2020年全国高中数学联赛二试参考答案及评分标准(A卷)

合集下载

2020年全国高中数学联赛试题及详细解析

2020年全国高中数学联赛试题及详细解析

2020年全国高中数学联赛试题及详细解析说明:1. 评阅试卷时,请依据本评分标准。

选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其它中间档次。

2. 如果考生的解题方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,5分为一个档次,不要再增加其他中间档次。

一、选择题(本题满分36分,每小题6分)本题共有6小题,每小题均给出A ,B ,C ,D 四个结论,其中有且仅有一个是正确的。

请将正确答案的代表字母填在题后的括号内。

每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。

1.使关于x 的不等式36x x k -+-≥有解的实数k 的最大值是( ) A .63- B .3 C .63+ D .62.空间四点A 、B 、C 、D 满足,9||,11||,7||,3||====DA CD BC AB 则BD AC ⋅的取值( )A .只有一个B .有二个C .有四个D .有无穷多个6.记集合},4,3,2,1,|7777{},6,5,4,3,2,1,0{4433221=∈+++==i T a a a a a M T i 将M 中的元素按从大到小的顺序排列,则第2020个数是( )A .43273767575+++ B .43272767575+++ C .43274707171+++ D .43273707171+++二、填空题(本题满分54分,每小题9分) 本题共有6小题,要求直接将答案写在横线上。

7.将关于x 的多项式2019321)(x xx x x x f +-+-+-= 表为关于y 的多项式=)(y g,202019192210y a y a y a y a a +++++ 其中.4-=x y 则=+++2010a a a .8.已知)(x f 是定义在),0(+∞上的减函数,若)143()12(22+-<++a a f a a f 成立,则a 的取值范围是 。

2020年全国高中数学联赛(四川预赛)试题及参考答案

2020年全国高中数学联赛(四川预赛)试题及参考答案

a3 (b c)2
b3 (c a)2
c3 (a b)2
(a
b c) .
求 的最大值.
解:取 a 1 ,b 1 , c 2 ,其中 0 1 .
2
2
6
(1 +)3 则 2
(1 )3 2
(2 )3
(1 +)3 2
1 2
(1 3 )2 ( 1)2 (2 )2 (1 3 )2 2
2
2
2
对任意的(0 1)成立. 6
注意到当
0+
(1 +)3 时, 2
(1 3 )2
1 2
2
1,
2
所以, 1 .
......5 分
另一方面,下证: =1成立,即证
a3 (b c)2
b3 (c a)2
c3 (a b)2
(a b c)
.
不妨设 a b c ,则可令 a=c x,b c y ,其中 x y 0 .
设 A(x1 ,y1) , B(x2 ,y2 ) ,则 x1 x2 k , x1x2 1.
过点 A(x1 ,y1) 的抛物线 y x2 的切线方程是 y y1 2x1(x x1) ,
由 y1 x12 ,代入可得 y 2x1x x12 .
过点 B(x2 ,y2 ) 的抛物线 y x2 的切线方程是 y 2x2 x x22 ,
所以,问题得证.
......15 分 ......20 分
参考答案及评分标准 (第 4 页,共 4 页)

k2
1 t ( t ≥1 ),则 d
| t2 1 2|
2
t
3
≥2
3
3
t
2 2t

3_2020年全国高中数学联赛加试参考答案及评分标准(A卷)

3_2020年全国高中数学联赛加试参考答案及评分标准(A卷)

MQ . IB
……………30 分
从而 H , M , B, Q 四点共圆.于是有 BHQ BMQ 90 ,即 BH QH .
……………40 分
1
二.(本题满分 40 分)给定整数 n 3 .设 a1, a2, , a2n , b1, b2, , b2n 是 4n 个 非负实数,满足
a1 a2
a2n
A
Q
HI
P
M
B
C
证明:取 AC 的中点 N .由 AP 3PC ,可知 P 为 NC 的中点.易知 B, I, N 共
线, INC 90 .
由 I 为 ABC 的内心,可知 CI 经过点 Q ,且
QIB IBC ICB ABI ACQ ABI ABQ QBI ,
又 M 为 BI 的中点,所以 QM BI .进而 QM || CN .
当 n 4 时,一方面有
n
a2k 1a2k 1
k1
另一方面,若 n 为偶数,则
n
(b2k 1
k1
b2k )
S.
n
a2k 1a2k 1 (a1 a5
k1
a2n 3 )(a3 a7
a2n 1)
T2 , 4
其中第一个不等式是因为 (a1 a5
a2n 3 )(a3 a7
a2n 1) 展开后每一项
均非负,且包含 a2k 1a2k 1(1 k n) 这些项,第二个不等式利用了基本不等式.
且对任意 i 1, 2, , 2n ,有 aiai 2 bi
求 a1 a2
a2n 的最小值.
解:记 S a1 a2
a2n b1
不失一般性,设T a1 a3
当 n 3 时,因为

2020年全国高中数学联赛试题(A卷)(含解析)

2020年全国高中数学联赛试题(A卷)(含解析)

2020年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 在等比数列{}n a 中,91313,1a a ,则1log 13a 的值为 .答案:13.解:由等比数列的性质知219913aa a a ,故339121313a a a .所以11log 133a . 2. 在椭圆中,A 为长轴的一个端点,B 为短轴的一个端点,12,F F 为两个焦点.若12120AF AF BF BF ,则12ABF F 的值为. 答案:2. 解:不妨设的方程为22221(0)x y a ba b ,(,0),(0,)A a B b ,1(,0)F c ,2(,0)F c ,其中22ca b .由条件知222221212()()()20AF AF BF BF c a c a c b a b c .所以2221222222AB a b c F F cc. 3. 设0a,函数100()f x xx在区间(0,]a 上的最小值为1m ,在区间[,)a 上的最小值为2m .若122020m m ,则a 的值为 .答案:1或100. 解:注意到()f x 在(0,10]上单调减,在[10,)上单调增.当(0,10]a 时,12(),(10)m f a m f ;当[10,)a 时,12(10),()m f m f a .因此总有12()(10)2020f a f m m ,即100202010120aa,解得1a或100a .4. 设z 为复数.若2iz z 为实数(i 为虚数单位),则3z 的最小值为 .答案. 解法1:设i(,)R z ab a b ,由条件知22222(2)i(2)(1)22Im Im0i (1)i (1)(1)z a b a b ab a b z a b a b a b ,故22a b .从而22223(12)((3))(3)25zab ab,即35z.当2,2a b 时,3z 取到最小值解法2:由2iR z z 及复数除法的几何意义,可知复平面中z 所对应的点在2与i 所对应的点的连线上(i 所对应的点除外),故3z 的最小值即为平面直角坐标系xOy 中的点(3,0)到直线220xy 223252.5. 在ABC 中,6,4AB BC ,边AC 上的中线长为,则66sin cos 22A A 的值为 .答案:211256.解:记M 为AC 的中点,由中线长公式得222242()BM AC AB BC , 可得222(64)4108AC.由余弦定理得2222228647cos 22868CA AB BC A CA AB ,所以66224224sin cos sin cos sin sin cos cos 22222222A A A A A A A A= 22222sin cos 3sin cos 2222A A A A231sin 4A213211cos 44256A. 6. 正三棱锥P ABC 的所有棱长均为1,,,L M N 分别为棱,,PA PB PC 的中点,则该正三棱锥的外接球被平面LMN 所截的截面面积为 .答案:3. 解:由条件知平面LMN 与平面ABC 平行,且点P 到平面,LMN ABC 的距离之比为1:2.设H 为正三棱锥P ABC 的面ABC 的中心, PH 与平面LMN 交于点K ,则PH 平面ABC ,PK 平面LMN ,故12PK PH .正三棱锥P ABC 可视为正四面体,设O 为其中心(即外接球球心),则O在PH 上,且由正四面体的性质知14OH PH .结合12PK PH 可知OK OH ,即点O 到平面,LMN ABC 等距.这表明正三棱锥的外接球被平面,LMN ABC 所截得的截面圆大小相等.从而所求截面的面积等于ABC 的外接圆面积,即233AB .7. 设,0a b,满足:关于x 的方程||||x x a b 恰有三个不同的实数解123,,x x x ,且123x x x b ,则a b 的值为 .答案:144. 解:令2at x,则关于t 22a a ttb 恰有三个不同的实数解(1,2,3)2iia t x i .由于()22a af t tt为偶函数,故方程()f t b 的三个实数解关于数轴原点对称分布,从而必有(0)2bf a .以下求方程()2f t a 的实数解.当2at时,22()4222a a f t t t a a t a ,等号成立当且仅当0t ;当2at 时,()f t 单调增,且当58a t 时()2f t a ;当2a t时,()f t 单调减,且当58at 时()2f t a .从而方程()2f t a 恰有三个实数解12355,0,88t a t t a . 由条件知3328a ab x t ,结合2ba 得128a . 于是91448aa b .8. 现有10张卡片,每张卡片上写有1,2,3,4,5中两个不同的数,且任意两张卡片上的数不完全相同.将这10张卡片放入标号为1,2,3,4,5的五个盒子中,规定写有,i j 的卡片只能放在i 号或j 号盒子中.一种放法称为“好的”,如果1号盒子中的卡片数多于其他每个盒子中的卡片数.则“好的”放法共有 种.答案:120.解:用{,}i j 表示写有,i j 的卡片.易知这10张卡片恰为{,}i j (15)i j . 考虑“好的”卡片放法.五个盒子一共放有10张卡片,故1号盒至少有3张卡片.能放入1号盒的卡片仅有{1,2},{1,3},{1,4},{1,5}.情况一:这4张卡片都在1号盒中,此时其余每个盒中已经不可能达到4张卡片,故剩下6张卡片无论怎样放都符合要求,有6264种好的放法.情况二:这4张卡片恰有3张在1号盒中,且其余每盒最多仅有2张卡片. 考虑{1,2},{1,3},{1,4}在1号盒,且{1,5}在5号盒的放法数N .卡片{2,3},{2,4},{3,4}的放法有8种可能,其中6种是在2,3,4号的某个盒中放两张,其余2种则是在2,3,4号盒中各放一张.若{2,3},{2,4},{3,4}有两张在一个盒中,不妨设{2,3},{2,4}在2号盒,则{2,5}只能在5号盒,这样5号盒已有{1,5},{2,5},故{3,5},{4,5}分别在3号与4号盒,即{2,5},{3,5},{4,5}的放法唯一;若{2,3},{2,4},{3,4}在2,3,4号盒中各一张,则2,3,4号盒均至多有2张卡片,仅需再使5号盒中不超过2张卡片,即{2,5},{3,5},{4,5}有0张或1张在5号盒中,对应0133C C 4种放法. 因此612414N .由对称性,在情况二下有456N 种好的放法. 综上,好的放法共有6456120种.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分) 在ABC 中,2sin 2A .求cos 2cosBC 的取值范围.解:记cos 2cos fBC . 由条件知4A 或34A . …………………4分当4A 时,34B C ,其中304C,此时 3cos 2cos 4f C C 22sin cos 22C C sin (0,1]4C . …………………8分当34A 时,4B C ,其中04C,此时 cos 2cos 4f C C 232sin cos 22C C 5sin()C , 其中arctan 3. …………………12分 注意到42,,函数()5sin ()g x x 在0,2上单调增,在,24上单调减,又32(0)224g g,52g,故(2,5]f.综上所述,cos 2cos f BC 的取值范围是(0,1](2,5].…………………16分10. (本题满分20分)对正整数n 及实数(0)x x n ,定义[][]1(,)(1{})C {}C x x n n f n x x x ,其中[]x 表示不超过实数x 的最大整数,{}[]x x x .若整数,2m n 满足121,,,123mn f m f m f m n n n,求121,,,mn f n f n f n m m m 的值. 解:对0,1,,1k m ,有111111111,C 1+C C C 2n n n k k k k m m m mi i i i i i n f m k n n n . …………………5分 所以121,,,mn f m f m f m n nn 111101C ,m m n jm j k i i f m kn11100122C C 2m m mk k m m k k n1222121(21)12m mm m n n .……………10分 同理得121,,,mn f n f n f n m m m(21)1n m . 由条件知(21)1123m n ,即(21)124m n ,故(21)124m .又2m ,所以21{3,7,15,31,63,127,}m ,仅当5m 时,2131m 为124的约数,进而有124431n .进而121,,,mn f n f n f n m mm4(21)5174.…………………20分11. (本题满分20分)在平面直角坐标系中,点,,A B C 在双曲线1xy 上,满足ABC 为等腰直角三角形.求ABC 的面积的最小值.解:不妨设等腰直角ABC 的顶点,,A B C 逆时针排列,A 为直角顶点.设(,)ABs t ,则(,)ACt s ,且ABC 的面积222122ABCs t SAB . …………………5分注意到A 在双曲线1xy上,设1,A a a,则11,,,B a s t C a t s a a.由,B C 在双曲线1xy 上,可知11()()1a s t a t s a a,这等价于sat st a , ① tas st a.②由①、②相加,得()0s ta ts a,即2t sa t s. ③由①、②相乘,并利用③,得2222221s t s t at as a st s t a a a 2222224t s t s st st s t st st t s t s s t22222()s t s t . …………………10分所以由基本不等式得2224222222222221()()22()4s t s t s t s t s t s t32222222226122()()43108s t s t s t s t ,④故2210863s t . …………………15分以下取一组满足条件的实数(,,)s t a ,使得2263s t (进而由,,s t a 可确定一个满足条件的ABC ,使得22332ABCs t S).考虑④的取等条件,有222222()s t s t ,即2223s t.不妨要求0st ,结合2263s t ,得3(31),3(31)s t .由①知0a,故由③得tsa ts,其中3131312t s s ,从而有312312a.综上,ABC 的面积的最小值为 …………………20分2020年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图,在等腰ABC 中,AB BC ,I 为内心,M 为BI 的中点,P 为边AC 上一点,满足3AP PC ,PI 延长线上一点H 满足MHPH ,Q 为ABC 的外接圆上劣弧AB 的中点.证明:BHQH .证明:取AC 的中点N .由3AP PC ,可知P 为NC 的中点.易知,,B I N 共线,90INC .由I 为ABC 的内心,可知CI 经过点Q ,且QIB IBC ICB ABI ACQ ABI ABQ QBI ,又M 为BI 的中点,所以QM BI .进而||QM CN . ……………10分考虑HMQ 与HIB .由于MH PH ,故90HMQ HMI HIB .又90IHM INP ,故HM NPHI NI,于是 1122HM NP NC MQ MQHI NI NI MI IB.所以HMQ ∽HIB ,得HQMHBI . ……………30分 从而,,,H M B Q 四点共圆.于是有90BHQBMQ ,即BH QH . ……………40分二.(本题满分40分)给定整数3n .设122122,,,,,,,n n a a a b b b 是4n 个非负实数,满足1221220n n a a a b b b , 且对任意1,2,,2i n ,有21i i i i a a b b (这里211222211,,n nna a a ab b ).求122n a a a 的最小值.解:记122122n n Sa a ab b b . 不失一般性,设13212nS T a a a . 当3n时,因为32212113k kk Ta a 2221335511()()()02a a a a a a ,故结合条件可知233221212121133()34k k k k k k S T a a b b S . 又0S ,所以12S .当2(16)i i a b i 时,S 取到最小值12. ……………10分当4n时,一方面有212121211()nnk kkk k k a a b b S .另一方面,若n 为偶数,则22121152337211()()4nk kn n k T a a a a a a a a , 其中第一个不等式是因为15233721()()n n a a a a a a 展开后每一项均非负,且包含2121(1)k k a a k n 这些项,第二个不等式利用了基本不等式.……………20分若n 为奇数,不妨设13a a ,则12121212121311n n k k k kn k k a a a a a a215213723()()4n n T a a a a a a . 从而总有2221211416nk k k T S S a a .又0S ,所以16S . ……………30分 当1234124,0(52),0,16,0(32)i i a a a a a i n b b b i n 时,S 取到最小值16.综上,当3n 时,S 的最小值为12;当4n 时,S 的最小值为16.……………40分三.(本题满分50分)设12121,2,2,3,4,n nn a a a a a n.证明:对整数5n,n a 必有一个模4余1的素因子.证明:记12,12,则易求得nnna .记2nnn b ,则数列{}n b 满足122(3)n nn b b b n. ①因121,3b b 均为整数,故由①及数学归纳法,可知{}n b 每项均为整数.……………10分 由222()22nn nnn ,可知222(1)(1)n n n b a n .② ……………20分当1n 为奇数时,由于1a 为奇数,故由{}n a 的递推式及数学归纳法,可知na 为大于1的奇数,所以n a 有奇素因子p .由②得21(mod )nb p ,故112(1)(mod )p p nbp .又上式表明(,)1n p b ,故由费马小定理得11(mod )pn b p ,从而12(1)1(mod )p p .因2p,故必须12(1)1p ,因此1(mod 4)p . ……………30分 另一方面,对正整数,m n ,若|m n ,设n km ,则(1)(2)(2)(1)()nnmmk m k m m m k m k mna1(212)(212)01(22)(22)0()(),2,()()(),2 1.l im l i m l i mmi l im l i m li mlmmi a k l a kl因2s ss b 为整数(对正整数s ),1为整数,故由上式知n a 等于ma 与一个整数的乘积,从而|m n a a . 因此,若n 有大于1的奇因子m ,则由前面已证得的结论知m a 有素因子1(mod 4)p,而|m n a a ,故|n p a ,即n a 也有模4余1的素因子.……………40分 最后,若n 没有大于1的奇因子,则n 是2的方幂.设2(3)l n l ,因84082417a 有模4余1的素因子17,对于4l,由8|2l 知82|l a a ,从而2la 也有素因子17.证毕. ……………50分四.(本题满分50分)给定凸20边形P .用P 的17条在内部不相交的对角线将P 分割成18个三角形,所得图形称为P 的一个三角剖分图.对P 的任意一个三角剖分图T ,P 的20条边以及添加的17条对角线均称为T 的边.T 的任意10条两两无公共端点的边的集合称为T 的一个完美匹配.当T 取遍P 的所有三角剖分图时,求T 的完美匹配个数的最大值.解:将20边形换成2n 边形,考虑一般的问题. 对凸2n 边形P 的一条对角线,若其两侧各有奇数个P 的顶点,称其为奇弦,否则称为偶弦.首先注意下述基本事实:对P 的任意三角剖分图T ,T 的完美匹配不含奇弦.(*)如果完美匹配中有一条奇弦1e ,因为T 的一个完美匹配给出了P 的顶点集的一个配对划分,而1e 两侧各有奇数个顶点,故该完美匹配中必有T 的另一条边2e ,端点分别在1e 的两侧,又P 是凸多边形,故1e 与2e 在P 的内部相交,这与T 是三角剖分图矛盾. ……………10分记()f T 为T 的完美匹配的个数.设11F =,22F =,对2k ≥,21k k k F F F ++=+,是Fibonacci 数列. 下面对n 归纳证明: 若T 是凸2n 边形的任意一个三角剖分图,则()n f T F ≤.设122n P A A A =是凸2n 边形.从P 的2n 条边中选n 条边构成完美匹配,恰有两种方法,1234212,,,n n A A A A A A −或2345222121,,,,n n n A A A A A A A A −−.当2n =时,凸四边形P 的三角剖分图T 没有偶弦,因此T 的完美匹配只能用P 的边,故2()2f T F ==.当3n =时,凸六边形P 的三角剖分图T 至多有一条偶弦.若T 没有偶弦,同上可知()2f T =.若T 含有偶弦,不妨设是14A A ,选用14A A 的完美匹配是唯一的,另两条边只能是2356,A A A A ,此时()3f T =.总之3()3f T F ≤=.结论在2,3n =时成立.假设4n ≥,且结论在小于n 时均成立.考虑凸2n 边形122n P A A A =的一个三角剖分图T .若T 没有偶弦,则同上可知()2f T =.对于偶弦e ,记e 两侧中P 的顶点个数的较小值为()w e .若T 含有偶弦,取其中一条偶弦e 使()w e 达到最小.设()2w e k =,不妨设e 为221n k A A +,则每个(1,2,,2)i A i k =不能引出偶弦.事实上,假设i j A A 是偶弦,若{22,23,,21}j k k n ∈++−,则i j A A 与e 在P的内部相交,矛盾.若{1,2,,21,2}j k n ∈+,则()2i j w A A k <,与()w e 的最小性矛盾.又由(*)知完美匹配中没有奇弦,故122,,,k A A A 只能与其相邻顶点配对,特别地,1A 只能与2A 或2n A 配对.下面分两种情况.情形1:选用边12A A .则必须选用边34212,,k k A A A A −.注意到221n k A A +的两侧分别有2,222k n k −−个顶点,221222()2n k n k w A A k +−−≥=,而4n ≥,因此5226n k −≥.在凸22n k −边形121222k k n P A A A ++=上,T 的边给出了1P 的三角剖分图1T ,在T 中再选取n k −条边12,,,n k e e e −,与1234212,,,k k A A A A A A −一起构成T 的完美匹配,当且仅当12,,,n k e e e −是1T 的完美匹配.故情形1中的T 的完美匹配个数等于1()f T . ……………20分 情形2:选用边12n A A .则必须选用边23221,,k k A A A A +.在凸222n k −−边形2222321k k n P A A A ++−= 中构造如下的三角剖分图2T :对2221k i j n +≤<≤−,若线段i j A A 是T 的边,则也将其作为2T 的边,由于这些边在内部互不相交,因此可再适当地添加一些2P 的对角线,得到一个2P 的三角剖分图2T ,它包含了T 的所有在顶点222321,,,k k n A A A ++−之间的边.因此每个包含边2123221,,,n k k A A A A A A +的T 的完美匹配,其余的边必定是2T 的完美匹配.故情形2中的T 的完美匹配个数不超过2()f T .由归纳假设得1()n k f T F −≤,21()n k f T F −−≤,结合上面两种情形以及1k ≥,有 1211()()()n k n k n k n f T f T f T F F F F −−−−+≤+≤+=≤.……………40分 下面说明等号可以成立.考虑凸2n 边形122n A A A 的三角剖分图n ∆: 添加对角线222332121442232,,,,,,,n n n n n n n n n A A A A A A A A A A A A A A −−−++.重复前面的论证过程,2()2f ∆=,3()3f ∆=.对n ∆,4n ≥,考虑偶弦3n A A .情形1,用12A A ,由于在凸22n −边形342n A A A 中的三角剖分图恰是1n −∆,此时有1()n f −∆个T 的完美匹配.情形2,用12n A A ,由于在凸24n −边形4521n A A A −中T 的边恰构成三角剖分图2n −∆,不用添加任何对角线,故这一情形下T 的完美匹配个数恰为2()n f −∆ .从而对4n ≥,有 12()()()n n n f f f −−∆=∆+∆.由数学归纳法即得()n n f F ∆=.结论得证.因此,对凸20边形P ,()f T 的最大值等于1089F =.……………50分。

2023年全国中学生数学奥林匹克暨2023年全国高中数学联合竞赛一试(A卷)试题及参考答案

2023年全国中学生数学奥林匹克暨2023年全国高中数学联合竞赛一试(A卷)试题及参考答案

2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛一试(A 卷)试题(含参考答案)说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 设复数910i z (i 为虚数单位),若正整数n 满足2023n z ,则n 的最大值为 . 答案:2.解:22910181nnnnz z.因21812023z ,而当3n 时,181132023nn n z,故n 的最大值为2.2. 若正实数,a b 满足lg 2b a ,lg lg 5a b a b ,则lg ()ab ab 的值为 . 答案:20.解:因为lg lg lg lg 102a a b b b a ,所以lg lg lg lg lg lg lg ()()()52220ab a b a b b a ab ab a b a b .3. 将一枚均匀的骰子独立投掷三次,所得的点数依次记为,,x y z ,则事件“777C C C x y z”发生的概率为 . 答案:127.解:由于162534777777C C C C C C ,因此当,,{1,2,3,4,5,6}x y z 时,事件“777C C C x y z”发生当且仅当“{1,6},{2,5},{3,4}x y z ”成立,相应的概率为321627. 4. 若平面上非零向量,, 满足 ,2|| ,3|| ,则||的最小值为 .答案:23.解:由 ,不妨设(,0),(0,)a b ,其中,0a b ,并设(,)x y,则由2||得2by a ,由3|| 得3ax b .所以2232||2223b ax y xy a b. 取3,2a b ,此时6x y ,||取到最小值23.5. 方程sin cos2x x 的最小的20个正实数解之和为 . 答案:130 .解:将2cos212sin x x 代入方程,整理得(2sin 1)(sin 1)0x x ,解得532,2,2()662Z x k k k k.上述解亦可写成2()36Z k x k,其中0,1,,19k 对应最小的20个正实数解,它们的和为192219202013036326k k. 6. 设,,a b c 为正数,a b .若,a b 为一元二次方程20ax bx c 的两个根,且,,a b c 是一个三角形的三边长,则a b c 的取值范围是 .答案:7,518. 解:由条件知2222()()()ax bx c a x a x b ax a ab x a b ,比较系数得22,b a ab c a b ,故24,11a a b c a a,从而 24231a a a b c a a a a a .由于201a a b a,故112a .此时显然0b c .因此,,,a b c 是一个三角形的三边长当且仅当a c b ,即4211a a a a a,即2(1)0a a a ,结合112a ,解得15122a .令23()f x x x x ,则()a b c f a .显然当0x 时()f x 连续且严格递增,故a b c 的取值范围是151,22f f,即7,518 . 7. 平面直角坐标系xOy 中,已知圆 与x 轴、y 轴均相切,圆心在椭圆2222:1(0)x y a b a b内,且 与 有唯一的公共点(8,9).则 的焦距为 .答案:10.解:根据条件,可设圆心为(,)P r r ,则有222(8)(9)r r r ,解得5r 或29r .因为P 在 内,故5r .椭圆 在点(8,9)A 处的切线为2289:1x y l a b ,其法向量可取为2289,n a b. 由条件,l 也是圆 的切线,故n 与PA 平行,而(3,4)PA ,所以223227a b.又2264811a b ,解得22160,135a b .从而 的焦距为22210a b .8. 八张标有,,,,,,,A B C D E F G H 的正方形卡片构成下图.现逐一取走这些卡片,要求每次取走一张卡片时,该卡片与剩下的卡片中至多一张有公共边(例如可按,,,,,,,D A B E C F G H 的次序取走卡片,但不可按,,,,,,,D B A E C F G H 的次序取走卡片),则取走这八张卡片的不同次序的数目为 .AB C D EFGH答案:392.解:如左下图重新标记原图中的八张卡片.现将每张卡片视为顶点,有公共边的两张卡片所对应的顶点之间连一条边,得到一个八阶图,该图可视为右下图中的2m n 阶图(,)G m n 在3,3m n 时的特殊情况.231-3-20P-1 G (m , n )Pn...210-1-2-m ...取卡片(顶点)的规则可解释为:(i) 若顶点P 已取走,则以下每步取当前标号最小或最大的顶点,直至取完; (ii) 若顶点P 未取走,则必为某个(,)(,0)G m n m n 的情形,此时若0m ,则将P 视为1 号顶点,归结为(i)的情形;若0,0m n ,则将P 视为1号顶点,归结为(i)的情形;若,1m n ,则当前可取P 或m 号顶点或n 号顶点,分别归结为(i)或(1,)G m n 或(,1)G m n 的情形.设(,)G m n 的符合要求的顶点选取次序数为(,)f m n ,本题所求即为(3,3)f .由(i)、(ii)知1(,0)2(0)m f m m ,1(0,)2(0)n f n n ,且(,)2(1,)(,1)(,1)m n f m n f m n f m n m n .由此可依次计算得(1,1)12f ,(1,2)(2,1)28f f ,(1,3)(3,1)60f f ,(2,2)72f ,(2,3)(3,2)164f f ,(3,3)392f ,即所求数目为392.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分)平面直角坐标系xOy 中,抛物线2:4y x ,F 为 的焦点,,A B 为 上的两个不重合的动点,使得线段AB 的一个三等分点P 位于线段OF 上(含端点),记Q 为线段AB 的另一个三等分点.求点Q 的轨迹方程.解:设1122(,),(,)A x y B x y .不妨设AP PQ QB ,则121222,33x x y y P. 易知(1,0)F .由于点P 位于线段OF 上,故122[0,1]3x x ,12203y y . ……………4分可设12,2y t y t ,则2212,4t x x t .此时有2122[0,1]32x x t ,且由,A B 不重合知0t ,所以2(0,2]t . ……………8分设(,)Q Q Q x y ,则21212232,343Q Q x x y y x t y t,有243Q Q y x . 注意到2330,42Q x t ,故点Q 的轨迹方程为243(0)32y x x .……………16分10.(本题满分20分)已知三棱柱111:ABC A B C 的9条棱长均相等.记底面ABC 所在平面为 .若 的另外四个面(即面111111111,,,A B C ABB A ACC A BCC B )在 上投影的面积从小到大重排后依次为23,33,43,53,求 的体积.解:设点111,,A B C 在平面 上的投影分别为,,D E F ,则面11111,,A B C ABB A 1111,ACC A BCC B 在 上的投影面积分别为,,,DEF ABED ACFD BCFE S S S S .由已知及三棱柱的性质,DEF 为正三角形,且,,ABED ACFD BCFE 均为平行四边形.由对称性,仅需考虑点D 位于BAC 内的情形(如图所示). 显然此时有ABED ACFD BCFE S S S . ……………5分XFEB DCA由于,,,23,33,43,53DEF ABED ACFD BCFE S S S S ,故,ABED ACFD S S 必为23,33的排列,53BCFE S ,进而43DEF S ,得DEF 的边长为4,即正三棱柱 的各棱长均为4. ……………10分不妨设23,33ABED ACFD S S ,则333,2ABD ACD S S .取射线AD 与线段BC 的交点X ,则23ABD ACD BX S CX S ,故85BX .因此2242cos60195AX AB BX AB BX , 而58ABD ACD ABC AD S S AX S ,故192AD. ……………15分 于是 的高221352h AA AD. 又43ABC S ,故 的体积615ABC V S h . ……………20分11.(本题满分20分)求出所有满足下面要求的不小于1的实数t :对任意,[1,]a b t ,总存在,[1,]c d t ,使得()()1a c b d .解:记[1,]t I t ,()()S a c b d .假如2t ,则当a b t 时,对任意,t c d I ,均有2(1)1S t ,不满足要求.假如312t,则当1,2a b t 时,对任意,t c d I ,均有 21a c t ,12t b d .若,a c b d 同正或同负,则2(1)1S t ,其余情况下总有01S ,不满足要求. ……………5分以下考虑322t 的情形.为便于讨论,先指出如下引理.引理:若1,2u v ,且52u v ,则1uv .事实上,当32u v 时,22225312244u v u v uv . 当32u v 时,1131222uv .引理得证. 下证对任意,t a b I ,可取11,t c d I ,使得111()()1S a c b d .① 若12a b ,则取111c d ,此时1(1)(1)(1)(1)S a b a b ,其中31311,12222a b b a ,且5(1)(1)2()2a b a b ,故由引理知11S .若12a b ,则取1132t c d I ,此时13322S a b, 其中331,222a b ,且3353222a b a b ,故由引理知11S . ……………15分 注意到,当,t a b I 时,可取2t c I ,使得21a c (例如,当[1,1]a 时取20c ,当(1,]a t 时取21c ),同理,可取2t d I ,使得21b d .此时22222()()1S a c b d a c b d .②根据①、②,存在一个介于12,c c 之间的实数c ,及一个介于12,d d 之间的实数d ,使得()()1a c b d ,满足要求.综上,实数t 满足要求当且仅当322t . ……………20分。

2022年全国高中数学联赛加试A卷参考答案

2022年全国高中数学联赛加试A卷参考答案

2022年全国中学生数学奥林匹克竞赛(预赛)暨2022年全国高中数学联合竞赛 加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图,在凸四边形ABCD 中,90ABC ADC ,对角线BD 上一点P 满足2APB CPD ,线段AP 上两点,X Y 满足2AXB ADB ,2AYD ABD .证明:2BD XY .Y XDBCPA证明:注意90ABC ADC ,取AC 的中点O ,则O 为凸四边形ABCD 的外心.显然,P B 在AC 的同侧(否则2APB CPD CPD ,不合题意).根据条件,可知2,2AXB ADB AOB AYD ABD AOD ,分别得到,,,A O X B 四点共圆,,,,A Y O D 四点共圆. ………………10分因此OXA OBA CAB CDB ,OYP ODA CAD CBD ,所以OXY CDB ∽. ………………20分M LK Y X DBCP AO设OM AP 于点M ,CK AP 于点K ,CL BD 于点L . 由O 为AC 的中点,得2CK OM .由于2KPL APB CPD ,即有PC 平分KPL ,故CK CL .………………30分考虑到,OM CL 是相似三角形,OXY CDB 的对应边,XY DB 上的高,从而12XY OM OM BD CL CK , 即有2BD XY . ………………40分二.(本题满分40分)设整数(1)n n 恰有k 个互不相同的素因子,记n 的所有正约数之和为()n .证明:()(2)!n n k .证法1:设1i ki i n p 为n 的标准分解.记1(1,2,,)i i i im p p i k ,则1()ki i n m .我们证明2(1,2,,)i n k km i k .①事实上,111i i i ii i m p p p 11122i i i p 12212i i i i i p p (1,2,,)i k . ………………10分所以11,222122i ji i kk j j j inn nm p kp, 最后一步是因为11121C (2)k k k k 以及021 .故①成立.………………20分由①可知,对每个1,2,,i k ,在1,2,,2n k 中至少有k 个i m 的倍数.从而1,2,,2n k 中可找到两两不同的正整数12,,,k t t t ,它们分别是12,,,k m m m 的倍数.因此1()ki i n m 整除(2)!n k . ………………40分证法2:设1i ki i n p 为n 的标准分解.记1(1,2,,)ii i im p p i k ,则1()ki i n m .令1(1,2,,)jj i i S m j k ,00S .我们证明以下两个结论:(1)()!k n S ;(2)2k S n k .结论(1)的证明:对1,2,,i k ,连续i m 个整数111,2,,i i i S S S 中必存在i m 的倍数,故11(1)(2)Z i i iiS S S m .从而111(1)(2)Z ki i ii i S S S m ,这等价于()!k n S .………………10分结论(2)的证明:对1,2,,i k ,有111ii i ii i m p p p 11122i i i p 12212i ii i i p p. ②………………20分记(1,2,,)i i i p i k ,则2i .反复利用“若,2a b ≥,则ab a b ≥+”,可得11kki i i i n ,结合②得111(21)22kkkk i i i i i i S m k n k .由结论(1)、(2),原题得证. ………………40分三.(本题满分50分)设12100,,,a a a 是非负整数,同时满足以下条件: (1)存在正整数100k ,使得 12k a a a ,而当i k 时0i a ; (2)123100100a a a a ; (3)123100*********a a a a . 求22212310023100a a a a 的最小可能值.解法1:当121819202122231000,19,40,41,0a a a a a a a a a ===========,21k =时,符合题设三个条件,此时10023221192040214140940ii i a==+×+×=∑. ………………10分下面证明这是最小可能值.首先注意21k ≥.否则,若20k ≤,则100111202000kki i i i i i ia ia a ===≤≤∑∑∑,这与条件(3)矛盾. 根据条件(2)、(3),有100100100100221111(20)40400iiiii i i i i a i a ia a ====−+−∑∑∑∑10021(20)40880ii i a ==−+∑. 当2040a ≤时,100100100222011,1,2020(20)(20)10060i iii i i i i i a i a aa ==≠≠−=−≥=−≥∑∑∑,故1002140940ii i a=≥∑. ………………30分当2041a ≥时,由21k ≥及条件(1)可知2141a ≥,故10010010010021111(19)(20)39380iiiii i i i i a i i a ia a ====−−+−∑∑∑∑1001(19)(20)40858i i i i a ==−−+∑21(2119)(2120)4085840940a ≥−−+≥.综上,所求最小值为40940. ………………50分 解法2:对于满足题目条件的非负整数12100,,,a a a ,可对应地取100个正整数12100,,,{1,2,,100}x x x ∈ ,其中恰有1a 个1,2a 个2,……,100a 个100(条件(2)保证恰好是100个数).条件(1)、(3)分别转化为以下条件(A )、(B ):(A ) 存在正整数100k ≤,12100,,,x x x 中不含大于k 的数,且1的个数,2的个数,……,k 的个数依次(非严格地)递增;(B ) 100100112022j i j i x ia ===∑∑,即12100,,,x x x 的平均值为20.22µ=.注意到1001002211i j i j i a x ==∑∑,故题目转化为:100个数12100,,,{1,2,,100}x x x ∈ 满足条件(A )和(B ),求10021j j x =∑的最小值.当12100,,,x x x 取19个19,40个20,41个21时,1002140940j j x ==∑.………………10分下面证明10021j j x =∑的值至少为40940.由于100100100100222221111()1002100()jjj j j j j j x xx x µµµµµ====−−+=+−∑∑∑∑,故转化为考虑10021()j j x µ=−∑的最小值.由20.22µ=知存在21j x ≥,也存在20j x ≤.设12100,,,x x x 中有a 个21j x ≥,b 个20j x =及c 个19j x ≤.由条件(A )可知a b ≥.我们放宽条件(A )至条件(A ′):a b ≥.在条件(A ′)、(B )下,证明最小值仍是在19个19,40个20,41个21时取到. ………………20分由于满足(A ′)、(B )的12100,,,x x x 的取法只有有限种,选取平方和最小的一组12100,,,x x x .若19c ≥,注意到100a b c ++=及a b ≥,有10022221()0.780.22 1.22jj xa b c µ=−≥++∑ 2221001000.780.22 1.2222c c c −− ≥⋅+⋅+2220.78410.2240 1.2219≥×+×+×.………………30分若18c ≤,则82a b +≥.此时有0c >,因为若0c =,则j x 的平均值不小于20.5,与条件(B )不符.亦有0b >.否则,假如0b =,则由82a ≥及0c >知,可取一个20i x <和一个20j x >,替换为1i x +和1j x −,平均值不变,但2222(1)(1)i j i j x x x x ++−<+,平方和变小,a 至多减少1,b 至多增加2,条件(A ′)、(B )仍满足,与12100,,,x x x 使得平方和最小矛盾.又假如存在一个18i x ≤,则由0b >知可取一个20j x =,将,i j x x 替换为1i x +和1j x −,类似可知平均值不变,平方和减小,且b 减少1,条件(A ′)、(B )仍满足,与12100,,,x x x 使得平方和最小矛盾.所以c 个19j x ≤都等于19.但此时1001()0.780.22 1.22jj xa b c µ=−≥−−∑1001000.780.22 1.2222c c c −−≥⋅−⋅− 0.78410.2241 1.22180≥×−×−×>,与条件(B )矛盾.所以当且仅当12100,,,x x x 取19个19,40个20,41个21时,10021()j j x µ=−∑取得最小值,相应地,1001002211i j i j i a x ==∑∑取到最小值40940. ………………50分四.(本题满分50分)求具有下述性质的最小正整数t :将100100 的方格纸的每个小方格染为某一种颜色,若每一种颜色的小方格数目均不超过104,则存在一个1t 或1t 的矩形,其中t 个小方格含有至少三种不同颜色.解:答案是12.将方格纸划分成100个1010×的正方形,每个正方形中100个小方格染同一种颜色,不同的正方形染不同的颜色,这样的染色方法满足题目条件,且易知任意111×或111×的矩形中至多含有两种颜色的小方格.因此12t ≥.………………10分下面证明12t =时具有题述性质.我们需要下面的引理.引理:将1100×的方格表X 的每个小方格染某一种颜色,如果以下两个条件之一成立,那么存在一个112×的矩形,其中含有至少三种颜色.(1)X 中至少有11种颜色.(2)X 中恰有10种颜色,且每种颜色恰染了10个小方格. 引理的证明:用反证法,假设结论不成立.取每种颜色小方格的最右边方格,设分别在(从左往右)第12kx x x <<< 格,分别为12,,,k c c c 色,则对2i k ≤<,有111i i x x −−≥.这是因为若110i i x x −−≤,则从第1i x −格至第1i x +格(不超过12格)中至少含有三种不同颜色(第1i x −格为1i c −色,第i x 格为i c 色,第1i x +格一定不同于1,i i c c −色),与假设不符.若条件(1)成立,则11k ≥,于是10111911100,100x x x ≥+×≥>,矛盾.因此在条件(1)下结论成立.若条件(2)成立,考虑第11x +格至第111x +格,因每种颜色的方格至多10个,故这11个方格至少含有两种颜色,且均不同于1c 色,则从第1x 至第111x +格中至少含有三种颜色,与条件(2)不符.因此在条件(2)下结论也成立.引理得证. ………………20分 回到原问题,设12,,,k c c c 为出现的所有颜色.对1i k ≤≤,记i s 为含有i c 色小方格的个数,i u 为含有i c 色小方格的行的个数,i v 为含有i c 色小方格的列的个数.由条件知104i s ≤.又显然i i i u v s ≥,等号成立当且仅当含有i c 色小方格的所有行与列的交叉位置上都是i c 色小方格.下面证明:15i i i u v s +≥,等号成立当且仅当10,100i i iu v s ===. 若21i i u v +≥,则由104i s ≤知15i i i u v s +>;若20i i u v +≤,则2()2055i i i i ii i u v u v s u v ++≥≥≥,等号成立当且仅当10,100i i iu v s ===. ………………30分 于是111()20005k ki i i i i u v s =+≥=∑∑.若1()2000ki i i u v =+>∑,由抽屉原理知,存在一行或者一列至少含有11种颜色的小方格.若1()2000ki i i u v =+=∑,则由等号成立的条件,可知每种颜色恰染100格,且是10行与10列交叉位置,因此每一行每一列中恰有10种颜色的方格,每种颜色的方格恰有10个.由引理可知这两种情况都导致存在112×或121×的矩形含有至少三种颜色的小方格.综上所述,所求最小的t 为12. ………………50分。

2020年全国高中数学联赛试题及详细解析.docx

2020年全国高中数学联赛试题及详细解析.docx

2020 年全国高中数学联赛试题及详细解析说明:1. 评阅试卷时,请依据本评分标准。

选择题只设6 分和 0 分两档,填空题只设9 分和 0 分两档;其他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其它中间档次。

2. 如果考生的解题方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分, 5 分为一个档次,不要再增加其他中间档次。

一、选择题(本题满分36 分,每小题 6 分)本题共有 6 小题,每小题均给出 A , B ,C ,D 四个结论,其中有且仅有一个是正确的。

请将正确答案的代表字母填在题后的括号内。

每小题选对得 6 分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得 0 分。

1.使关于 x 的不等式 x 36 x k 有解的实数 k 的最大值是()A . 63B. 3C. 63D . 62.空间四点 A 、 B 、 C 、 D 满足 | AB | 3, | BC | 7 , | CD | 11 , | DA | 9 , 则 AC BD 的取值()A .只有一个B .有二个C .有四个D .有无穷多个a 1 a 2 a 3a 4| a iT , i 1,2,3,4}, 将 M 中的元素按从大到小的6. 记集合 T { 0,1,2,3,4,5,6}, M {7 27 3747序排列, 第2020 个数是()A . 5 5 6 3B . 55 6 2 7 7273 74 772 73 7 4 C .11 0 4 D .11 0 3 7 72737477273 7 4二、填空 (本 分54 分,每小 9 分) 本 共有 6 小 ,要求直接将答案写在横 上。

7. 将关于 x 的多 式 f ( x)1 x x2 x 3x 19x 20 表 关于 y 的多 式 g( y)a 0 a 1 y a 2 y 2 a 19 y 19 a 20 y 20, 其中 y x 4. a 0a 1a20.8. 已知 f (x) 是定 在 ( 0,) 上的减函数, 若 f (2a 2a1) f (3a 24a 1) 成立, a 的取 范是。

2020年全国高中数学联赛试题及详细解析(1)

2020年全国高中数学联赛试题及详细解析(1)

2020年全国高中数学联赛试题及详细解析一、选择题(每小题6分,共36分)1.(2020年全国高中数学联赛)删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是yxO Ox yO xyyx O A.B. C.D.3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A ) 163 (B) 83 (C) 1633 (D) 8 34.若x ∈[-5π12 ,-π3 ],则y=tan(x +2π3 )-tan(x +π6 )+cos(x +π6 )的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).2020年全国高中数学联赛解答第一试一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 2049 【答案】C【解析】452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2020-1980=23项.由2025+23=2048.知选C .3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A) 163 (B) 83 (C) 1633 (D) 8 3【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点在y=p k =43上,即AB 中点为(43,43),中垂线方程为y=-33(x -43)+43,令y=0,得点P 的坐标为163.∴ PF=163.选A .4.若x ∈[-5π12 ,-π3],则y=tan(x +2π3)-tan(x +π6)+cos(x +π6)的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253【答案】C【解析】令x +π6=u ,则x +2π3=u +π2,当x ∈[-5π12,-π3]时,u ∈[-π4,-π6],y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-π4,-π6]时,sin2u 与cos u 都单调递增,从而y 单调递增.于是u=-π6时,y 取得最大值1163,故选C .二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .【答案】(-3,-5-12)∪(5-12,3). 【解析】即|x |3-2|x |2-4|x |+3<0,⇒(|x |-3)(|x |-5-12)(|x |+5+12)<0.⇒|x |<-5+12,或5-12<|x |<3. ∴ 解为(-3,-5-12)∪(5-12,3).9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .【答案】-4≤a ≤-1.【解析】A=(1,3);又,a ≤-21-x∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x-7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .【答案】93【解析】a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9.∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .【答案】2+48【解析】如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45︒而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},N MHGFEDCBAT n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .【答案】118【解析】由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -2⨯0.11…1+2n -2⨯10-n.∴ lim n →∞S n T n =12⨯19=118.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R)与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.【解析】曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c s in 4t )∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1) y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ①若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c ≠0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c 0,得4x 2+4x +1=0, 此方程在[14,34]内有惟一解: x=12.以x=12代入②得, y=14(a +2b +c ).∴ 所求公共点坐标为(12,14(a +2b +c )).加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .分析:由∠PBC=∠CDB ,若∠DBQ=∠PAC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立.而要证∆BDQ ∽∆DAQ ,只要证BD AD =DQAQ即可.二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.【解析】当3l、3m、3n的末四位数字相同时,⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104.即求满足3l ≡3m ≡3n ( mod 104)的l 、m 、n .∴ 3n (3l -n -1)≡0 (mod 104).(l -n >0)但 (3n ,104)=1,故必有3l -n ≡1(mod 104);同理3m -n ≡1(mod 104).下面先求满足3x ≡1(mod 104)的最小正整数x .∵ ϕ(104)=104⨯12⨯45=4000.故x |4000.用4000的约数试验:∵ x=1,2,时3x ≡∕1(mod 10),而34≡1(mod 10),∴ x 必须是4的倍数;∵ x=4,8,12,16时3x ≡∕1(mod 102),而320≡1(mod 102),∴ x 必须是20的倍数;∵ x=20,40,60,80时3x ≡∕1(mod 103),而3100≡1(mod 103),∴ x 必须是100的倍数;∵ x=100,200,300,400时3x ≡∕1(mod 104),而3500≡1(mod 104).即,使3x ≡1(mod 104)成立的最小正整数x=500,从而l -n 、m -n 都是500的倍数, 设l -n=500k ,m -n=500h ,(k ,h ∈N*,k >h ).由m +n >l ,即n +500h +n >n +500k ,⇒n >500(k -h )≥500,故n ≥501.取n=501,m=1001,l=1501,即为满足题意的最小三个值. ∴ 所求周长的最小值=3003.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而B 0-中点对个数≥i =1n -1∑(B i ∩B 0-中点对个数).即C 2 n -b 0≥i =1n -1∑C 2 |B i ∩B 0-|≥i =1n -1∑C 2 b i -1=12i =1n -1∑ (b 2i -3b i +2)≥12[1n -1(i =1n -1∑b i )2-3i =1n -1∑b i +2(n -1)](由平均不等式)=12[1n -1(2l -b 0)2-3(2l -b 0)+2(n -1)]=12(n -1)[(2l -b 0)2-3(n -1)(2l -b 0)+2(n -1)2]=12(n -1)(2l -b 0-n +1)(2l -b 0-2n +2)(2l ≥q (q +1)2+2=(n -1)(q +1)+2)≥12(n -1)[(n -1)(q +1)+2-b 0-n +1][(n -1)(q +1)+2-b 0-2n +2]=12(n -1)[(n -1)q +2-b 0][(n -1)(q -1)+2-b 0].(两边同乘以2(n -1)即 (n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入) 得 q (q +1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ①但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3(b 0≥q +2)≥(q -1)(q +2)-n +3=q 2+q +1-n =0.②(nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③由假设,不存在处在不同行的2个红点对,使此四点两两同列,所以,有(由于去掉了q +2列,故还余q 2-1列,不同的列对数为C 2 q 2-1)i =1n -1∑C 2 m i ≤C 2 q 2-1. 所以q 2·q (q -1)+q (q -1)(q -2)≤(q 2-1)(q 2-2).⇒ q (q -1)(q 2+q -2)≤(q -1)(q +1)(q 2-2)⇒q 3+q 2-2q ≤q 3+q 2-2q -2.矛盾.故证.。

2020全国高中数学联赛试题及详细解析含评分标准

2020全国高中数学联赛试题及详细解析含评分标准



1
答案: 5 . 解法 1:设 z a bi (a, b R) ,由条件知
Im z 2 Im (a 2) bi
zi
a (b 1)i
(a 2)(b 1) ab a2 (b 1)2
a 2b 2 a2 (b 1)2
0,
故 a 2b 2 .从而
5 z 3 (12 22 )((a 3)2 b2 ) (a 3) 2b 5

) {x}
·
C|nx|
+
{x}
·
Cn|x|+1,
[x]
x
, {x} = x − [x].
m, n 2
( )( )
(
)
1 f m,
2 + f m,
+ · · · + f m, mn − 1
= 123,
n
n
n
( )( )
(
)
1 f n,
2 + f n,
+ · · · + f n, mn − 1
定写有 i, j 的卡片只能放在 i 号或 j 号盒子中.一种放法称为“好的”,如果 1 号
盒子中的卡片数多于其他每个盒子中的卡片数.则“好的”放法共有
种.
答案:120 .
解:用{i, j}表示写有 i, j 的卡片.易知这10 张卡片恰为{i, j} (1 i j 5) .
考虑“好的”卡片放法.五个盒子一共放有10 张卡片,故1号盒至少有 3 张
9.(本题满分 16 分) 在 ABC 中,sin A 范围.
2 .求 cos B 2
2 cosC 的取值
解:记 f cos B 2 cosC .

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛加试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛加试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)给定正整数r .求最大的实数C ,使得存在一个公比为r 的实数等比数列1{}n n a ,满足n a C 对所有正整数n 成立.(x 表示实数x 到与它最近整数的距离.)解:情形1:r 为奇数.对任意实数x ,显然有12x ,故满足要求的C 不超过12. 又取{}n a 的首项112a ,注意到对任意正整数n ,均有1n r 为奇数,因此1122n n r a .这意味着12C 满足要求.从而满足要求的C 的最大值为12. …………10分 情形2:r 为偶数.设*2()r m m N .对任意实数 ,我们证明1a 与2a 中必有一数不超过21m m ,从而21m C m . 事实上,设1a k ,其中k 是与1a 最近的整数(之一),且102. 注意到,对任意实数x 及任意整数k ,均有x k x ,以及x x .若021m m ,则121m a k m . 若1212m m ,则22221m m m m ,即21m m r m m ,此时 2121m a a r kr r r m . …………30分 另一方面,取121m a m ,则对任意正整数n ,有1(2)21n n m a m m ,由二项式展开可知11(211)(1)2121n n n m m a m K m m ,其中K 为整数,故21n m a m .这意味着21m C m 满足要求. 从而满足要求的C 的最大值为212(1)m r m r .综上,当r 为奇数时,所求C 的最大值为12;当r 为偶数时,所求C 的最大值为2(1)r r . …………40分二.(本题满分40分)如图,在凸四边形ABCD 中,AC 平分BAD ,点,E F 分别在边,BC CD 上,满足||EF BD .分别延长,FA EA 至点,P Q ,使得过点,,A B P 的圆1 及过点,,A D Q 的圆2 均与直线AC 相切.证明:,,,B P Q D 四点共圆.(答题时请将图画在答卷纸上)证明:由圆1 与AC 相切知180BPA BAC CAD CAF PAC ,故,BP CA 的延长线相交,记交点为L .由||EF BD 知CE CF CB CD.在线段AC 上取点K ,使得CK CE CF CA CB CD ,则||,||KE AB KF AD . …………10分由ABL PAL KAF ,180180BAL BAC CAD AKF ,可知ABL KAF ∽,所以KF AB AL KA. …………20分 同理,记,DQ CA 的延长线交于点L ,则KE AD AL KA. 又由||,||KE AB KF AD 知KE CK KF AB CA AD,即KE AD KF AB . 所以AL AL ,即L 与L 重合.由切割线定理知2LP LB LA LQ LD ,所以,,,B P Q D 四点共圆.…………40分三.(本题满分50分)给定正整数n .在一个3n ×的方格表上,由一些方格构成的集合S 称为“连通的”,如果对S 中任意两个不同的小方格,A B ,存在整数2l ≥及S 中l 个方格12,,,lA C C CB ==,满足iC 与1i C +有公共边(1,2,,1i l −).求具有下述性质的最大整数K :若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S ,使得S 中的黑格个数与白格个数之差的绝对值不小于K .解:所求最大的K n =.对一个由小方格构成的集合S ,记b S 是S 中的黑格个数,w S 是S 中的白格个数. 用[,]i j 表示第i 行第j 列处的方格,这里13i ≤≤,1j n ≤≤.对于两个方格[,]A i j =,[,]B i j ′′=, 定义它们之间的距离为(,)||||d A B i i j j ′′=−+−.首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合S ,均有||b w S S n −≤,这表明K n ≤.设[1,1]是黑格,并记{0,1}ε∈,满足(mod 2)n ε≡.先证b w S S n −≤.可不妨设S 包含所有黑格,这是因为若S 不包含所有黑格, 取不属于S 的黑格A 满足(,)d A S 最小,这里(,)min (,)B Sd A S d A B ∈=.易知(,)1d A S =或2.若(,)1d A S =,取{}S S A ′=,则S 仍是连通的,且b w S S ′′−更大. 若(,)2d A S =,则存在与A 相邻的白格C ,而C 与S 中某个方格B 相邻,取{,}S S A B ′= ,则S 仍是连通的,且bw S S ′′−不变. 因而可逐步扩充S ,使得S 包含所有黑格,保持S 的连通性,且b w S S −不减.考虑白格集合{[,]|}k W i j i j k =+=,3,5,,1k n ε++,每个k W 中至少有一个方格属于S ,否则不存在从黑格[1,1]A S =∈到黑格[3,1]B n ε=−+的S 中路径.故1()2w S n ε≥+,而1(3)2b S n ε=+,故b w S S n −≤. …………10分 类似可证w b S S n −≤.同上,可不妨设S 包含所有白格, 从而1(3)2w S n ε=−. 再考虑黑格集合{[,]|}k B i j i j k =+=, 4,6,,2k n ε+−,每个k B 中至少有一个黑格属于S ,否则不存在从白格[1,2]A =到白格[3,]B n ε=−的S 中路径. 从而1()2b S n ε≥−,故w b S S n −≤. …………20分 下面证明K n =具有题述性质,即对任意的染色方案,总存在连通的集合S , 使得b w S S n −≥.设表格中共有X 个黑格和Y 个白格,在第二行中有x 个黑格和y 个白格. 于是3X Y n +=, x y n +=.故()()()()2X y Y x X Y x y n −+−=+−+=.由平均值原理可知max{,}X y Y x n −−≥.不妨设X y n −≥.取S 为第二行中的y 个白格以及所有X 个黑格.由于S 包含第二行中所有方格,因而S 是连通的. 而b S X =,w S y =,b w S S X y n −=−≥.综上所述,max K n =. …………50分四.(本题满分50分)设,A B 为正整数,S 是一些正整数构成的一个集合,具有下述性质:(1) 对任意非负整数k ,有k A S ;(2) 若正整数n S ,则n 的每个正约数均属于S ;(3) 若,m n S ,且,m n 互素,则mn S ;(4) 若n S ,则An B S .证明:与B 互素的所有正整数均属于S .证明:先证明下述引理.引理:若n S ,则n B S .引理的证明:对n S ,设1n 是n 的与A 互素的最大约数,并设12n n n ,则2n 的素因子均整除A ,从而12(,)1n n .由条件(1)及(2)知,对任意素数|p A 及任意正整数k ,有k p S .因此,将11k A n 作标准分解,并利用(3)知11k A n S .又2|n n ,而n S ,故由(2)知2n S .因112(,)1k A n n ,故由(3)知112k A n n S ,即1k A n S .再由(4)知k A n B S (对任意正整数k ). ① …………10分 设n B C D ,这里正整数C 的所有素因子均整除A ,正整数D 与A 互素,从而(,)1C D .由(1)及(2)知C S (见上面1k A n S 的证明). 另一方面,因(,)1D A ,故由欧拉定理知()1D D A .因此()()(1)()0(mod )D D A n B A n n B D ,但由①知()D A n B S ,故由(2)知D S .结合C S 及(,)1C D 知CD S ,即n B S .引理证毕. …………40分回到原问题.由(1),取0k 知1S ,故反复用引理知对任意正整数y ,有1By S .对任意*,(,)1n n B N ,存在正整数,x y 使得1nx By ,因此nx S ,因|n nx ,故n S .证毕. …………50分。

2020年全国高中数学联赛试题简析,附试卷真题、答案

2020年全国高中数学联赛试题简析,附试卷真题、答案
二、解答题
第9题 考察基本的三角恒等式的记忆和使用,有一定的计算量,相较于往年一试
第一道解答题来说难度持平或者略有上升。 第 10 题
虽然的定义比较复杂,但是经过适当的分组之后仍然是比较常规的恒等变 形,本题难度不大,但是需要细心的计算,否则容易算错或者得不出答案。 第 11 题
较为常规的解析几何试题,思路是容易想到的,计算量相比于 2018 年的 那一道题来说也小许多,难度上放在高考中也不为过,只是一试的时间相对紧 张,考生不一定有时间来做本题。
论都知道的学生来说本题是加试中最难的题,总体难度中档偏难。
考试真题
一试:
二试
参考答案
一试:
二试
数情形的处理只要知道递推数列的一个基本结论,和二次剩余之后就能够做出
来,奇数情形相对困难一些,需要观察数列的前若干项找出规律,当然也没有
比偶数情形难太多,总体难度中档偏难。
组合、通过试一些常见的剖分可以猜到结果,因此归纳的方法是可以猜到
的,但是具体细节仍然具有一定的难度,对于准备充分,二三两题涉及到的结
二试
总评
本次二试难度相对平均,难度下限和上限都有所收拢,没有特别突 出的难题或者特别水的题目,对具备一定实力的考生来说能够着手处理 的题目变多了,但是对于实力尚弱的考生来说二试拿分变难了。
几何、较为简示性,
没有卡手的地方,是加试最简单的一道题,但是比 2019 年高联的几何题要难
2020 年全国高中数学联赛试题简析,试卷真题、答案
一试 总评
本次一试大部分的题目都不难,但是整体计算量偏大,对考生的计 算能力进行了考察,此外,能否在有限的时间内对试题进行取舍,保证 自己会做的题目的正确率,在本次考试中也非常重要。
一、填空题

2020年全国高中数学联合竞赛一试(A卷)

2020年全国高中数学联合竞赛一试(A卷)

2020年全国高中数学联合竞赛一试(A 卷)试题参考答案及评分标准〔A 卷〕讲明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.假如考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题〔此题总分值36分,每题6分〕1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 〔 C 〕A .0B .1C .2D .3[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,假设B A ⊆,那么实数a 的取值范畴为 〔 D 〕A .[1,2)-B .[1,2]-C .[0,3]D .[0,3) [解] 因240x ax --=有两个实根12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a , 解之得03a ≤<.3.甲乙两人进行乒乓球竞赛,约定每局胜者得1分,负者得0分,竞赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,那么竞赛停止时已打局数ξ的期望E ξ为 〔 B 〕A.24181 B. 26681 C. 27481 D. 670243 [解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局竞赛为一轮,那么该轮终止时竞赛停止的概率为22215()()339+=.假设该轮终止时竞赛还将连续,那么甲、乙在该轮中必是各得一分,现在,该轮竞赛结果对下轮竞赛是否停止没有阻碍.从而有5(2)9P ξ==,4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局竞赛中获胜,那么k A 表示乙在第k 局竞赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=.4.假设三个棱长均为整数〔单位:cm 〕的正方体的表面积之和为564 cm 2,那么这三个正方体的体积之和为〔 A 〕A. 764 cm 3或586 cm 3B. 764 cm 3C. 586 cm 3或564 cm 3D. 586 cm 3[解] 设这三个正方体的棱长分不为,,a b c ,那么有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.假设9c =,那么22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =. 假设8c =,那么22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.假设5b =,那么25a =无解,假设4b =,那么214a =无解.现在无解.假设7c =,那么22944945a b +=-=,有唯独解3a =,6b =.假设6c =,那么22943658a b +=-=,现在222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,现在2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 〔 B 〕 A. 1 B. 2 C. 3 D. 4[解] 假设0z =,那么00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,假设0z ≠,那么由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,那么sin cot cos sin cot cos A C AB C B++的取值范畴是〔 C 〕A. (0,)+∞B.C.D. )+∞[解] 设,,a b c 的公比为q ,那么2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A CB C B B C B C++=++sin()sin()sin sin()sin()sin A C B B bq B C A A aππ+-=====+-.因此,只需求q 的取值范畴.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得q q q <<⎨⎪><⎪⎩q <<,因此所求的取值范畴是. 二、填空题〔此题总分值54分,每题9分〕7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =,假设7()128381f x x =+,那么a b += 5 . [解] 由题意知12()(1)n n n n f x a x a a a b --=+++++11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.设()cos 22(1cos )f x x a x =-+的最小值为12-,那么a=2-.[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-+2a =-舍去).9.将24个理想者名额分配给3个学校,那么每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.[解法一] 用4条棍子间的间隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分不有4,18,2个名额.假设把每个〝*〞与每个〝|〞都视为一个位置,由于左右两端必须是〝|〞,故不同的分配方法相当于24226+=个位置〔两端不在内〕被2个〝|〞占据的一种〝占位法〞.〝每校至少有一个名额的分法〞相当于在24个〝*〞之间的23个间隙中选出2个间隙插入〝|〞,故有223C 253=种. 又在〝每校至少有一个名额的分法〞中〝至少有两个学校的名额数相同〞的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分不为123,,x x x ,那么每校至少有一个名额的分法数为不定方程12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===. 又在〝每校至少有一个名额的分法〞中〝至少有两个学校的名额数相同〞的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. 10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =,那么通项n a =112(1)nn n -+.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122b a =+= (10a =),有112n n b b +=,故12n n b =,因此)1(121+-=n n a n n .答12图111.设()f x 是定义在R 上的函数,假设(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,那么)2008(f =200822007+.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅, 因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++10031413(0)41f +-=⋅+-200822007=+. [解法二] 令()()2x g x f x =-,那么2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=,6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=,即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,因此200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.一个半径为1的小球在一个内壁棱长为46那么该小球永久不可能接触到的容器内壁的面积是723.[解] 如答12图1,考虑小球挤在一个角时的情形,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,那么小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅111143A B C S OD ∆=⋅⋅⋅,故44PD OD r ==,从而43PO PD OD r r r =-=-=.记现在小球与面PAB 的切点为1P ,连接1OP ,那么222211(3)22PP PO OP r r r=--=.答13图答12图 2考虑小球与正四面体的一个面(不妨取为PAB )相切时的情形,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为1P EF ,如答12图2.记正四面体 的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有113cos 226PM PP MPP r r =⋅==,故小三角形的边长1226PE PA PM a r =-=-. 小球与面PAB 不能接触到的部分的面积为〔如答12图2中阴影部分〕1PAB P EF S S ∆∆-223(26))a a r =--23263ar r =-. 又1r =,46a =124363183PAB PEF S S ∆∆-= 由对称性,且正四面体共4个面,因此小球不能接触到的容器内壁的面积共为723 三、解答题〔此题总分值60分,每题20分〕13.函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+. [证] ()f x 的图象与直线y kx =)0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,因此sin cos ααα-=-,即tan αα=. …10分 因此cos cos sin sin 32sin 2cos αααααα=+ 14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++<+.即 1210864353210x x x x x +++--<. …5分 分组分解 12108x x x +- 1086222x x x ++- 864444x x x ++- 642x x x ++- 4210x x ++-<,864242(241)(1)0x x x x x x +++++-<, …10分因此 4210x x +->,22(0x x -<. …15分因此2x <,即x <<故原不等式解集为(. …20分 [解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++<+. …5分即6422232262133122(1)2(1)x x x x x x x x +>+++++=+++, 32322211()2()(1)2(1)x x x x +>+++, …10分 令3()2g t t t =+,那么不等式为221()(1)g g x x>+,题15图明显3()2g t t t =+在R 上为增函数,由此上面不等式等价于 2211x x>+, …15分即222()10x x +-<,解得251x -<, 故原不等式解集为5151(,)22---. …20分 15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.[解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线PB 的方程:00y by b x x --=, 化简得 000()0y b x x y x b --+=.又圆心(1,0)到PB 的距离为1,0022001()y b x b y b x-+=-+ , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+,易知02x >,上式化简得2000(2)20x b y b x -+-=,同理有2000(2)20x c y c x -+-=. …10分 因此0022y b c x -+=-,002x bc x -=-,那么22200020448()(2)x y x b c x +--=-.因00(,)P x y 是抛物线上的点,有2002y x =,那么22204()(2)x b c x -=-,0022x b c x -=-. …15分 因此00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++-- 2448≥=.当20(2)4x -=时,上式取等号,现在004,22x y ==±.因此PBC S ∆的最小值为8. …20分。

2022年全国中学生数学奥林匹克竞赛(预赛)暨 2022年全国高中数学联合竞赛一试(A1 卷)含答案

2022年全国中学生数学奥林匹克竞赛(预赛)暨 2022年全国高中数学联合竞赛一试(A1 卷)含答案

2022年全国中学生数学奥林匹克竞赛(预赛)暨2022年全国高中数学联合竞赛 一试(A1卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 设复数e(1i)(1i)e ez(e 为自然对数的底数,i 为虚数单位),则z 的模为 .答案:2.解:记e,e eu v,则22,,1R u v u v . 因此2222()()i ()()2()2z u v u v u v u v u v . 2. 在平面直角坐标系xOy 中,圆22:0x y dx ey f (其中,,d e f 为实数)的一条直径为AB ,其中(20,22),(10,30)A B ,则f 的值为 .答案:860.解:易知 的圆心(即AB 的中点)为(15,26), 的半径为412AB,故圆 的方程为22(15)(26)41x y ,即2230528600x y x y .所以860f .3. 设函数()f x 的定义域为R ,且当0x 时,()2f x x a (其中a 为实数).若()f x 为奇函数,则不等式()1f x 的解集为 .答案:[3,1][5,) .解:由条件知(0)20f a ,故2a .当0x 时,由()221f x x ,解得5x .当0x 时,()1f x 等价于()1f x ,即221x ,即21x ,解得31x .综上,不等式()1f x 的解集为[3,1][5,) .4. 若ABC 满足345A B C ,则2||AB ACBC的值为 . 答案:334. 解:由条件知45,60,75A B C ,于是2||||sin sin cos ||||||||||sin sin AB AC AB AC AB AC C BA BC AB AC BC BC A A62323342242222. 5. 若等差数列{}n a 及正整数(3)m m 满足:11,2m a a ,且122311113m ma a a a a a , 则12m a a a 的值为 .答案:212.解:设{}n a 的公差为d ,则111122311111m i i i m m i i a a a a a a a a da a 111111m i ii d a a11111111m mmma a m d a a da a a a , 结合条件可知132m,得7m . 所以12(12)72122m a a a .6. 在某次数学竞赛小组交流活动中,四名男生与三名女生按随机次序围坐一圈,则三名女生两两不相邻的概率为 .答案:15.解:这7名学生的任意圆排列有6!种.以下考虑满足条件的圆排列的种数. 先对四名男生进行圆排列,有3!种排法,任意两名相邻男生之间暂视为一个空位,共4个空位;为使三名女生两两不相邻,需挑选3个不同的空位将她们依次排入,有34P 种排法.因此满足条件的圆排列有343!P 种. 从而所求概率为343!P 16!5. 7. 已知四面体ABCD 满足,,23AB BC BC CD AB BC CD ,且该四面体的体积为6,则异面直线AD 与BC 所成的角的大小为 .答案:45 或60 .解:作DH 平面ABC 于点H ,则四面体的体积163ABC V S DH .由,23AB BC AB BC ,得6ABC S ,所以3DH .又DH CH ,23CD ,故3CH .由,BC CD BC DH ,得BC 平面CDH ,所以BC CH .构造正方形ABCE ,则H 在直线CE 上,且由AE 平面CDH 知AE DE .由于||AE BC ,故DAE 为异面直线AD 与BC 所成角的平面角.DH CD H C EABEAB若3HE CE CH (如左图),则23DE AE ,此时45DAE ;若33HE CE CH (如右图),则63DE AE ,此时60DAE .因此,所求角的大小为45 或60 .8. 在55 矩阵中,每个元素都为0或1,且满足:五行的元素之和都相等,但五列的元素之和两两不等.这样的矩阵的个数为 (答案用数值表示).答案:26400.解:设矩阵的所有元素之和为S .由于五行的元素之和都相等,故5|S .又五列的元素之和两两不等,故10012341234515S .所以10S 或15.于是只有以下两类情形:(1) 10S ,此时每行有2个1,其余为0,各列中1的个数为0、1、2、3、4的排列;(2) 15S ,此时每行有2个0,其余为1,各列中0的个数为0、1、2、3、4的排列.对于情形(1),不妨先考虑对任意1,2,,5i ,第i 列中恰有1i 个1,且第2列中的1位于第1行的矩阵,设这样的矩阵有n 个(则由对称性,符合情形(1)的矩阵有5!5600n n 个).若第5列中的0在第1行,则第3列的2个1可任选位置,第4列的3个1必须与第3列的2个1两两不同行,这种矩阵有25C 10 个. 以下设第5列中的0在第(25)k k 行处.此时,在第3、4列中,第1行处必须都为0,第k 行处必须都为1,然后,第3列中的另一个1可在除第1、第k 行外的剩下三个位置中任选一处,第4列中的另两个1的位置随之确定(必须与第3列的1不同行),这种矩阵有4312 个.所以101222n ,从而符合情形(1)的矩阵有60013200n 个. 同理,符合情形(2)的矩阵也有13200个.综上,所求的矩阵的个数为21320026400 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)对任意正实数a ,记函数()lg f x x 在[,)a 上的最小值为a m ,函数()sin2xg x 在[0,]a 上的最大值为a M .若12a a M m ,求a 的所有可能值.解:由于(1)0f 为()f x 的最小值,()f x 在[1,) 上严格递增,故0,01,lg , 1.a a m a a……………4分由于(1)1g 为()g x 的最大值,()g x 在[0,1]上严格递增,故sin ,01,21, 1.a a a M a……………8分 当01a 时,sin 2a a a M m ,由1sin 22a 解得26a ,即13a . ……………12分当1a 时,1lg a a M m a ,由11lg 2a 解得10a .因此a 的所有可能值为13或10. ……………16分10.(本题满分20分)在平面直角坐标系xOy 中,设一条动直线l 与抛物线2:4y x 相切,且与双曲线22:1x y 交于左、右两支各一点A 、B .求AOB 的面积的最小值.解:设l 与 相切于点P (显然P 不为原点O ,否则l 为y 轴,与 无交点).由对称性,不妨设P 为第一象限内 上一点,坐标为(,2)t t ,其中0t ,则切线l 的方程为22()t y x t ,即xy t t. ……………5分 代入 的方程,整理得关于x 的方程2(1)2(1)0t x tx t t ,,A B 的横坐标为该方程的两解,记为12,x x ,则1t ,且12122(1),11t t t x x x x t t. 根据题意有120x x ,而0t ,故1t .注意到l 的截距为t ,故有21212121()422AOB tS t x x x x x x2224(1)142(1)11t t t t t t t t t t . ……………10分 令1u t ,则0u .利用基本不等式,得2(1)(1)2425AOB u u u u u uS u u.当1u (即2t )时,AOB S 取到最小值25. ……………20分 11.(本题满分20分)设正整数数列{}n a 同时具有以下两个性质:(i) 对任意正整数k ,均有2122k k k a a ;(ii) 对任意正整数m ,均存在正整数l m ,使得1mm i i la a .求2462022a a a a 的最大值.解:由于{}n a 为正整数数列,在(i)中令1k 知122a a ,故121a a .以下证明:对任意正整数2k ,有122k k a 或232k . 根据(ii),对任意正整数m ,显然有1m m a a .当2k 时,由344a a 及43a a 知42a 或3,故结论成立. 假设k 时结论成立,考虑1k 的情形. 由(ii)知存在正整数2l k ,使得221kk i i l a a .当21l k 时,由(i)及2221k k a a ,可知212221221222k k k k k k k a a a a a, 于是不等号均为等号,这表明21l k ,21222k k k a a ,符合结论.当2l k 时,212k k a a ,12222k k k a a . 若122k k a ,则12232k k a ,符合结论;若2232k k a ,则22212232,52k k k k a a ,此时2122221k k k k a a a a ,故对任意正整数121l k ,总有12122k k i i l a a ,与(ii)矛盾,即该情形不会发生.综上,1k 时结论也成立.从而由数学归纳法知结论成立.……………10分从上述证明进一步可见,对任意正整数2k ,2232k k a 与12232k k a 不能同时成立.因此,对任意正整数t ,均有222212121442max{322,232}2t t t t t t t a a . 所以2462022a a a a 1010101350521212125218413t t a. ① ……………15分当121a a ,且对任意正整数t ,取212141441422,32t t t t t t a a a a 时,易验证数列{}n a 具有性质(i)、(ii),并且①取到等号.从而2462022a a a a 的最大值为1013253 . ……………20分。

2020年全国高中数学联赛一试二试试题整理详解汇编(一试二试为A卷)(含解答)

2020年全国高中数学联赛一试二试试题整理详解汇编(一试二试为A卷)(含解答)

仅需再使 5 号盒中不超过 2 张卡片,即{2, 5}, {3, 5}, {4, 5} 有 0 张或 1 张在 5 号盒
中,对应 C30 C13 4 种放法. 因此 N 6 1 2 4 14 .由对称性,在情况二下有 4N 综上,好的放法共有 64 56 120 种.
56 种好的放法.
二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.
9.(本题满分 16 分) 在 ABC 中,sin A 范围.
2 .求 cos B 2
2 cosC 的取值
解:记 f cos B 2 cosC .
由条件知 A 或 A 3 .
4
4
当 A 时, B 3 C ,其中 0 C 3 ,此时
4
4
4
…………………4 分
f cos 3 C 4
2 cosC 2 sin C 2 cosC sin C
卡片.能放入 1 号盒的卡片仅有{1, 2}, {1, 3}, {1, 4}, {1, 5} .
情况一:这 4 张卡片都在 1 号盒中,此时其余每个盒中已经不可能达到 4 张
卡片,故剩下 6 张卡片无论怎样放都符合要求,有 26 64 种好的放法.
情况二:这 4 张卡片恰有 3 张在 1 号盒中,且其余每盒最多仅有 2 张卡片.
m1 f (a), m2 f (10) ;当 a [10, ) 时, m1 f (10), m2 f (a) .因此总有
f (a) f (10) m1m2 2020 ,
即 a 100 2020 101,解得 a 1或 a 100. a 20
4. 设 z 为 复 数 . 若 z 2 为 实 数 ( i 为 虚 数 单 位 ), 则 z 3 的 最 小 值 zi

2020年全国高中数学联合竞赛一试试题及答案(A卷)

2020年全国高中数学联合竞赛一试试题及答案(A卷)

2020年全国高中数学联合竞赛 一试试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .3[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x+-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( D )A .[1,2)-B .[1,2]-C .[0,3]D .[0,3)[解] 因240x ax --=有两个实根 12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a ,解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B ) A .24181 B .26681 C .27481 D .670243[解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为 22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有 5(2)9P ξ==,4520(4)()()9981P ξ===, 2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=. [解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=. 4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A ) A .764 cm 3或586 cm 3B .764 cm 3C .586 cm 3或564 cm 3D .586 cm 3[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =. 若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解. 若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为( B )A .1B .2C .3D .4[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩ 6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( C )A .(0,)+∞ B. C. D.)+∞[解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A C B C B B C B C++=++ sin()sin()sin sin()sin()sin A C B B bq B C A A aππ+-=====+-.因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得11,2211.22q q q ⎧<<⎪⎪⎨⎪><-⎪⎩或q <<11(,)22. 二、填空题(本题满分54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =,若7()128381f x x =+,则a b += 5 . [解] 由题意知12()(1)nn n n f x a x aaa b --=+++++11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a=[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-2a =-舍去).9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.[解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如 ||||******** 表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”. “每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =,则通项n a =112(1)nn n -+.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122b a =+= (10a =),有112n n b b +=,故12n n b =,所以)1(121+-=n n a n n .11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822007+.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅, 因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++10031413(0)41f +-=⋅+-200822007=+.答12图1答12图 2[解法二] 令()()2x g x f x =-,则2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=, 6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=, 即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.一个半径为1的小球在一个内壁棱长为46则该小球永远不可能接触到的容器内壁的面积是723.[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因 11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅111143A B C S OD ∆=⋅⋅⋅,故44PD OD r ==,从而43PO PD OD r r r =-=-=.记此时小球与面PAB 的切点为1P ,连接1OP ,则222211(3)22PP PO OP r r r =-=-=. 考虑小球与正四面体的一个面(不妨取为PAB )相 切时的情况,易知小球在面PAB 上最靠近边的 切点的轨迹仍为正三角形,记为1P EF ,如答 12图2.记正四面体的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有113cos 226PM PP MPP r r =⋅==, 故小 三角形的边长1226PE PA PM a r =-=-.答13图小球与面PAB 不能接触到的部分的面积 为(如答12图2中阴影部分) 1PAB P EF S S ∆∆-223(26))a a r =--23263ar r =-. 又1r =,6a =124363183PAB PEF S S ∆∆-==由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为723 三、解答题(本题满分60分,每小题20分) 13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+.[证] ()f x 的图象与直线y kx = )0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. …10分 因此cos cos sin sin 32sin 2cos αααααα=+ 14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+.即 1210864353210x x x x x +++-->. …5分 分组分解12108x x x +-1086222x x x ++-864444x x x ++-642x x x ++-4210x x ++->,864242(241)(1)0x x x x x x +++++->, …10分所以 4210x x +->,22(0x x >. …15分所以2x >,即x <x >.故原不等式解集为51(,()2--∞+∞. …20分 [解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+. …5分 即6422232262133122(1)2(1)x x x x x x x x +<+++++=+++, )1(2)1()1(2)1(232232+++<+x x x x , …10分 令3()2g t t t =+,则不等式为221()(1)g g x x<+, 显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于2211x x<+, …15分即222()10x x +->,解得2x >(2x <舍去),故原不等式解集为51(,()2--∞+∞. …20分题15图 15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.[解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线PB 的方程:00y by b x x --=, 化简得 000()0y b x x y x b --+=.又圆心(1,0)到PB 的距离为1,0022001()y b x b y b x-+=-+ , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+,易知02x >,上式化简得2000(2)20x b y b x -+-=, 同理有2000(2)20x c y c x -+-=. …10分所以0022y b c x -+=-,002x bc x -=-,则22200020448()(2)x y x b c x +--=-. 因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x b c x -=-. …15分 所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++--2448≥=.当20(2)4x -=时,上式取等号,此时004,x y ==±.因此PBC S ∆的最小值为8. …20分。

2020年全国高中数学联合竞赛二试试题卷(高联二试含答案及评分标准)

2020年全国高中数学联合竞赛二试试题卷(高联二试含答案及评分标准)

2020全国高中数学联赛二试一、如图,在等腰三角形ABC 中,AB=BC ,I 为内心,M 为BI 的中点,P 为边AC 上的一点,满足AP=3PC ,PI 延长线上一点H 满足MH ⊥PH ,Q 为△ABC 的外接圆上劣弧AB 的中点,证明:BH ⊥QH二、给定整数n ≥3,设1232122,,...,,,,...,n n a a a a b b b 是4n 个非负实数,满足122122......0n n a a a b b b ++=+++>,且对任意1,2,...,2i n =,有21i i i i a a b b ++≥+,(这里211222211,,n n n a a a a b b +++===), 求122...n a a a +++的最小值。

三、设12121,2,2,3,4,...n n n a a a a a n −−===+=证明:对整数5,n n a ≥必有一个模4余1的素因子 四、给定凸20边形P ,用P 的17条在内部不相交的对角线将P 分割成18个三角形,所得图形成为P 的一个三角形剖分图。

对P 的任意一个三角剖分图T ,P 的20条边以及添加的17条对角线均称为T 的边,T 的任意10条两两无公共端点的边的集合称为T 的一个完美匹配。

当T 取遍P 的所有三角剖分图时,求T 的完美匹配个数的最大值。

B2020年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图,在等腰ABC 中,AB BC ,I 为内心,M 为BI 的中点,P 为边AC 上一点,满足3AP PC ,PI 延长线上一点H 满足MHPH ,Q 为ABC 的外接圆上劣弧AB 的中点.证明:BHQH .证明:取AC 的中点N .由3AP PC ,可知P 为NC 的中点.易知,,B I N 共线,90INC .由I 为ABC 的内心,可知CI 经过点Q ,且QIB IBC ICB ABI ACQ ABI ABQ QBI ,又M 为BI 的中点,所以QM BI .进而||QM CN . ……………10分考虑HMQ 与HIB .由于MH PH ,故90HMQ HMI HIB .又90IHM INP ,故HM NPHI NI,于是 1122HM NP NC MQ MQHI NI NI MI IB.所以HMQ ∽HIB ,得HQMHBI . ……………30分 从而,,,H M B Q 四点共圆.于是有90BHQBMQ ,即BH QH . ……………40分二.(本题满分40分)给定整数3n .设122122,,,,,,,n n a a a b b b 是4n 个非负实数,满足1221220n n a a a b b b , 且对任意1,2,,2i n ,有21i i i i a a b b (这里211222211,,n nna a a ab b ).求122n a a a 的最小值.解:记122122n n Sa a ab b b . 不失一般性,设13212nS T a a a . 当3n时,因为32212113k kk Ta a 2221335511()()()02a a a a a a ,故结合条件可知233221212121133()34k k k k k k S T a a b b S . 又0S ,所以12S .当2(16)i i a b i 时,S 取到最小值12. ……………10分当4n时,一方面有212121211()nnk kkk k k a a b b S .另一方面,若n 为偶数,则22121152337211()()4nk kn n k T a a a a a a a a , 其中第一个不等式是因为15233721()()n n a a a a a a 展开后每一项均非负,且包含2121(1)k k a a k n 这些项,第二个不等式利用了基本不等式.……………20分若n 为奇数,不妨设13a a ,则12121212121311n n k k k kn k k a a a a a a215213723()()4n n T a a a a a a . 从而总有2221211416nk k k T S S a a .又0S ,所以16S . ……………30分 当1234124,0(52),0,16,0(32)i i a a a a a i n b b b i n 时,S 取到最小值16.综上,当3n 时,S 的最小值为12;当4n 时,S 的最小值为16.……………40分。

2020年全国高中数学联赛加试参考答案及评分标准(C卷)(1)

2020年全国高中数学联赛加试参考答案及评分标准(C卷)(1)

2020年全国高中数学联合竞赛加试(C卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图,四边形ABCD内接于圆 ,AB CD,,I J 分别为,K L.证明:圆AB CD于点,的内心,直线IJ分别交线段,ABC DBC上存在一点P,使得,,,C P I L四点共圆.B P J K四点共圆,且,,,D J M共线.A I M共线,,,……………10分如图,取P为MIJ的外接圆与圆 的第二个交点,下面证明点P满足条件.……………20分 事实上,BPJ MPJ BPMMIK BAM AKJ,故,,,B P J K四点共圆.……………30分类似地,CPI CPM MPI180CDM MJIMJL CDMDLI,故,,,C P I L四点共圆.……………40分二. (本题满分40分) 小明同学任选一个各项均为非零整数的等差数列{}n a ,随后他列出2020个关于x 的一元二次方程:212:0(1,2,,2020)i i i i E a x a x a i ,再将上述每个方程的根都写在黑板上.求此时黑板上两两不同的实根的个数的最大可能值.解:首先证明,至多有3个正整数i ,使得方程i E 有实根.设等差数列{}n a 的公差为d .仅需考虑0d 的情况(否则,当0d 时,每个方程i E 都可化简为210x x ,无实根).方程i E 即为2111()()0i i i a d x a x a d .若i E 有实根,则其判别式 22211114()()430i i i i i a a d a d d a ,故1,i a d. ……………10分由于区间,d3d ,故该区间至多包含等差数列{}n a 中的3项,即至多有3个正整数i ,使得方程i E 有实根. …………20分由于每个一元二次方程的实根不超过2个,故黑板上两两不同的实根不超过6个.另一方面,存在一个等差数列{}n a ,使得黑板上两两不同的实根达到6个.例如,令720(1,2,)n a n n ,此时方程21:13610E x x ,22:680E x x ,23:8150E x x ,它们的实根共有31,3,51312这6个. 综上所述,黑板上两两不同的实根的个数的最大可能值是6. ………40分三. (本题满分50分)设正整数,,a b c 中任意两个数不互素,且a b c 为素数.求a b c 的最小值.解:设正整数,,a b c 满足条件.显然,,a b c 均不为1.以下证明,,a b c 各含有至少两种不同的素因子.事实上,假如a 仅含有一种素因子p (即a 为p 的方幂),则由,b c 与a 不互素,可知,b c 均为p 的倍数,此时a b c 是p 的倍数且大于p ,故为合数,与条件矛盾.所以a 含有至少两种不同的素因子.同理可知,b c 亦具有此性质.………………10分现取23,25,35a b c ,此时,,a b c 两两不互素,31a b c 为素数,满足条件. ………………20分以下假设存在正整数,,a b c 满足条件,且a b c 为小于31的素数.不妨设a b c ,则291033a b c a .又a 含有至少两种不同的素因子,故只可能236a . ………………30分注意到,,b c 中必有一个数为奇数(否则a b c 是大于2的偶数,矛盾),不妨设c 为奇数;且,b c 中必有一个数不为3的倍数(否则a b c 为3的倍数且大于3,矛盾).若c 为奇数且不为3的倍数,那么57c ;若c 为奇数且为3的倍数,则35c ,而b 不为3的倍数,故25b .以上两种情况均导致31a b c ,与假设矛盾.综上,a b c 的最小值为31. ………………50分四. (本题满分50分)六边形123456A A A A A A 的每个顶点一开始都标有整数0.现允许进行如下两种操作:(i ) 任选两个相邻的顶点,将其中一个顶点上的数加2,另一个顶点上的数减3;(ii) 任选一个顶点,将该顶点上的数乘以6.能否通过若干次操作,使操作完成时顶点123456,,,,,A A A A A A 上的整数恰好分别为1,2,3,4,5,6?解:答案是否定的.将123456,,,,,A A A A A A 上的整数分别记为123456,,,,,a a a a a a (它们会随着操作而变化).令61(1)k k k S a . ……………20分当进行操作(i )时,设1,(16)i i A A i 是所选的两个顶点(下标按模6理解). 若是将1,i i a a 分别变为12,3i i a a ,则S 的增量为1(1)2(1)(3)(1)5i i i ;若是将1,i i a a 分别变为13,2i i a a ,则同理知S 的增量为1(1)5i .……………30分当进行操作(ii)时,设(16)i A i 是所选的顶点.由于操作后i a 变成6i a ,故S 的增量为(1)5i i a .综上,每一次操作均不改变S 模5的余数. ……………40分 一开始0S .假如某一时刻123456,,,,,a a a a a a 分别为1,2,3,4,5,6,则相应有12345630(mod5)S ,矛盾.所以不能通过若干次操作达到题目的要求. ……………50分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档