第六章 近独立粒子及其最概然分布
第六章近独立粒子的最概然分布
第六章近独立粒子的最概然分布6.1试根据式33d d d d d d d d d 2x y z x y z x y z L V n n n p p p p p p h π⎛⎫== ⎪⎝⎭h ,证明:在体积V 内,在ε到d ε+ε的能量范围内,三维自由粒子的量子态数为()()132232d 2d VD m hπεεεε=。
解:用动量空间的球坐标描述自由粒子的动量:sin cos ;sin sin ;cos x y z p p p p p p θϕθϕθ===对动量积分,得在p 到d p p +范围内量子态数为:2233d sin d d 4d Vp Vp V p p h hθθϕΩ==⎰⎰⎰π 自由粒子的能量动量关系为:22p mε=,因此2,d p m p p md εε==得体积V 内,在ε到d εε+的能量范围内,粒子的量子态数为:()132232()d 2d VD m hεεεε=π6.2证明,一维自由粒子,在长度L 内,在ε到d εε+的能量范围内,量子态数为()2d d 2L mD h εεεε=解:一维自由粒子在μ空间体积元d d x x p 内可能的量子态数为:d d d xx x p n h=在长度L 内,动量大小在p 到d p p +范围内的量子态数为2d x L n p h=将能量动量关系:22p mε=,代入,即得()122d d 2L m D h εεεε⎛⎫= ⎪⎝⎭6.3证明二维自由粒子,在面积2L 内,在ε到d εε+的能量范围内,量子态数为()222L D d md hεεε=π。
解:二维自由粒子在μ空间体积元d d d d x y x y p p 内的量子态数为:3d d d d d d x yx y x y p p n n h=动量空间的极坐标,p θ描述粒子的动量,,p θ与,x y p p 的关系为cos ,sin x y p p p p θθ== 用极坐标描述时,二维动量空间的体积元为d d d V p p θ=在面积2L 内,在p 到d p p +,θ到d θθ+范围内,自由粒子可能的状态数为-22d d h L p p θ 对d θ积分,可得面积2L 内,p 到d p p +范围内,二维自由粒子可能的状态数为:2-22d L h p p π 将能量动量关系:()-122m p ε=,代入,即有()2-2d 2d D L h m εεε=π6.4在极端相对论情形下 cp ε=,试求在体积V 内,在ε到的能量范围内三维粒子的量子态数.解:在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的状态数为234d V p p h π 将cp ε=带入,得V 内在能量ε到d εε+内,量子态数为:()()-32d 4d D V ch εεεε=π6.5系统有两种粒子,其粒子数分别为N 和N '。
热力学与统计物理学第六章(应用)_近独立粒子的最概然分布
al ln N E ln l al 0 l l al ln l 0 l 1,2,
l
al l e
l
或者
al
e
l
l
玻耳兹曼系统的最概然分布:麦克斯韦-玻耳兹曼分布(M.B) 拉氏乘子由下式确定:
不是独立变量
al 0
需满足条件:
N al 0
l
E l al 0
l
引入拉格朗日乘子 和
,建立辅助函数:
W (a1 , a2 , , al , ) ln N E
其全微分:
al ln N E ln l al 0 l l 26
l l
N ln N al ln al al ln l
当 al 有 al 的变化时,应有 ln 0
l l
ln ln al 1al ln lal
l l
25
的结论,因为
al ln ln l l
l
l
1
(经典极限条件或 所有的l 非简并性条件)
la
F . D.
l ! l l 1 l al 1 al ! ! l l a l ! l a l
l
M . B. al ! N!
l
l a
M . B. al ! N!
确定第 i 个粒子的力 学运动状态。
确定系统的微观运动状态需要
2 Nr
个变量。
qi1 ,, qir ; pi1 ,, pir i 1,2,, N
第六章近独立粒子的最概然分布
近独立粒子的最概然分布热力学和统计物理的关系:热力学是热运动的宏观理论,以实验总结的定律触发,经过严密的逻辑推理得到物体宏观热性质间的联系,宏观过程进行的方向和限度,从而结实热现象的有关规律。
而统计物理是热运动的微观理论,基本观点是认为宏观物质系统由大量微观粒子组成,宏观性质是大量微观粒子的集体表现,宏观热力学量则是相应微观力学量的统计平均值。
热力学验证统计物理,而统计物理揭示了热力学的本质。
μ空间:设粒子的自由度为r 。
经典力学中,粒子在任意时刻的力学运动状态由粒子的r 个广义坐标12r q ,q ,q 和与之共轭的r 个广义动量12r p ,p ,p 在该时刻的数值确定。
粒子的能量ε是其广义坐标和广义动量的函数:1r 1r (q ,q ;p ,p )ε=ε用1r 1r q ,q ;p ,p 共2r 个变量为直角坐标构成一个2r 维空间,称为μ空间。
粒子运动状态的经典描述和量子描述:① 一维谐振子在经典力学中,任一时刻,粒子的位置由它的位移x 确定,与之共轭的动量为p mx ∙=,它的能量是其动量和势能之和:222p 1m x 2m 2ε=+ω 在量子力学中,圆频率为ω的线性谐振子,能量的可能值为:n 1(n )2ε=ω+ ② 转子在经典力学中,用球极坐标(r,,)θϕ描述质点的位置: x rsin cos ,y rsin sin ,z rcos =θϕ=θϕ=ϕ.与坐标共轭的动量为222p mr ,p mr sin ∙∙θϕ=θ=θϕ质点的能量可以表示为22211(p p )2I sin θϕε=+θ在量子力学中,转子的能量是:2M 2Iε= 其中,2M 只能取分立值22M l(l 1),l 0,1,2,=+=③ 自由粒子在经典力学中,在三维空间中运动,在任意时刻的位置可由坐标(x,y,z)确定,与之共轭的动量为:x y z p mx,p my,p mz ∙∙∙=== 自由粒子的能量就是它的动能:222x y z 1(p p p )2mε=++. 在量子力学中,设粒子处在边长为的立方容器内,粒子三个动量分量的可能值为x x x 2p n ,n 0,1,2,L π==±± y y y 2p n ,n 0,1,2,L π==±± z z z 2p n ,n 0,1,2,Lπ==±± x y z n ,n ,n 就是表征三维自由粒子运动状态的量子数,三维自由粒子能量的可能取值为22222x y z 222x y z 2n n n 12(p p p )2m m L++πε=++=态密度:在体积V 内,动量大小在p 到p+dp 的范围内,自由粒子可能状态数为234V p dp h π,根据公式,算出,在体积V 内,在到的能量范围内,自由粒子可能的状态数为312232V D()d (2m)d hπεε=εε D()ε表示单位能量间隔内的可能状态数,称为态密度。
第六章:近独立粒子的最概然分布 热力学统计物理汪志诚
新课:§6.1 粒子运动状态的经典描述
1-d线性谐振子 自由度: 1 相空间维数:2 位置:x
动量:p mx
p2 1 m 2 x 2 能量: 2m 2
半长轴
a 2m
能量椭圆:
p2 x2 1 2 2m m 2
能量曲面包围的相体积:
( ) ab 2
例二、线性谐振子
自由度: 1 空间维数:2
位置:x
动量:p mx
p2 1 2 2 m x 能量: 2m 2
能量椭圆
p2 x2 1 2 2m m 2
p
x
新课:§6.1 粒子运动状态的经典描述小结
例三、转子 自由度:2
空间维数:4
z
, 位置:
p r 2 动量: p r 2 sin 2
新课:§6.1 粒子运动状态的经典描述
能量ε包围的相体积:
0 x L px
2 px px 2m 2m
V , 0
2 px
dxdpx dx
0
L
2 m
2 m
dpx 2 2m L
2m
新课:§6.1 粒子运动状态的经典描述
无外力矩时,转子的总角动 量守恒量
M rp r M 2 p mr p 0 z // M 选 则 2
1 1 1 1 2 2 2 ( p p ) ( p ) 2 2 2I sin 2 I sin
(2)三维自由粒子: 分解 自由度:r 3, r 6 位置:x y z 投影
动量:p x mx p y my
三个2-d子相空间
第六章 近独立粒子的最概然分布(复习要点)
第六章 近独立粒子的最概然分布(复习要点) 一、粒子微观运动状态的描述: 1、粒子运动状态的经典描述:①、相空间、自由度;广义坐标、广义动量;粒子微观状态()r r p p p q q q ,,,,,,2121⇔。
②、经典粒子的微观状态与μ空间体积元的对应关系: 对于经典系统,由于对坐标和动量的测量总存在一定的误差,假设0h p q =∆∆,这时经典系统的粒子运动状态不能用一个点表示,而必须用一个体积元表示,该体积元的大小rr rh p p qq 011=⋅δδδδ 即经典系统中粒子的一个微观状态在 μ 空间所占的体积。
这里0h 由测量精度决定的一个常数。
经典理论上00→h将μ空间划分为许多体积元lτ∆,以lε表示运动状态处在lτ∆内的粒子所具有的能量,则体积元lτ∆内粒子可能的运动状态数为r l lh 0τω∆=k l p p q q l r r l ,...2,1;)(11=∆∆∆∆=∆ τ其中2、粒子运动状态的量子描述:①、波粒二象性、波函数、量子力学中力学量的算符表示;薛定谔方程一组量子数波函数粒子微观运动状态↔↔这组量子数的数目等于粒子的自由度数(不考虑自旋,考虑自旋时应乘为自旋量子数,S S 12+)②、微观体积下,微观粒子的运动状态由波函数确定或由r (r 为自由度数。
空间自由度和一个自旋自由度)个量子确定。
并且微观粒子能量值和动量值的分离性很显著。
③、宏观体积下,量子态与相体积的关系---半经典近似如果粒子局域于宏观体积下运动,能量值和动量值是准连续的。
若粒子的自由度为r ,一个量子态占据的相体积为rh 。
在相体积元rrdp dp dq dq d ∙∙∙∙= 11τ内的可能微观量子态为rrr r h dp dp dq dq h d ∙∙∙∙= 11τ考虑r=3的六维相空间,相体积元zyxdp dp dxdydzdp d =τ内的微观量子态为33hdp dp dxdydzdp hd zy x =τ二、系统微观运动状态的描述1、全同粒子与近独立粒子系; ①、系统由具有完全相同属性(相同的质量、电荷、自旋等)的同类粒子组成。
热力学与统计物理教案:第六章 近独立粒子的最概然分布
为随机事件 A 出现可能性的客观量度,称为事件 A 发生的概率 PA :
lim PA
N
NA N
PA 0 , A 不可能发生; PA 1, A 肯定发生
显然 0 PA 1 。事实上,试验的次数不可能无限多,但是,只要试验次数足够多,我们就可
以用 NA 来表示事件发生的概率。如掷一质量均匀的硬币,若只掷少数几次,正面向上和背 N
统计物理中讨论的系统是由大量微观粒子组成的,大约有1023 数量级。描述大量粒子组
成的系统的宏观性质的物理量称为宏观量,描述单个粒子性质的物理量称为微观量。 粒子(指微观粒子)的运动状态是指它的力学运动状态。如果粒子遵从经典力学的运动
规律,对粒子运动状态的描述称为经典描述。如果粒子遵从量子力学规律,对粒子运动状态 的描述称为量子描述。当然,从本质上讲,微观粒子遵从量子力学规律,不过在一定极限条 件下,经典理论还是有意义的。 粒子运动状态的经典描述
相体积。 统计物理中的几个例子
(1)自由粒子
当自由粒子在三维空间中运动时,其自由度 3 ,所以相空间是 6 维的,粒子在任一时刻 的位置由坐标 x, y, z 确定,共轭的动量分别为 px mx , py my , pz mz ,
相空间坐标分别为 x, y, z, px , py , pz 。
微观粒子服从量子力学规律。
波粒二象性: 粒子 波
, p k
, p 粒子量,
,
k
波量
普朗克常量 h 1.0551034 J S , 2
量纲: T E L P M
海森堡不确定关系 qp ~ h
经典:粒子沿轨道运动。
量子:无轨道, x, p 不能同时确定。
量子态——量子力学中微观粒子的运动状态。 量子态数的计算,量子态的描述
第六章近独立粒子的最概然分布
S=klnW 并且称k 为玻尔兹曼常数。
§6.1 粒子运动状态的经典描述
1.粒子的运动状态
粒子:指组成宏观物质系统的基本单元。
例如:气体中的分子; 金属中的离子和电子; 辐射场中的光子。
粒子的运动状态是指它的力学运动状态。
pz2 )
等能面:px2 py2 pz2 2m
等能面是动量空间半径为 2m 的球面。
相空间体积(能量小于或等于ε):
dxdydz dpxdpydpz
4 V (2m )3/2
3
③线性谐振子
质量为m的粒子在弹性力 f = -kx 作用下,将在原点附近作圆频率 ω= ������/������ 的简谐振动,称为线性谐振子。
玻
在麦氏速度分布律的基础上,第一次考虑
尔 兹
了重力对分子运动的影响,建立了更全面的玻
曼
尔兹曼分布律,建立了玻尔兹曼熵公式。
dN
n0
(
m
2kT
3
)2
e
(
K
P
)
/
kT dv
x
dv
y dv
z
dxdydz
1877 年玻尔兹曼进一步研究了热力学第二定律的统计解释,
玻尔兹曼写道:“(热力学)第二定律是关于几率的定律,”在
气体中双原子分子的振动,晶体中的原子或离子在平衡位置附 近的振动均可看作是简谐运动。
自由度:1 μ空间维数:2
广义坐标 : q x,
广义动量: p px mx
能量: p2 1 m2x2
第6章 近独立粒子的最概然分布
西北师范大学物理与电子工程学院
6.1
粒子运动状态的经典描述
(2)、线性谐振子(自由度为1)
p2 1 ;能量ε 坐标x;动量p x mx mω2 x 2 2m 2
p
能量椭圆:
p2 x2 1 2ε 2m ε mω2
n=2 n=1 n=0 x
(3)、转子(自由度为2)
坐标θ , φ;动量pθ mr θ , pφ mr sin θ φ;
西北师范大学物理与电子工程学院
6.3
系统微观运动状态的描述
(3)、玻耳兹曼系统、玻色系统、费米系统 玻耳兹曼系统:由可分辨的全同近独立粒子组成,且处在一 个个体量子态上的粒子数不受限制的系统。 玻色系统:由不可分辨的全同近独立玻色子组成,且处在一个 个体量子态上的粒子数不受限制的系统。 费米系统:由不可分辨的全同近独立费米子组成,且处在一个 个体量子态上的粒子数最多只能为1,受泡利不相容原理的限制。
自旋角动量在外磁场方向上的投影Sz只能取两个值: S z 在外磁场方向的投影相应为: Z 在外磁场B中的势能为: μB
e 2m
1 2
e B 2m
将S z 表为S z m S , 描述粒子的自旋状态只 要一个量子数 m s, 1 它只能取两个分立的值 。 2
3
L 量子态数为: dn x dn y dnz dp x dp y dpz 2 π
由测不准关系:pq h 对应μ空间的一个体积元,量子相格。
自由度为r,相格大小为: q1, ,qr p1, ,pr hr
因此dnx dn y dnz 表示:Vdpx dp y dpz除以相格大小 hr而得到的 三维自由粒子在 Vdpx dp y dpz内的量子态数
第六章 近独立粒子的最概然分布(复习要点)
第六章 近独立粒子的最概然分布(复习要点) 一、粒子微观运动状态的描述: 1、粒子运动状态的经典描述:①、相空间、自由度;广义坐标、广义动量;粒子微观状态()r r p p p q q q ,,,,,,2121⇔。
②、经典粒子的微观状态与μ空间体积元的对应关系: 对于经典系统,由于对坐标和动量的测量总存在一定的误差,假设0h p q =∆∆,这时经典系统的粒子运动状态不能用一个点表示,而必须用一个体积元表示,该体积元的大小rr rh p p qq 011=⋅δδδδ 即经典系统中粒子的一个微观状态在 μ 空间所占的体积。
这里0h 由测量精度决定的一个常数。
经典理论上00→h将μ空间划分为许多体积元lτ∆,以lε表示运动状态处在lτ∆内的粒子所具有的能量,则体积元lτ∆内粒子可能的运动状态数为r l lh 0τω∆=k l p p q q l r r l ,...2,1;)(11=∆∆∆∆=∆ τ其中2、粒子运动状态的量子描述:①、波粒二象性、波函数、量子力学中力学量的算符表示;薛定谔方程一组量子数波函数粒子微观运动状态↔↔这组量子数的数目等于粒子的自由度数(不考虑自旋,考虑自旋时应乘为自旋量子数,S S 12+)②、微观体积下,微观粒子的运动状态由波函数确定或由r (r 为自由度数。
空间自由度和一个自旋自由度)个量子确定。
并且微观粒子能量值和动量值的分离性很显著。
③、宏观体积下,量子态与相体积的关系---半经典近似如果粒子局域于宏观体积下运动,能量值和动量值是准连续的。
若粒子的自由度为r ,一个量子态占据的相体积为rh 。
在相体积元rrdp dp dq dq d ∙∙∙∙= 11τ内的可能微观量子态为rrr r h dp dp dq dq h d ∙∙∙∙= 11τ考虑r=3的六维相空间,相体积元zyxdp dp dxdydzdp d =τ内的微观量子态为33hdp dp dxdydzdp hd zy x =τ二、系统微观运动状态的描述1、全同粒子与近独立粒子系; ①、系统由具有完全相同属性(相同的质量、电荷、自旋等)的同类粒子组成。
热力学与物理统计第六章03讲述
第六章 近独立粒子的最概然分布
经典力学中,粒子同时具有确定的动量和坐标,因 此可以用某一时刻粒子的动量和坐标描述粒子的运 动状态。
量子力学中,粒子不可能同时具有确定的动量和坐 标,那么,该如何描述粒子的运动状态?
在量子力学中,微观粒子的运动状态称为量子态。 量子态是用一组量子数表征,且这组量子数的数目 等于粒子的自由度数。
S 2 s(s 1) 2
其中s称为自旋量子数,可以是整数或半整数。 例如电子的自旋量子数为1/2 对自旋状态的描述还需要知道自旋角动量在其 本征方向(z轴)上的投影Sz。
共2s+1个可能的值。对于电子,有2个可能值。
第六章 近独立粒子的最概然分布
自旋角动量与自旋磁矩 质量为 m ,电荷为 - e 的电子,
在py到py+dpy可能的py有dny个
在pz到pz+dpz可能的pz有dnz个
第六章 近独立粒子的最概然分布
体积V=L3内,在px到px+dpx,py到py+dpy,pz到 pz+dpz的动量范围内自由粒子的量子态数
p
由于不确定关系,xp h 。
p p
即在体积元 h 内的各运动状态,
p
它们的差别都在测量误差之内,
其自旋磁矩 μ 与自旋角动量 S 大小的比值为:
e
S
m
当存在外磁场时,自旋角动量的本征方向沿外
磁场方向。以z表示外磁场方向,B为磁感应强
度。电子自旋角动量在z投影为
第六章 近独立粒子的最概然分布
自旋磁矩在z投影为
电子在外磁场中能量为
第六章 近独立粒子的最概然分布
三、系统微观运动状态的描述
系统的微观运动状态就是指它的力学运动状态。这 里讨论由全同和近独立粒子组成的系统
第六章 近独立粒子的最概然分布教案资料
热力学与统计物理课程教案第六章 近独立粒子的最概然分布 6.1 粒子运动状态的经典描述首先介绍如何描述粒子的运动状态。
这里说的粒子是指组成宏观物质系统的基本单元,例如气体的分子,金属的离子或电子,辐射场的光子等等。
粒子的运动状态是指它的力学运动状态。
如果粒子遵从经典力学的运动规律,对粒子运动状态的描述称为经典描述;如果粒子遵从量子力学的运动规律,对粒子运动状态的描述称为量子描述。
1、粒子运动状态经典描述的两种方法设粒子的自由度为r 。
经典力学告诉我们,粒子在任一时刻的力学运动状态由粒子的r 个广义坐标r q q q ,,,21 和与之共轭的r 个广义动量r p p p ,,,21 在该时刻的数值确定。
粒子能量ε是其广义坐标和广义动量的函数:()r r p p p q q q εε,,,;,,,2121 = 如果存在外场,ε还是描述外场参量的函数。
为了形象地描述粒子的力学运动状态,用r q q q ,,,21 ;r p p p ,,,21 共r 2个变量为直角坐标,构成一个r 2维空间,称为μ空间。
粒子在某一时刻的力学运动状态(r q q q ,,,21 ;r p p p ,,,21 )可以用μ空间中的一点表示,称为粒子力学运动状态的代表点。
当粒子运动状态随时间改变时,代表点相应地在μ空间中移动,描画出一条轨道。
2、下面介绍统计物理中用到的几个例子 (1)、自由粒子:自由粒子不受力的作用而自由运动,当在三维空间中运动时,它的自由度为3。
粒子在任一时刻的位置可由坐标z y x ,,确定,与之共轭的动量为:⋅⋅⋅===z m p y m p x m p z y x ,, 自由粒子的能量就是它的动能:()22221z y x p p p mε++=, 对应的μ空间是6维的。
(2)线性谐振子对于自由度为1的线性谐振子,在任一时刻,粒子的位置由它的位移x 确定,与之共轭的动量为⋅=x m p x ,它的能量是其动能和势能之和:2222221222x m m p x A m p ωε+=+=以x 和p 为直角坐标,可构成二维的μ空间,振子在任一时刻运动状态由μ空间中的一点表示。
热力学-统计物理第六章近独立粒子的最概然分布
又
E N
j 0
nj N
j N p j j
j 0
0 pj 1
p
j
j
1
是个概率。
找到微观粒子系统对能量分布的概率,就可以求出系统的能量。
目的:求出系统在热平衡状态的概率分布。
二、可分辨和不可分辨粒子系统 微观粒子全同性原理 (量子理论): 微观粒子(位置可以在大范围变化——非定域系) 是不可分辨的。 x x 波粒 二相性 重叠
研究对象的描述——引入何种假设、模型,如何 描述研究对象的运动状态(力学、几何)(第六章前 3节)。
如何求出概率分布——这是核心(第六章后5节)。
如何求出热力学量的统计表达式(七 、八 两章)。
主要内容
系统微观状态的经典描述和量子描述 等概率原理及微观状态分布 玻耳兹曼统计
玻色统计与费米统计
h3大小的相格内只能有一个运动状态;对于有r 个自
由度的粒子,hr相体积内只能有一个状态。所以在相 体积之dw内的量了态数为
dp V L3 ,p p 中的量子态数
,与动量的方向无关,积分之 球极坐 标系变 换
V dn 3 h
4V 2 p sin dpdd 3 p dp. h
空间中的一个 “点”进行描述。
相点:运动状态 相轨道:运动状态的变化 相体积:粒子状态代表点在μ空间所能充斥的范围。
二、 常见粒子微观运动状态描述实例
1、自由粒子
三维空间中,如果是直角坐标, 三个坐标 x, y, z 三个动量 能量 运动状态
, px mx
, py my
pz mz
L
x
即,一个量子态对应粒子相空间一个 h 大小的体积元。 三维自由粒子一个量子态对应粒子相空间体积元 h3。 则相空间体积 Vdpx dp中量子态数为 y dpz
第六章 近独立粒子的最概然分布 - 副本
2 kx nx L
2 px nx L
L ny
L ny
2 kz nz L
pz 2 nz L
2 ky ny L
2 py ny L
能
量:
2 2 2 2 x nx 2 mL
2 2 2 2 y ny 2 mL
2 2 2 2 z nz 2 mL
相空间 2维 2r 维
p2 A 2 p2 1 能量 是其动能和势能之和 m 2 x 2 x 2m 2 2m 2
中北大学
物理系
以x和p为直角坐标,可构成二维的μ空间,振子在任一时 刻运动状态由μ空间中的一点表示。 如果给定振子的能量ε,对应点的轨迹就由如下方程确定:
p2 2 m x2 2 m 2 1
由测不准关系可知,坐标和动量不能同时取确定的值,所 以量子态不能用相空间的一点来描述,而应用一个体积元, 称为相格,相格的大小为h.
一、经典描述 设粒子的自由度为r,粒子在任一时刻的力学运动状态由粒子 的r个广义坐标q1、q2、…qr和相应的r个广义动量p1、p2、…pr在该 时刻的数值确定,粒子能量ε是其广义坐标和广义动量的函数 即 更一般 ε = ε ( q1、q2、…qr , p1、p2、…pr) ε = ε (qi、pi、λi ) (i = 1、2、…r) λ为非参量
上式给出的能量值是分立的。分立的能量称为能级。
线性谐振子的能级是等间距的,相邻两能级的能量差为 ħ ,其大小取决于振子的圆频率。
中北大学
物理系
(三)自由粒子 空间中一个自由运动的粒子,假设此粒子限制在一个边 长为L的方盒子中运动。
y
A' 0 A
在量子力学中粒子的运动满足薛定谔方程:
热力学与统计物理:第六章 近独立粒子及其最概然分布
dny
L
2
dpy
dnz
L
2
dpz
在V=L3内,符合上式的量子态数:
dnx dny dnz
(
L
2
)3
dpx
dpy
dpz
可由不确定关系理解分母中的 h ----相格的概念
采用球极坐标, 用 p, , 代替 px , py , pz
px p sin cos py p sin sin pz p cos
量子数:3个
nx , ny , nz
n
p2 2m
p
2 x
p
2 y
2m
pz2
2 22
m
nx2
n
2 y
L3
nz2
简并度:6
.量子状态数与态密度
例五、求V=L3内在Px到Px+dPx, Py到Py+dPy, Pz到Pz+dPz间的自由粒子的量子态数与态密度。
在能级密集的假设下,令n连续
dnx
L
2
dpx
量子力学中,微观粒子的运动状态由波函数来描述,由一组
量子数来表征,量子数的数目即粒子的自由度数。
例一、自旋
电子、质子、中子等粒子具有内禀角动量(自旋)
或内禀磁矩。其量子数为 1
2
e
(SI )
Sm
自旋角动量在空间任意方向上的投影只能取两个值
1 Sz 2 mS , ms 1/ 2
在外场B中的势能为
N e s
s
E
e s s
s
S为所有量子态
几点说明:
1、以上求得的结果为极大值分布,即包含 状态数最多的分布,因为:
δ2 ln ln
高教热统答案第六章
第六章 近独立粒子的最概然分布习题6.2 试证明,对子一维自由粒子,再长度L 内,在ε到εεd +的能量范围内,量 子态数为:εεεεd m h L d D 2122)(⎪⎭⎫ ⎝⎛=证:一维自由粒子,x P 附近的量子态为x dP h L dn =;x x x x x dP m dP m m m dP P d m P εεεε21222+=⋅+==⇒=于是。
()εεεεd mh L d D 2+= 而 ±P x 对应同一能量ε,于是:()m h L m h L D εεε2222=⎪⎪⎭⎫ ⎝⎛⨯=习题6.3试证明,对于二维自由粒子,在长度L 2内,在ε到εεd +的能量范围内, 量子态数为()επεεmd hL d D 222=证:二维;在P x ,P y 附近dP x dP y 区间上内的粒子数。
ϕPdPd hSdP dP h S dn y x 22== (s -面积)因m P 22=ε只与P 有关(P >0),故对ϕ积分可得:()⎪⎪⎭⎫⎝⎛==m P h S PdP h S d D 222222ππεε,επd h mS m 22= ()22hmS D πε=⇒ (s=L 2) 习题6.4在极端相对论情形下,粒子的能量动量关系为cp =ε。
试求在体积V 内,在ε到εεd +的能量范围内能量范围内三维粒子的量子态数。
解:φθθd dpd p hVdp dp dp h V dn z y x sin 233==由于cp =ε只与p 有关,与θ、φ无关,于是⎰⎰===ππεππφθθεε200322323)(44sin )(hc V dp p h V d dpd p h V d D 以上已经代入了 c d p d cp =⇒=εε于是, 32)(4)(hc V D επε=习题6.5 设系统含有两种粒子,其粒子数分别为N 和N ’.粒子间的相互作用很弱,可看作是近独立的。
假设粒子可分辨,处在一个个体量子态的粒子数不受限制。
热力学统计 第6章 近独立日子的最概然分布
M l (l 1) , l 0, 1, 2, M z m , m l , l 1, , l 1, l
2 2
z
m r O
y
l (l 1) l ,m 2I l ,m
2
x
l 0, 1, 2, , m l , l 1,
m
O x x
三维线形谐振子:
nx 0, 1, 2, 3 nx ,ny ,nz (nx n y nz ) 2 , n y 0, 1, 2, nx ,ny ,nz nz 0, 1, 2,
——除了基态外,能量是简并的。
2.3 转子
自由运动的质点:r=3 定轴转动的刚体:r=1 定点转动的刚体:r=3
A O x z C
过定点轴线AC的方位 : 2 绕轴AC转动的角位置 : 1
任意运动的刚体:r=6
y
2.2 广义坐标 决定一个物体在空间的位置所需的独立量。
自由运动的质点:(x, y, z) (x, y, z , , , ) 任意运动的刚体:
1 2 1 2 2 k mv mr ( sin 2 2 ) 2 2
k p mr 2 p k mr 2 sin 2
1 2 1 2 k ( p 2 p ) ( I mr 2 ) 2I sin
x r O m (x, y, z)
d D( ) d
1.量子力学对粒子运动状态的描述
1.1 经典力学和量子力学对粒子运动状态的不同描述
经典力学:粒子可以同时有确定的坐标和动量,所以
ST(q1 , q2 ,
, qr , p1 , p2 ,
热力学统计物理第六章近独立粒子的最概然分布
若粒子有内部运动, 则 r 更大。如双原子分子, φ, p , pφ
一般地,设粒子的自由度为 r , 其力学运动状态由粒子 的 r 个广义坐标 q1、q2、…qr 和相应的 r 个广义动量 p1、 p2、… pr 共 2r 个量的值确定。粒子能量ε: ε=ε( q1、q2、…qr ,p1、p2、…pr ) 。 总之,微观粒子运动状态的经典描述是采用粒子的坐 标和动量共同描述的方法。
热统
而 S z (自旋方向取向量子化) 2 e e B e B B ms 所以 z 2m 2m m 即外场中的电子自旋状态只需要一个量子数 m s
2
13
2 自由粒子 (1)一维自由粒子: 自由运动的粒子被限制在边长为L的一维容器中。波函数 要满足一定的边界条件,采用周期性条件,即
能级为
2
1 , n 2
px
x
n 0, 1, 2,
热统 21
相邻两个状态之间所夹的面积为
2 1 1 n 1 n ( n 1 ) ( n ) h 2 2 推广之:粒子的一个状态在 空间中占有的体积为相格 hr
② 3D自由粒子:r = 3 , 设粒子处于体积 V 中。状态由 x、 y、z、px、py、pz 确定,μ空间是 6 维的。 粒子能量 ε= ( px2 + py2 + pz2 ) / 2m 动量子空间的半径 p p 2 p 2 p 2 2m x y z
热统
《第六章近独立粒子的最概然分布》作业评讲
《第六章 近独立粒子的最概然分布》作业评讲习题6.1试证明,在体积V 内,在ε到εεd +的能量范围内,三维自由粒子的量子态数为:()εεπεεd m hV d D 2123322)(⋅=证明:三维粒子局域于宏观体积下运动,其能量值和动量值是准连续的。
在六维相空间,相体积元z y x dp dp dxdydzdp d =τ内的微观量子态为:33h dp dp dxdydzdp h d zy x =τ 体积3L V =内,动量在范围z z z y y y x x x dP P P dP P P dP P P +++~,~,~的自由粒子量子态数。
3233sin hd dPd VP h dp dp Vdp h dp dp dxdydzdp zy x Vzy x ϕθθ==⎰⎰⎰对ϕθ,积分,可得体积3L V =内自由粒子动量大小在dP P P +~范围的量子态3220324sin hdPVP h d dPd VP πϕθθππ=⎰⎰由m 2P 2=ε进行变量代换:21)m 2(P ε=,εεd 21)m 2(dP 2121-⋅=代入上式可得:在体积V 内,在ε到εεd +的能量范围内,三维自由粒子的量子态数为:()εεπεεd mh V d D 2123322)(⋅=其中)(εD 为在ε到εεd +的能量范围内单位能量间隔的量子态数,称为量子态密度 证毕。
习题6.2 试证明,对子一维自由粒子,在长度L 内,在ε到εεd +的能量范围内,量子态数为:εεεεd m h L d D 2122)(⎪⎭⎫ ⎝⎛=证明:一维粒子局域于宏观长度L 内运动,其能量值和动量值是准连续的。
在二维相空间,相体积元x dxdp d =τ内的微观量子态为:hdxdp h d x=τ 在长度L x =内,动量在范围x x x dP P P +~的自由粒子量子态数。
h Ldp h dxdp xLx =⎰ 对x p 在范围P dP P ---~及dP P P +~积分,可得在长度L x =内,自由粒子动量大小在dP P P +~范围的量子态h Ldp h Ldp h Ldp pdp dp p p xx 2p =+⎰⎰---+ 由m 2P 2=ε进行变量代换:21)m 2(P ε=,εεd 21)m 2(dP 2121-⋅=代入上式可得:长度L x =内,在ε到εεd +的能量范围内,一维自由粒子的量子态数为:εεεεd m h L d D 2122)(⎪⎭⎫ ⎝⎛=习题6.3试证明,对于二维自由粒子,在面积L 2内,在ε到εεd +的能量范围内,量子态数为()επεεmd hL d D 222=证明:二维粒子局域于宏观面积L 2内运动,其能量值和动量值是准连续的。
第六章 近独立粒子及其最概然分布
p
上一页 下一页
目 录 退 出
6.2
粒子运动状态的量子描述
一、微观粒子的波粒二象性与测不准关系
微观粒子普遍地具有粒子和波动的二象性,一方面是客观存在的单个实 体,另一方面在适当的条件下显示干涉、衍射等波动的现象。 德布罗意波: 德布罗意,薛定谔
能量为、动量为p的自由粒子 对应 圆频率为、波矢为k的单色平面波
德布罗意关系: p k
适用于一切微观粒子。
h ; 其中h和都称为普朗克常量: h 6.626 10 34 J . S 2π 1.055 10 34 J . S
普朗克常数是物理中的基本常数, 它的量纲是[时间]· [能量]=[长度]· [动量]=[角动量]
结论:确定了系统的r个广义坐标和r个广义动量,就确定了体系的运动状态。
上一页 下一页
目 录 退 出
6.1 二、 空间
粒子运动状态的经典描述
把遵从经典力学规律的粒子看作是具有r个自由度的力学体系时,近独 立粒子的运动状态由粒子r个广义坐标和r个广义动量确定----构成一个 2r维抽象空间,称为空间,也称为粒子相空间。 μ空间中任何一点代表力学体系中一个粒子的一个运动状态,这个点称为 代表点(或相点)。当粒子运动状态随时间改变时,代表点相应地在μ空 间中移动,描画出一条轨迹,称为相轨迹。 ①、相点是一个粒子运动状态,而不是粒子,粒子只能在真实空间运动。 ②、任何粒子总可以找到与其对应的空间,不同自由度的粒子不能用同一 空间描述状态。 ③、若粒子受 i E 的限制,粒子状态只能在能量曲面内,称为相体积。 H H ,q ④、 空间中相轨道不相交,因为在物理问题中 P 是单 q p 值函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目 录 退 出
第六章
三、本章研究的系统:
近独立粒子及其最概然分布
近独立粒子组成的系统①粒子:分子、原子、离子、电子、光子等。②近 独立:粒子间有相互作用,但可忽略不计。 四、最概然分布
1、分布:指系统中粒子在能级上的填布情况。 2、最概然分布:也称最可几分布,是概率最大的一种分布。 3、体系有多种不同分布,可以证明,最概然分布出现的概率比其余各 种所有可能分布的概率之和好要大得多,因此,体系绝大部分时间处于 这种分布。故可用最概然分布代替体系处于平衡态式的分布。 4、意义:求得最概然分布以后,可求得体系的统计平衡性质。
③写出系统的哈密顿量
Pi L i q
i L, H H q1 , q2 ,qr;p1 , p2 , pr H Pi q
ii
只有保守力时,哈密顿量就是系统的总能量。 ④研究运动:运动规律有正则方程确定
H H ,q i P i qi pi
上一页
下一页
目 录
退 出
第六章
近独立粒子及其最概然分布
概 论
一、统计物理的基本观点和方法
1、基本观点:①宏观物体是由大量微观粒子组成的。②物质的宏观热 性质是由大量微观粒子运动的集体表现,宏观物理量是相应微观量的 统计平均值。 2、方法:深入到微观,从单个粒子的力学规律以及粒子间的相互作用 出发,对大量粒子组成的体系运用概率统计的方法。 二、任何统计理论要涉及解决的三个问题 1、研究对象是什么-------引入何种假设、模型,如何描述其研究对象的 运动状态(力学、几何) 2、如何求出概率分布-------这是核心。 3、如何求出热力学量的统计表达式。 本章为7、8章作准备,研究解决前两个问题。
结论:确定了系统的r个广义坐标和r个广义动量,就确定了体系的运动状态。
上一页 下一页
目 录 退 出
6.1 二、 空间
粒子运动状态的经典描述
把遵从经典力学规律的粒子看作是具有r个自由度的力学体系时,近独 立粒子的运动状态由粒子r个广义坐标和r个广义动量确定----构成一个 2r维抽象空间,称为空间,也称为粒子相空间。 μ空间中任何一点代表力学体系中一个粒子的一个运动状态,这个点称为 代表点(或相点)。当粒子运动状态随时间改变时,代表点相应地在μ空 间中移动,描画出一条轨迹,称为相轨迹。 ①、相点是一个粒子运动状态,而不是粒子,粒子只能在真实空间运动。 ②、任何粒子总可以找到与其对应的空间,不同自由度的粒子不能用同一 空间描述状态。 ③、若粒子受 i E 的限制,粒子状态只能在能量曲面内,称为相体积。 H H ,q ④、 空间中相轨道不相交,因为在物理问题中 P 是单 q p 值函统计物理学的研究方法
伽尔顿板实验
统计规律性的特点 (1)对大量随机事件整体起作用,对 少量粒子组成的系统失去意义. (2)在一定的宏观条件下,某一时刻 系统处在哪一个微观态是偶然的, 但处于某一微观态的概率是确定 的.改变宏观条件,不仅微观态发 生变化,而且系统处在一微观态的 概率也随之改变. (3)统计规律永远伴随着涨落. (4)宏观系统的演化是不可逆的,过 去和将来不等价, 即统计规律性 对时间反演是不对称的.
上一页 下一页
目 录 退 出
热力学与统计物理学的研究方法
动力学规律: 确定性的理论. 在一定的初始条件下,某一时刻系统必然处于一定状态.
统计规律: 非确定性的理论. 由于宏观系统中粒子数的巨大和粒子相互作用的随即性,无法跟踪单个 粒子进行研究,也使得系统整体具有了不能归结为单个粒子行为简单叠 加的新性质和新规律,即统计性质和统计规律.
上一页
下一页
目 录
退 出
第六章
近独立粒子及其最概然分布
6.1、粒子运动状态的经典描述 6.2、粒子运动状态的量子描述 6.3、系统微观运动状态的描述 6.4、等概率原理 6.5、分布和微观状态 6.6、玻耳兹曼分布 6.7、玻色分布和费米分布 6.8、三种分布的关系
上一页 下一页
目 录 退 出
6.1
i i i i
上一页
下一页
目 录
退 出
6.1
粒子运动状态的经典描述
三、常用粒子的空间及相体积: 1、三维自由粒子:自由度:3;μ空间维数:6
广义坐标: q1 x,q2 y,q3 z ,p2 py my ,p3 pz mz 广义动量: p1 px mx
热力学与统计物理学的研究方法
(热力学)
宏观理论
热现象 宏观量
微观理论
(统计物理学) 热现象 微观量
研究对象 物 理 量
出 发 点 方 法
优 点
观察和实验 总结归纳 逻辑推理
普遍,可靠 不深刻
微观粒子 统计平均方法 力学规律
揭露本质
缺 点
二者关系
无法自我验证
热力学验证统计物理学,统计物理学揭示热 力学本质
x y z
2 m
1
上一页
下一页
目 录
退 出
6.1
粒子运动状态的经典描述
三、常用粒子的空间及相体积:
2、对于一维自由粒子:(自由度为1)
px px
在μ空间中描述一维自由粒 子的方法:
空间:6维抽象空间,相体积元: dxdydzdp x dpy dpz
1 2 2 0 ~ , ( 即: ( px py p z2 ) ) 相体积:粒子在体积V内运动,能量介于 2m
所以粒子在μ空间能达到的相体积为:
3 4 dxdydz dpx dpy dpz V dpx dpy dpz V 2m 2 3 V 0 p2 p2 p2
粒子运动状态的经典描述
一、粒子运动状态的经典描述 若粒子(系统)有r个自由度,则研究方法分为以下几步为: q1 , q2 , qr ①确定描述系统力学运动状态的r个广义坐标: ②写出系统的拉氏函数: L E K - U
E K=E( ; U=U(q1 , q2 ,qr) K q1 , q2 ,qr;p1 , p2 , pr) p1 , p2 , pr为与r个广义坐标q1 , q2 ,qr 相对应的r个广义动量。