九年级数学上册第二十一章一元二次方程21.1一元二次方程学案2(新版)新人教版

合集下载

2024年人教版九年级数学上册教案及教学反思第21章21.1 一元二次方程

2024年人教版九年级数学上册教案及教学反思第21章21.1 一元二次方程

21.1一元二次方程一、教学目标【知识与技能】1.通过设置具体问题,建立数学模型,模仿一元一次方程的概念得到一元二次方程的定义;2.一元二次方程的一般形式及其有关概念.【过程与方法】了解一元二次方程根的概念,会判定一个数是否是一元二次方程的根及利用它们解决一些具体问题.【情感态度与价值观】通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.二、课型新授课三、课时第1课时,共1课时。

四、教学重难点【教学重点】通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a ≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.【教学难点】一元二次方程及其二次项系数、一次项系数和常数项的识别.五、课前准备多媒体课件六、教学过程(一)导入新课(出示课件2)教师问1:观察图片。

要设计一座2m高的人体雕像(如左下图所示),要求雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高?学生回答:设雕像下部高x m,依题意得方程x2=2(2-x),整理,得x2+2x-4=0.教师问2:上述所列的方程与我们以前学习的方程一样吗?这种方程与以前学习的方程有哪些联系?(二)探索新知探究一一元二次方程的概念见教材第2页问题1.(出示课件4)有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600平方厘米,那么铁皮各角应切去多大的正方形?【教学说明】针对上述问题可给予5~8分钟时间让学生讨论,教师可相应设置如下问题帮助学生分析:如果设四角折起的正方形的边长为xm,则制成的无盖方盒的底面长为多少?宽为多少?由底面积为3600cm2,可得到的方程又是怎样的?【讨论结果】(出示课件5)设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm,宽为(50-2x)cm,由此可得到方程(100-2x)(50-2x)=3600,整理为:4x2-300x+1400=0,化简,得x2-75x+350=0,由此方程可得出所切去的正方形的大小.见教材2~3页问题2.(出示课件6)要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?教学过程中,教师可设置如下问题:(1)这次排球赛共安排场;(2)若设应邀请x个队参赛,则每个队与其它个队各赛一场,这样共应有场比赛;(3)由此可列出的方程为,化简得.教师提出问题,引导学生思考方程的建模过程,同时注重激发学生解决问题的欲望和兴趣.【讨论结果】(课件6展示)设应邀请x 个队参赛,通过分析可得到12·x ·(x-1)=28,化简,得x 2-x=56,即x 2-x-56=0.观察思考观察前面所构建的三个方程,它们有什么共同点?可让学生先独立思考,然后相互交流,得出这些方程的特征:(出示课件7)(1)方程各项都是整式; (2)方程中只含有一个未知数; (3)未知数的最高次数是2. 【归纳结论】(出示课件8)一元二次方程:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程.想一想21109000x x --=是一元二次方程吗?(出示课件9)共同总结:不是.等号左边含有分式;化简整理后,未知数的最高次数为3次.例1 下列选项中,关于x 的一元二次方程的是( )(出示课件10) A.2210x x+= B.3x 2-5xy+y 2=0 C.(x-1)(x-2)=0 D.ax 2+bx+c=0 师生共同讨论,总结如下:方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.三个条件:①方程两边都是整式;②只含有一个未知数;③未知数的最高次数是2. 必须同时满足,缺一不可.生1:A 不满足整式方程;生2:B含有两个未知数;生3:C整理结果为x2-3x+2=0,满足三个条件,为正确答案生4:D若a=0,则不满足未知数最高次数为2条件。

九年级数学上册第二十一章一元二次方程21.2解一元二次方程教案(新版)新人教版

九年级数学上册第二十一章一元二次方程21.2解一元二次方程教案(新版)新人教版

21.2 解一元二次方程配方法(1)教学内容间接即通过变形运用开平方法降次解方程.教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.重难点关键1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=或mx+n=p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加32使左边配成x 2+2bx+b 2的形式 → x 2+6x+32=16+9左边写成平方形式 → (x+3)2=•25 •降次→x+3=±5 即 x+3=5或x+3=-5解一次方程→x 1=2,x 2= -8可以验证:x 1=2,x 2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m ,常为8 m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1.用配方法解下列关于x 的方程(1)x 2-8x+1=0 (2)x 2-2x-12=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略三、巩固练习教材 探究,并说明理由.教材 练习.四、应用拓展例3.如图,在Rt △ACB 中,∠C=90°,AC=8m ,CB=6m ,点P 、Q 同时由A ,B•两点出发分别沿AC 、BC 方向向点C 匀速移动,它们的速度都是1m/s ,•几秒后△PCQ•的面积为Rt △ACB 面积的一半.B C AQ P分析:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.•根据已知列出等式.解:设x 秒后△PCQ 的面积为Rt △ACB 面积的一半.根据题意,得:12(8-x )(6-x )=12×12×8×6 整理,得:x 2-14x+24=0(x-7)2=25即x 1=12,x 2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.五、归纳小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.六、布置作业教材复习巩固2. 3.(1)(2)配方法(2)教学内容给出配方法的概念,然后运用配方法解一元二次方程.教学目标了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点关键1.重点:讲清配方法的解题步骤.2.难点与关键:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.教具、学具准备小黑板教学过程一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联?二、探索新知讨论:配方法届一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.例1.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略三、巩固练习教材练习题四、归纳小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。

初中数学人教版九年级上册:第21章《一元二次方程》全章教案

初中数学人教版九年级上册:第21章《一元二次方程》全章教案

初中数学人教版九年级上册实用资料第二十一章 一元二次方程 21.1 一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a ≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a ≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x+1=0 (4)x 2=13.下列哪个实数是方程2x -1=3的解?并给出方程的解的概念. A .0 B .1 C .2 D .3 活动2 探究新知 根据题意列方程.1.教材第2页 问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程? (3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程. 2.教材第2页 问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x 个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列? 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少? 活动3 归纳概念 提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2教材第3页例题.例3以-2为根的一元二次方程是()A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax 2+c =0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex +f)2+c =0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n ≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n ≥0)的方程.一、复习引入学生活动:请同学们完成下列各题. 问题1:填空(1)x 2-8x +________=(x -________)2;(2)9x 2+12x +________=(3x +________)2;(3)x 2+px +________=(x +________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2)2 p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x =±3,如果x 换元为2t +1,即(2t +1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t +1变为上面的x ,那么2t +1=±3 即2t +1=3,2t +1=-3 方程的两根为t 1=1,t 2=-2例1 解方程:(1)x 2+4x +4=1 (2)x 2+6x +9=2分析:(1)x 2+4x +4是一个完全平方公式,那么原方程就转化为(x +2)2=1. (2)由已知,得:(x +3)2=2直接开平方,得:x +3=±2 即x +3=2,x +3=- 2所以,方程的两根x 1=-3+2,x 2=-3- 2 解:略.例2 市政府计划2年内将人均住房面积由现在的10 m 2提高到14.4 m 2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x ,一年后人均住房面积就应该是10+10x =10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x =10(1+x)2解:设每年人均住房面积增长率为x ,则:10(1+x)2=14.4 (1+x)2=1.44直接开平方,得1+x =±1.2 即1+x =1.2,1+x =-1.2所以,方程的两根是x 1=0.2=20%,x 2=-2.2因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x 的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m ,长为8 m .像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1 用配方法解下列关于x 的方程: (1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略. 三、巩固练习教材第9页 练习1,2.(1)(2).四、课堂小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤. 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤. 难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x 2-4x +7=0 (2)2x 2-8x +1=0 老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联? 二、探索新知讨论:配方法解一元二次方程的一般步骤: (1)先将已知方程化为一般形式; (2)化二次项系数为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.例1解下列方程:(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4(2)(x-2)2=7提问1这种解法的(理论)依据是什么?提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.二、探索新知 用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac 2a,x 2=-b -b 2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-ca配方,得:x 2+b a x +(b 2a )2=-c a +(b2a )2即(x +b 2a )2=b 2-4ac4a 2∵4a 2>0,当b 2-4ac ≥0时,b 2-4ac4a 2≥0∴(x +b 2a )2=(b 2-4ac 2a)2直接开平方,得:x +b2a =±b 2-4ac 2a即x =-b±b 2-4ac2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根. 例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x (3)x 2-2x +12=0 (4)4x 2-3x +2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x -2)(3x -5)=0 三、巩固练习教材第12页 练习1.(1)(3)(5)或(2)(4)(6). 四、课堂小结 本节课应掌握:(1)求根公式的概念及其推导过程; (2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a ,b ,c ,注意各项的系数包括符号;3)计算b 2-4ac ,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况. 五、作业布置教材第17页 习题4,5.21.2.3 因式分解法掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程. 难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成:(1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x -1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1 三、巩固练习教材第14页 练习1,2.四、课堂小结 本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导 难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1=-b +b 2-4ac 2a,x 2=-b -b 2-4ac 2a .观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a ≠0) ∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积: (1)x 2-3x -1=0 (2)2x 2+3x -5=0 (3)13x 2-2x =0 (4)2x 2+6x = 3 (5)x 2-1=0 (6)x 2-2x +1=0例2 不解方程,检验下列方程的解是否正确? (1)x 2-22x +1=0 (x 1=2+1,x 2=2-1)(2)2x 2-3x -8=0 (x 1=7+734,x 2=5-734) 例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?) 例4 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值.变式一:已知方程x 2-2kx -9=0的两根互为相反数,求k ;变式二:已知方程2x 2-5x +k =0的两根互为倒数,求k.三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x 2-5x -3=0 (2)9x +2=x 2 (3)6x 2-3x +2=0(4)3x 2+x +1=02.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值.3.已知方程x 2+bx +6=0的一个根为-2,求另一根及b 的值.21.3 实际问题与一元二次方程(2课时)第1课时 解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x 个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页习题21.3第8,10题.。

九年级数学上册第二十一章21.1一元二次方程备课资料教案(新版)新人教版

九年级数学上册第二十一章21.1一元二次方程备课资料教案(新版)新人教版

第二十一章 21.1一元二次方程备课资料知识点1:一元二次方程的概念等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一元二次方程满足三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数为2.判断方程是否是一元二次方程的步骤是:先进行整理,然后按定义进行判断.一元二次方程与一元一次方程的共同点和不同点:(1)共同点:它们都是整式方程,并且只含有一个未知数.(2)不同点:一元二次方程中未知数的最高次数是2,而一元一次方程中未知数的最高次数是1.知识点2:一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.归纳整理:(1)一元二次方程的一般形式有两个特点:①等式的左边是二次三项式,右边是0;②二次项系数a≠0,因为a=0时,方程就不是一元二次方程了.(2)任何一个一元二次方程,经过整理都可以化为一般形式.在理解一元二次方程的一般形式时,要注意以下几点:①在求一元二次方程各项的系数时,首先必须把一元二次方程化成一般形式;②二次项、二次项系数、一次项、一次项系数和常数项都是包括符号的.知识点3:一元二次方程的根使方程左、右两边相等的未知数的值叫作方程的解.判断一个未知数的值是不是方程的解,可将这个值代入一元二次方程,如果这个方程左右两边相等,则这个值就是这个方程的解.一元二次方程若有实数解,则实数解一定是两个.如果这两个解不相等,称原方程有两个不相等的实数根;如果相等,称原方程有两个相等的实数根.拓展反思:方程的根与方程的解只有一个未知数的方程的解也叫方程的根,如果一个方程含有两个及两个以上的未知数,这样的方程的解不能叫做方程的根. 如一元一次方程和一元二次方程的解也是方程的根,而二元一次方程和三元一次方程的解不能叫做方程的根.方法:判断一个数是否是一元二次方程的解的方法由于一元二次方程的解代入方程,能使方程左右两边相等,所以检验一个数是否是一元二次方程的解,将这个数代入方程,如果方程的左右两边相等,则这个数就是方程的解.知识点4:简单一元二次方程的应用一元二次方程是刻画现实世界的一个有效数学模型,可以把实际问题中语言叙述的数量关系通过设未知数、列一元二次方程来表达.(1)实际问题中有单位的,要注意看单位是否一致,若不一致,要先把单位进行统一.(2)常见的一元二次方程模型有图形的面积、周长公式,增长基数以及平均增长率等问题.从实际问题中抽象一元二次方程的一般步骤:①审题,认真阅读题目,弄清未知量和已知量之间的关系;②设出合适的未知数;③确定相等关系;④根据等量关系列出方程.考点1:一元二次方程的判定【例1】下列关于x的方程:①ax2+3x+2=0;②x2+ -5=0;③x2+5x-6=0;④x2-2+5x3-6=0;⑤3x2+2=3(x-2)2中,是一元二次方程的个数为( ).A. 1B. 2C. 3D. 4答案:A.点拨:由于①中没有指出a≠0;②不满足“整式”;④不满足“二次”;⑤化简后为12x-10=0,所以都不是一元二次方程,只有③满足.考点2:一元二次方程的系数【例2】若方程(a+4)x|a|-2+8x+1=0是一个一元二次方程,求a的值.解:∵方程(a+4)x|a|-2+8x+1=0是一个一元二次方程,∴解得或第二组解矛盾,应舍去.故a=4.点拨:由一元二次方程的一般形式可知,未知数的次数为2,二次项系数不等于0,从而求出a的值.考点3:一元二次方程根的认识【例3】已知两个方程x2+px+q=0和x2+qx+p=0有一个公共根,求p+q的值.解:设a是已知方程的公共根,那么a2+pa+q=0,a2+qa+p=0,所以a2+pa+q=a2+qa+p,所以(p-q)a=p-q,所以a=1,把a=1代入x2+px+q=0,得p+q=-1.点拨:设公共根x=a,则a2+pa+q=0,①a2+qa+p=0,②①-②,得a的值,将a的值代回方程求p+q的值.考点4:一元二次方程的简单应用【例4】某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是( ).A. 50(1+x)2=182B. 50+50(1+x)+50(1+x)2=182C. 50(1+2x)=182D. 50+50(1+x)+50(1+2x)=182解:B.点拨:根据题意可知五月份生产零件50(1+x)个,六月份生产零件50(1+x)2个,第二季度是四、五、六三个月的产量的和.。

人教版九年级数学第二十一章21.1一元二次方程教案

人教版九年级数学第二十一章21.1一元二次方程教案
4.情感与态度:激发学生对数学学习的兴趣,培养他们勇于探究、积极思考的良好学习习惯,增强数学自信心。
三、教学难点与重点
1.教学重点
a)一元二次方程的定义:强调方程ax^2+bx+c=0(a≠0)中a、b、c的系数条件,以及x的二次方项是核心内容。
-举例:解释为何a≠0是必要条件,以及如何从实际情境中抽象出一元二次方程。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元二次方程的基本概念、求解方法以及在实际生活中的应用。通过实践活动和小组讨论,加深了对一元二次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在上完这节一元二次方程的课程后,我思考了一些关于教学过程的问题。首先,我发现学生在理解一元二次方程的定义时,对a≠0这个条件感到有些困惑。在今后的教学中,我需要更加明确地解释为什么a不能为0,可以通过具体的例子来说明这一点,让学生更好地理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一元二次方程的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
d)根的判别式的应用:学生需要理解判别式的意义,并能准确判断方程根的情况。
-难点:对于判别式的符号判断与实际根的情况之间的联系。
-举例:解释Δ=0时方程有一个重根,Δ>0时有两个不同实根,Δ<0时方程无实根。
四、教学流程
(一)导入新课(用时5分钟)

最新人教版九年级数学上册全册导学案

最新人教版九年级数学上册全册导学案

第二十一章一元二次方程21.1一元二次方程——一元二次方程的相关概念一、新课导入1.导入课题:情景:要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比,则雕像的下部应设计多少米高?问题1:列方程解应用题的一般步骤是什么?(导出审题的关键是寻找等量关系)问题2:你能画出示意图表示这个问题吗?(用线段AB表示雕像的高度,雕像上部的高度表示为AC,下部的高度表示为BC,在黑板上画出示意图,把这个问题转化为数学问题)问题3:能反映问题的等量关系的是哪一句话?(根据题意导出关系式BC2=2AC)问题4:设雕像下部高BC=x m,请说出你所列的方程,并化简.这个方程是一元一次方程吗?它有什么特点?这个方程就是本节课我们将要学习的一元二次方程.(板书课题)2.学习目标:(1)会设未知数,列一元二次方程.(2)了解一元二次方程及其根的概念.(3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.3.学习重、难点:重点:一元二次方程的一般形式及相关概念.难点:寻找等量关系.二、分层学习1.自学指导:(1)自学内容:教材第1页到第2页的问题1、问题2.(2)自学时间:5分钟.(3)自学方法:先寻找问题中的等量关系,再根据等量关系列出方程.(4)自学参考提纲:①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0②问题2中,本次排球比赛的总比赛场数为28场.设邀请x支队参赛,则每支队与其余(x-1) 支队都要赛一场.整个比赛中总比赛场数是多少?你是怎样算出来的?本题的等量关系是什么?你列出的方程是x(x-1)=28.你能把它整理为课本上的方程③吗?试说明具体经过哪几步变形得到.去括号x2-12x=28系数化为1(两边同乘以2) x2-x=562.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察了解学生是否会寻找等量关系,是否会化简方程.②差异指导:简要说明问题2中单循环比赛与双循环比赛的区别,对不会寻找等量关系的学生给予辅导,说明化简方程的基本要求.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)总结寻找等量关系的策略,简要指出哪些公式经常被我们作为寻找等量关系的依据.(2)练习:根据下列问题列方程①一个圆的面积是2πm2,求半径.πr2=2π②一个直角三角形的两条直角边相差3cm,面积为9cm2,求较长的直角边的长.1x(x-3)=92③4个完全相同的正方形面积之和是25,求正方形的边长x. 4x2=25④一个长方形的长比宽多2,面积是100,求长方形的长x. x(x-2)=100⑤把长为1的木条分成两段,使较短一段的长与全长的积等于较长一段的长的平方,求较短一段的长x.x=(1-x)21.自学指导:(1)自学内容:教材第3页的内容.(2)自学时间:5分钟.(3)自学方法:观察方程①②③,从方程所含的未知数的个数及其次数等方面找出它们共同的特点.(4)自学参考提纲:①结合一元一次方程的定义,请对一元二次方程进行定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.②一元二次方程的一般形式是a x2+b x+c=0(a≠0),为什么要规定a≠0?因为a=0时,未知数的最高次数小于2.③同桌之间相互说说方程①②③的二次项,二次项系数,一次项,一次项系数,常数项各是什么.方程①x2+2x-4=0 二次项:x2二次项系数:1 一次项:2x 一次项系数:2常数项:-4方程②x2-75x+350=0 二次项:x2二次项系数:1 一次项:-75x 一次项系数:-75 常数项:350方程③x2-x=56 二次项:x2二次项系数:1 一次项:-x 一次项系数:-1常数项:-56④举例说明什么是一元二次方程的根.⑤自学例题,说说把一元二次方程化为一般形式,要经过哪些变形?去括号,移项,合并同类项.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生在回答一元二次方程各项及各项系数时,是否注意了符号.②差异指导:提醒学生一元二次方程的每一项(系数)都应包括它前面的符号.(2)生助生:生生互动交流、订正错误.4.强化:(1)交流总结:确定一元二次方程各项的系数时,若方程不是一般形式,要先经过去括号、移项、合并同类项等步骤把它化成一般形式,通常习惯把二次项系数化为正数,且各项系数均为整数且互质,在指出各项系数时,一定要带上各项前面的符号.(2)练习:①将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:5x2-1=4x;4x2=81;解:原式化为5x2-4x-1=0解:原式化为4x2-81=0二次项系数:5一次项系数:-4常数项:-1二次项系数:4一次项系数:0常数项:-81 4x(x+2)=25;(3x-2)(x+1)=8x-3.解:原式化为4x2+8x-25=0解:原式化为3x2-7x+1=0二次项系数:4一次项系数:8常数项:-25二次项系数:3一次项系数:-7常数项:1②若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是m≥0且m≠1.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有什么困惑?2.教师对学生的评价:(1)表现性评价:点评学生参与学习的情况,回答问题,小组互动情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.(2)教师创设情境,给出实例,学生积极主动探究,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.(3)增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.(4)对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)一元二次方程3x2=5x的二次项系数和一次项系数分别是(C)A. 3,5B. 3,0C. 3,-5D. 5,02.(10分)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3, 4.解:-4,33.(20分)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)3x2+1=6x;(2)4x2=81-5x;解:原式化为3x2-6x+1=0 解:原式化为4x2+5x-81=0二次项系数:3 二次项系数:4一次项系数:-6 一次项系数:5常数项:1 常数项:-81(3)x(x+5)=5x-10; (4)(3x-2)(x+1)=x(2x-1).解:原式化为x2+10=0 解:原式化为x2+2x-2=0二次项系数:1 二次项系数:1一次项系数:0 一次项系数:2常数项:10 常数项:-24.(30分)根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?解:设长方形的长为x cm,则宽为(x-1)cm,根据题意,得x(x-1)=132,整理,得x2-x-132=0.(2)有一根1m长的铁丝,怎样用它围一个面积为0.06m2的平方的长方形?解:设长方形的长为x m,则宽为(0.5-x)m.根据题意,得x(0.5-x)=0.06,整理,得50x2-25x+3=0.(3)参加一次聚会的每两人都握了一次手,所有人共握手10次.有多少人参加这次聚会?解:设有x人参加了这次聚会,根据题意,得x(x-1)=10整理,得x2-x-20=0二、综合应用(20分)5.(20分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,则x满足的方程是(B)A. x2+130x-1400=0B. x2+65x-350=0C. x2-130x-1400=0D. x2-65x-350=0三、拓展延伸(10分)6.(10分)如果2是方程x2-c=0的一个根,求常数c及方程的另一个根.解:将2代入原方程中,得22-c=0,得c=4.将c=4代入原方程,得x2-4=0.解得x=±2.即方程的另一个根为-2.21.2解一元二次方程21.2.1配方法第1课时直接开平方法一、导学1.导入课题:情景:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,求盒子的棱长.问题1:本题的等量关系是什么?问题2:设正方体的棱长为x dm,请列出方程并化简.问题3:根据平方根的意义解方程x2=25.由此导入并板书课题直接开平方法.2.学习目标:(1)能根据平方根的意义解形如x2=p及a x2+c=0的一元二次方程.(2)能运用开平方法解形如(m x+n)2=p(p≥0)的方程.(3)体会“降次”的数学思想.3.学习重、难点:重点:运用开平方法解形如(m x+n)2=p(p≥0)的方程.难点:降次的数学思想.4.自学指导:(1)自学内容:教材第5页到第6页“练习”之前的内容.(2)自学时间:10分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①根据平方根的意义,解方程:x2=36;2x2-4=0;3x2-4=8.x=±6,x2=2,x2=4,x1=6,x2= -6. x=±2,x2=±2,x1=,x2= -. x1=2,x2= -2.②当p>0时,方程x2=p有两个不等的实数根x1= -x2=.当p=0时,方程x2=p有两个相等的实数根x1=x2=0.当p<0时,方程x2=p无实数根.③探究方程(x+3)2=5的根:因为(x+3)2=5,所以x+3是5的平方根,所以x+3等于5或-5.即x+3=,或x+3= -.解x+3=,得x1=-3;解x+3=-,得x2= --3.于是,方程(x+3)2=5的根为x1=-3, x2= --3.解方程(x+3)2=5的过程实质上是把一个一元二次方程降次,转化为两个一元一次方程,再解两个一元一次方程即得原方程的解.二、自学学生可参考自学指导进行自学.三、助学1.师助生:(1)明了学情:看学生能否顺利解决所给问题,注意书写格式方面存在的问题.(2)差异指导:注意帮助学困生复习平方根等知识,紧扣平方根讨论p的符号与方程的解的个数的关系.2.生助生:同桌之间互相批改,相互讨论改正错误.四、强化1.教师示范:解方程x2+4x+4=1.分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:由已知,得:(x+2)2=1直接开平方,得:x+2=±1即x+2=1或x+2=-1所以,方程的两根为x1= -1,x2= -3.2.练习:解下列方程:3.上面的方程都能化成x2=p或(m x+n)2=p(p≥0)的形式,那么可由“降次”得到x=±或m x+n=±p≥0)求解.4.以师生对话的形式讨论(m x+n)2=p的解的个数问题.五、评价1.学生的自我评价(围绕三维目标):你会解哪些形式的一元二次方程?怎样解?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、方法、积极性及存在的不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本课时通过创设问题情景,激发学生探究新知的欲望.(2)本课时还通过回忆旧知识为新知学习作好铺垫.(3)教师引导学生自主、合作、探究、验证,培养学生分析问题、解决问题的能力.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是(D)A. x-6= -4B. x-6=4C. x+6=4D. x+6= -42.(10分)方程3x2+9=0的根为(D)A. 3B. -3C. ±3D. 无实数根3.(10分)若8x2-16=0,则x的值是±2.4.(10分)已知方程2(x-3)2=72,那么这个一元二次方程的两根是x1=9,x2= -3.5.(40分)解下列方程:(1) 4x2=81;(2) (x+6)2-9=0;解:由已知,得:x2=,解:由已知,得:(x+6)2=9,直接开平方,得x=±,直接开平方,得x+6=±3,所以方程的两根为x1=,x2= -. 所以方程的两根为x1= -3, x2= -9.(3) x2+2x+1=4;(4) 9x2+6x+1=4.解:由已知,得:(x+1)2=4,解:由已知,得:(3x+1)2=4,直接开平方,得x+1=±2,直接开平方,得3x+1=±2,所以方程的两根为x1=1, x2= -3. 所以方程的两根为x1= -1, x2=.二、综合应用(10分)6.(10分)如果x=3是一元二次方程a x2=c的一个根,则方程的另一根是(B)A. 3B. -3C. 0D. 1三、拓展延伸(10分)7.(10分)解关于x的方程(x+m)2=n.解:①当n>0时,此时方程两边直接开方.得x+m=±,方程的两根为x1=-m,x2= --m.②当n=0时,此时(x+m)2=0,直接开方得x+m=0,方程的两根为x1=x2= -m.③当n<0时,因为对任意实数x,都有(x+m)2≥0,所以方程无实数根.21.2.1配方法第2课时配方法一、新课导入1.导入课题:情景:请把方程(x+3)2=5化成一般形式,并由一名学生口答.问题:(追问)那么你能将方程x2+6x+4=0转化为(x+3)2=5的形式吗?由此导入课题.(板书课题)2.学习目标:(1)知道用配方法解一元二次方程的一般步骤,会用配方法解一元二次方程.(2)通过配方进一步体会“降次”的转化思想.3.学习重、难点:重点:用配方法解一元二次方程.难点:配方的方法.二、分层学习1.自学指导:(1)自学内容:教材第6页“探究”到第7页例1上面的部分.(2)自学时间:6分钟.(3)自学方法:完成下面的探究提纲,如果觉得有困难就先完成②,③,再完成①.(4)探究提纲:①解方程x2+6x+4=0.移项:把常数项移到方程的右边,得x2+6x= -4;配方:两边都加9,使得左边配成x2+2b x+b2的形式,得x2+6x+9=;变形:把左边写成完全平方形式,得(x+3)2=5;降次:运用平方根的定义把方程转化为两个一元一次方程,得x+3=±;求解:解两个一元一次方程,得x1=-3, x2= --3.②回忆完全平方公式填空:a2+2ab+b2=(a+b )2,x2+6x+9=(x+3)2.③为什么要在x2+6x=-4两边加9而不是其他数?因为两边加9,式子左边可以恰好凑成完全平方式.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生配方时的难点和易错点.②差异指导:根据具体情况指导学生配方.(2)生助生:小组内相互交流研讨,订正错误.4.强化:(1)配方的依据和步骤.(2)试一试:对下列各式进行配方:1.自学指导:(1)自学内容:教材第7页到第9页的例1.(2)自学时间:10分钟.(3)自学方法:认真阅读分析和解答过程,注意把方程转化为你能解的形式.(4)自学参考提纲:①仿照方程x2+6x+4=0的解法解方程(1),然后对照课本纠错.②方程(2)、(3)中是怎样化二次项系数为1的?方程两边同除以原二次项的系数③方程(3)没有实数根的依据是什么?实数的平方是非负数.④用配方法解一元二次方程时,移项时要注意些什么?移项时需注意改变符号.⑤请小结用配方法解一元二次方程的一般步骤.①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.⑥解方程(x+n)2=p.①当p>0时,则x+n=±,方程的两个根为x1=-n, x2= --n.②当p=0时,则(x+n)2=0,开平方得x+n=0,方程的两个根为x1=x2= -n.③当p<0时,则方程(x+n)2= p无实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:主要了解学生解方程配方时是否存在困难,计算是否错误,书写格式是否规范.②差异指导:针对学生在学习中出现的问题予以指导.(2)生助生:生生互动,交流研讨.4.强化:(1)用配方法解一元二次方程的一般步骤.(2)用配方法解方程:三、评价1.学生的自我评价(围绕三维目标):你会用配方法解一元二次方程吗?本节课你学习了哪些知识?2教师对学生的评价:(1)表现性评价:点评学生的学习参与情况、小组交流协作状况、学习效果及不足等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本节课,重在让学生自主参与,进而获得成功的体验,在数学方法上,仍突出数学研究中转化的思想,激发学生产生合理的认知冲突,激发兴趣,建立自信心.(2)在练习内容上,有所改进,加强了核心知识的理解与巩固,提高了自己解决问题的能力,感受数学创造的乐趣,提高教学效果.(3)用配方法解一元二次方程是学习解一元二次方程的基本方法,后面的求根公式是在配方法的基础上推出的,配方法在使用时又与原来学习的完全平方式联系密切,用配方法解一元二次方程既是对原来知识的巩固,又是对后面学习内容的铺垫.在二次函数顶点坐标的求解中也同样使用的是配方法,因此配方法是一种基本的数学解题方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)用配方法解方程-x2+6x+7=0时,配方后得的方程为(B)A. (x+3)2=16B. (x-3)2=16C. (x+3)2=2D. (x-3)2=22.(20分)填空.(1) 4x2+4x+1=(2x+1)2(2) x2-x+=(x-)23.(40分)用配方法解下列方程.(1)x2+10x+9=0;(2)4x2-12x-7=0;解:移项,x2+10x=-9, 解:移项,4x2-12x=7,配方,x2+10x+25=16, 系数化为1,x2-3x=,(x+5)2=16, 配方,x2-3x+=4,x+5=±4, ( x-2=4,方程的两个根为x1=-1,x2= -9. x-=±2,方程的两个根为x1=72,x2= -12.(3) x2+4x-9=2x-11; (4) x(x+4)=8x+12解:移项,x2+2x= -2, 解:化简移项,x2-4x=12,配方,x2+2x+1= -1, 配方,x2-4x+4=16,(x+1)2= -1, (x-2)2=16,方程没有实数根. x-2=±4,方程的两个根为x1=6,x2= -2.二、综合应用(10分)4.(10分)用配方法解方程4x2-x-9=0.三、拓展延伸(20分)5.(20分) 当a为何值时,多项式a2+2a+18有最小值?并求出这个最小值. 解:对原式进行配方,则原式=(a+1)2+17∵(a+1)2≥0,∴当a= -1时,原式有最小值为17.21.2.2公式法——根的判别式及求根公式一、新课导入1.导入课题:(1)用配方法解一元二次方程的步骤是什么?(2)你能用配方法解一般形式的一元二次方程a x2+b x+c=0(a≠0)吗?我们继续学习另一种解一元二次方程的方法——公式法.2.学习目标:(1)知道一元二次方程根的判别式,能运用根的判别式直接判断一元二次方程的根的情况.(2)会用公式法解一元二次方程.3.学习重、难点:重点:用求根公式解一元二次方程.难点:计算时的符号处理.二、分层学习1.自学指导:(1)自学内容:教材第9页到11页例2之前的内容.(2)自学时间:15分钟.(3)自学方法:认真阅读书上的内容,并动手推导出求根公式.(4)自学参考提纲:②Δ=b2-4ac叫做一元二次方程a x2+b x+c=0(a≠0)的根的判别式.当b2-4ac>0时,方程a x2+b x+c=0(a≠0)有两个不等的实数根;当b2-4ac=0时,方程a x2+b x+c=0(a≠0)有两个相等的实数根;当b2-4ac<0时,方程a x2+b x+c=0(a≠0)无实数根.注意:上述的叙述,反过来也成立.③当Δ≥0时,一元二次方程a x2+b x+c=0(a≠0)的实数根可写为的形式,这个式子叫做一元二次方程a x2+b x+c=0(a≠0)的求根公式.④不解方程,利用判别式判断下列方程的根的情况.x2+5x+6=0;9x2+12x+4=0;Δ=b2-4ac=52-4×1×6=1>0 Δ=b2-4ac=122-4×9×4=0方程有两个不等的实数根. 方程有两个相等的实数根.2x2+4x-3=2x-4;x(x+4)=8x+12.方程化为2x2+2x+1=0 方程化为x2-4x-12=0Δ=b2-4ac=22-4×2×1=-4<0 Δ=b2-4ac=(-4)2-4×(-12)=64>0方程无实数根. 方程有两个不等的实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生配方的过程以及配方后是否讨论.②差异指导:指导学生配方变形;指导学生对b2-4ac的符号进行讨论.(2)生助生:小组内相互交流、研讨.4.强化:(1)公式的推导,判别式定义解读;(2)练习:不解方程,利用判别式判断下列方程的根的情况.1.自学指导:(1)自学内容:教材第11页到第12页的例2.(2)自学时间:8分钟.(3)自学方法:阅读解答过程,注意解题步骤和格式.(4)自学参考提纲:①先独立运用公式法解所给方程,然后对照课本找错误、分析错因.x2-4x-7=0;2x2-22x+1=0;5x2-3x=x+1;x2+17=8x.x1=2+x1=x2=x1=1 无实数根x2=2-x2= -②说说运用公式法解一元二次方程的一般步骤,有哪些易错点?先将方程化为一般形式,确定a,b,c的值;计算判别式Δ=b2-4ac的值,判断方程是否有解;若Δ≥0,利用求根公式计算方程的根,若Δ<0,方程无实数根.计算Δ时,注意a,b,c符号的问题.③解答本章引言中的问题.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:看学生能否从例2的学习中总结出用公式法解方程的一般步骤及注意事项.②差异指导:注意强调运用公式法解方程的前提条件.(2)生助生:同桌之间互相找错,分析错因.4.强化:(1)用公式法解一元二次方程的一般解题步骤及注意事项.(2)解下列方程:三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?有何收获或不足?你知道一元二次方程a x2+b x+c=0(a≠0)的根的判别式与其根的个数有什么关系吗?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、积极性、学习效果、方法及不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本课时容量较大,难度较大,计算的要求较高,因此教学设计各环节均围绕着利用公式法解一元二次方程这一重点内容展开,问题设计、课堂学习有利于学生强化运算能力、掌握基本技能,也有利于教师发现教学中存在的问题.(2)在教学设计中,引导学生自主探究一元二次方程的求根公式,在师生讨论中发现求根公式,并学会利用公式法解一元二次方程.(3)整个课堂都以学生动手训练为主,让学生积极介入探究活动,体验到成功的喜悦.(4)公式法是在配方法的基础上推出的一种解一元二次方程的基本方法,它使解一元二次方程更加简便,在公式的运用中,涉及到根的判别式,使公式法解一元二次方程得到延续和深化.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)一元二次方程a x2+b x+c=0(a≠0)有两个不相等的实数根,则b2-4ac满足的条件是(B)A. b2-4ac=0B. b2-4ac>0C. b2-4ac<0D. b2-4ac≥02.(10分)已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是(B)A. ①②都有实数解B. ①无实数解,②有实数解C. ①有实数解,②无实数解D. ①②都无实数解3.(10分)利用求根公式求5x2+=6x的根时,a,b,c的值分别是(C)A. 5,,6B. 5,6,C. 5,-6,D. 5,-6,-4.(20分)不解方程,利用判别式判断下列方程的根的情况:(1)x2-3x-32=0;(2) 16x2-24x+9=0;方程有两个不等的实数根. 方程有两个相等的实数根.(3)x2-42x+9=0;(4)3x2+10=2x2+8x.解:Δ=b2-4ac=(-4)2-4×1×9= -4<0, 解:方程化为x2-8x+10=0方程无实数根. Δ=b2-4ac=(-8)2-4×1×10=24>0方程有两个不等的实数根.5.(30分)用公式法解下列方程:二、综合应用(10分)6.(10分)解方程x2=3x+2时,有一位同学解答如下:请你分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.解:有错误,方程化为标准形式x2-3x-2=0, ∴a=1,b= -3,c= -2, b2-4ac=17.三、拓展延伸(10分)7.(10分)无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根吗?给出你的答案并说明理由.解:方程化简为x2-5x+6-p2=0.∴b2-4ac=(-5)2-4×1×(6-p2)=4p2+1≥1,∴Δ>0.∴无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根.21.2.3 因式分解法一、新课导入1.导入课题:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s后物体离地面的高度(单位:m)为:10x-4.9x2.问题1:你能根据上述规律求出物体经过多少秒落回地面吗?问题2:设物体经过x s落回地面,请说说你列出的方程.问题3:你能用配方法或公式法解这个方程吗?是否还有更简单的方法呢?(板书课题)2.学习目标:(1)会用因式分解法解一元二次方程.(2)能选用合适的方法解一元二次方程.3.学习重、难点:重点:用因式分解法解一元二次方程.难点:选择合适的方法解一元二次方程.二、分层学习1.自学指导:(1)自学内容:教材第12页到第13页的内容.(2)自学时间:5分钟.(3)自学方法:可先解答②,再解答①.(4)自学参考提纲:①解方程10x-4.9x2=0.分解因式:左边提公因式,得x(10-4.9x)=0,降次:把方程化为两个一次方程,得x=0或10-4.9x=0,求解:解这两个一次方程,得x1=0, x2=.②将一个多项式进行因式分解,通常有哪几种方法?提公因式法,公式法,十字相乘法用因式分解法解一元二次方程的依据是:如果ab=0,则a=0或u.③请小结因式分解法解一元二次方程的步骤:移项,合并同类项,因式分解,写出一元二次方程的根.④解下列方程:(x-2)·(x-3)=0;4x2-11x=0.x1=2, x2=3 x1=0, x2=2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:是否理解用因式分解法解一元二次方程的依据,是否掌握用因式分解法解方程的步骤.②差异指导:根据学情进行个别或分类指导.(2)生助生:小组内互相交流、研讨.4.强化:(1)用因式分解法解方程的一般步骤:第一步,把方程变形为x2+p x+q=0的形式;第二步,把方程变形为(x-x1)(x-x2)=0的形式;第三步,把方程降次为两个一次方程x-x1=0或x-x2=0的形式;第四步,解两个一次方程,求出方程的根.(2)点两名学生板演第④题,并点评.1.自学指导:(1)自学内容:教材第14页例3及“归纳”.(2)自学时间:5分钟.(3)自学方法:先独立作业,然后小组互相改正.(4)自学参考提纲:①方程x(x-2)+x-2=0左边可用提公因式法进行因式分解,分解为(x+1)(x-2).②方程5x2-2x-=x2-2x+左右两边都有含未知数的项,无法因式分解,因此,可先将其化为一般形式4x2-1=0,再用平方差公式法对左边进行因式分解.③说说运用因式分解法解一元二次方程要注意哪些问题.④解下列方程:2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生对运用因式分解法解一元二次方程的方法是否掌握.②差异指导:指导学生观察题目特点,选用适当的方法分解因式.(2)生助生:同桌之间互相改错、分析错因.4.强化:(1)点6名学生板演自学参考提纲第④题,并点评.(2)说说运用因式分解法解一元二次方程要注意的问题.1.自学指导:(1)自学内容:选择合适的方法解一元二次方程.(2)自学时间:15分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①直接开平方法适用于哪种形式的方程?x2=p;配方法适用于哪种形式的方程?(m x+n)2=p;公式法适用于哪种形式的方程?a x2+b x+c=0(a≠0);因式分解法适用于哪种形式的方程?x2-(m+n)x+mn=0.②前面这些解法各有什么优缺点?③解一元二次方程的基本思想是什么?④选择适当的方法解下列方程:。

九年级数学上册 第二十一章 一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人

九年级数学上册 第二十一章 一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人

21.2.2 公式法【知识与技能】1.理解并掌握求根公式的推导过程;2.能利用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.一、情境导入,初步认识我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?【教学说明】让学生回顾用配方法解一元二次方程的一般过程,从而尝试着求ax2+bx+c=0(a≠0)的方程的解,导入新课,教学时,应给予足够的思考时间,让学生自主探究.二、思考探究,获取新知通过问题情境思考后,师生共同探讨方程ax2+bx+c=0(a≠0)的解.由ax2+bx+c=0(a≠0),移项,ax2+bx=-c.二次项系数化为1,得x2+bax=-ca.配方,得x2+bax+2()2ba=-ca+2()2ba,即2224(42)b aa abxc-+=.至此,教师应作适当停顿,提出如下问题,引导学生分析、探究:(1)两边能直接开平方吗?为什么?(2)你认为下一步该怎么办?谈谈你的看法.【教学说明】设置停顿并提出两个问题的目的在于纠正学生的盲目行为,引导学生正确认识代数式b2-4ac的取值与此方程的解之间的关系,加深认知.教学时,应让学生积极主动思考,畅所欲言,在相互交流中促进理解.师生共同完善认知:一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)根的判别式,通常用Δ表示,即Δ=b2-4ac.从而有:①当Δ=b2-4ac>0时,方程ax2+bx+c=0(a≠0)有两个不相等的实数根;当Δ=b2-4ac=0时,方程ax2+bx+c=0(a≠0)有两个相等实数根;当Δ=b2-4ac<0时,方程ax2+bx+c=0(a≠0)没有实数解;②当Δ≥0时,方程ax2+bx+c=0(a≠0)的两个实数根可写成x=242b b aca-±-,这个式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.三、典例精析,掌握新知例1不解方程,判别下列各方程的根的情况.(1)x2+x+1=0; (2)x2-3x+2=0; (3)3x22x=2.分析:找出方程中二次项系数、一次项系数和常数项,利用b2-4ac与0的大小关系可得结论.注意:在确定方程中a、b、c的值时,一定要先把方程化为一般式后才能确定,否则会出现失误.解:(1)∵a=1,b=1,c=1,∴Δ=b2-4ac=12-4×1×1=-3<0,∴原方程无实数解;(2)∵a=1,b=-3,c=2,∴Δ=b2-4ac=(-3)2-4×1×2=1>0,∴原方程有两个不相等实数根;(3)原方程可化为3x2-2x-2=0,∴a=3,b=-2,c=-2,∴Δ=b2-4ac=(-2)2-4×3×(-2)=2+24=26>0.∴原方程有两个不相等的实数根.例2用公式法解下列方程:(1)x2-4x-7=0; (2)2x2-22x+1=0; (3)5x2-3x=x+1; (4)x2+17=8x分析:将方程化为一般形式后,找出a、b、c的值并计算b2-4ac后,可利用公式求出方程的解.【教学说明】以上两例均可让学生自主完成,同时选派同学上黑板演算.教师巡视,针对学生的困惑及时予以指导,最后共同评析黑板上作业,一方面引导学生关注其解答是否正确,同时还应注意其解答格式是否规X,查漏补缺,深化理解.教师接着引导学生阅读第12页有关引言中问题的解答,向学生提问:(1)什么情况下根的取值为正数?(2)列方程解决实际问题在取值时应注意什么?四、运用新知,深化理解2-2x+m=0有两个实数根,则m的取值X围是.2x2-(2k+1)x+1=0有两个不相等实数根,那么k的取值X围是()A.k>-1 4B.k>-14且k≠0C.k<-1 4≥-14且k≠02=0的根是()1,x21=6,x21,x21=x24.关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一个根为0,试求m的值.(注:5~6题为教材第12页练习)5.解下列方程:(1)x2+x-6=0; (2)x2(3)3x2-6x-2=0;(4)4x2-6x=0; (5)x2+4x+8=4x+11; (6)x(2x-4)=5-8x.6.求第21.1节中问题1的答案.【教学说明】通过练习可进一步理解和掌握本节知识,在学中练、练中学的活动中得到巩固和提高.≤14.把x=0代入方程,得m2+2m-3=0,解得m1=1,m2=-3,又∵m-1≠0,即m≠1,故m的值为-3.5~6略五、师生互动,课堂小结通过这节课的学习,你有哪些收获和体会?说说看.【教学说明】在学生回顾与反思本节课的学习过程中,进一步完善认知,师生共同归纳总结.1.布置作业:从教材“”中选取.“课时作业”部分.1.本课容量较大,难度较大,计算的要求较高,因此在教学设计各环节均围绕着利用公式法解一元二次方程这一重点内容展开,问题设计,课堂学习有利于学生强化运算能力,掌握基本技能,也有利于教师发现教学中存在的问题.2.在教学设计中,引导学生自主探索一元二次方程的求根公式,在师生讨论中发现求根公式,并学会利用公式解一元二次方程.3.整个课堂都以学生动手训练为主,让学生积极介入探索活动,体验到成功的喜悦.4.公式法是在配方法的基础上推出的一种解一元二次方程的基本方法,它使解一元二次方程更加简便,在公式的运用中,涉及到根的判别式,使公式法解一元二次方程得到延续和深化.。

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1直接开平方法教案新人教版(2

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1直接开平方法教案新人教版(2

2018年秋九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.1 直接开平方法教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.1 直接开平方法教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.1 直接开平方法教案(新版)新人教版的全部内容。

《21.2.1 直接开平方法》教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标知识与技能理解一元二次方程“降次"──转化的数学思想,并能应用它解决一些具体问题.过程与方法提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.情感态度与价值观历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣。

重、难点1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x 2—8x+______=(x-______)2;(2)9x 2+12x+_____=(3x+_____)2;(3)x 2+px+_____=(x+______)2.问题2.如图,在△ABC 中,∠B=90°,点P 从点B 开始,沿AB 边向点B 以1cm/s•的速度移动,点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,如果AB=6cm ,BC=12cm ,•P 、Q 都从B 点同时出发,几秒后△PBQ 的面积等于8cm 2? B C A Q P 老师点评: 问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(2p )22p . 问题2:设x 秒后△PBQ 的面积等于8cm 2 则PB=x ,BQ=2x依题意,得:12x ·2x=8 x 2=8根据平方根的意义,得x=±2即x 12x 22可以验证,22212x ·2x=8的两根,但是移动时间不能是负值. 所以2PBQ 的面积等于8cm 2.二、探索新知上面我们已经讲了x2=8,根据平方根的意义,直接开平方得x=±22,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±22即2t+1=22,2t+1=-22方程的两根为t1=2-12,t2=-2—12例1:解方程:x2+4x+4=1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:由已知,得:(x+2)2=1直接开平方,得:x+2=±1即x+2=1,x+2=-1所以,方程的两根x1=-1,x2=-3例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14。

新人教版初中数学九年级上册《第二十一章一元二次方程:21.1一元二次方程》优质课教案_0

新人教版初中数学九年级上册《第二十一章一元二次方程:21.1一元二次方程》优质课教案_0

21.1《一元二次方程》教学设计一、教学内容一元二次方程的概念,一元二次方程的一般形式及一元二次方程的解(根)的概念.二、教学目标(1)体会一元二次方程是刻画实际问题的重要数学模型,并理解一元二次方程的概念.(2)了解一元二次方程的一般形式,会将一元二次方程化成一般形式.(3)会判定一个数是否是方程的根及解决一些概念性的题目.(4)通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.三、教学重、难点重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 难点1. 通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.2. 判定一个数是否是方程的根.课时安排1课时.四、教学过程设计(1)复习回顾1、什么叫做方程?2、我们都学过哪些方程?3、我们如何定义方程的“元”和“次”?(2)探究新知1、集思广益方程 2240+-=x x 属于什么方程?其他实际问题中是否也能列出这一类方程呢?分析:设切去的正方形的边长为x cm ,则盒底的长为(100―2x ) cm ,宽为(50―2x ) cm .根据方盒的底面积为3600 cm 2,得(100―2x )(50―2x )=3 600.整理,得 4x 2―300x +1 400=0.化简,得 x 2―75x +350=0问题一、如图,有一块矩形铁皮,长100 cm ,宽50 cm .在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600 2cm ,那么铁皮各角应切去多大的正方形? 问题二、要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,你说组织者应该邀请多少个队参赛? 分析: 全部比赛共有28场. 若设应邀请x 个队参赛,则每个队要与其他x-1个队各赛一场,比赛共有x(x-1)/2场,由此,我们可以列出方程x(x-1)/2=28,化简得x 2―x=56.042)2(22=-++-m x x m 【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.学生活动:思考交流以上三个方程有什么共同点?老师点评:(1)等号两边都是整式;(2)只含一个未知数x ;(3)未知数的最高次数是2;二元一次方程的概念:像这样,等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.【设计意图】让学生自己给出定义就是对过去所学一元一次方程的定义的类比和对比。

新人教版九年级第21章一元二次方程全章导学案

新人教版九年级第21章一元二次方程全章导学案

新人教版九年级数学上册第二十一章一元二次方程全章导学案21.1 一元二次方程(1)学习目标1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.学习重、难点重点:一元二次方程的概念及其一般形式难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.学习过程:一、激趣定标1、课本引言问题,导入。

2、引入课题,并板书,展示目标二、自学互动(适时点拨)互动1 问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为____,宽为____.列方程____,化简整理,得____.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为4×7=28.设应邀请x个队参赛,每个队要与其他____个队各赛1场,所以全部比赛共__场.列方程__=28,化简整理,得____.②1.探究:(1)方程①②中未知数的个数各是多少?(2)它们最高次数分别是几次?归纳:方程①②的共同特点是:这些方程的两边都是____,只含有____未知数(一元),并且未知数的最高次数是___的方程.2.一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.互动2 一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__是二次项,___是二次项系数,____是一次项,___是一次项系数,____是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.三、测评训练:学生自主完成,小组内展示,点评,教师巡视.1.判断下列方程,哪些是一元二次方程?(1)x3-2x2+5=0;(2)x2=1;(3)5x2-2x-14=x2-2x+35;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1; (6)ax2+bx+c=0.解:师点拨:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.四、课堂小结:学生总结本堂课的收获与困惑.1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式ax2+bx+c=0(a≠0),特别强调a≠0.本课课时安排数:总课时数:21.1 一元二次方程(2)学习目标1.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.2.会进行简单的一元二次方程的试解,理解方程解的概念.学习重、难点重点:一元二次方程的一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;理解方程解的概念.学习过程:一、激趣定标1、说出一元二次方程3x2-8x-10=0的二次项系数、一次项系数、常数项2、一元二次方程的一般形式是,它有什么要求?3、板书课题,展示目标。

九年级数学上册第二十一章一元二次方程21.1一元二次方程作业课件新版新人教版

九年级数学上册第二十一章一元二次方程21.1一元二次方程作业课件新版新人教版

5.(4分)(盐城中考)已知一元二次方程x2+kx-3=0有一个根为1,则k
的值为( B )
A.-2
B.2
C.-4
D.4
6.(4分)(兰州中考)x=1是关于x的一元二次方程x2+ax+2b=0的解,则
2a+4b=( A )
A.-2
B.-3
C.-1
D.-6
7.(4分)下列数值:①-1;②0;③1;④2中,是一元二次方程x2-x- 2=0的根的是___①__④___.(填序号)
当m=-3时,2m2+m-3=12≠0,∴m=-3
17.(9分)已知m是方程x2+x-1=0的一个根,求代数式(m+1)2+(m+ 1)(m-1)的值.
解:把x=m代入方程,得m2+m-1=0,即m2+m=1,则原式=m2+ 2m+1+m2-1=2(m2+m)=2
18.(9分)(教材P4练习T2改)根据下列问题,列出关于x的方程,并将其 化为一元二次方程的一般形式:
10.将方程2(x+3)(x-4)=x2-10化为一般形式为( A )
A.x2-2x-14=0 B.x2+2x+14=0 C.x2+2x-14=0 D.x2-2x+14=0
11.下表是某同学求代数式x2-x的值的情况,根据表格可知方程x2-x
=2的根是( D )
A.x=-1 B.x=0 C.x=2 D.x=-1和x=2
4.(8分)(教材P4习题T1变式)把下列关于x的一元二次方程化成一般形式, 并写出二次项系数、一次项系数及常数项.
(1)2x2=8; 解:一元二次方程的一般形式:2x2-8=0.其中二次项系数为2,一次项 系数为0,常数项为-8 (2)2x2+5=4x; 解:一元二次方程的一般形式:2x2-4x+5=0.其中二次项系数为2,一 次项系数为-4,常数项为5

人教版九年级数学上册第二十一章一元二次方程《21.1一元二次方程》第2课时教学设计

人教版九年级数学上册第二十一章一元二次方程《21.1一元二次方程》第2课时教学设计

人教版九年级数学上册第二十一章一元二次方程《21.1一元二次方程》第2课时教学设计一. 教材分析人教版九年级数学上册第二十一章《一元二次方程》是整个初中数学的重要内容,也是难点之一。

本章主要介绍一元二次方程的定义、解法及其应用。

通过本章的学习,学生能够掌握一元二次方程的基本概念,熟练运用各种方法解一元二次方程,并能够将一元二次方程应用到实际问题中。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于方程的概念和解法有一定的了解。

但是,对于一元二次方程的定义、解法和应用还比较陌生,需要通过本节课的学习来掌握。

同时,由于一元二次方程的内容较为抽象,学生可能存在理解上的困难,需要教师通过生动形象的讲解和丰富的教学手段来帮助学生理解和掌握。

三. 教学目标1.知识与技能:学生能够理解一元二次方程的定义,掌握一元二次方程的解法,并能够将其应用到实际问题中。

2.过程与方法:学生能够通过观察、实验、推理等方法探索一元二次方程的解法,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度价值观:学生能够体验到数学与生活的紧密联系,增强学生对数学的兴趣和自信心。

四. 教学重难点1.重点:一元二次方程的定义,一元二次方程的解法。

2.难点:一元二次方程的解法,特别是因式分解法和公式法的运用。

五. 教学方法1.情境教学法:通过生活实例引入一元二次方程,使学生感受到数学与生活的紧密联系。

2.启发式教学法:通过提问、讨论等方式激发学生的思考,引导学生主动探索一元二次方程的解法。

3.示范教学法:教师通过讲解和示范,使学生掌握一元二次方程的解法。

六. 教学准备1.教具:黑板、粉笔、多媒体设备。

2.学具:教材、练习册、笔记本。

七. 教学过程1.导入(5分钟)教师通过生活实例引入一元二次方程,如“一个物体从静止开始做直线运动,加速度为2m/s^2,问物体在5秒后的速度是多少?”让学生感受到数学与生活的紧密联系。

2.呈现(10分钟)教师引导学生观察这个实例,提出问题:“这个问题的解法是什么?”学生可能回答是“2m/s^2 * 5s = 10m/s”,教师进一步引导学生思考:“这个解法是否适用于所有的一元二次方程?”从而引出一元二次方程的定义。

新人教版第二十一章一元二次方程全章导学案

新人教版第二十一章一元二次方程全章导学案

x21.1 一元二次方程一、一元二次方程问题1 如图,有一块长方形铁皮,长100cm ,宽50cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。

如果要制作的无盖方盒的底面积为3600c ㎡,那么铁皮各角应切去多大的正方形?问题 2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。

根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?思考:方程①②的共同特点是:这些方程的两边都是_________,方程中含有_______未知数(一元),并且未知数的最高次数是_____. 归纳:1.一元二次方程定义:2. 一元二次方程的一般形式: 二、应用举例:例:1.将方程(82)(52)18x x --=化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.2.下列方程是一元二次方程的是有 : (1),(2)(x+1)(x-1)=0, (3),(4)01122=-+xx ,(5), (6)05322=-+y x3. 若21(3)50m m x x -+-=是关于x 的一元二次方程,求m 的值.4.若033)3(2=++--nx x m n 是关于x 的一元二次方程,则( ).A m≠0,n=3B m≠3,n=4C m≠0,n=4D m≠3,n≠0 5.已知:关于x 的方程()()021122=-++-x k x k .(1)当k 取何值时,此方程为一元一次方程. (2)当k 取何值时,此方程为一元二次方程.6.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: ⑴4个完全相同的正方形的面积之和是25,求正方形的边长x; ⑵一个长方形的长比宽多2,面积是100,求长方形的长x ;⑶把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x 。

三.一元二次方程的解一元二次方程的解也叫做一元二次方程的_____,即使一元二次方程等号左右两边相等的_______________的值。

新人教版初中数学九年级上册《第二十一章一元二次方程:21.1一元二次方程》优质课导学案_2

新人教版初中数学九年级上册《第二十一章一元二次方程:21.1一元二次方程》优质课导学案_2

22.1一元二次方程教学内容本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.教学目标知识与技能1.使学生理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程化成一般式,正确识别二次项系数、一次项系数和常数项.2.会判断一个数是否是一元二次方程的根.经历由实际问题中抽象出一元二次方程等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.情感态度进一步培养学生的观察、类比、归纳能力,体验数学的严密性和深刻性.教学重点一元二次方程的概念及其一般表现形式.重难点、关键重点:一元二次方程的定义、各项系数的辨别,根的作用.难点:根的作用的理解.关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、情境引入【问题情境】问题1 要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?问题2 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?问题3要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?【活动方略】教师演示课件,给出题目.学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题.【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.一、 探索新知 【活动方略】学生活动:请小组讨论交流.0422=-+x x , 0350752=+-x x ,562=-x x , 这三个方程都不是一元一次方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.1 一元二次方程
学习目标:
1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。

2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。

重点:由实际问题列出一元二次方程和一元二次方程的概念。

难点:由实际问题列出一元二次方程。

准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。

导学流程:
自学课本导图,走进一元二次方程
分析:现设雕像下部高x米,则度可列方程
去括号得①
你知道这是一个什么方程吗?你能求出它的解吗?想一想你以前学过什么方程,它的特点是什么?
探究新知
自学课本25页问题1、问题2(列方程、整理后与课本对照),并完成下列各题:问题1可列方程整理得②
问题2可列方程整理得③
1、一个正方形的面积的2倍等于50,这个正方形的边长是多少?
2、一个数比另一个数大3,且这两个数之积为这个数,求这个数。

3、一块面积是150cm长方形铁片,它的长比宽多5cm,则铁片的长是多少?
观察上述三个方程以及①②两个方程的结构特征,类比一元一次方程的定义,自己试着归纳出一元二次方程的定义。

展示反馈
【挑战自我】判断下列方程是否为一元二次方程。

其中为一元二次方程的是:
【我学会了】
1、只含有个未知数,并且未知数的最高次数是 ,这样的
方程,叫做一元二次方程。

2、一元二次方程的一般形式: ,其中二次项, 是一次项, 是常数项, 二次项系数 , 一次项系数。

自主探究:
自主学习P26页例题,完成下列练习:将下列一元二次方程化为一般形式,并分别指出
它们的二次项、一次项和常数项及它们的系数。

(1)(2)
【巩固练习】教材第27页练习
2、将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数
和常数项:
(1)3x2-x=2;(2)7x-3=2x2;
(3)(2x-1)-3x(x-2)=0 (4)2x(x-1)=3(x+5)-4.
3、判断下列方程后面所给出的数,那些是方程的解;
(1)±1 ±2;(2)±2, ±4
(2)把方程 2(x-1)2+2x=16 (化成一元二次方程的一般形式,再写出它的二次项系数、
一次项系数及常数项。

2、要使是一元二次方程,则k=_______.
3、已知关于x的一元二次方程有一个解是0,求m的值。

21.1 一元二次方程(2)
学习内容
1.一元二次方程根的概念;
2.•根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.学习目标
了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们
解决一些具体问题.
重难点关键
1.重点:判定一个数是否是方程的根;
2.•难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.
学习过程
一、自学教材
针对目标自学教材27页—28页内容,会规范解答28页练习题1、2.
二、合作交流,解读探究
先独立思考,有困难时请求他人帮助,10分钟后检查你是否能正确、规范解答下列题目:1.下面哪些数是方程2x2+10x+12=0的根?
-4,-3,-2,-1,0,1,2,3,4.
2.你能用以前所学的知识求出下列方程的根吗?
(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0
应用迁移,巩固提高
3、若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式
2009(a+b+c)的值
4、关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值
三、总结反思,自查自省
选择题
1.方程x(x-1)=2的两根为().
A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2
2.方程ax(x-b)+(b-x)=0的根是().
A.x1=b,x2=a B.x1=b,x2= C.x1=a,x2= D.x1=a2,x2=b2
3.已知x=-1是方程ax2+bx+c=0的根(b≠0),则=().
A.1 B.-1 C.0 D.2
填空题
1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________. 2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.
3.方程(x+1)2+x(x+1)=0,那么方程的根x1=______;x2=________.。

相关文档
最新文档