栽下时小树高1.8 m∴n 年后的树高L 与年数n 之间的关系式为 L =0.4n +1.8. 故答案为: L =0.4n +1.8. 【点睛】本题主要考查了列函数关系式,正确理解题意是解题的关键 15.1003km /h 1.8 【解析】 【分析】根据题意和函数图象中的数据可以计算出甲乙的速度,从而可以解答本题.解:由题意和图象可得,乙到达B 地时甲距A 地120km , 甲的速度是:120÷(3-1)=60km /h , 乙的速度是:80÷3=803km /h , ∴甲与乙的速度之差为60-803=1003km /h , 设乙出发后被甲追上的时间为x h , ∴60(x -1)=803x ,解得x =1.8, 故答案为:1003km /h ,1.8. 【点睛】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 16.①②④ 【解析】 【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800−2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可. 【详解】解:小明中途休息用了60−40=20分钟,故①正确;小明休息前爬山的速度为2800÷40=70(米/分钟),故②正确; 小明在上述过程中所走的路程为3800米,故③错误;小明休息前爬山的速度为2800÷40=70(米/分钟),小明休息后爬山的速度是(3800−2800)÷(100−60)=25(米/分钟),小明休息前爬山的平均速度大于休息后爬山的平均速度,故④正确; 故答案为:①②④. 【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键. 17.(1)2CO 释放量与年份;(2)2CO 释放量的随着年份的增加而增大 【解析】 【分析】(1)分别根据变量、因变量的定义分别得出即可; (2)根据图表分析得出答案.解:(1)上标反映的是2CO 释放量与年份之间的关系; (2)2CO 释放量的随着年份的增加而增大. 【点睛】本题考查了常量与变量的定义以及利用图表得出正确方案等知识,利用图表获取正确数据是解题关键.18.①高、棱柱的体积;②100V h =;③3500cm ;④3100cm ,31000cm 【解析】 【分析】①在这个变化中,棱柱的体积随着高的变化而变化可知自变量、因变量; ②根据棱柱的体积公式:h V S =可得答案;③利用待定系数法把高为5cm 代入函数关系式即可;④利用待定系数法把高为1cm 代入函数关系式,高为10cm 代入函数关系式计算即可. 【详解】解:∵棱柱的体积=底面积×高, ∴长方体的体积随着高的变化而变化,①在这个变化中,自变量、因变量分别是高、棱柱体积, 故答案为:高、棱柱体积; ②由题意得:1010100V h h =⨯⋅=, 故答案为:100V h =; ③由②得31005=500cm V =⨯, 故答案为:3500cm ; ④∵100V h =, ∴V 随h 的增大而增大,∴当1cm h =,3100cm V =,当10cm h =,31000cm V =∴棱柱的高由1cm 变化到10cm 时,它的体积由3100cm 变化到31000cm , 故答案为:3100cm ,31000cm 【点睛】本题主要考查了因变量和自变量,求因变量,函数关系式等,熟练掌握棱柱的体积公式是解题的关键. 19.(1)时间t ; 离家路程s (2)30(3)2.5;23【解析】 【分析】(1)根据图象进行判断,即可得出自变量与因变量; (2)根据图象中数据即可得到路程;(3)根据图象直接可得到爸爸驾车出发的时间;先算出小明坐公交车到滨海公园的平均速度和爸爸驾车的平均速度,设爸爸出发后x h 追上小明,根据在x 这段时间内,爸爸通过的路程比小明乘公交车通过的路程多12km 列出方程,解方程即可. (1)由图可得,自变量是时间t ,因变量是离家路程s ; 故答案为:时间t ;离家的路程s . (2)由图可得,小明家到滨海公园的路程为30km ; 故答案为:30. (3)由图可得,小明出发2.5小时后爸爸驾车出发; 爸爸驾车的平均速度为()3030km/h 3.5 2.5=-,小明乘公交车的平均速度为:()3012=12km/h 4 2.5--, 设爸爸出发后x h 追上小明,根据题意得:301212x x -=,解得:23x =. 故答案为:2.5;23h . 【点睛】本题考查了路程时间的图象,以及行程问题的数量关系的运用,解答时理解清楚图象的意义是解答此题的关键.20.(1)提出概念所用的时间x 和对概念的接受能力y 两个变量之间的关系,提出概念所用时间x 是自变量,对概念的接受能力y 是因变量;(2)56.3;(3)提出概念所用时间为13分钟时,学生的接受能力最强;(3)当2x 13<<时,y 值逐渐增大,学生的接受能力逐步增强;当13x 20<<时,y 值逐渐减小,学生的接受能力逐步降低 【解析】 【分析】(1)根据自变量与因变量的定义即可求解;(2)根据表格中数据即可求解;(3)根据表格中13x时,y的值最大是59.9,即可求解;(4)根据表格中的数据即可求解.【详解】解:()1提出概念所用的时间x和对概念的接受能力y两个变量;提出概念所用时间x是自变量,对概念的接受能力y是因变量.()2当x7=时,y56.3=,所以当提出概念所用时间是7分钟时,学生的接受能力是56.3.()3当13x时,y的值最大是59.9,所以提出概念所用时间为13分钟时,学生的接受能力最强.()4由表中数据可知:当2x13<<时,y值逐渐增大,学生的接受能力逐步增强;当13x20<<时,y值逐渐减小,学生的接受能力逐步降低.【点睛】准确理解函数的概念:在运动变化过程中有两个变量x和y,对于x的每一个值,y都有唯一确定的值与之对应,y是x的函数,x是自变量.21.(1)1500,4;(2)从12分钟到14分钟的速度最快,速度是450m/min;(3)小华一共骑行的路程是:2700m;(4)5min,图见解析【解析】【分析】(1)根据图象可以直接求得;(2)求得各段的速度,然后进行比较即可;(3)求得各段的路程,然后求和即可;(4)求得回来时所用的时间,即可补充图象.(1)小华到学校的路程是1500m,在书店停留的时间是12﹣8=4(min).故答案是:1500,4;(2)从开始到6分钟的速度是12006=200m/min,从6分钟到8分钟的速度是:120060086-=-300m/min;从12分钟到14分钟的速度是:15006001412-=-450m/min.则从12分钟到14分钟的速度最快,速度是450m/min;(3)小华一共骑行的路程是:1200+600+(1500﹣600)=2700(m);(4)小华回家的时间是1500300=5(min)..【点睛】本题考查了函数的图象,正确根据图象理解运动过程是关键.22.(1)100千米/小时;(2)100千米;(3)1.3小时或1.7小时【解析】【分析】(1)根据题意列算式即可得到结论;(2)根据题意求出n的值以及甲车的速度为即可解答;(3)求出甲车的速度以及乙车返回前的速度,再根据题意列方程解答即可.【详解】解:(1)m=300÷(180÷1.5)=2.5,∴乙车从A地到达B地所用的时间为2.5小时,∴乙车从B地返回A地所用时间:5.5-2.5=3(小时),∴乙车从B地到达A地的速度:300÷3=100(千米/小时);(2)n=300÷[(300﹣180)÷1.5]=3.75,甲车的速度为:(300﹣180)÷1.5=80(千米/时),故乙车到达B地时甲车距A地的路程为:80×(3.75﹣2.5)=100(km);(3)甲车的速度为80千米/时,乙车返回前的速度为:180÷1.5=120(千米/时),设乙车返回前甲、乙两车相距40千米时,乙车行驶的时间为x小时,根据题意得:80x+120x=300﹣40或80x+120x=300+40,解得x=1.3或x=1.7,故乙车返回前甲、乙两车相距40千米时,甲车行驶的时间为1.3小时或1.7小时.【点睛】本题考查了函数的图象、有理数的混合运算、一元一次方程的应用,理解题意,能从图象中获取相关联信息,行程问题的数量关系的运用是解答的关键.。
人教版八年级下册数学 19.1.1变量与函数 同步练习
人教版八年级下册数学19.1.1变量与函数 同步练习一、选择题1. 函数y =√x−2x 中,自变量x 的取值范围是( )A. x ≠0B. x ≥2C. x >2且x ≠0D. x ≥2且x ≠02. 在球的体积公式V=43πr 3中,下列说法正确的是 ( )A. V,r 是变量,43,π是常量B. V,r 是变量,43是常量C. V,π,r 是变量,43是常量D. 以上都不对3. 下列各曲线中表示y 是x 的函数的是( ) A. B. C. D.4. 若函数y ={x 2+2(x ≤2),2x(x >2),则当函数值y=8时,自变量x 的值是( ) A. ±√6 B. 4 C. ±√6或4 D. 4或−√65. 如图是某市某天的温度随时间变化的图象,通过观察可知,下列说法中,错误的是( )A. 这天15时温度最高B. 这天21时温度是30℃C. 这天最高温度与最低温度的差是13℃D. 这天3时温度最低6.琪琪在电脑上打字录入文稿,录入一段时间后因事暂停,过了一小会,琪琪继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )A. AB. BC. CD. D7. 琪琪从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了琪琪在散步过程中离家的距离s(米)与散步所用时间t(分钟)之间的函数关系,根据图象,下列信息错误的是( )A. 琪琪看报用时8分钟B. 公共阅报栏距琪琪家200米C. 琪琪离家最远的距离为400米D. 琪琪从出发到回家共用时16分钟二、填空题8. 已知函数y =3x 2+1,那么x =√2时的函数值为________.9. 给出下列关于变量x,y 的关系式:①3x-y=6; ②y =2|x|; ③4x −3=y 2.其中,y 是x 的函数的是________.(填序号)10. 已知2x-y=1,把它写成y 是x 的函数形式是________.11. 某种储蓄的月利率为m%,存入1000元本金后,本息和y(元)与所存的月数x 之间的函数关系式为________.12. 一个正方形的边长为5 cm,它的边长减少x cm后得到的新正方形的周长为y cm,y与x的关系式为,自变量的取值范围为.13. 已知等腰三角形的周长是20,则腰长y与底边长x之间的函数关系式为,自变量x的取值范围是.14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为.三、解答题15. 求下列函数的自变量x的取值范围:(1)y=4; (2) y=x2−3x+2; (3)y=√2x−5.3x−216. 已知y与x之间的函数关系为y=2x-1.(1)求x=5时的函数值; (2)求y=5时对应的自变量x的值.17. 一盛满10吨水的水箱,每时流出0.5吨水.水箱中水量y(吨)与时间x(时)之间有什么函数关系?写出x的取值范围.18. 写出下列各问题所满足的关系式,并指出各个关系式中,哪些是常量,哪些是变量.(1)每本练习本0.6元,购买练习本所需的钱数m(元)与购买的本数n(本)之间的关系式;(2)用总长度为27 m的篱笆刚好围成一个矩形场地,矩形的面积S(m2)与一边长x(m)之间的关系式;(3)某种饮水机盛满20升水,打开阀门每分钟可流出0.2升水,饮水机中剩余水量y(升)与放水时间x(分钟)之间的关系式.19. 一个小球沿着一个斜坡向下滚动,其速度每秒增加2米,到达坡底时,小球的速度达到40米/秒.(1)求小球速度v(米/秒)与时间t(秒)的函数关系式,并求t的取值范围;(2)几秒时,小球的速度变为16米/秒?20. 从A地向B地打长途电话的收费标准为:3分钟内收取2.4元(包含3分钟),每超过一分钟多收1元.(1)写出应收电话费y(元)与打电话时间x(分钟)之间的函数关系式;(2)某人打5分钟电话应付多少钱?(3)某人付电话费8.4元,他打了多少分钟电话?21. 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,设D为BC上任意一点,点D不与B,C重合,且DC=x,若三角形ABD的面积为y.(1)请求出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x=6时,求三角形ABD的面积y.22. 如图是琪琪上学骑车途中速度与时间的关系.(1)他去上学共用了多长时间?最大速度是多少?(2)出发后的前10分钟,他的速度有什么变化?哪段时间匀速行驶?最后10分钟呢?。
八年级数学下册第十九章一次函数19.1变量与函数19.1.2函数的图象同步练习含解析新版新人教版
A.
B.
C.
D.
3.甲、乙两地相距 80 km,一辆汽车上午 9:00 从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了 20
km/h,并继续匀速行驶至乙地,汽车行驶的路程 y( km)与时间 x(h)之间的函数关系如图 19-1-2-8 所示,该车到
达乙地的时间是当天上午( )
4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速 度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离 y(千米)与慢车行驶的 时间 t(小时)之间的函数图象如图 19-1-2-6 所示,则两车相遇时距甲地_______千米.
19.1.2 函数的图象 1.B 小刚从家到学校的路程 s(m)应随他行走的时间 t(min)的增大而增大,因而选项 A 一定错误;而在等车的时 候离家的路程不变,因此 C、D 错误;所以能反映小刚从家到学校行走路程 s(单位:m)与时间 t(单位:min) 之间函数关系的大致图象是 B,故选 B. 2.C 接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录 入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上 升得快,综合这些信息可知答案为 C. 3.解析由题意可知,共骑行 2.5 小时走完全程 50 千米,所以前 1.5 小时走了 30 千米,修车用了 0.5 小时后继 续骑行 1 小时,走了 20 千米,由此作图如图所示.
驶 6 小时后,快车准备从乙地返回,此时两车相距 120 千米,BC 段表示两车走这 120 千米直至相遇的情况,设 6
小时后再经过 t1.小时两车相遇,则 30t₁+60t₁=120,解得 t₁= 4 ,故慢车又行驶了 30× 4 =40 千米,所以
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数
19.1 变量与函数(1)
(时间:25分,满分60分)
班级姓名得分
1.(6分)以21m/s的速度向上抛一个小球,小球的高度h(m)与小球运动的时间t(s)之间的关系是h=21t﹣4.9t2.下列说法正确的是()
A.4.9是常量,21,t,h是变量B.21,4.9是常量,t,h是变量
C.t,h是常量,21,4.9是变量D.t,h是常量,4.9是变量
【答案】B
【解析】解:A、21是常量,故A错误;
B、21,4.9是常量,t,h是变量,故B是正确;
C、D、t、h是变量,21,4.9是常量,故C、D错误;
故选:B.
2.(6分)小王计划用100元钱买乒乓球,所购买球的个数W(个)与单价n(元)的关系式中()
A.100是常量,W,n 是变量B.100,W是常量,n 是变量
C.100,n是常量,W是变量D.无法确定
【答案】A
3.(6分)自由下落物体下落的高度h与下落的时间t之间的关系为h=gt2(g=9.8m/s2),在这个变化中,变量为()
A.h,t B.h,g C.t,g D.t
【答案】A
【解析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为h、t.
故选:A
4.(6分)球的体积V与半径R之间的关系式为V=πR3,下列说法正确的是()
A.变量为V,R,常量为π,3 B.变量为V,R,常量为,π
C.变量为V,R,π,常量为D.变量为V,R3,常量为π
5.(14分)下表是小华做观察水的沸腾实验时所记录的数据:
(1)时间是8分钟时,水的温度为;
(2)此表反映了变量和之间的关系,其中是自变量,是因变量;
(3)在时间内,温度随时间增加而增加;时间内,水的温度不再变化.
【答案】(1)100℃(2)温度,时间,时间,温度;(3)0至8分钟,8至12分钟.
【解析】(1)第8分钟时水的温度为100℃;
(2)反映的温度随着时间的变化而变化的,时间是自变量,温度是因变量;
(3)观察表格发现在0至8分钟时间内,温度随时间增加而增加;8至12分钟时间内,水的温度不再变化.6.(10分)观察图,回答问题:
(1)设图形的周长为L,梯形的个数为n,试写出L与n的函数关系式(提示:观察图形可以发现,每增加一个梯形,周长增加3);
(2)n=11时图形的周长是.
【答案】(1)L=4n+1
(2)45
【解析】(1)根据图,分析可得:梯形的个数增加1个,周长为L增加4;
故L与n的函数关系式L=5+(n﹣1)×4=4n+1.
(2)n=11时,代入所求解析式为:L=4×11+1=45.
7.(12分)说出下列各个过程中的变量与常量:
(1)我国第一颗人造地球卫星绕地球一周需106分钟, t分钟内卫星绕地球的周数为N,N=;
(2)铁的质量m(g)与体积V(cm3)之间有关系式;
(3)矩形的长为2cm,它的面积为S(cm2)与宽a(cm)的关系式是S=2a.
【答案】(1)N和t是变量,106是常量;
(2)m和V是变量,ρ是常量;
(3)S和a是变量,2是常量.。