化学镀镍磷合金英文文献
SiCp/Al复合材料化学镀镍-磷的工艺研究
摘要 : 采用钯盐对 S i C / A l 复合材料表 面进行活化 , 化 学 镀 后 在 复 合 材 料 表 面获 得 Ni — P镀 层 。利 用 扫 描 电镜 ( S E M) 、 能 谱 成分分析仪 ( E D S ) 、 极 化曲线 、 x射线衍射仪 ( X R D ) 以及 热 震 测 试 等 手 段 对 镀 层 的 性 能 进 行 了研 究 ,并 观 察 了镀 覆 过 程 中镀 层 表 面形 貌 的 变化 。 结 果表 明 : 钯 盐 的 活化 作 用 较 好 , 钯 原 子 优 先 在 复 合 材 料 的基 体 晶界 、 S i C 。 / Al 界面及 S i C 。 表 面粗糙 处 形 成催化活化 中心; 铝合金基体与 S i C 。增 强 相 表 面均 被 镀 覆 , 且镀层光亮 、 致密 、 连 续, 耐蚀性好 , 结合 力 高 , 属 于 中磷 镀 层 。 关键词 : S i C 。 / Al 复合材 料 ; 化 学 镀 ;钯 ;N i — P镀 层 ; 耐 蚀 性
a n d t h e c h a n g e s o f t h e c o a t i n g s u r f a c e mo r p h o l o g y d u r i n g p l a t i h e r e s u l t s s h o w t h a t t h e c o mp o s i t e ma t e r i a l i s we l l a c t i v a t e d b y P d,P d a t o ms p r e f e r e n t i a l l y f o r mi n g a c a t a l y t i c a n d a c t i v e c e n t r e i n t h e g r a i n b o u n d a r y o f a l u mi n u m
化学镀沉积镍磷合金:耐腐蚀机理
外文资料译文化学镀沉积镍磷合金:耐腐蚀机理Bernhard Elsener/Maura Crobu/Mariano Andrea Scorciapino/Antonella Rossi摘要在各种各样的化学基体上可以进行化学镀镍磷合金。
他们表现出的耐腐蚀性优于纯镍,但由纯镍形成的氧化镍(钝化膜)除外,已经提出来许多理论来解释这一优越的腐蚀性,但还尚未达成共识。
在这一领域的研究中使用了电化学中的XPS表面电化学分析方法,以更深入的了解化学镀镍磷合金的耐腐蚀性,磷的含量在18%到22%。
在酸性和近中性溶液中其极化曲线与电流密度有一定的关系。
在恒电位极化过程,根据曲线衰减指数大约为-0.5可以推论扩散过程限制了镍的解离。
在XPS / XAES后通过测量恒电位极化显示磷在反应过程中存在三种不同的状态。
根据钴参与化学反应的不同,磷主要存在于反应合金、磷酸盐和磷的中间化合产物中。
通过XPS分析表明,磷元素富集在了合金之间的界面和最外层表面与腐蚀溶液接触面,由此提出以下结论:镍元素在溶液中的扩散机制限制了磷元素在介质表面的富集解释了Ni-P合金的高耐蚀性。
一个尚未证实的补充说明是耐高腐蚀性Ni-P合金可能是以镍元素的电离态存在的。
关键词:电位极化扩散,磷,富集, XPS图,衍射参数§1 简介对纳米晶体材料的关注增加使人们对于镍磷合金研究加深,尤其是在具有挑战性的技术应用方面[1,2]。
这些过去主要用作防腐涂料的合金构成了最早的工业应用是在x射线的非晶和纳米晶体材料上,这项技术可以追溯到1946年[3-5]。
现在产生了对三元系镍磷合金的研究[6,7]和共沉积金刚石[8]或聚四氟乙烯颗粒[9],以获得为生产量身定制的功能化表面。
镍磷合金中P元素大约是20%(接近共晶组合)时表现出了比镍更好的耐腐蚀性,同时得到的纯镍在阳极溶液附近镍酸的溶解更加容易[10-22]。
这一现象在化学镀[13-16]或电沉积[17-21]镍磷合金的金属熔体[10-12]时常见到。
化学镀镍磷专利技术综述
业的进步,极大地促进了化学镀镍的应用和研究。
图1专利申请产出国分布世纪80年代后,化学镀镍技术有了很大的突破,是化学镀镍、开发和应用飞速发展时期。
如图1所示为从化学镀镍技术出现至今各国专利申请量(项)分布,日本、中国、欧洲(包括英国法国及EP)、美国的专利申请量分别位于第一~第四。
据不完全统目前世界上至少有两百种以上的成熟化学镀镍配方,一些有代表性出售镀液的公司有:美国的M&T Chemicals Ltd.,Allied-Kelite Chemical Corp.,Enthone Inc.,Shipley Company,Hidility-Cote International Inc.,英国的W.Canning MaterialsChemicals Limited,德国的Friedr.Blasberg GmbH.&Co.K,2009。
图2主要申请人排名图3各国专利申请发展情况1化学镀镍磷机理化学镀Ni-P(镍磷)合金是一种在不加外电流的情况下,利用还原剂在活化零件表面上自催化还原沉积得到Ni-P镀层的方法。
关于化学沉积Ni-P合金镀层的理论有许多种,但C·Cutzeit的催化理论为大多数人所接受。
该理论可用以下几个过程来描述。
(1)通过金属的催化作用,放出初生态原子氢:H2PO2-→PO2-+2(H)PO2-+H2O→HPO32-+H+或H2PO2-+H2O→HPO32-+H++2[H](2)初生态原子氢被吸附在催化金属表面上而使其活化,使镀液中的镍阳离子还原,在催化金属表面上沉积金属镍:Ni2++2[H]→Ni0+2H-(3)在催化金属表面上的初生态原子氢使次亚磷酸根还原成磷;同时,由于催化作用使次亚磷酸根分解,形成亚磷酸和分子态氢:年取得东华大学材料科学与工程学院硕士学位,任职于国家知识产权局专利局专利审查协作江苏中319Science&Technology Vision科技视界图4国内镁合金化学镀镍磷专利趋势图5在华申请人分布类型图6在华申请人高校排名图7国内化学镀镍磷技术演进图从技术演进图7可以看出,在具有自催化性质的钢铁等基体上的化学镀镍工艺已经很成熟,而在另外一些基体上(如镁及镁合金、钕铁Science &Technology Vision 科技视界工艺操作条件碱性除油水洗酸性浸蚀A.含铝合金室温:0.5~2minCrO 3120g/LHNO 3(68%)110ml/L B.其他合金CrO 360g/L HNO 3(68%)90ml/L水洗活化A.铝含量大于5%合金室温:10minHF(70%)220ml/L B.其他合金HF(70%)54ml/L 水洗化学镀镍HF(70%)5ml/L 77~82℃pH=4.5~6.82NiCO 3·3Ni(OH)2·4H 2O 10g/LNaH 2PO 2·H 2O 20g/L C 6H 8O 75g/L NH 4HF 210g/LNH 4OH(30%)30ml/L硼材料)的化学镀镍至今仍然在继续研究,寻求突破性进展。
化学镀镍磷合金机理初探
参考文献:[1] 李建三.低温化学镀镍工艺研究及机理探讨[D].广州:华南理工大学,1997.[2] 李建三,等.低温化学镀镍工艺及镀层性能的研究[J].新技术新工艺,2002,(2).[3] 徐红娣,等.常用电镀溶液的分析[M].北京:机械工业出版社,1996.[4] 韩克平,方景礼.氟离子对化学镀镍的加速机理[J].电镀与环保,1996,(3):21223.收稿日期:2002203207化学镀镍磷合金机理初探A Study of the Mechanism of E lectroless Nickel Plating曾建皇, 陈范才, 周小平, 朱卫东 (湖南大学化学化工学院,长沙410082)ZENG Jian2huang, CHEN F an2cai, ZH OU Xiao2ping, ZHU Wei2dong(College of Chemistry&Chemical Engrg.Hunan Univ.,Changsha410082)摘要: 采用电化学方法对碱性化学镀镍的阴、阳极过程进行了研究,并在此基础上对化学镀镍的可能机理进行了初步探讨。
关键词: 化学镀镍;机理Abstract: A research is made electrochemically on the cathodic and anodic processes in alkali electroless nickel plating.On this ba2 sis,a possible mechanism of electroless nickel plating is suggested.K ey w ords: E lectroless nickel plating;Mechanism中图分类号:TQ153.1 文献标识码:A 文章编号:100024742(2002)05200192041 前言自美国A.Brenner和G.Riddell首次发现化学镀镍以来[1],人们对化学镀镍工艺已经进行了广泛而深入的探讨[2~4]。
化学镀镍磷合金工艺的研究文献综述(二)(2024)
引言概述:
化学镀镍磷合金工艺是一种常用的金属表面处理方法,具有较高的耐腐蚀性和耐磨性。
本文旨在综述相关的研究文献,深入探讨化学镀镍磷合金工艺的研究进展、工艺参数优化、合金特性及其应用领域。
正文内容:
1.工艺研究进展
1.1传统化学镀镍磷合金工艺
1.2改进型化学镀镍磷合金工艺
2.工艺参数优化
2.1镀液成分优化
2.2温度和镀液pH值优化
2.3电流密度和镀液搅拌速度优化
2.4镀液中添加剂优化
3.合金特性研究
3.1镀层结构和成分分析
3.2镀层显微硬度和耐磨性研究
3.3镀层的结晶性质和晶体生长机制
4.应用领域
4.1电子电镀应用
4.2汽车工业应用
4.3航空航天应用
4.4冶金工业应用
4.5其他领域应用
5.工艺优缺点及未来发展趋势
5.1工艺优点
5.2工艺缺点
5.3未来发展趋势
总结:
综合上述研究文献,化学镀镍磷合金工艺在金属表面处理中具有广泛的应用前景。
不论是传统工艺还是改进工艺,都可以通过优化工艺参数来提高镀层的性能。
相关的合金特性研究有助于深入了解镀层的显微硬度、耐磨性等性能指标。
不同领域都可以找到该工艺的应用,例如电子电镀、汽车工业和航空航天等。
该工艺也存在一些缺点,如镀层中可能含有杂质等。
未来的发展趋势应该在提高工艺的经济性、环境友好性和镀层性能方面进行进一步的研究与改进。
化学镀镍磷合金工艺研究
化学镀镍磷合金工艺研究王孝镕顾慰中摘要化学镀镍磷合金由于其优良的性能在工业上得到了广泛应用。
为改进传统工艺所存在的不足,采用乳酸-柠檬酸混合络合剂体系研究了络合剂、温度、pH值及稳定剂对沉积速度的影响。
优选出一种最佳工艺。
该工艺稳定、沉积速度高、成本低,所得镀层平整、光亮、孔隙率低、硬度高,具有很好的应用价值。
关键词: 化学镀镍磷合金Study of Electroless Nickel-Phosphorus Plating ProcessWANG Xiaorong GU WeizhongAbstract: Electroless nickel-phosphorus alloy deposits have been widely adopted in industries for theirexcellent properties. In view of the weaknesses of traditional techniques, acidic system with mixed complexant of latic acid and sodium citrate was adopted. The effect of complexant, temperature, pH value and stabilizer on deposition rate was studied. A process has been optimized with strengths such as high stability, fast plating rate, low cost, smooth and bright deposits, low porosity and high hardness.Keywords: electroless plating, nickel-phosphorus1 引言化学镀镍磷含金由于其优良的耐磨、耐蚀、磁屏蔽性以及适用于各种材料(包括非金属材料)的复杂零件的施镀,已广泛应用于航空、航天、电子、石油和化工等工业。
化学镀Ni_P_石墨复合镀层的特性_英文_
【研究报告】 收稿日期:2005-09-02 修回日期:2005-11-07 作者简介:S K ARTH I KEY AN (1975-),male,graduated with goldmedal in M.Sc (Che m istry )fr om A lagappa university,Karaikudi,I ndia and obtained his PhD Degree in industrial che m istry (Electr oless p lating )fr om the sa me university in the year 2002.He has published 26research papers in leading nati onal and internati onal j ournls and se m inars .He is having 6years teaching experience .H is research interest includes electr oless p lating of metals &composites,electr op lating and corr osi on inhibiuon . 作者联系方式:(Email )skarthikeyanphd@yahoo .co .in 。
Character isti cs of electroless N i 2P 2graph iteco m posite coa ti n gsS K ARTH I KEY AN , M A NEELAK ANDAN(Depart m ent of Che m istry,Nati onal Engineering College,Kovil patti 628503,Ta m il Nadu,I ndia )Abstract:The p resent work pertains t o the study of electr o 2less N i 2P 2graphite composite coatings,which have i mp r oved mechanical p roperties compared with that of electr oless N i 2P deposits and are suitable for engineering app lications .The deposits are obtained fr om a bath based on nickel sulphate,s odiu m hypophos phite,succinic acid,surfactant and stabi 2lizers .The maxi mum weight percentage of graphite incorpo 2rated in electroless deposit is obtained at a concentration of 15g/L.The electr oless N i 2P deposits containing graphite particles are characterized by V icker’s hardness tester,Taber abrasi on tester, A.C i mpedance studies and SE M tech 2niques .The hardness,wear and corr osi on resistance in 2crease with an increase in weight percent of graphite embed 2ded in the deposit .Keywords:composite p lating;electr oless p lating;N i 2P 2graphite coatings;hardness;wear resistance 化学镀N i 2P 2石墨复合镀层的特性//S K ARTH I KEY 2AN,M A NEELAK ANDAN摘 要:与化学镀N i 2P 镀层比较,化学镀N i 2P 2石墨复合镀层的机械性能得到了改进,适合于工程方面的应用。
化学镀镍磷合金工艺中问题与探讨
学镀镍磷合金工艺中的主要问题和研究方向 。
[ 关键词 ] 化学镀 ; 镀镍磷合金 ; 镀层性能 ; 镀液中离子浓度 [ 中图分类号 ]TQ153. 1 2 [ 文献标识码 ]B [ 文章编号 ]1001 - 3660 (2002) 03 - 44 - 03
+
0 引 言
化学镀镍磷合金 ,自 50 年代开始用于工业生产中 , 80 年代进入鼎盛时期 , 由于其工艺的特殊优点和镀层 优异的防腐性和耐磨性 , 目前已成为一种应用更为广 泛的表面处理技术 。 近年来 ,化学镀镍研究工作主要围绕开发新的镀 种包括多元合金和复合镀层 、 镀液中离子浓度测定 、 提 高沉积速度和稳定性 、 提高镀层性能 、 延长镀液使用寿 [1 ] 命 ,降低生产成本等 。当前应用及研究最广泛和透彻 的还是镍磷合金化学镀 。本文主要讨论化学镀镍磷合 金的不同工艺类型及镀液中各成分对镀液和镀层性能 的影响 ,同时介绍镀液中离子浓度测定的常用方法 , 使 之对化学镀镍磷合金的科研生产有一定的指导作用 。
低磷工艺 (LP) : 镀层中磷的质量分数为 0. 5 % ~
5 % ,低磷镀层有特殊的机械性能 , 如镀态硬度高 , 耐磨
性好 ,韧性高 ,应力低 。低磷镀层在碱性介质中的耐腐 蚀性能也优于中磷和高磷镀层 。
2 化学镀 Ni2P 合金镀层性能的影响因素
化学镀 Ni2P 合金通常应用如下工艺流程 ( 以钢铁 [2 ] 件为例) : 化学除油 → 热水 → 化学除锈 → 水清洗 → 活化 → 水 清洗 → 化学镀 Ni2P 合金 → 回收 → 冷水 → 钝化 → 冷水 → 吹干 化学镀工艺中前处理及镀液中各成分对镀层性能 [3 ] 影响很大 ,比如前处理中镀前试样除锈方法不同 、 抛 [4 ] 光与否 都使镀层的耐蚀性能存在差异 。在这里主要 讨论镀液中各组分对镀层性能的影响 。 化学镀镍溶液的成分包括镍盐 、 还原剂 、 络合剂 、 稳定剂 、 其他添加剂等 。
外文中文版
AZ31化学镀镍磷研究KH.M.SHARTAL 和G.J.KIPOUROS镁合金在汽车应用中的主要缺点之一是抗腐蚀性较差,然而,通过磷盐酸—高锰酸盐在AZ31镁合金表面形成转化膜层镍—硼涂层其抗腐蚀性有所该进。
用磷酸盐—高锰酸盐制作的化学镀转化膜层,测定出动力参数、磷含量、表面形貌和结构。
测量镀率时以镀浴成分、温度、和PH值作为实验变量;EN-P镀层中的磷含量是使用能谱(EDS)分析来测量的。
涂层表面形貌用扫描电子显微镜(SEM)检测;涂层的相结构用X射线衍射(XRD)来测试。
结果表明:沉积速率随着沉积温度、自由镍离子的浓度和镀液中次磷酸离子浓度的增加而增加。
此外,通过增加镀液的PH值和镀液中柠檬酸的浓度,沉积速率低。
1、引言改善耐高温力学性能如弹性模量、延展性和奶乳变性以降低化学活性和提高耐腐蚀性,镁通常熔于其他合金元素。
这些合金作为合适的基底材料有着广泛的应用,主要应用在汽车、电子、以及计算机行业,但他们需要改善表面硬度、腐蚀、耐磨损等性能。
实现这些改进的一种方法是在表面增加化学镀镍层。
化学镀镍是控制化学反应减少到一个合适的催化表面上的镍离子。
化学镀镍溶液必须包含一个还原剂提供电子对镍离子的减少,合适的络合剂控制自由镍离子氧化反应,稳定剂或抑制剂控制还原反应,因此沉积仅出现在电镀的基底。
加热化学镀镍镀液以热的形式提供能量。
最后,通过添加硫酸镍盐或氯化镍盐(当涂料需要耐腐蚀性时,硫酸是首选的)的形式提供镍离子的来源。
在实验室已经开发出铝和镁合金化学镀镍技术。
对于镍磷沉积,是以次磷钠为还原剂,化学镀镍使用硼,硼氢化钠。
镁是非常活泼的,而且与镍金属形成偶。
对于额外的保护,一个绝缘子的转化膜形成是产生表面的合金前镍磷或镍硼涂层。
自由的络酸盐离子磷酸盐-高锰酸盐转化膜被开发了。
在无电解电镀铝开发者开发者开发镁合金的过程中有一个主要区别。
铝合金用于生产汽车发动机缸体,因为在乙二醇基发动机冷却剂中,他们不腐蚀。
Cr12MoV 化学镀镍磷
图 3 和图 4 示出了在最佳工艺参数下得到的 化学镀 镍 磷 合 金 表 面 形 貌 和 截 面 组 织 扫 描 电 镜 (SEM)照片 .
2分
镀层表面较细致 ,有金属光泽 ,金相观察镀层截 面有部分的断带现象 ,与基体的结合力一般
3分
镀层表面较细致 ,较光亮 ,但无镜面光泽 ,截面局 部有断带现象 ,与基体的结合力良好
4分
镀层表面较细致 ,光亮 ,显像模糊 ,截面有部分断 带 ,与基体的结合力较好
5分
镀层表面细致 ,光亮如镜面 ,截面连续 ,与基体结 合力良好
1 实验部分
1 .1 实验材料及化学镀工艺流程 以高淬高回 (热处理工艺 :1 100 ℃ 真空淬火
+ 520 ℃ × 1 .5 h 回 火 ) 的 二 次 硬 化 法 得 到 的 Crl2MoV 钢为实验基材 ,试样的尺寸为 19 .05 mm × 12 .32 mm × 12 .32 mm .前处理溶液 、镀液等所用的 化学药品均为分析纯试剂 ,水为蒸馏水 .
34
重庆工学院学报
各个因素对实验指标的影响 .从沉积速度指标来 看 :各因素的影响主次顺序为 B > D > A > C ;从镀 层的表观质量指标来看 :各因素的主次顺序为 C > B > A > D .可见对不同的评价参数 ,工艺参数的影 响程度并不完全一致 .
表 3 各试验参数的极差 R
因素 A - 硫酸 B - pH 值
图 1 各因素对沉积速度的影响
图 3 Ni - P 合金镀层的表面形貌
镍磷镀
镍磷镀化学镀镍,镍磷镀ENP(Electroless Nickel plating)工艺是一种用非电镀(化学)的方法,在零部件表面沉镀出十分均匀、光亮、坚硬的镍磷硼合金镀层的先进表面处理工艺。
它兼有高匀性、高结合强度、高耐磨性、高耐腐蚀性和无漏镀缺陷及仿真性极好六大优点,其综合性能优于电镀铬。
在很多环境介质中甚至比不锈钢更耐腐蚀,用来代替不锈钢可以降低工件成本。
在工艺方面,化学镀镍是靠化学方法形成镀层,不受零件形状和尺寸的限制,任何复杂形状的零件各部位镀层厚度均匀一致,施镀过程中厚度精度为±2μm,能够满足各种复杂精密部件的尺寸要求,而且镍合金镀层质密光滑,镀后无需任何加工,还可以反复修镀。
该技术是目前发达国家重点推广的表面处理新技术。
{化学镀合金技术是在金属的催化作用下,通过可控制的氧化还原反应产生金属合金的沉积过程。
该工艺不需外加电流,不受镀件的几何形状影响,与电镀相比,化学镀合金膜层均匀、致密、硬度高、耐磨,并经过特殊的后处理工序,Hv硬度可达1000以上,膜层外观似不锈钢。
该工艺具有槽液可循环使用,环境污染小,设备投资少等特点。
在许多领域逐步取代电镀,成为一种环保型的表面处理工艺,化学镀合金技术已在电子、阀门制造、机械、石油化工、汽车、航天航空等领域得到广泛的使用。
流程:金属表面砂纸抛光---金属表面碱液化学除油---金属表面活化—Ni-P 合金化学镀—清洁—干燥}一、化学镀镍,镍磷镀ENP的基本原理化学镀镍,镍磷镀ENP的基本原理是以次亚磷酸盐为还原剂,将镍盐还原成镍,同时使金属层中含有一定的磷,沉淀的镍膜具有催化性,可使反应继续进行下去。
关于ENP的具体反应机理,目前尚无统一认识,现为大多数人所接受的原子氢态理论是:1、镀液在加热时,通过次亚磷酸根在水溶液中脱氢,而形成亚磷酸根,同时放出生态原子氢,即:H2PO2-+H2O→H2PO32-+H++2[H] 2、初生态的原子氢吸附催化金属表面而使之活化,使镀液中的镍离子还原,在催化金属表面上沉积金属镍:Ni2++2[H]→Nio+2H+3、随着次亚磷酸根的分解,还原成磷:H2PO2-+[H]→H2O+OH-+Po镍原子和磷原子共同沉积而形成Ni-P合金,因此,ENP的基本原理也就是通过镀液中离子还原,同时伴随着次亚磷酸盐的分解而产生磷原子进入镀层,形成过饱和的Ni-P固溶体。
化学镀镍学士学位论文
毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
化学镀镍磷合金“配位催化机理”探讨
229.[8] 迟兰洲,胡文成.硫氰化物化学镀金工艺的研究[J].电子科技大学学报,1995,24(5):555-559.[9] 韩克平,方景礼.置换镀金工艺[J].材料保护,1997,30(1):24-27.[10] 乔 楠.无氰化学镀金工艺[J].印制电路信息,1996(4):31-35.[11] K ato.E lectroless G old Plating S olution:US,5470381[P].1995-11-28.[12] 高桥昭男,山本弘,中岛澄子.非电解镀金液及非电解镀金方法:中国,1460131A[P].2003-12-03.[13] 加藤胜.无电解镀金:中国,1435510A[P].2003-03-13.[14] Hayashi.Displacement G old Plating S olution:US,6767392[P].2004-07-27.收稿日期:2007-03-14化学镀镍磷合金“配位催化机理”探讨Discussion on“Coordination C atalysis Mechanism”for E lectroless Ni-P Alloy Plating曲志涛(广东轻工职业技术学院轻化工程系,广东广州510300)QU Zhi2tao(Light Chemistry Engineering Department,G uangdong Light Industry C ollege,G uangzhou510300,China)摘要: 以配位催化理论对化学镀镍过程加以分析,着重提出了配位中心原子Fe或Ni对H2PO-2的配位催化作用;H2PO-2配位吸附生成金属氢化物,并释放活性氢,其它配位剂、促进剂等添加剂中配位分子与金属原子配位一般可以减弱H2PO-2与Fe或Ni间的σ键,更易提供活性氢;P的沉积是金属Ni在其表面通过配位将次磷酸吸附并还原成PH3,PH3能够紧密地吸附在金属Ni表面,并将吸附在金属Ni表面的H2PO-2还原生成P,并与Ni共沉积。
电镀英文资料文献)
Appl Microbiol Biotechnol (1986) 24: 180--185 Applied Microbiology Biotechnology © Springer-Verlag 1986 Screening of white-rot fungi for biological pretreatment of wheat straw for biogas production H. W. Miiller and W. Trfisch Fraunhofer-Institut fiir Grenzfl/ichen- und Bioverfahrenstechnik, Nobelstr. 12, D-7000 Stuttgart 80, Federal Republic of Germany Summary. Twenty two basidiomycetes, mostly white rot fungi, were grown on wheat straw. Lig- nin-, cellulose-, and hemicellulose-degradation was recorded in order to find a species growing on lignin preferably. The "oyster-mushroom" Pleurotus sp. "florida'" showed fastest delignifica- tion of all tested fungi. Straw pretreated by this fungus was fermented anaerobically to biogas. The gas yield produced from "myco-straw" is twice the amount from un- treated straw. Introduction Lignocellulose biomass is continuously produced in great quantities, giving rise, until recently, only to disposal problems. Because of its chemical composition it could be an excellent substrate for biotechnological processes. However, cellulose fi- brils are imbedded into a lignin matrix which pro- tects them from enzymatic attack. Straw, a lignocellulose waste material, can be pretreated chemically or physically to increase its biotechnological substrate value (Chahal et al. 1981; Detroy et al. 1981; Fan et al. 1981). White rot fungi can be used for the biological pretreatment. They are the only microorganisms known for their ability to degrade lignin com- pletely. Therefore, it should be possible to use these microorganisms to degrade the lignin com- ponent in ligno-cellulosic waste material to make the cellulose and hemicellulose components more accessible for further biotechnological use. Some of these fungi produce edible fruiting bodies -- a Offprint requests to: H. W. MOiler fact, that might be important when calculating process economy. The most investigated fungus for lignin de- gradation is Phanerochaete chrysosporium (Keyser et al. 1978; Kirk et al. 1978; Leisola et al. 1983; Tien and Kirk 1983; Ulmer et al. 1983) In the present work other white rot fungi were searched for selective lignin removal. The aim of this inves- tigation is to use the "myco-straw" as a substrate in a further biotechnological process: biogas pro- duction. Previous investigations have mainly been concerned with the use of "myco-straw" as an an- imal fodder (Zadrazil 1980). Materials and methods Organisms. The stock cultures of white rot fungi used in the degradation experiments were mostly isolated from fruiting bodies of wild growing species. Pleurotus sp. "'florida'" was iso- lated from commercial available summer oyster-mushrooms. Lentinus edodes originates from "Deutsche Sammlung for Mi- kroorganismen" (DSM 1899). Some tropical species, found in Brazil and Ecuador, are not yet identified. They were named according to the place of finding. The mutants of Pleurotus sp. "florida", named PFR 343 and PFP 551, were isolated from basidiospores from Pleurotus sp. "florida" according to the method of Eriksson (Eriksson and Goodeil 1974). Saponin was added at the rate of 2 g/1 to induc~ colonial growth of the mycelium. The microorganisms used were: Flammulina velu- tipes (Curt. ex. Fr.) Sing., Fomes marginatus (Fr.) Gill., Ganod- erma applanatum (Pers. ex. Fr.) Pat.,, Hapalopilus rutilans (Pers. ex. Fr.) Karst, Kuehneromyces mutabilis (Schff. ex. Fr.) Kumm, Laetiporus sulfureus (Bull. ex. Fr.) Murill, Lentinus edodes (Berk.) Singer, Nematoloma capnoides (FrO Karst., Phellinus robustus Karst., "Pichincha a'" "'Pichincha b" (tropi- cal species from Ecuador), PIeurotus sp. "florida" PFR 343, PFP 551 (cellulase deficient mutants from P. florida), Poria sp., "Rio rot" (tropical species from Brazil), Stereum hirsutum (Willd.) Pers., Stropharia rugosoannulata Fadow. ex. Murr., Trametes gibbosa (Pers. ex. Fr.) Fr., Tramates versicolor (Lin. ex. Fr.) Pilat., "'Tungurahua'" (tropical species from Ecuador). Fermentation. For solid state fermentations with the basidio- mycetes 300 g moistened wheat straw (water content 75%) inH. W. Mtiller and W. TrSsch: Screening of white-rotfungi for biological pretreatment 181 1-L beakers was used. After sterilisation (90 min, 121°C) the straw was inoculated with mycelium of white rot fungi grown for 10 days on malt-extract agar slants. After incubation for 30, 60 and 90 days at 25 °C the contents of three beakers, re- spectively, were dried, weighted, milled and analysed. Loss of organic matter was estimated as the difference between the weight of the dried straw at the beginning and at the end of the solid state fermentation. Biogas fermentations were performed in four stirred 1.5-1 fermenters ("Biostat V", Braun Melsungen). An exactly weighed amount of straw was placed in the fermenter. De- pending on experimental conditions a different amount of freeze-dried cow manure was added and the fermenter filled up to 1.41 with tap water. To get comparable results, the same batch of freeze-dried cow manure was used in all fermenta- tions. All solids were added in such an amount, that the total dry matter in each fermenter was always 60 g (e. g., 4% total dry matter). The fermenter content was inoculated by the addi- tion of 100 ml of a bacterial suspension from a good working, laboratory-scaled biogas plant. Temperature was maintained at 37°C, pH was maintained at 7.2 by controlled addition of 5N NaOH. The biogas produced was collected in a graduated cylinder and analysed daily gaschromatographically (Carbo- sieve S-(126/140) column) for the amounts of CO2 and CH4. The enzymatic hydrolysis of straw cellulose was carried out in 50-ml Erlenmeyer flasks containing the various samples of milled straw. The cellulose content of the unfermented straw (control) and the several "mycostraws" had been ana- lysed before. The weight of each sample was adjusted to an equal cellulose content of 100 mg straw cellulose. Citrate buf- fer (8 ml, pH 4.8) and 1 ml cellulase solution (from Oxyporus spec., Merck), standardized to 0.5 filterpaper-units per ml, were added. The flasks were closed and incubated at 30°C in a shaking water bath. Every 24 h samples of the fluid were col- lected and analyzed for glucose by the glucose dehydrogenase test system (Merck). Analyses. Lignin, cellulose and hemicelluloses were deter- mined according to the acid and neutral detergent method of Goering and Van Soest (1970). Total carbon and total nitrogen were determined by combustion of the sample in a CHN-ana- lyzer ("CHN-Rapid', Heraeus). The volatile fatty acids were determined by HPLC (OPS II column with RP 18 Material, 5 Ixm). Results Biological degradation of wheat straw Wheat straw used for degradation studies con- sisted of 28.0% hemicelluoses, 42.9% cellulose, 16.0% lignin and 0.87% nitrogen. 22 basidiomy- cetes, including 2 cellulase deficient mutants of P. florida, were tested for their potential to degrade straw. All of them grew on this substrate, but de- graded it to a very different extent (Fig. 1). Od 30d 60d 90d 30d 60d 90d ~ fdry iO, O ~ i i .... i ~ ~ matter 5.0 Hentcelluloses Cellulose Lignm Solubles untreated straw F velutipes F, margmatus % % % % % % % % % G. applanatum H rutdans K.mutabHts L.sulfureus L. edodes N capno=des % % % % % % P robustus Pichlncha" a ,,Pichincha" b 30d ¢oOd 90d 30d 60d 90d 30d 60d 90d 30d 60d 90d 30d 60d 90d 30d 60d 90d % % % % % % % % % P ostreatus Pleurotussp ..florida" PFR 343 % % % % % % % % % PFP 551 Por=a sp. ..Rio rot" 5,7 S hwautum S.rugosoannulata T g=bbosa % % % % % % T. verslcolor ..Tungurah ua" 30d 60d 90d 30d 600 90d 30d 60d 90d Fig. 1. Degradation of straw (dry matter) by basidiomycetes after incubation periodes of 0, 30, 60 and 90 daysH. W. Miiller and W. TrSsch: Screening of white-rot fungi for biological pretreatment 183 Stropharia rugosoannulata should be the best or- ganisms for biological pretreatment of straw be- cause of their higher affinity for lignin. Digestibility tests With regard to the use of "myco-straw" for me- thane fermentation the enzymatic hydrolysis of cellulose was the most important limiting step. Biodegradability of straw can be measured in an in vitro test system by the amount of glucose lib- erated during incubation with cellulolytic en-zymes. Figure 2 shows the enzymatic formation of glucose from different pretreated straw samples as a function of time. Untreated straw is only hardly hydrolysable. Straw, pretreated 30, 60 and 90 days with Pleurotus sp. 'florida" shows increas- ing glucose liberation. The amount of glucose formed from straw incubated 90 days with Pleuro- tus sp. 'florida" was as large as the amount of glu- cose liberated from a microcristalline, lignin free cellulose (Avicel). Other straw samples, pretreated by growth of Kuehneromyces mutabilis and Hapalopilus rutilans were markedly harder hydrolysed by cellulase. As a result of these experiments Pleurotus sp. 'flori- da" is the best fungus to pretreat wheat straw for biogas production. The reason, that K. mutabilis- treated straw is hydrolised worse can be ex- plained by less delignification compared to P. flo- rida. Straw pretreated with H. rutilans is hardly hydrolysable, although a good delignification took place. This shows that delignification is not the only parameter by which to estimate the use- fulness of microorganisms for biological pretreat- ment of lignocellulosics. Possibly a new physical barrier is built up by fungal mycelium, which hin- ders the attack of cellulolytic enzymes. Biogas fermentations The first step of biogas production from pre- treated straw is the hydrolysis of carbohydrate components. Anaerobic fermentation of pre- treated straw suspended in tap water together with a N-source (3 g/1 (NH4)2SO4) did not effect high yields of biogas because of a very rapid acid- ification of the slurry in consequence of the low buffer capacity. This problem could not be over- come by neutralisation. Therefore, in the following experiments straw was not fermented as the sole substrate but in combination with cow manure. Manure contains a buffer system and needs, thereforel less addition of NaOH for the maintenance of neutral pH; the nitrogen content of manure was sufficient for un- limited cell growth. Fermentations were carried out with an addition of straw of 50%, 33% and 25% to cow manure. The total dry matter in all fermentations was 4%. A mixture of manure and straw containing 33% straw (in dry matter) has proved to be the most effective. The substrate composition of the fermenters is shown in Table 1 for such experi- ments. When such a mixture of manure and straw was fermented anaerobically for 30 days in batch experiments, considerably more volatile acids were produced in fermenters containing pre- treated straw compared with fermenters contain- ing untreated straw (Fig. 3). The higher acid levels in the fermenters with pretreated straws can be converted quantitatively to methane. Higher yields of methane were ob- tained by conversion of biologically pretreated straw than with untreated straw, as is shown in Fig. 4Table 1. Composition of a mixture of manure and straw (2:1, dry weight) for fermentation to biogas Manure Untreated 30 d with 60 d with 90 d with Straw + P. florida P. florida P. florida Manure treated Straw treated Straw treated Straw + Manure + Manure + Manure Hemiculloses 16.1% 20.0% 16.9% 15.0% 13.8% Cellulose 15.0% 24.3%H.W. MOiler and W. Tr6sch: Screening of white-rot fungi for biological pretreatment mM~6"t J -- -" Untreated straw - -0-g 30 d with P. florida treated straw 1oo -- -- ~ -~ 60 d with P. florida treatmt straw J~ v *-~P-~90 d with P. florida treated straw ../- / \\V. 6o ,e" / / \~": ,0 V .... 0 r-- 2 4 6 # 1012 14 16 18 20 22 24 26 28 30 doys Fig. 3. Concentration of acetic acid during the fermentation ofa manure/straw mixture (2:1, dry weight). Fermenter volume: 1.5 1, total solids 4% mt/al CH 4 1300 ~200 1100 ~000 900 800 700 600 500 ~00 300 200 100 0 neutr ohzahon f ~ = ~ un=~e s=~* /~ I/\i) L [ i • } J 2 ~, 6 8 10 12 14 16 18 20 22 ~ 26 28 30 days Fig. 4. Methane production rate (ml/d) during a batch fer- mentation of a manure/straw mixture (2:1, dry weight) with 60 g total solids in 1.5 1 fermenter volume The total production of biogas during a batch fermentation of a manure/straw mixture (2:1, dry weight) is shown in Table 2. Due to fungal pretreatment the methane yield as well as the average methane content in the bio- gas increased. Theoretically, 0.51 biogas should be produced from 1 g lignocellulosics (Jerger et al. 1982). Considering the fact that in the experi- ments the dry mixture of manure and straw had 84.9 percent of organic dry matter, the gas yield is improved from 0.293 1/g for untreated straw to 0.343 l/g for straw pretreated 90 days with Pleuro- tusflorida (referred to content of organic dry mat- ter). The analysis of the digested fermenter con- tents showed, that the cellulose content in the di- gested mixture of manure and straw was lower and the lignin content was higher compared to the analyses before biogas fermentation (compare Ta- bles2 and 3). The relative increase of lignin is due to its resistance to microbial attack in an anae- robic environment. The C/N-ratio lowers, be- cause of the loss of carbon as biogas. Discussion In most cases all of the fungi tested grew well on wheat straw, but they increased the digestibility of this substrate to a different extent. All compo- nents of the lignocellulose were degraded by white rot fungi. But only those fungi, which de- grade lignin preferably can be used for biological pretreatment. The digestion experiments with H. rutilans showed, however, that good biological delignification is not in all cases equivalent to good digestibility. Therefore, the digestibility-test Table 2. Yields of methane and biogas during a 30 day batch fermentation of a manure/straw mixture (2:1, dry weight) with 60 g total solids in 1.5 1 fermenter volume, using Pleurotusflorida Untreated 30 d with 60 d with 90 d with Straw + P. florida P. florida P. florida Manure treated Straw treated Straw treated Straw + Manure + Manure + Manure Total gas (1) 14.955 15.255 16.205 17.506 Methane (1) 9.321 10.235 11.017 11.917 Increase by fungal treatment -- 9.8% 18.2% 27.9% Average CH4-content 62.3% 67.1% 68.0% 68.1% Biogas per g org. solid (1) 0.293 0.299 0.318 0.343H. W. MOller and W. TrOsch: Screening of white-rot fungi for biological pretreatment Table 3. Composition of the dry matter of the digested fermenter contents after 30 days fermentation 185 Untreated 30 d with 60 d with 90 d with Straw + P. florida P. florida P. florida Manure treated Straw treated Straw treated Straw + Manure + Manure + Manure Cellulose 13.1% 8.0% 7.2% 7.1% Lignin 13.9% 13.4% 13.0% 12.9% % C 35.21 32.65 33.07 32.64 % N 2,17 2.28 2.39 2.42 C/N 16.2 14.3 13.8 13.5 with cellulases is important to estimate the possi- ble usefulness of a fungus for biological pretreat- ment of lignocellulosics. The results show, that "myco-straw" can be better hydrolysed and converted to biogas in com- parison to untreated straw. After biological lignin removal the straw cellulose is better accessible for anaerobic digestion. These results confirm the findings of Bisaria (Bisaria et al. 1983). Besides delignification, the crystallinity of native cellulose seems to be reduced by fungal enzymes, for its di- gestibility increases with the time of fungal pre- treatment. During anaerobic fermentation the im- proved digestibility effects a higher yield in vola- tile acids followed by a higher gas yield. With a mixture of manure and straw (2: 1) an increase of the gas yield of about 30% can be reached. The percentage of "myco-straw" effecting this in- crease was only 33% of the total dry matter. As was demonstrated with Pleurotus sp. "florida", biological pretreatment of wheat straw can dou- ble both digestibility and biogas yield compared with that on untreated straw. This procedure, involving microbial dilignifi- cation and biogas production, offers the possibil- ity of utilizing and removing the waste wheat straw in a completely biological way. The useful products from this process are fungi in the first step and methane in the second step. Because of the good accessibility to cellulose, mycostraw may constitute a technical substrate not only for bio- gas production but also for other biotechnological processes. References Bisaria R, Madam M, Mukhopadhay SN (1983) Production of biogas from residues from mushroom cultivation. Biotech- nol Letters 5:811--812 Chahal DS, Moo-Young M, Vlach D (1981) Effect of physical and physicochemical pretreatments of wood for SCP-pro- duction with Chaetomiumcellulolyticum. Biotechnol Bioeng 23 : 2417--2420 Detroy RW, Lindenfelser LA, Sommer S, Orton WL (1981) Bioconversion of wheat straw to ethanol: chemical modifi- cation, enzymatic hydrolysis and fermentation. Biotechnol Bioeng 23 : 1527-- 1535 Eriksson K-E, Goodell EW (1974) Pleiotropic mutants of the wood rotting fungus Polyporus adustus lacking cellulase, mannanase and xylanase. Can J Microbiol 20:371--378 Fan LT, Gharpuray MM, Lee Y-H (1981) Evaluation of pre- treatments for enzymatic conversion of agricultural resi- dues. Biotechnol Bioeng Symp 11:29--45 Goering HK, Van Soest PJ (1970) Forage fiber analysis. Agri- cultural Handbook Nr. 379, Agriculture Research Service US-Dpt. Agriculture Jerger DE, Dolenc EA, Chynoweth DP (1982) Bioconversion of woody biomass as a renewable source of energy. Bio- technol Bioeng Symp 12:233--285 Keyser P, Kirk TK, Zeikus JG (1978) Ligninolytic enzyme sys- tem of Phanerochaete chrysosporium: synthesized in ab- sence of lignin in response to nitrogen starvation. J Bacte- riol 135:790--797 Kirk TK, Schulz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:227-- 285 Leisola M, Ulmer D, Fiechter A (1983) Problem of oxygen transfer during degradation of lignin by Phanerochaete chrysosporium. EurJ Appl Microbiol Biotechnol 17:113-- 116 Tien M, Kirk TK (1983) Lignin degrading enzyme from the hymenomycete Phanerochaete chrysosporium. Science 221:661--663 Ulmer D, Leisola M, Puhakka J, Fiechter A (1983) Phanero- chaete chrysosporium: growth pattern and lignin degrada- tion. Eur J Appl Microbiol Biotechnol 18:153--157 Zadra~il F (1980) Conversion of different plant wastes into feed by basidiomycetes. Eur J Appl Microbiol Biotechnol 9:243--248 Received August 26, 1985/Revised January 20, 1986。
涤纶基铜层表面化学镀镍-磷合金工艺
涤纶基铜层表面化学镀镍-磷合金工艺檀国登;沈勇;张惠芳;俞菁【摘要】Electroless copper plating followed by electroless nickel–phosphorous plating was conducted on polyester fabrics. The influences of different factors of electroless Ni–P alloy plating on the conductivity and weight gain rate of metal-plated fabric were discussed. The process parameters of electroless Ni–P plating were optimized by orthogonal test. The adhesion strength, corrosion resistance, and electromagnetic shielding property of Cu/Ni–P alloy-plated fabric were characterized. The optimal bath composition and operation conditions of electroless Ni–P alloy plating on copper-plated polyester substrate were obtained as follows: NiSO4·6H2O 26 g/L, NaH2PO2·H2O 24 g/L, Na3C6H5O7 30 g/L,Na2B4O7·10H2O 6 g/L, temperature 80 °C, pH 11, and time 25 min. TheCu/Ni–P-plated fabric features strong adhesion strength and good corrosion resistance and electromagnetic shielding property.%以涤纶织物为基材,对其化学镀铜后再化学镀镍–磷合金镀层。
NOVOPLATE HS镍磷电镀_ds_v1
功能性电子及贵金属电镀产品说明书镍磷电镀 NOVOPLATE HS NOVOPLATE HS电镀镍磷工艺版本: 01文件编号:3401-CNIMDS 编号:页: 1 / 5内容特点...................................................................................................................................................2 镀液组成及操作条件..........................................................................................................................2 配制镀液............................................................................................................................................4 设备...................................................................................................................................................4 补充及维护........................................................................................................................................4 分析方法.. (5)NOVOPLATE HS电镀镍磷工艺文件编号:3401-CN页: 2 / 5特点z 镍磷电镀 NOVOPLATE HS 是强酸性电镀镍工艺, 镍镀层含磷4 - 17%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
An investigation on effects of heat treatment on corrosion properties of Ni–P electroless nano-coatingsTaher Rabizadeh,Saeed Reza Allahkaram *,Arman ZarebidakiSchool of Metallurgy and Materials Engineering,University College of Engineering,University of Tehran,P.O.Box 11155-4563,Tehran,Irana r t i c l e i n f o Article history:Received 19January 2010Accepted 15February 2010Available online 17February 2010Keywords:C.CoatingC.Heat treatment E.Corrosiona b s t r a c tElectroless Ni–P coatings are recognized for their excellent properties.In the present investigation elec-troless Ni–P nano-crystalline coatings were prepared.X-ray diffraction technique (XRD),scanning elec-tron microscopy (SEM),potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)were utilized to study prior and post-deposition vacuum heat treatment effects on corrosion resis-tance together with the physical properties of the applied coatings.X-ray diffraction (XRD)results indicated that the As-plated had nano-crystalline structure.Heat treat-ment of the coatings produced a mixture of polycrystalline phases.The highest micro-hardness was achieved for the samples annealed at 600°C for 15min due to the formation of an inter-diffusional layer at the substrate/coating interface.Lower corrosion current density values were obtained for the coatings heat treated at 400°C for 1h.EIS results showed that proper heat treatments also enhanced the corrosion resistance,which was attributed to the coatings’structure improvement.Ó2010Elsevier Ltd.All rights reserved.1.IntroductionSince the invention of electroless plating technology in 1946by A.Brenner and G.Riddell,electroless nickel (EN)coatings have been actively and widely studied [1,2].Nano-crystalline Ni–P alloys show a high degree of hardness,wear resistance,low friction coefficient,non-magnetic behavior and high electro-catalytic activity.Today such Ni–P alloys are widely used in the electronic industry as under-layer in thin film memory disks and in a broad range of other evolving technological applications.It is generally accepted that only nano-crystalline al-loys –irrespective of the way of production –show high corrosion resistance.Indeed,electrodeposited Ni–P alloys with crystalline structure (6–11at.%P)showed anodic dissolution in 0.1M NaCl.On nano-crystalline samples (17–28at.%P)a current arrest was found instead [3–5].To explain high corrosion resistance of Ni–P electroless coatings different models have been proposed,but the issue is still under discussion:a protective nickel phosphate film,the barrier action of hypophosphites (called ‘‘chemical passivity”),the presence of phosphides,a stable P-rich amorphous phase or the phosphorus enrichment of the interface alloy-solution were proposed.Note that such phosphorus enrichment at the interface was reportedby some of the authors to explain the outstanding corrosion resis-tance of Fe70Cr10P13C7amorphous alloys [5].Electroless Ni–P alloys are thermodynamically unstable and eventually form stable structures of face-centered cubic (fcc)Ni crystal and body-centered tetragonal (bct)nickel phosphide (Ni 3P)compounds.Different results have been reported regarding the microstructures in the As-deposited condition and the stable phases after heat treatments.For low P and medium P alloys,nickel crystal precipitated firstly and Ni 3P followed;however,Ni 3P and (or)Ni x P y compounds such as Ni 2P,Ni 5P 2,Ni 12P 5,and Ni 7P 3occur firstly in high P alloys [6–8].In general,the hardness of the electroless Ni–P coatings can be improved by appropriate heat treatment,which can be attributed to fine Ni crystallites and hard inter-metallic Ni 3P particles precip-itated during crystallization of the amorphous phase [8–10].The main reasons for heat treatment are:(1)to eliminate any hydrogen embrittlement in the basic metal,(2)to increase deposit hardness or abrasion resistance,(3)to increase deposit adhesion in the case of certain substrate and (4)to increase temporary corro-sion resistance or tarnish resistance [11].The crystallization and phase transformation behavior of elec-troless-plated Ni–P deposits during thermal processing has also been the subject of various investigations;it has been shown that different alloy compositions and heat treatment conditions could affect both the corrosion resistance and crystallization behavior of the deposit [8].0261-3069/$-see front matter Ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.matdes.2010.02.027*Corresponding author.Tel./fax:+982161114108.E-mail address:akaram@ut.ac.ir (S.R.Allahkaram).Materials and Design 31(2010)3174–3179Contents lists available at ScienceDirectMaterials and Designj o u r n a l h o m e p a g e :w w w.e l s e vier.c om/loc ate/matdesThe aim of this work is to study the post-deposition heat treat-ment effects and corrosion behavior of electroless deposited nano-crystalline Ni–P alloys.The temperature dependence of the coating structures and compositions were also evaluated and discussed.2.Experimental procedures2.1.Deposition of electroless Ni–P coatingThe deposition was performed on API-5L X65steel substrates (30Â25Â15mm)with a composition of(Fe:base,Mn:1.42,Si: 0.199,Cu:0.144,Mo:0.132,C:0.061,Nb:0.0538,Al:0.0417,Sn: 0.0167,Ti:0.0142,Cr:0.0126,P:0.01).The substrate surface was carefully polished with SiC emery papers(from grades#100to #400).All the specimens were subjected to the following pre-treat-ment and plating procedure:1.Ultrasonic cleaning in acetone.2.Rinsing by immersion in distilled water at room tempera-ture(RT)for2min.3.Cleaning in20vol.%H2SO4at RT for30s.4.Rinsing by immersion in distilled water at RT for2min.5.Cleaning in5vol.%H2SO4at RT for30s.6.Rinsing by immersion in distilled water at RT for2min.7.Electrocleaning in solution containing75g/l sodiumhydroxide(NaOH),25g/l sodium sulfate(Na2SO4),75g/lsodium carbonate(Na2CO3),at room temperature for20min.The current density applied was10mA/cm2inaccordance to ASTM G1.8.Rinsing by immersion in distilled water at RT for30s.For deposition,the substrates were dipped into commercial electroless nickel bath(SLOTONIP70A from Schlotter)with sodium hypophosphite as reducing agent for2h.This bath provided Ni–P deposits with a medium phosphorous content,9–10%P.Tempera-ture changed within88–93°C and pH changed within 4.5–4.7 range,during coating process.2.2.Heat treatment and hardness measurement of Ni–P coatingsIn order to study thefilm properties,coated samples were ther-mally treated in a vacuum environment.The coatings were isother-mally heat treated at different conditions that gave maximum hardness,i.e.200°C(for2h),400°C(for1h),600°C(for 15min).During heating process,the total pressure in the chamber was maintained below1mbar.Then the samples were allowed to cool down,for at least15min in the high vacuum environment prior to their exposure to the atmosphere.The hardness of coatings was measured using an(AMSLER D-6700)Vickers diamond indenter at a load of100g for a loading time of20s.The average offive repeated measurements is reported.2.3.Morphology and microstructure of Ni–P coatingsThe morphology and microstructure of the coatings were stud-ied using scanning electron microscopy SEM,(CAMSCAN MV2300). X-ray diffraction(XRD)patterns were obtained using Philip’s Xpert pro type X-ray diffractometer with a cobalt target and an incident beam mono-chromator(k=1.7889Å).2.4.Electrochemical measurementsCorrosion behavior of As-plated and heat treated electroless Ni–P coatings was studied by using potentiodynamic polarization test and electrochemical impedance spectroscopy(EIS)in3.5wt.%NaCl solution.The tests were carried out in a standard three-electrode cell using an EG&G potentiostat/galvanostat,model273A.Plati-num plate and Ag/AgCl electrode were used as counter and refer-ence electrodes,respectively.Potentiodynamic polarization test was carried out by sweeping the potential at a scan rate of 1mV sÀ1within the range of±400mV vs.open circuit potential (OCP).The EIS tests were undertaken using a Solartron Model SI 1255HF Frequency Response Analyzer(FRA)coupled to a Princeton Applied Research(PAR)Model273A potentiostat/galva-nostat.The EIS measurements were obtained at(OCP)in a frequency range of0.01Hz–100kHz with an applied AC signal of 5mV(rms)using EIS software model398.The equivalent cir-cuit simulation program(ZView2)was used for data analysis,syn-thesis of the equivalent circuit andfitting of the experimental data.3.Results and discussion3.1.Micrograph and structureFig.1shows the SEM images of the surface morphologies of Ni–P coatings before and after vacuum heat treatment at different con-ditions.As it can be seen heat treatment at different temperatures has not had any significant effect on morphology of the coatings.Fig.2shows the cross section image with line scan analysis of Ni–P coating heat treated at600°C(for15min)which shows the formation of an inter-diffusional layer and its elemental distribu-tion that affects the coating properties.Atoms under low temperature heat treatment(below400°C) can have short-range movement which is called structural relaxa-tion such as annihilation of point defects and dislocations within grains and grain boundary zones rather than long range diffusion [4].The higher the temperature is,the greater the atomic vibration energy is.As the temperature of the metal increases,more vacan-cies are present and more thermal energy is available,and so the diffusion rate is higher at higher temperatures[11].Hence,production of an inter-diffusional layer,formed as a re-sult of inter-diffusion of nickel and phosphorous from the coating to the substrate and iron in the reverse direction from the sub-strate will develop upon heating at600°C.3.2.XRD analyses of Ni–P coatingsFig.3shows XRD patterns of As-deposited and heat treated Ni–P coatings.The results show that both the phase composition and phase transformation behavior of the electroless Ni–P deposits de-pended on the heating temperatures.There was no significant change in XRD patterns observed for the samples treated at200°C and only a single broad amorphous profile was found,indicating that no phase transition took place at this tem-perature.When the heat treatment temperature was increased to 400°C,new XRD peaks corresponding to crystalline fcc Ni and Ni x P y appeared,indicating that the second phase precipitation was initi-ated.At this temperature,the diffraction peaks corresponding to the metastable Ni8P3,fcc nickel and stable Ni3P phases in the XRD profile can be seen.At600°C the fcc Ni and Ni3P peaks intensities in-creased with the heat treatment temperature.Therefore,the Ni8P3 metastable phase was decomposed completely at this temperature. Similar behavior has also been observed by Huangs et al.[12].Regarding the intensities of fcc nickel diffraction peaks,they are increased and the full width at half maximum(FWHM)became narrower with increasing the heat treatment temperature to 600°C.In the case of As-plated condition,using FWHM of 6.4676°and Scherrer equation,the grain size was estimated as1.5nm.T.Rabizadeh et al./Materials and Design31(2010)3174–31793175With regards to the FWHM of 5.496°at 200°C,0.9774at 400°C and 0.4027°at 600°C for fcc nickel peaks,the grain sizes were esti-mated as 1.7,10.9and 26.6nm,respectively.Therefore it can be deduced that the grain size of the crystalline nickel increases sub-stantially with increasing temperature,i.e.reaching to the maxi-mum size of 26.6nm at 600°C.This effect has also been confirmed by other investigators exposing Ni–P coatings to various heat treatment conditions [13,14].3.3.Hardness of electroless Ni–P depositsHardness was measured for the deposits at various annealing temperature.The variations in micro-hardness with annealing temperatures are shown in Fig.4.Heat treatment in the region of 200°C does not bring about any significant changes in the deposit properties.It can be observed that there is a marginal decrease of hardness from 612.3Hv to 525.3Hv between room temperature and 200°C.This small decrease in the hardness may be due to hydrogen embrittlement and internal stress relieving [11].Significant increase of hardness from 625.3Hv to 875.7Hv is observed after haet treatment at 400°C.The dispersion hardening effect may also be a reason for increase in hardness due to heat treatment above 200°C.Between 200°C and 400°C,the precipita-tion of Ni x P y compounds occurs.The precipitation of nickel phos-phides (Ni 3P)can be seen in the heat treated condition (Fig.3).The mechanism involved in the steep increase in hardness may be due to the precipitation hardening of a typical supersaturated solid solution,for which the atoms of the solute diffuse to a specific crystallography plane with an atomic arrangement that resembles the array of atoms on a plane in the structure of the precipitate.As the atoms attempt to precipitate,they are forced to conform to the structure of the solvent.This forced coherency between atoms of the solvent and atoms attempting to form the precipitate causes severe localized stresses in the matrix.These stresses areresponsi-Fig.1.SEM morphology images of As-plated and heat treated EN coating:(a)As-plated,(b)HT-200°C (2h),(c)HT-400°C (1h)and (d)HT-600°C (15min)in a vacuum environment.3176T.Rabizadeh et al./Materials and Design 31(2010)3174–3179ble for the increase in hardness.When sufficient numbers of atoms are collected,the structure of the precipitate is formed and thelocalized stresses are relieved,since the forced coherency between the matrix and the precipitated atoms reaches a maximum level [11].Intermediate processes during the formation of inter-metallic compounds can result in precipitation or age hardening.Particles of a precipitate form when sufficient atoms diffuse to aparticularFig.2.Line scan analysis and elemental distribution around inter-diffusional layer of Ni–P coating heat treated at 600°C (for 15min).Fig.3.XRD spectra of electroless Ni–P coatings measured before and after heat treated at differentconditions.Fig.4.Microhardness of As-plated and heat treated Ni–P electroless coatings.T.Rabizadeh et al./Materials and Design 31(2010)3174–31793177location to form a volume of material that has the correct stoichi-ometric composition and that is large enough so that a boundary can form around it.Before the volume of material reaches this crit-ical size,its atomic arrangement and that of the surrounding ma-trix must remain continuous.This coherency between regions having different inter-atomic spacing results in severe straining,which hardens the alloy [11].Around 600°C,the hardness reaches to a maximum value of 938Hv.As it can be seen in XRD patterns of the coatings,the inten-sity peaks of the precipitation phases have increased with raising heat treatment temperature above 400°C.This implies that more precipitation phases have been formed.In addition,the formation of an inter-diffusion layer can enhance the hardness of coating.This layer develops upon heating above 600°C and thickens with increasing annealing time.3.4.Electrochemical results3.4.1.Potentiodynamic polarization studiesFig.5shows the potentiodynamic polarization curves obtained for As-plated and heat treated electroless Ni–P coating in 3.5wt.%NaCl solution.Table 1lists the open circuit and corrosion potential E corr together with the corrosion current density i corr of these coatings.By combining Fig.5and Table 1,the corrosion potential of Ni–P deposits is positively shifted from À0.376to À0.25V with increas-ing the annealing temperature to 600°C.Moreover,the corrosion current density (i corr )of heat treated sample at 400°C is 1Â10À5(A/cm 2)which has the lowest corrosion current density among all the heat treated specimens.It is evident from literature reports on Ni–P coatings that pref-erential dissolution of nickel occurs at open circuit potential,lead-ing to the enrichment of phosphorus on the surface layer [15–20].The enriched phosphorus surface reacts with water to form a layer of adsorbed hypophosphite anions (H 2PO À2).This layer in turn will block the supply of water to the electrode surface,thereby pre-venting the hydration of nickel [15],which is considered to be the first step to form either soluble Ni 2+species or a passive nickel film [19,20].3.4.2.Electrochemical impedance spectroscopy studiesFig.6shows the Nyquist plots obtained for As-plated and heat treated coatings in 3.5%sodium chloride solution at their respec-tive open circuit potentials.All the curves appear to be similar (Ny-quist plots),consisting of a single semi-circle in the high frequency regions signifying the charge controlled reaction.However,it should be noted that though these curves appear to be similar withrespect to their shape,they differ considerably in their size.This indicates that the same fundamental processes must be occurring on all these coatings but over a different effective area in each case [19,20].To account for corrosion behavior of As-plated and heat treated electroless Ni–P coatings in 3.5%sodium chloride solution at their respective open circuit potentials,an equivalent electrical circuit model given in Fig.7has been utilized to simulate the metal/solu-tion interface and to analyze the Nyquist plot [19,20].The charge transfer resistance R ct and double layer capacitance C dl obtained for As-plated and heat treated electroless Ni–P coat-ings are compiled in Table 2.The open circuit potential (OCP),a reliable parameter that indicates the tendency of these systems to corrode,is also included in the same table,along with R ct and C dl values for effective comparison.The occurrence of a single semi-circle in the Nyquist plots indicates that the corrosion pro-cess of these coatings involves a single time constant [19].A similar conclusion of the existence of a single time constant has been reported by Zeller [21],Van DerKouwe [22]and Lo et al.[23]for the corrosion of electroless Ni–P coatings in sodium chloride and sodium hydroxide solutions at the respective open circuit potentials [19].The high values of charge transfer resistance (R ct ),in the range 18,172–52,903X cm 2,obtained for the coatings of presentstudyFig.5.Potentiodynamic polarization curves of As-plated and heat treated electro-less Ni–P coatings in 3.5%sodium chloride solution.Table 1Corrosion characteristics of As-plated and heat treated electroless Ni–P coatings in 3.5%sodium chloride solution by potentiodynamic polarization technique.Type of coating E corr (V vs.Ag/AgCl)i corr (A/cm 2)As-platedÀ0.37610Â10À5HT-200°C,2h À0.355 6.3Â10À5HT-400°C,1h À0.321Â10À5HT-600°C,15minÀ0.252.5Â10À5Fig.7.Equivalent electrical circuit model used to analyze the EIS data of the As-plated and heat treated electroless Ni–P coatings.3178T.Rabizadeh et al./Materials and Design 31(2010)3174–3179imply a better corrosion protective ability of heat treated coatings than the As-plated electroless Ni–P coating.The capacitance value obtained for As-plated and heat treated electroless Ni–P coatings are in the order of23–38l F/cm2.The C dl value is related to the porosity of the coating.The low C dl values confirm that the heat treated electroless Ni–P coatings of present study are relatively less porous in nature.By comparing electrochemical parameters and from EIS data of As-plated and heat treated Ni–P electroless coatings in3.5%so-dium chloride solution and from XRD patterns,it can be see that because As-plated coating is nano-crystalline in nature,it has more grain boundaries,hence it is less protective.By increasing heat treatment temperatures from200°C to600°C coatings become denser and less porous that decreasing C dl value proves this.At 200°C,there is grain growth that reduces grain boundaries and its corrosion properties are better than As-plated sample.At 600°C and400°C it is expected that the alloys consist of two con-stituents:crystals of the nickel-rich phase and the Ni x P y phases. Therefore,it can be observed that alloys are not continuous,be-cause they have surface inhomogeneities(grain boundaries and second phase),which are active sites for corrosion attack.Thus, the mixtures of two phases with two different compositions,prob-ably produces active–passive corrosion cells within the alloy,caus-ing it to suffer sever chemical attack.At400°C formation of second phases of Ni x P y have to decrease the corrosion resistance of coating but grain growth at this temper-ature triumph the formation of second phases and the corrosion resistance increases.After heat treatment at600°C because of increasing second phases’quantity,the corrosion resistance de-creases compare to400°C.4.ConclusionsNano-crystalline Ni–P electroless coatings was deposited on X65steel samples.The heat treatment effects on coating properties were systematically studied.The results show that:(1)As-deposited Ni–P coating has a homogeneous nano-crystal-line structure.(2)By applying heat treatment,second phase precipitationoccurred around400°C.(3)The highest hardness was obtained after heat treatmenttemperature at600°C for15min because of formation of an inter-diffusional layer and Ni3P phase and sealing porosities.(4)Proper heat treatment can significantly improve the corro-sion resistance of these coatings.References[1]Hu YJ,Xiong L,Meng JL.Electron microscopic study on interfacialcharacterization of electroless Ni–W–P plating on aluminium alloy.Appl Surf Sci2007;253:5029–34.[2]Dong D,Chen XH,Xiao WT,Yang GB,Zhang PY.Preparation and properties ofelectroless Ni–P–SiO2composite coatings.Appl Surf Sci2009;255:7051–5. [3]Bozzoni B,Lenardi C,Serra M,Faniglulio M.Electrochemical and X-rayphotoelectron spectroscopy investigation into anodic behaviour of electroless Ni–9Á5wt.%P in acidic chloride environment.Brit Corros J2002;37:173–81. [4]Ashassi-Sorkhabi H,Rafezadeh SH.Effect of coating time and heat treatmenton structures and corrosion characteristics of electroless Ni–P alloy deposits.Surf Coat Technol2004;176:318–26.[5]Crobu M,Scorciapino A,Elsener B,Rossi A.The corrosion resistance ofelectroless deposited nano-crystalline Ni–P alloys.Electrochim Acta 2008;53:3364–70.[6]Jiaqiang G,Yating W,Lei L,Bin S,Wenbin H.Crystallization temperature ofamorphous electroless nickel–phosphorus alloys.Mater Lett2005;59:1665–9.[7]Yu HS,Luo SF,Wang YR.A comparative study on the crystallization behavior ofelectroless Ni–P and Ni–Cu–P deposits.Surf Coat Technol2001;148:143–8. [8]Tachev D,Georgieva J,Armyanov S.Magnetothermal study of nanocrystallineparticle formation in amorphous electroless Ni–P and Ni–Me–P alloys.Electrochim Acta2001;47:359–69.[9]Wang LP,Gao Y,Xu T,Xue QJ.Corrosion resistance and lubricated sliding wearbehaviour of novel Ni–P graded alloys as an alternative to hard Cr deposits.Appl Surf Sci2006;252:7361–72.[10]Yan M,Ying HG,Ma TY.Improved microhardness and wear resistance of theas-deposited electroless Ni–P coating.Surf Coat Technol2008;202:5909–13.[11]Mallory GO,Hajdu JB.Electroless plating:fundamentals and applications.Reprint ed.Florida:AESF;1990.[12]Huang YS,Zeng XT,Hu XF,Liu FM.Heat treatment effects on EN–PTFE–SiCcomposite coatings.Surf Coat Technol2005;198:173–7.[13]Elsener B,Crobu M,Scorciapino MA,Rossi A.Electroless deposited Ni–P alloys:corrosion resistance mechanism.J Appl Electrochem2008;38:1053–60. [14]Re´ve´sz A,Lendvai J,Loranth J,Padar J,Bakonyi IJ.Nanocrystallization studies ofan electroless plated Ni–P amorphous alloy.J Electrochem Soc 2001;148:715–20.[15]Diegle RB,Sorensen NR,Nelson GC.Dissolution of glassy Ni–P alloys in H2SO4and HCl electrolytes.J Electrochem Soc1986;133:1769–76.[16]Diegle RB,Sorensen NR,Clayton CR,Helfand MA,Yu YC.An XPS investigationinto the passivity of an amorphous Ni–20P alloy.J Electrochem Soc 1988;135:1085–92.[17]Carbajal JL,White RE.Electrochemical production and corrosion testing ofamorphous Ni–P.J Electrochem Soc1988;135:2952–7.[18]Habazaki H,Deng SQ,Kashima A,Asami K,Hashimoto K,Inoue A,et al.Theanodic behavior of amorphous Ni–19P alloys in different amorphous states.Corros Sci1989;29:1319–28.[19]Balaraju JN,Sankara Narayanan TSN,Seshadri SK.Evaluation of corrosionresistance of electroless Ni–P and Ni–P composite coatings by electrochemical impedance spectroscopy.J Solid State Electrochem2001;5:334–8.[20]Balaraju JN,Ezhil Selvi V,William Grips VK,Rajam KS.Electrochemical studieson electroless ternary and quaternary Ni–P based alloys.Electrochim Acta 2006;52:1064–74.[21]Zeller III RL.Electrochemical corrosion testing of high phosphorus electrolessnickel in5%NaCl.Corrosion1991;47:692–702.[22]Van Der Kouwe ET.EIS as a means of evaluating electroless nickel deposits.Electrochim Acta1993;38:2093–7.[23]Lo PH,Tsai WT,Lee JT,Hung MP.The electrochemical behavior of electrolessplated Ni–P alloys in concentrated NaOH solution.J Electrochem Soc 1995;142:91–6.Table2Electrochemical parameters from EIS data of As-plated and heat treated Ni–Pelectroless coatings in3.5%sodium chloride solution.Type of coating OCP(mV vs.Ag/AgCl)R ct(X cm2)C dl(l F/cm2)As-platedÀ34313,93438.334HT-200°C,2hÀ32418,17232.952HT-400°C,1hÀ24152,90328.154HT-600°C,15minÀ25627,35223.823T.Rabizadeh et al./Materials and Design31(2010)3174–31793179。