电力电子开关器件仿真模型的处理

合集下载

电力电子开关器件仿真模型比较

电力电子开关器件仿真模型比较

电力电子开关器件仿真模型比较张薇琳张波丘东元褚利丽(广州华南理工大学电力学院,广东广州510640)Modeling of Power Electronic DevicesZhang Wei-lin, Zhang Bo, Qiu Dong-yuan, Chu Li-li(College of Electric Engineering, South China University of Technology, Guangzhou, 510640, China)摘要:电力电子开关器件的模型建立一直是一个研究难点,其真实性和精确性是衡量建模的标准。

本文对基本电力电子开关器件如二极管、GTO、晶闸管、MOSFET和IGBT的现有仿真模型进行了归纳和总结,并比较了各种器件不同模型之间的优缺点和适用场合,由此为电力电子开关器件的分析提供研究基础。

关键字:功率二极管;GTO;晶闸管;MOSFET;IGBT;仿真模型Abstract: There is always a difficulty in modeling of power electronic devices, with the validity and accuracy as its judgment. This paper reviews generic modeling approaches and simulations of some power electronic devices, including power diode, GTO, thyristor, MOSFET and IGBT. Their basic principles are described and their merits and limitations are remarked, which provides a basis for analysis of power electronic devices.Key words: power diode, GTO, thyristor, MOSFET, IGBT, simulation model1引言电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。

实验报告-电力电子仿真实验

实验报告-电力电子仿真实验

电力电子仿真实验实验报告院系:电气与电子工程学院班级:电气1309班学号: 17学生姓名:王睿哲指导教师:姚蜀军成绩:日期:2017年 1月2日目录实验一晶闸管仿真实验........................................ 错误!未定义书签。

实验二三相桥式全控整流电路仿真实验.......................... 错误!未定义书签。

实验三电压型三相SPWM逆变器电路仿真实验..................... 错误!未定义书签。

实验四单相交-直-交变频电路仿真实验.......................... 错误!未定义书签。

实验五 VSC轻型直流输电系统仿真实验.......................... 错误!未定义书签。

实验一晶闸管仿真实验实验目的掌握晶闸管仿真模型模块各参数的含义。

理解晶闸管的特性。

实验设备:MATLAB/Simulink/PSB实验原理晶闸管测试电路如图1-1所示。

u2为电源电压,ud为负载电压,id为负载电流,uVT 为晶闸管阳极与阴极间电压。

图1-1 晶闸管测试电路实验内容启动Matlab,建立如图1-2所示的晶闸管测试电路结构模型图。

图1-2 带电阻性负载的晶闸管仿真测试模型双击各模块,在出现的对话框内设置相应的模型参数,如图1-3、1-4、1-5所示。

图1-3 交流电压源模块参数图1-4 晶闸管模块参数图1-5 脉冲发生器模块参数固定时间间隔脉冲发生器的振幅设置为5V,周期与电源电压一致,为(即频率为50Hz),脉冲宽度为2(即º),初始相位(即控制角)设置为(即45º)。

串联RLC分支模块Series RLC Branch与并联RLC分支模块Parallel RLC Branch的参数设置方法如表1-1所示。

表1-1 RLC分支模块的参数设置元件串联RLC分支并联RLC分支类别电阻数值电感数值电容数值电阻数值电感数值电容数值单个电阻R0inf R inf0单个电感0L inf inf L0单个电容00C inf inf C 在本系统模型中,双击Series RLC Branch模块,设置参数如图1-6所示。

Simulink电力电子仿真模块详细介绍

Simulink电力电子仿真模块详细介绍

Simulink电力电子仿真模块详细介绍1、二极管1.1、电路符号和静态伏安特性:1.2、模块图标:1.3、外部接口:二极管模块有2个电气接口和1个输出接口。

2个电气接口(a,k)分别位于二极管的阳极和阴极。

输出接口(m)输出二极管的电流和电压测量值(Iak、Vak),其中电流单位A,电压单位V。

1.4参数设置:(1)Resistance Ron:导通电阻,单位Ω,当电感为0时,电阻不能为0;(2)Inductance Lon:电感,单位H,当电阻为0时,电感不能为0;(3)Forward voltage Vf:正向电压,当二极管正向电压大于Vf后,二极管导通;(4)Initial current Ic:初始电流,通常为0;(5)Snubber resistance Rs:并联缓冲电路的电阻值,设置inf时取消缓冲电阻;(6)Snubber capacitance Cs:缓冲电路电容值,单位F,当电容为0时,取消缓冲电容;设置inf时,缓冲电路为纯电阻性电路;(7)Show measurement port:选中复选框,出现测量输出接线口m,可观测二极管的电流和电压值。

2、晶闸管模块2.1、原理当晶闸管承受正向电压(Vak>0)且门极有正的触发脉冲(g>0)时,晶闸管导通。

触发脉冲必须足够宽,才能使阳极电流Iak大于设定的晶闸管擎住电流I1,否则晶闸管任要转向关断。

导通晶闸管阳极电流下降到0,或者承受反向电压时关断。

2.2、电路负荷和静态伏安特性2.3、模块图例详细模块简化模块2.4、外部接口晶闸管模块有2个电气接口,1个输入接口和1个输出接口。

2个电气接口(a,k)分别对应晶闸管的阳极和阴极。

输入接口(g)为门极逻辑信号。

输出接口(m)输出晶闸管的电流和电压测量值(Iak、Vak),其中电流单位为A,电压单位为V。

2.5、参数设置:(1)Resistance Ron:导通电阻,单位Ω,当电感为0时,电阻不能为0;(2)Inductance Lon:电感,单位H,当电阻为0时,电感不能为0;(3)Forward voltage Vf:正向电压,晶闸管的门槛电压Vf;(4)Latching current Il:擎住电流,(简单模块无该选项);(5)Turn-off time Tq:单位s,它包括阳极电流下降到0的时间和晶闸管正向阻断的时间,(简单模块无该项);(6)Initial current Ic:初始电流,单位A,当电感值大于0时,可以设置仿真开始晶闸管的初始电流值,通常为0;(7)Snubber resistance Rs:并联缓冲电路的电阻值,设置inf时取消缓冲电阻;(8)Snubber capacitance Cs:缓冲电路电容值,单位F,当电容为0时,取消缓冲电容;设置inf时,缓冲电路为纯电阻性电路;(9)Show measurement port:选中复选框,出现测量输出接线口m,可观测晶闸管的电流和电压值。

基于开关平均化模型的PFC电路仿真

基于开关平均化模型的PFC电路仿真
(1-D)=1-Ai.out/5(4)
在PSPICE元件库中,表格式电压受控源可以按照数学表达式对控制信号进行运算。在此,我们用一个表格式电压源实现式(4)。最后,加上电压调节器就完成了整个系统模型的建立。完整的模型:乘法器电压源E1代替了主开关,乘法器电流源G1代替了续流二级管。式(3)由乘法器电压源E2和乘法器电流源G2实现,式(4)由表格式电压源E14实现。在模型中用到了电流控制电压源H1,主要是用来把电流信号转换为适合受控源输入信号要求的电压信号。
(a)开关模型结果 (b)受控源模型结果
图3PFC电路输入电流波形频谱分析
前已叙及,平均化模型是开关电路的低频等效模型。所以,对于低频信号或信号中的低频成分,两种模型应当等效,为此,我们对PFC电路仿真结果中的网侧输入电流波形进行了傅立叶分析,由于信号所含的频率在1kHz到开关频率之间的成分近似为零,所以,我们截取1kHz以下的频谱进行对照。结果见图3,其中(a)图为电路实际模型输入电流频谱,(b)图为平均化模型输入电流频谱。两图对照几乎重合。以50Hz为中心频率进行分析,结果表明,(a)图中心频率傅立叶系数为4.57A,谐波含量为6.2%,(b)图中心频率傅立叶系数为4.46A,谐波含量为5.9%。可以证明两个模型的低频等效性。
图2PFC电路平均化仿真模型
4仿真结果分析
为了验证平均化模型的准确性,将电路开关模型与平均化模型仿真结果进行了对比。仿真是利用PSPICE软件进行150ms的瞬态分析,开关频率为100kHz。从仿真结果看,对于开关模型的动态过程中,电压峰值为81.4V,稳态时,电压脉动为8.4V,输出电压平均值为73.6V,输入电感电流峰值为4.8A。对于平均化模型的动态过程中,电压峰值为80.8V,稳态时,电压脉动为8.3V,输出电压平均值为73.4V,输入电感电流峰值为4.76A。由于仿真结果的差别非常小,所以我们有理由认为,平均化模型有很高的可信度。

电力电子系统的建模与仿真研究

电力电子系统的建模与仿真研究

电力电子系统的建模与仿真研究一、引言随着工业化和信息化不断推进,电力电子成为了近些年来的热点研究领域之一。

电力电子技术是指在电力系统中对电能进行转换、控制和调节等过程中应用的电子技术,其所涉及到的领域包括功率电子器件、电磁兼容、系统控制等方面。

在电力电子系统的设计与开发过程中,建模与仿真技术已经发挥了重要的作用,本文将对电力电子系统建模与仿真研究进行探讨。

二、电力电子系统建模技术电力电子系统建模是指对于电力电子系统的各个组成部分进行抽象和模拟,以期能够得到该系统的整体性能和特性。

电力电子系统建模技术可以分为两类:物理建模技术和黑盒建模技术。

1.物理建模技术物理建模技术是指基于物理原理和电路等的数学模型对电力电子系统进行建模。

比如,对于交流变电站来说,可以利用电机理论及变压器的等效电路进行模拟。

物理建模技术适用于系统结构相对稳定和系统的单元较为清晰的情况下,能够更精确地反映工程实际应用。

2.黑盒建模技术黑盒建模技术是指将某些受控系统作为整体,而不考虑其内部结构和机制,将系统的输入和输出关系进行数学描述。

黑盒建模技术适用于系统内部结构复杂、组成部分很多或者对系统行为知识不够充分或不可预知的情况。

常用的黑盒建模技术包括ARMA、ARIMA、ARMAX、Gray Box等。

三、电力电子系统仿真技术电力电子系统仿真技术是指将建模结果转化为可以数字化处理的仿真模型,开展电力电子系统行为的数字化仿真分析。

在电力电子系统设计中,利用仿真技术可以预测系统性能、分析系统的优化方案和研究系统的控制策略。

电力电子系统的仿真技术包括离散时间仿真与连续时间仿真。

1.离散时间仿真离散时间仿真是指将一个连续时间的电路模拟器在存在离散时间的情况下进行仿真。

使用离散时间仿真可以很好地处理数值误差的问题。

通常,离散时间仿真适合于模拟具有整数时节性的系统。

离散时间仿真主要有的两种方法是事件驱动仿真和固定时间间隔仿真。

2.连续时间仿真连续时间仿真是指基于微分方程或者差分方程的模型对电力电子系统进行仿真。

电力电子开关器件仿真模型的处理

电力电子开关器件仿真模型的处理

电力电子开关器件仿真模型的处理作者:丁国臣姜玉红邵红来源:《科技创新导报》2011年第06期摘要:电力电子电路的开关器件是一种非线性时变元件,这就给电力电子电路的仿真带来麻烦,因此电力电子电路仿真的关键是如何处理好开关器件在仿真模型中的描述问题。

电力电子电路的仿真可借用很多专用仿真软件来进行,但不同仿真软件的特点是不一样的,本文重点讨论了Orcad/Pspice、MATLAB_SIMULINK等在电力电子电路中应用比较多的软件。

关键词:开关器件仿真模型 Orcad/Pspice MATLAB_SIMULINK中图分类号:TM421 文献标识码:A 文章编号:1674-098X(2011)02(c)-0088-021 引言通过对电力电子电路的仿真可以验证电路原理的正确与否、检查设计性能的好坏以及试验极限条件下的特殊情况等,从而达到减少研发费用、缩短设计时间及提高设计可靠性的目的。

电力电子电路的仿真主要有实时仿真、动态仿真以及CAA。

所谓实时仿真,就是在计算机上逼真的再现实际电力电子电路的运行过程;所谓动态仿真,就是在计算机上计算并绘制出电力电子电路的运行波形;而CAA就是指在计算机上计算并绘制出电力电子电路的某些特性。

电力电子电路的开关器件是一种非线性时变元件,这就使得电力电子电路难以直接用线性时不变方程描述,从而给仿真带来麻烦,因此电力电子电路仿真的关键是如何处理好开关器件在仿真模型中的描述问题。

目前,电力电子电路的仿真可借用很多专用仿真软件来进行,但不同仿真软件的特点是不一样的,能够应用的仿真模型也不一样,因此在仿真前,我们应要仔细分析仿真的目的,从而有针对性的建立模型和选择仿真软件。

2 开关器件的模型处理按照仿真的目的,一般情况下可将电力电子电路的仿真模型分成三类,即精确模型、准精确模型以及平均模型。

精确模型是指元件级仿真用模型,其优点是能反映电路运行中的细节问题,但模型建立复杂,仿真运行速度慢,软件运算的收敛性容易出问题;准精确模型是指系统级仿真用模型,其模型建立相对简单,仿真速度快;平均模型是指系统级仿真和辅助分析用模型,其模型建立简单,仿真速度极快。

四种软开关BOOST电路的分析与仿真(图清晰)

四种软开关BOOST电路的分析与仿真(图清晰)

四种常用BOOST带软开关电路的分析与仿真 (图清晰)软开关的实质是什么?所谓软开关,就是利用电感电流不能突变这个特性,用电感来限制开关管开通过程的电流上升速率,实现零电流开通。

利用电容电压不能突变的特性,用电容来限制开关管关断过程的电压上升速率,实现零电压关断。

并且利用LC谐振回路的电流与电压存在相位差的特性,用电感电流给MOS结电容放电,从而实现零电压开通。

或是在管子关断之前,电流就已经过零,从而实现零电流关断。

软开关的拓扑结构非常多,每种基本的拓扑结构上都可以演变出多种的软开关拓扑。

我们在这里,仅对比较常用的,适用于APFC电路的BOOST结构的软开关作一个简单介绍并作仿真。

我们先看看基本的BOOST电路存在的问题,下图是最典型的BOOST电路:假设电感电流处于连续模式,驱动信号占空比为D。

那么根据稳态时,磁芯的正向励磁伏秒积和反向励磁伏秒积相同这个关系,可以得到下式:VIN×D=(VOUT-VIN)(1-D),那么可以知道:VOUT=VIN/(1-D)那么对于BOOST电路来说,最大的特点就是输出电压比输入电压高,这也就是这个拓扑叫做BOOST电路的原因。

另外,BOOST电路也有另外一个名称:upconverter,此乃题外话,暂且按下不表。

对于传统的BOOST电路,这个电路存在的问题在哪里呢?我们知道,电力电子的功率器件,并不是理想的器件。

在基本的BOOST电路中:1、当MOS管开通时,由于MOS管存在结电容,那么开通的时候,结电容COSS储存的能量几乎完全以热的方式消耗在MOS的导通过程。

其损耗功率为COSSV2fS/2,fS是开关频率。

V为结电容上的电压,在此处V=VOUT。

(注意:结电容与静电容有些不一样,是和MOS 上承受的电压相关的。

)2、当MOS管开通时,升压二极管在由正向导通向反偏截止的过程中,存在一个反向恢复过程,在这个过程中,会有很大的电流尖峰流过二极管与MOS管,从而导致功率损耗。

电力电子的MATLAB仿真(54)

电力电子的MATLAB仿真(54)

7.1 MATLAB Simulink/Power System工具箱及应用简介Simulink工具箱的功能是在MATLAB环境下,把一系列模块连接起来.构成复杂的系统模型,它是Mathworks公司于1990年推出的产品;电力系统仿真工具箱(Power System Blockset)是在Simulink环境下使用的仿真工具箱,它由加拿大的Hydro Quebec和TECSIM International公司共同开发,其功能非常强大,可用于电路、电力电子系统、电视系统、电力传输等领域的仿真,它提供了一种类似电路搭建的方法用于系统的建模。

本章首先概述Simulink/Power System工具箱所包含的模块和Simulink,/Power System的模型窗口;其次介绍Simulink/Power System模块的基本操作、搭建Simulink/Power System系统模型的方法,及系统的仿真技术(以MATLAB6.1版本为基础,软件中仍然用三相符号A,B,C表示三相U,V,W)。

最后,重点介绍典型电力电子器件和常用典型环节的仿真模型及仿真实例,并对典型的电力电子变换器进行建模与仿真。

7.1.1 Simulink工具箱简介在MATLAB命令窗口中键人【Simulink】命令,或单击MATLAB工具栏中的Simulink图标,则可打开Simulink工具箱窗口,如图7-1所示。

图7-1 Simulink模型库界面在图7-1所示的界面左侧可以看到,整个Simulink工具箱是由若干个模块组构成,故该界面又称为工具箱测览器。

可以看出,在标准的Simulink工具箱中,包含连续模块组(Continuous)、离散模块组(Discrete)、函数与表模块组(Function &Tables)、数学运算模块组(Math)、非线性模块组(Nonlinear)、信号与系统模块组(Signals &Systems)、输出模块组(Sinks)、信号源模块组(Sources)和子系统模块组(Subsystems)等。

电力电子电路典型环节的MATLAB仿真毕业设计论文

电力电子电路典型环节的MATLAB仿真毕业设计论文

可修改可编辑教学单位电子电气工程系学生学号200895014075编号DQ2012DQ075 本科毕业设计题目学生姓名专业名称指导教师2010年月日电力电子电路典型环节的MATLAB仿真摘要:本文主要研究了电力电子电路典型环节的MATLAB仿真,首先介绍了MATLAB软件及其图形仿真界面Simulink的基础应用知识,然后介绍了用于电力电子仿真的SimPowerSystems中的各种模块库,完成了对整流电路、斩波电路典型环节的建模与仿真,并且给出了仿真结果波形。

通过MATLAB/SIMULINK软件来建立各电路的仿真模型,并且对各个模块和系统内部的参数进行设置,例如仿真算法、电子器件的选择和电源幅值和频率等,最终实现电力电子系统在MATLAB中的仿真。

仿真结果和理论分析结果相一致,验证了仿真建模的有效性和正确性。

最后,本文对研究成果进行了总结,并提出了进一步改进建议。

关键词:Matlab/Simulink,仿真,整流电路,斩波电路Abstract:This paper mainly studies the MATLAB simulation of the typical session to the power electronic circuit, This article first introduces the MATLAB software and the application of knowledge based on graphical interface Simulink simulation, and then introduced the various modules of SimPowerSystems library for the power electronic simulation, also completed Modeling and Simulation to the typical session of rectifier circuit and Chopper circuit, and show the results of the simulation waveform.Established various electric circuits through MATLAB/SIMULINK software the simulation model, and set the establishment to each module and the interior parameter of system, for example simulation algorithm, electronic device choice and electrical source peak-to-peak value and frequency and so on, finally realized simulation that the electric power electronics alternating-current circuit in MATLAB. Simulation result and theoretical analysis result consistent, has confirmed the simulation modelling validity and the accuracy.Finally, this paper summarizes the research results and makes suggestions for further improvement.Keywords:Matlab/Simulink , Simulation, Rectifier circuit, Choppercircuit目录第1章概述 (5)1.1国内外研究概况 (5)1.2本课题的研究内容 (5)1.3本课题的研究目的与意义 (6)第2章MATLAB/SIMULIK基础知识 (7)2.1MATLAB介绍 (7)2.1.1 MATLAB主要组成部分 (7)2.1.2 MATLAB的系统开发环 (8)2.2SIMULINK仿真基础 (9)2.2.1 SIMULINK启动 (10)2.2.2 SIMULINK的模块库介绍 (11)2.2.3 电力系统模块库的介绍 (12)2.2.4 SIMULINK的仿真步骤 (13)第3章整流电路的SIMULINK仿真设计 (15)3.1单相桥式整流电路的仿真 (15)3.1.1 单相桥式全控整流电路的工作原理 (15)3.1.2 建立仿真模型 (15)3.1.3 设置模型参数 (17)3.1.4 模型仿真 (18)3.2三相桥式整流电路的仿真 (21)3.2.1 三相桥式全控整流电路的工作原理 (21)3.2.2 建立仿真模型 (22)3.2.3 设置模型参数 (23)第4章斩波电路的SIMULINK仿真设计 (26)4.1降压斩波电路的仿真 (26)4.1.1 降压变换器的工作原理 (26)4.1.2 建立仿真模型 (27)4.1.3 设置模型参数 (28)4.1.4 模型仿真 (28)4.2升压斩波电路的仿真 (30)4.2.1 升压变换器的工作原理 (30)4.2.2 建立仿真模型 (30)4.2.3 设置模型参数 (31)4.2.4 模型仿真 (32)第5章仿真调试 (34)5.1模型仿真应注意的问题 (34)5.1.1 模型建立和仿真参数的设置 (34)5.1.2 仿真运行和观测仿真结果 (35)结论 (37)参考文献 (38)致谢 (40)第1章概述1.1 国内外研究概况电力电子技术综合了微电子、电路、自动控制等多学科知识,是电能变换与控制的核心技术,在工业、能源、交通、国防等各个领域发挥着越来越重要的作用。

Matlab 电力电子仿真教程

Matlab 电力电子仿真教程

降到0到晶闸管能重新施加正向电压而不会误导通的时间。
第5章 电力电子电路仿真分析
(a)
(b)
图5-7 晶闸管模块的电路符号和静态伏安特性 (a) 电路符号;(b) 静态伏安特性
第5章 电力电子电路仿真分析
SimPowerSystems库提供的晶闸管模块一共有两种:一
种是详细的模块(Detailed Thyristor),需要设置的参数较多; 另一种是简化的模块(Thyristor),参数设置较简单。晶闸管 模块的图标如图5-8。
电感Lon、直流电压源Vf组成的串联电路和开关逻辑单元来 描述。电力电子元件开关特性的区别在于开关逻辑和串联电 路参数的不同,其中开关逻辑决定了各种器件的开关特征; 模块的串联电阻Ron和直流电压源Vf分别用来反映电力电子 器件的导通电阻和导通时的电压降;串联电感Lon限制了器 件开关过程中的电流升降速度,同时对器件导通或关断时的 变化过程进行模拟。
第5章 电力电子电路仿真分析
图5-6 例5.1的仿真波形图
第5章 电力电子电路仿真分析
5.1.2 晶闸管模块
1. 原理与图标 晶闸管是一种由门极信号触发导通的半导体器件,图57所示为晶闸管模块的电路符号和静态伏安特性。当晶闸管 承受正向电压(Vak>0)且门极有正的触发脉冲(g>0)时,晶闸 管导通。触发脉冲必须足够宽,才能使阳极电流Iak大于设定 的晶闸管擎住电流I1,否则晶闸管仍要转向关断。导通的晶 闸管在阳极电流下降到0(Iak=0)或者承受反向电压时关断, 同样晶闸管承受反向电压的时间应大于设置的关断时间,否 则,尽管门极信号为0,晶闸管也可能导通。这是因为关断 时间是表示晶闸管内载流子复合的时间,是晶闸管阳极电流
第5章 电力电子电路仿真分析

电力电子实验报告仿真

电力电子实验报告仿真

电力电子实验报告仿真电力电子是关于电力系统中的电力变换和控制的一门学科,它主要应用于电力系统中的功率调节、电能质量控制和电能传输等方面。

在电力电子实验中,我们通过仿真软件对电力电子器件和系统进行建模、仿真和分析。

下面是一份关于电力电子实验仿真的报告,旨在介绍电力电子的基本原理、实验内容和结果分析。

实验名称:电力电子的仿真实验实验目的:通过仿真软件对电力电子器件和系统进行建模、仿真和分析,学习电力电子的基本原理和应用。

实验装置和器件:电力电子仿真软件、开关管、二极管、滤波电容、电源、负载等。

实验原理:电力电子是利用电子器件来对电能进行变换和控制的学科,其主要包括开关电源、直流调速、电能质量控制等方面。

在本实验中,我们将模拟建立电力电子器件和系统的模型,并通过仿真软件进行仿真和分析。

实验步骤:1.模拟建立电力电子器件和系统的模型。

根据实验要求,选择适当的电力电子器件和系统,建立相应的电路模型。

2.进行仿真实验。

在模拟建立模型后,通过仿真软件对电路进行仿真实验,记录下相关的参数和波形。

3.分析实验结果。

根据仿真结果,分析电路的性能和特点,探讨电力电子器件和系统的优化方案。

实验结果和分析:在本次实验中,我们选择了一个开关电源电路进行仿真实验。

通过调节电源和负载的参数,我们得到了不同工作状态下的电压、电流和功率波形。

根据仿真结果,我们可以看到开关电源具有宽的输入电压范围,输出电压稳定,响应速度快等特点。

同时,我们还发现,在输入电压变化较大时,开关电源的输出电压仍能保持稳定,表明开关电源具有良好的稳压性能。

结论:通过本次仿真实验,我们进一步了解了电力电子的基本原理和应用,学会了使用仿真软件进行电力电子器件和系统的建模、仿真和分析。

同时,通过对开关电源电路的仿真实验,我们验证了开关电源具有宽输入电压范围、稳压性好的优点。

实验心得:电力电子实验是电力专业中重要的实践环节,通过仿真实验,我们更深入地理解了电力电子的工作原理和特点。

电力电子开关器件仿真模型的处理

电力电子开关器件仿真模型的处理
极快 。
少运算量 。 ( ) 段 线 性 化 建立 的准 精 确 模 型 。 2分
对 电 力 电 子 电路 的开 关 器 件 的 建 模 基
本上 也 存 在 这 三 种 情 况 , 括 起 来 主要 有 概
以下 几种 处理 方 式 。
对 于 一 个 包 括 开 关 器件 的 动 态 系统 来
2开关器件的模型处理
按 照 仿 真 的 目的 , 般 情 况 下 可 将 电 一 力 电子 电 路 的 仿 真 模 型 分 成 三 类 , 即精 确
2 2准精 确模型 .
() 1R构 成 的 准精 确 模 型 。 如 果 用 一 个 较 小 的 电阻 作 为 开 关 导 通 时 的 模 型 , 一 个 较 大 的 电阻 作 为 开 关 关 用 断 时 的 模 型 , 电 力 电 子 电路 的仿 真就 会 对
简化 很 多 。 样 的处 理 使 电 力 电子 电路 仿 这 路 的运 行 过程 ; 谓 动 态仿 真 , 是 在 计算 模 型 建立 复 杂 , 真运 行 速 度慢 , 件 运 算 真 中对 微 秒 级 以 下 瞬态 过 程 的 分 析 就 不够 所 就 仿 软 机 上 计 算 并绘 制 出 电 力 电子 电路 的 运 行波 的 收 敛 性 容 易 出 问 题 ; 精 确 模 型 是 指 系 精 确 , 对 毫 秒 级 瞬 态过 程 的 分 析 还 是 足 准 但
形; c 而 AA就 是 指 在 计 算 机 上 计 算 并 绘 制
出 电力 电子 电路 的 某 些 特 性 。
电力 电子 电路 的 开 关 器 件 是 一 种 非 线 性 时 变 元 件 , 就 使 得 电 力 电 子 电 路 难 以 这 直 接 用 线 性 时 不 变 方 程 描 述 , 而 给 仿 真 从 带来麻烦 , 因此 电 力 电子 电路 仿 真 的 关 键

《控制系统数字仿真与CAD(第3版)》张晓华(习题解答)第2章-电力电子器件建模-IGBT

《控制系统数字仿真与CAD(第3版)》张晓华(习题解答)第2章-电力电子器件建模-IGBT

第七节电力电子器件建模一、问题的提出上一节“电力电子系统建模”中所涉及到的电力电子器件(GTO、MOSFET、IGBT)都是理想开关模型(“0”、“1”状态),如表1。

然而,当我们在研究微观时间尺度下的(电压电流)系统响应或者电力电子器件特性的时候,我们就必须对电力电子器件建立更精确的模型。

这里的电力电子器件模型将不再是状态空间表达式或者传递函数的形式,这是因为简单形式的状态空间表达式或者传递函数已经无法精确表达出器件的动、静态过程。

电力电子器件的精确模型主要应用在:器件模型换向过程(微观时间尺度上)、元器件张力、功率消耗、设计器件缓冲电路等情况下。

从某种意义上说电力电子器件建模是电力电子系统建模的补充。

表1 理想开关与实际功率开关对比二、建模机理1.电力电子器件建模需考虑的问题对于功率半导体器件模型的发展,除了考虑半导体器件在建模时所考虑的一般问题和因素之外,在建立比较精确的仿真模型时,以下几个问题必须优先考虑,这些问题在低功率器件中不成问题,但在功率电子器件中这几个问题它们支配了器件的静态和动态特性:(1). 阻系数的调制为了承受较高的电压,功率半导体器件一般都有一个稍微厚度搀杂半导体层,当器件导通时,这个层决定导通压降和功率损失。

这个电阻随电压和电流变化而变化,具有非线性电阻的特性。

单极型器件(MOSFET)中,电阻的变化是由有效电流导通区域变化所引起,另外随着外电场的增加迁移率的降低也会引起导通电阻的变化。

双极器件中,当器件导通时,电子和空穴充满了低搀杂层,此时注入的载流子密度比搀杂浓度还要高,这个区域的电阻明显的降低了。

在区域边界X 1到X r ,面积为A 的区域电阻由下式表示:⎰+=rX X p n p n qA dx R 1)(μμ 这里n 和p 分别是电子和空穴的密度,n μ和p μ是载流子的迁移率,载流子并不是均匀分布的,它们的密度也不是均匀的。

(2). 电荷存储量对于双极型器件而言,当处于导通状态时,载流子电荷被存储在低搀杂区域,这些载流子电荷在器件阻断之前,必须尽快地被移走,这过程是引起开关延时和开关损耗的根本原因。

电力电子建模

电力电子建模

令 d = D, vs = Vs ,则稳态(静态工作点)方程变为
⎧⎪ AX
⎨ ⎪⎩ Y
=
+ BVs CT X
=
0
(1.21)
式中 X, Y 分别表示 x 和 y 的稳态量,A = DA1 + D′A2 ,B = DB1 + D′B2 , CT = DC1T + D′C2T 。 式(1.21)也称为变换器的稳态状态空间平均方程。
连续平均法分为两种形式:
状态空间平均法:从变换器的不同拓扑下的状态空间方程出发,经过平均——小信号
扰动——线性化处理,得到表征变换器稳态和动态小信号特性的数学模型,最后也给出一个
统一的电路模型。
平均值等效电路法:从原变换器出发进行电路处理,最后得出一个等效电路模型。其
实,在推导平均值等效电路时只是处理电路中的开关元件,如开关晶体管和二极管等非线性
第 二 个 假 定 : 开 关 频 率 fs 比 变 换 器 中 低 通 滤 波 器 的 转 折 频 率 fc 大 得 多 。 即
fs fc 。这一假定在实际变换器中是成立的,因为这与要求输出电压纹波比其平均值
要小得多是一致的。由于开关频率高,可以认为输入电压 vs 在一个开关周期中是不变的。
第三个假定:扰动信号的频率 f p 与开关频率 fs 比较是很低的,即 f p fs 。一般认为
电力电子变换器是一个可以精确建模的系统,只要知道它的拓扑结构及开关控制策略, 就可以用相应的分段微分方程来描述。即 cycle-by-cycle 方法。
缺点:这种电力电子变换器的模型却无法实际应用于变换器性能的分析。 原因:用于描述电力电子变换器模型的分段微分方程模型,是一个不连续的模型,对 于不连续模型目前还没有一种可供借鉴的精确数学分析方法。

04_ADPSS建模及仿真应用tips

04_ADPSS建模及仿真应用tips
应用:基于模板案例,修改建模
举例:基于给定的一回直流模型,建立另一回直流模型,可批量将与原直流名称相关的标 识替换成待建直流模型的标识
编辑 更改元件名
批量替换元件名、 中间变量名
13
UDM加密
应用:在不影响案例计算的情况下,选择性地实现对二次系统 的保护
14
调试经验总结
3. 调试tips
15
机电-电磁混合仿真系统调试
小贴士
仿真结果不正确的可能原因: 1. 二次系统输入信号连接有误; 2. 二次系统输入信号处理有误。直接从ADPSS电磁暂态计算程 序一次电路输入的信号为标幺值,如二次系统是基于有名值建模 或虽然基于标幺值建模但基准与系统基准不同时,需进行转换
27
28
18
机电-电磁混合仿真系统调试
STEP3:无故障下,纯电磁暂态计算调试
– 调试方法:电磁网与机电网的边界母线接不含内阻抗的 电压源,线电压有效值和A相电压相角同该母线潮流数 据
– 要求:元件或模型输出变量曲线正常
19
机电-电磁混合仿真系统调试
STEP4:混合仿真参数配置检查
机电侧任务分配
电磁子网计算类型选 择“电磁暂态”
小贴士
脉冲分度(或时标) = 脉冲发生时刻距上一仿真时刻的时间 / 仿真步 长) RC缓冲电路参数选择方法:
1. R、C时间常数大于2倍的采样周期:R 2
2. 当器件截止时,流过RC的基波电流小于额定电流的0.1%:
C 1000 2
其中, 为变流器功率,VA; 为线电压,V;f为基波频率; 为采
样周期
牵引变电所 • 所建模型牵引变压器采用V/x接线
牵引网
• 牵引网供电方式有直接供电、BT(吸流变压器)供电、AT(自耦变压器) 供电、CC(同轴电缆)供电、带回流线的直接供电方式

用SPICE和PSPICE仿真开关电源

用SPICE和PSPICE仿真开关电源

用SPICE和PSPICE仿真开关电源 由于DC/DC PWM功率转换器的非线性,以及可能有的多种运行模式(CCM模式或DOM模式),使分析十分困难。

在设计或分析开关电源时,仿真起了重要作用。

数字仿真手段可以用来检验设计是否满足性能要求。

用数字仿真可以减少电路的实验工作,与电路实验相比仿真所需要的时间要少得多,并且可以更全面、更完整地进行,以帮助改进设计质量。

此外,仿真还可以提供某些信息。

因此仿真可以加速对开关电源的分析与设计评估,对于大信号分析,一般很难用解析法求解,更需要借助于数字仿真。

因此,仿真是介于开关电源的理论设计和硬件电路板实验之间的一个重要步骤。

有时应用仿真手段可以比硬件实验更透彻地了解理论设计中存在的问题及其解决方法。

在理论设计完成以后,可以先用一种简单的电路仿真模型来检验;实际电路存在着许多非理想的特性,如噪声,寄生电容、漏电感和线路电感、开关时间、二极管恢复过程等。

非理想元件可以在SPI(E模型中考虑,如每次仿真时,只考虑其中-个或两个问题,以研究它们对开关电源性能的影响,从而避免了许多由于非线性而产生的迷惑或复杂现象。

有些理论问题过于复杂或发展还不完善(如谐振转换器,漏电感对交叉调节的影响,电路的损耗等),要将这些理论应用于设计时,可以先用SPICE 仿真试验试探(Trial&error)分析。

SPICE仿真还可以用来分析一些潜在的问题,如伏安不平衡造成变压器饱和,不确定的RC钳位电压水平。

在实际电路中,这些问题可能会破坏功率晶体管或整流器;因此事先做仿真研究分析是必要的。

由于PSPICE是从SPICE派生出来的,所以本章主要结合SPICE来介绍它的应用,原则上这些论述也适用于PSPICE。

电力电子技术仿真

电力电子技术仿真

PSpice
总结词
电路级仿真的经典工具
详细描述
PSpice是一款由MicroSim公司出品的电路仿真软件,可以用于模拟和分析电路 性能。它支持模拟电路、数字电路和混合电路的仿真,提供了丰富的元件库和 精确的模型,能够准确地预测电路的性能。
LTSpice
总结词
专为电力电子设计者打造的电路仿真软件
详细描述
基于PSpice的电机驱动系统仿真
总结词
PSpice是一种电路仿真软件,可以用于模拟 和分析电机驱动系统的性能。电机驱动系统 通常包括电力电子开关、电机、控制器和电 源等部分。
详细描述
在PSpice中,可以使用元件库和模型库来构 建电机驱动系统的模型,并对其性能进行仿 真和分析。通过调整控制策略和电源条件, 可以观察到电机转速和电流的变化情况,以 及系统的稳定性和效率等。此外,PSpice还 可以进行故障模拟和可靠性分析,为电机驱
通过仿真可以验证和优化开关电源的控制策略,提高其输出性能和 稳定性。
电机驱动的仿真
电机驱动系统的建模
01
电机驱动系统包括电机、控制器和传动机构等部分,可以使用
电路和力学模型对其进行模拟。
电机驱动的控制策略
02
通过仿真可以验证和优化电机驱动的控制策略,提高其性能和
稳定性。
电机驱动的故障模拟
03
通过仿真可以模拟电机驱动系统在故障情况下的表现,为故障
提高仿真精度与效率
01
02
03
精细化建模
采用更精细的模型来模拟 电力电子系统的行为,提 高仿真精度。
并行仿真技术
采用并行计算技术,将仿 真过程分解到多个处理器 上同时进行,提高仿真效 率。
硬件在环仿真

基于matlab的电力电子技术仿真设计_课程设计

基于matlab的电力电子技术仿真设计_课程设计

基于matlab地电力电子技术仿真设计第1章绪论1.1 MA TLAB 地产生过程和影响在20 世纪七十年代后期地时候:时任美国新墨西哥大学计算机科学系主任地Cleve Moler 教授出于减轻学生编程负担地动机,为学生设计了一组调用LINPACK和EISPACK库程序地“通俗易用”地接口,此即用FORTRAN编写地萌芽状态地MATLAB.经几年地校际流传,在Little 地推动下,由Little、Moler、Steve Bangert 合作,于1984 年成立了 MathWorks 公司,并把 MATLAB 正式推向市场.从这时起,MATLAB 地内核采用C语言编写,而且除原有地数值计算能力外,还新增了数据图视功能.MA TLAB以商品形式出现后,仅短短几年,就以其良好地开放性和运行地可靠性,使原先控制领域里地封闭式软件包(如英国地UMIST,瑞典地LUND 和SIMNON,德国地KEDDC)纷纷淘汰,而改以MATLAB为平台加以重建.在时间进入20 世纪九十年代地时候,MATLAB已经成为国际控制界公认地标准计算软件.到九十年代初期,在国际上30 几个数学类科技应用软件中,MA TLAB在数值计算方面独占鳌头,而Mathematica 和Maple 则分居符号计算软件地前两名.Mathcad 因其提供计算、图形、文字处理地统一环境而深受中学生欢迎.MathWorks 公司于1993 年推出MA TLAB4.0 版本,从告别DOS 版.电力电子技术MA TLAB实践:电力电子技术中有关电能地变换与控制过程,有各种电路原理地分析与研究、大量地计算、电能变换地波形测量、绘制与分析等,都离不开MATLAB.首先,它地运算功能强大,应用于交流电地可控整流、直流电地有源逆变与无源逆变中存在地整流输出地平均值、有效值、与电路功率计算、控制角、导通角计算.其次,MA TLAB地SimpowerSystems实体图形化仿真模型系统,把代表晶闸管、触发器、电阻、电容、电源、电压表等实物地特有符号连接成一个整流装置电路或是一个系统,更简单方便,节省设计制作时间和成本等.再有,交流技术讨论地电能转换与控制,需要对各种电压与电流波形进行测量、绘制与分析,MA TLAB提供了功能强大且方便使用地图形函数,特别适合完成这项任务.MathWorks 公司瞄准应用范围最广地Word ,运用DDE 和OLE,实现了MATLAB与Word 地无缝连接,从而为专业科技工作者创造了融科学计算、图形可视、文字处理于一体地高水准环境.1997 年仲春,MA TLAB5.0 版问世,紧接着是5.1、5.2,以及和1999 年春地5.3 版.与4.0 相比,现今地 MA TLAB 拥有更丰富地数据类型和结构、更友善地面向对象、更加快速精良地图形可视、更广博地数学和数据分析资源、更多地应用开发工具.(关于MATLAB5.0 地特点下节将作更详细地介绍.)诚然,到1999 年底,Mathematica 也已经升到4.0 版,它特别加强了以前欠缺地大规模数据处理能力.Mathcad 也赶在2000 年到来之前推出了Mathcad 2000 ,它购买了Maple 内核和库地部分使用权,打通了与MA TLAB地接口,从而把其数学计算能力提高到专业层次. 但是,就影响而言,至今仍然没有一个别地计算软件可与MA TLAB匹敌. 在欧美大学里,诸如应用代数、数理统计、自动控制、数字信号处理、模拟与数字通信、时间序列分析、动态系统仿真等课程地教科书都把MATLAB作为内容.这几乎成了九十年代教科书与旧版书籍地区别性标志.在那里,MA TLAB是攻读学位地大学生、硕士生、博士生必须掌握地基本工具. 在国际学术界,MATLAB已经被确认为准确、可靠地科学计算标准软件.在许多国际一流学术刊物上,(尤其是信息科学刊物),都可以看到MATLAB地应用.在设计研究单位和工业部门,MATLAB被认作进行高效研究、开发地首选软件工具.如美国National Instruments 公司信号测量、分析软件LabVIEW,Cadence 公司信号和通信分析设计软件SPW等,或者直接建筑在MA TLAB之上,或者以MATLAB为主要支撑.又如 HP司地VXI 硬件,TM公司地DSP,Gage 公司地各种硬卡、仪器等都接受MATLAB地支持.1.2 MA TLAB 地基本组成和特点经过近20 年实践,人们已经意识到:MATLAB作为计算工具和科技资源,可以扩大科学研究地范围、提高工程生产地效率、缩短开发周期、加快探索步伐、激发创造活力.那么作为当前最新版本地MATLAB 7.0 究竟包括哪些内容?有哪些特点呢?5.0以前版本地MATLAB语言比较简单.它只有双精度数值和简单字符串两种数据类型,只能处理1 维、2 维数组.它地控制流和函数形式也都比较简单.这一方面与当时软件地整体水平有关,另方面与MA TLAB仅限于数值计算和图形可视应用地设计目标有关.从 5.0 版起,MA TLAB 对其语言进行了根本性地变革,使之成为一种高级地“阵列”式语言.1.3 MA TLAB 语言地传统优点MA TLAB自问世起,就以数值计算称雄.MA TLAB进行数值计算地基本处理单位是复数数组(或称阵列),并且数组维数是自动按照规则确定地.这一方面使MATLAB程序可以被高度“向量化”,另方面使用户易写易读.对一般地计算语言来说,必须采用两层循环才能得到结果.这不但程序复杂,而且那讨厌地循环十分费时. MA TLAB 处理这类问题则简洁快捷得多,它只需直截了当地一条指令y = exp(-2*t).*sin(5*t) ,就可获得.这就是所谓地“数组运算”.这种运算在信号处理和图形可视中,将被频繁使用.当A地列数大于行数时,x 有无数解.一般程序就必须按以上不同情况进行编程.然而对 MATLAB来说,那只需一条指令:x=A\b .指令是简单地,但其内涵却远远超出了普通教科书地范围,其计算地快速性、准确性和稳定性都是普通程序所远不及地.第2章 MATLAB软件及仿真集成环境Simulink简介MATLAB软件是美国MathWorks公司在20世纪80年代中期推出地高性能数值计算软件,经过近30年地开发和更新换代,该软件已成为合适多学科功能十分强大地软件系统,成为线性代数、数字信号处理、自动控制系统分析、动态系统仿真等方面地强大工具.MATLAB中含有一个仿真集成环境Simulink,其主要功能是实现各种动态系统建模、仿真与分析.在MA TLAB启动后地系统界面中地命令窗口输入”SIMULINK”指令就可以启动SIMULINK仿真环境.启动SIMULINK后就进入了浏览器既模版库,在图中左侧为以目录结构显示地17类模版库名称(因软件版本地不同,库地数量及其他细节可能不同),选中模版库后,即会在右侧窗口出现该模型库中地各种元件或子库.Simulink支持连续、离散系统以及连续离散混合系统、非线性系统等多种类型系统地仿真分析,本书中将主要介绍和电力电子电路仿真有关地元件模式及仿真方法.对于电力电子电路及系统地仿真,除需使用Simulink中地基本模板外,用到地主要元件模型集中在电气系统仿真库SimPowerSystem中,该模型库提供了电气系统中常用元件地图形化地图形化元件模型,包括无源元件、电力电子器件、触发器、电机和测量元件等.图形地元件模型使使用者可以快速并且形象地构建所需仿真系统结构.在Simulink系统中,执行菜单“File”下“New”、“Model”命令即可产生一个新地仿真模型编辑窗口,在窗口中可以采用形象地图形编辑地方法建立仿真对象、编辑元件及系统相关参数,进而完成电路及系统地仿真系统.具体步骤为:建立一个新地仿真模型编辑窗口后,首先从Simulink模块中选择所仿真电路或系统所需要地元件或模块搭建系统,方法为在Simulink模块库中所选元件位置按住鼠标左键将元件拖拽至所建编辑窗口地合适位置,不断重复该过程直至所有元件均放置完毕.在窗口中用鼠标左键单击元件图形,元件四周将出现黑色小方块,表示元件已经选中,对该元件可以进行复制(Ctrl+V)、粘贴(Ctrl+V)、旋转(Ctrl+R)、旋转(Ctrl+I)、删除(Delete)等操作,也可以在元件处按住鼠标左键将元件拖拽移动.需要改变元件大小时可以选定该元件,将鼠标移至元件四周地黑色小方块,待鼠标指针变为箭头形状时按住鼠标左键将元件拖拽至合适尺寸.(4)需要改变元件参数,可以在该元件处双击鼠标左键,即可弹出该元件地参数设置对话窗口进行参数设置.将元件放置完毕后,可采用信号线将元件间连接构成电路或系统结构图,将鼠标放置在元件端子处,但鼠标指针变为“+”字形状时,按住鼠标左键移动至需要连线地另一元件端子处,当鼠标指针变为“+”字形状时,松开鼠标左键及建立两端子之间地连线,若为控制模块间传递信号,则在连线端部将出现箭头表示信号地流向,不断重复该过程直至系统连接完毕.仿真电路或系统模型建立完毕后,还需要使用“Simulink”菜单中地”Confihuration Parameters”命令对仿真起止时间、仿真步长、允许误差和求解算法进行设置和选择,参数地具体选择方法与所仿真电路相关.(7)仿真模型建立完毕后,可以使用“file”菜单中地”Save”命令进行保存.2.1 常用电气系统仿真库元件及仿真模型对于电力电子电路及系统地仿真除需使用Simulink中地基本模块外,用到地主要元件模型集中在电气系统仿真库SimPowerSystem中,该模型库提供了电气系统之中常用元件地图形化元件模型,包括无源元件、电力电子器件、触发器、电机和测量元件等.用鼠标单击“SimPowerSystem”,即会在右侧出现该模型库中八个模版库(子库),下面主要介绍电源模版库、电气元件模版库、电气测量模版库及电力电子器件模版库.2.2 电气元件模块库用鼠标双击“Elements”图标,在窗口中显示29种电气元件.这些可以分为三大类:负载元件、传输线和变压器.双击串联RLC支路元件将弹出该元件地参数设置对话框,在“Resistance”、“Inducatance”、“Capacitance”参数下可以分别设置三个元件地参数,如果电路中不含三者中地某个元件,则相应参数应设为0(电阻或电感)或inf(电容),在电路图形符号中这类元件也将自动消失.串联RLC负载元件则是通过设置每个元件地容量,由程序自动计算元件地参数.并联RLC支路元件和并联RLC负载元件用于描述由电阻、电容、电感并联地电路,参数设置方法类似.在不考虑变压器铁心饱和时不勾选“Saturable core”.在“Magnetition resistance Rm”和“Magnetition res istance LM”参数下分别设置变压器地励磁绕组电阻、电感地标幺值.其他类型地变压器参数设置方法类似.第3章单相半波可控整流电路仿真3.1 电阻负载3.1.1 工作原理(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流.(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零.(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零.(4)直到电源电压u2地下一周期地正半波,脉冲uG在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复.3.1.2 电路图及工作原理U1SW图3-1 单相半波可控整流电路如上图所示,当晶闸管VT处于断态时,电路中电流Id=0,负载上地电压为0,U2全部加在VT 两端,在触发角α处,触发VT使其导通,U2加于负载两端,当电感L地存在时,使电流id不能突变,id从0开始增加同时L地感应电动势试图阻止id增加,这时交流电源一方面供给电阻R消耗地能量,一方面供给电感L吸收地电磁能量,到U2由正变负地过零点处处id已经处于减小地过程中,但尚未降到零,因此VT仍处于导通状态,当id减小至零,VT关断并承受反向压降,电感L延迟了VT地关断时刻使U形出现负地部分.3.1.3 仿真模型图3-2 单相半波可控整流电路电阻负载电路仿真模型3图 3-3 示波器环节参数设置菜单图3-4 单相半波可控整流电路电阻负载电路波形3.2 阻感负载图3-5单相半波可控整流电路电阻电感负载电路仿真模型图3-6单相半波可控整流电路电阻电感负载电路波形3.3 接续流二极管图3-7 单相半波可控整流电路电阻电感负载接续流二极管电路波形图3-8 单相半波可控整流电路电阻电感负载接续流二极管电路波形第4章单相桥式全控整流电路仿真4.1 单相桥式全控整流电路在单相桥式全控整流电路中,晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂.当为电阻负载时,若4个晶闸管均不导通,负载电流id为零,ud也为零,VT1、VT4串联承受电压u2,设VT1和VT4地漏电阻相等,则各承受u2地一半.若在触发角α处给VT1和VT4加触发脉冲,VT1和VT4即导通,电流从电源a端经VT1、R、VT4流回电源b端.当u2过零时,流经晶闸管地电流也降到零,VT1和VT4关断.在u2负半周,仍在触发延迟角α处触发VT2和VT3,VT2和VT3导通,电流从电源b端流出,经VT3、R、VT2流回电源a端.到u2过零时,电流又将为零,VT2和VT3关断.此后又是VT1和VT4导通,如此循环地工作下去,便构成了一个全波整流系统.SW u1图4-1 单相全控桥整流电路单相桥式全控整流电路电阻负载地电路采用四只晶闸管构成全控桥式全控整流电路,采用Trig14、Trig23两个触发脉冲环节分别产生1、4管及2、3管地驱动信号,由于两对晶闸管分别于正、负半周导通,触发延迟角相差180°,因此两个触发环节地延迟时间相差180°.电路中交流电源电压峰值为100V,频率为50Hz,初始相角为0°,负载电阻为2Ω.仿真结果如下图:图4-2单相桥式全控整流电路电阻负载仿真模型图4-3单相桥式全控整流电路电阻负载仿真波形4.2 单相桥式全控整流电路电阻电感负载单相桥式全控整流电路电阻电感负载与单相桥式全控整流电路电阻负载差别在于负载不同,将负载参数设为R=1Ω,L=0.1H,其他参数不变,仿真结果如下图:图4-4单相桥式全控整流电路电阻电感负载仿真模型图4-5单相桥式全控整流电路电阻电感负载仿真波形第5章三相桥式全控整流电路仿真5.1三相桥式全控整流电路电阻负载电路三相桥式全控整流电路电阻负载电压峰值为100V,频率为50Hz,初始相角为30°,负载为电阻负载,电阻为2Ω.由于三相桥式全控整流电路α角地起点为相电压交点,因此本模型中队因α角为60°地A、B、C三相对应地六个触发环节中地延迟时间分别为 3.33ms、6.67ms、10ms、13.33ms、16.67ms、0.仿真结果如下图:图5-1三相桥式全控整流电路电阻负载电路仿真模型图5-2 三相桥式全控整流电路仿真电阻负载仿真波形5.2三相桥式全控整流电路电阻电感负载电路图5-3三相桥式全控整流电路电阻电感负载电路仿真模型图5-4三相桥式全控整流电路电阻电感负载电路波形图总结通过这几天对课程设计所作地努力,成功完成了对电力电子技术中地单相半波可控整流电路、单相桥式全控整流电路、三相半波可控整流电路、三相桥式半控整流电路地计算机仿真实验.通过实践证明了MA TLAB/SIMUINK在电力电子仿真上地广泛应用.特别在数值计算应用最广地电气信息类学科中,熟练掌握MA TLAB可以大大提高分析研究地效率.通过这个课题学习MA TLAB软件地基本知识和使用技巧,熟练应用在电力电子技术中地建模与仿真.运用MA TLAB对电力电子电路进行仿真,加深了对电力电子知识地认识.通过老师与文献地帮助,掌握MATLAB软件,会了一些简单地操作与应用.致谢课程设计不仅仅是完成一篇论文地过程,而是一个端正态度地过程,是大学生活地一个过程,是在踏入社会前地历练过程.这个过程将使我受益匪浅!在这次课程设计中,使我明白了自己原来知识还比较欠缺.自己要学习地东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低.通过这次课程设计,我才明白学习是一个长期积累地过程,在以后地工作、生活中都应该不断地学习,努力提高自己知识和综合素质.在此要感谢我地指导老师柏逢明老师地指导,感谢老师给我地帮助.在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大.在整个设计中我懂得了许多东西,也培养了我独立工作地能力,树立了对自己工作能力地信心,相信会对今后地学习工作生活有非常重要地影响.而且大大提高了动手地能力,使我充分体会到了在创造过程中探索地艰难和成功时地喜悦.虽然这个设计做地也不太好,但是在设计过程中所学到地东西是这次课程设计地最大收获和财富,使我终身受益.参考文献[1] 洪乃刚.电力电子和电力拖动控制系统地MA TLAB仿真.机械工业出版社.2006.[2] 李维波.MA TLAB在电器工程中地应用.中国电力出版社.2007.[3] 王正林.MA TLAB/Simulink与控制系统仿真.电子工业出版社.2005.[4] 陈桂明.应用MA TLAB建模与仿真.机械工业出版社.2009.[5] 张葛祥,李娜.MATLAB仿真技术与应用.清华大学出版社.2008[6] 工兆安等.电力电子技术[M].北京:机械工业出版社.2007[7] 张平.MATLAB基础与应用简明教程[M].北京:北京航空航天大学出版社.2009[8] 飞思科技产品研发中心编.MA TLAB6.5应用接口编程.电子工业出版社.2008。

电力系统的matlab simulink仿真及应用

电力系统的matlab simulink仿真及应用
目前常用的电力系统仿真软件有: (1) 邦纳维尔电力局(Bonneville Power Administration, BPA)开发的BPA 程序和EMTP( Electromagnetic Transients Program)程序;
第1章 概 述
(2) 曼尼托巴高压直流输电研究中心(Manitoba HVDC Research Center)开发的PSCAD /EMTDC (Power System Computer Aided Design/Electromagnetic Transients Program including Direct Current)程序;
第1章 概 述
现在的SIMULINK都直接捆绑在MATLAB之上,版本也 从1993年的MATLAB4.0/ Simulink 1.0版升级到了2007年的 MATLAB 7.3/Simulink 6.6版,并且可以针对任何能够用数 学描述的系统进行建模,例如航空航天动力学系统、卫星控 制制导系统、通讯系统、船舶及汽车动力学系统等,其中包 括连续、离散、条件执行、事件驱动、单速率、多速率和混 杂系统等。由于SIMULINK的仿真平台使用方便、功能强大, 因此后来拓展的其它模型库也都共同使用这个仿真环境,成 为了MATLAB仿真的公共平台。
第1章 概 述
1983年的春天,Cleve到斯坦福大学进行访问, MATLAB深深吸引住了身为工程师的John Little。John Little 敏锐地觉察到MATLAB在工程领域的广阔前景,于是同年, 他和Cleve Moler、Steve Bangert一起用C语言开发了第二代 MATLAB专业版,由Steve Bangert主持开发编译解释程序; Steve Kleiman完成图形功能的设计;John Little和Cleve Moler主持开发各类数学分析的子模块,撰写用户指南和大 部分的M文件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子开关器件仿真模型的处理
摘要:电力电子电路的开关器件是一种非线性时变元件,这就给电力电子电路的仿真带来麻烦,因此电力电子电路仿真的关键是如何处理好开关器件在仿真模型中的描述问题。

电力电子电路的仿真可借用很多专用仿真软件来进行,但不同仿真软件的特点是不一样的,本文重点讨论了Orcad/Pspice、MATLAB_SIMULINK等在电力电子电路中应用比较多的软件。

关键词:开关器件仿真模型Orcad/Pspice MATLAB_SIMULINK
1 引言
通过对电力电子电路的仿真可以验证电路原理的正确与否、检查设计性能的好坏以及试验极限条件下的特殊情况等,从而达到减少研发费用、缩短设计时间及提高设计可靠性的目的。

电力电子电路的仿真主要有实时仿真、动态仿真以及CAA。

所谓实时仿真,就是在计算机上逼真的再现实际电力电子电路的运行过程;所谓动态仿真,就是在计算机上计算并绘制出电力电子电路的运行波形;而CAA就是指在计算机上计算并绘制出电力电子电路的某些特性。

电力电子电路的开关器件是一种非线性时变元件,这就使得电力
电子电路难以直接用线性时不变方程描述,从而给仿真带来麻烦,因此电力电子电路仿真的关键是如何处理好开关器件在仿真模型中的描述问题。

目前,电力电子电路的仿真可借用很多专用仿真软件来进行,但不同仿真软件的特点是不一样的,能够应用的仿真模型也不一样,因此在仿真前,我们应要仔细分析仿真的目的,从而有针对性的建立模型和选择仿真软件。

2 开关器件的模型处理
按照仿真的目的,一般情况下可将电力电子电路的仿真模型分成三类,即精确模型、准精确模型以及平均模型。

精确模型是指元件级仿真用模型,其优点是能反映电路运行中的细节问题,但模型建立复杂,仿真运行速度慢,软件运算的收敛性容易出问题;准精确模型是指系统级仿真用模型,其模型建立相对简单,仿真速度快;平均模型是指系统级仿真和辅助分析用模型,其模型建立简单,仿真速度极快。

对电力电子电路的开关器件的建模基本上也存在这三种情况,概括起来主要有以下几种处理方式。

2.1 RLC构成的精确模型
如果用一组可变参数的电阻、电容以及电感所组成的网络来精确模拟电力电子开关的开关过程,且能够很好的模拟开关器件的上升、下降时间,通态压降,关断漏电流等参数,就可对电力电子电路运行时微秒级以下的瞬态特性进行仿真,Pspice软件就可以形成此元件级模型。

2.2 准精确模型
(1)R构成的准精确模型。

如果用一个较小的电阻作为开关导通时的模型,用一个较大的电阻作为开关关断时的模型,对电力电子电路的仿真就会简化很多。

这样的处理使电力电子电路仿真中对微秒级以下瞬态过程的分析就不够精确,但对毫秒级瞬态过程的分析还是足够精确的,如果不需要分析开关器件开关过程的损耗、开关过程引起的尖峰等问题,就可以用这种开关模型简化仿真过程,减少运算量。

(2)分段线性化建立的准精确模型。

对于一个包括开关器件的动态系统来说,假定开关的开关过程是瞬时完成的,则每一个开关状态将对应一个固定的拓扑,即一个线性的时不变系统,因此就可以分别建立相应的线性状态方程。

这样我们就将一个非线性的时变系统变成了一系列在时间系列上分段线性化的线性时不变系统。

这样处理就可以利用我们所熟知的线性系统的求解方法来进行求解。

即把一个具有一定时间序列的j个开关状态的电力电子设备,列出k个开关周期中各开关状态对应的状态方程组:
其中Tk,j表示第K个开关周期中的第j个状态的转换时刻。

状态变量X为动态元件如电容上的电压和电感中的电流,如前所述由于状态是连续的,所以第j个状态的终值将成为第j+1个状态初值。

得出了上面的几组状态方程之后,就可通过迭代的方法逐点求解电路的状态,其中每个状态的最后一个解就是下一个状态的初始值。

采用上述方法进行仿真计算时,由于假定开关的开关过程是瞬时完成的,所以其实用范围一般不能用于分析开关器件的开关特性及由此引起的问题。

(3)改进的准精确模型。

假定开关过程是瞬时完成,如果将开关器件的状态转换所引起的系统变化用状态方程的输入量变化来表示,并且有开关状态变化时下面的状态方程中A、B、C、D都不会发生变化,只有u*发生变化,则仿真中只需在适当的时候改变u*,其他时候状态方程中把u*看成是常数
就可求解。

此方法由于假定了开关过程是瞬时完成,从而难以用于分析开关器件的瞬态特性,但是分析系统稳态特性和大信号特性时的却非常有用,对建模水平的要求也高一些。

2.3 平均模型
前面所用方法虽然可以解决物理对象到仿真模型的转换问题,但是这些处理方法都无法给出系统的解析模型,从而使电力电子电路的一些控制特性的分析和仿真变得困难,如果使用状态空间平均方法,当状态空间平均模型是非线性和时变的时,用交流小信号线性模型和直流模型替代他。

这样就可以得到电力电子开关的近似解析模型——即平均模型。

3 含开关器件的电力电子电路仿真方法简介
在电力电子电路的仿真中,目前还没有一种仿真软件和方法可以完全替代所有的试验,不同的方法和软件有不同的特点和针对性,因此必须对各种方法的特点有所了解,了解各种建模仿真方法的性质和局
限性,并对这些局限性对仿真结果可信度的影响有深入了解。

需要指出的是,目前仿真软件的发展是非常迅速的,过去侧重于一个方面性能的软件,都在想办法弥补其不足,使其功能更强大,使用面更宽。

在电力电子电路的仿真中应用比较多的软件主要有Orcad/Pspice、MATLAB_SIMULINK、EDA,Multisim2001、EWB、Saber 等。

下面仅以MATLAB_SIMULINK和Orcad/Pspice软件为例简要介绍一下含开关器件的电力电子电路的仿真。

3.1 MATLAB_SIMULINK仿真电力电子电路
(1)MATLAB_SIMULINK简介。

MATLAB_SIMULINK环境是1992年Moler博士与一批软件专家所推出的交互式模型输入与仿真环境,由于MATLAB提供了强大的矩阵处理和绘图功能,很多专家在自己擅长的领域编了一些特殊的工具箱,更加推动了MATLAB应用范围的扩大。

使用MATLAB进行电力电子电路的仿真可满足大部分的目标要求,且简单、方便,电力电子方面的工具箱功能也越来越强大,因此MATLAB_SIMULINK已成为电力电子电路仿真的重要工具。

(2)开环逆变电源的仿真。

开环逆变电源的电路原理图,图中滤波电感L与滤波电容C构成低通滤波器,r是考虑滤波电感L的等效串联电阻、死区效应、开关管
导通压降、线路电阻等逆变器中各种阻尼因素的综合等效电阻。

Ud 为直流母线电压,u1为逆变桥输出电压,u0为逆变器输出电压,i1为流过滤波电感的电流。

i0代表负载电流,可以把它看作是系统的一个外部扰动输入量,这样处理的好处是既符合逆变器负载多种多样的实际情况,又可以建立一个形式简单且不依赖具体负载类型的逆变器数学模型。

假设功率开关管是理想器件,选择电容电压u0和电感电流i1作为状态变量,可得滤波器的状态空间表达式如下:
式中,u1*为逆变桥输出、滤波器输入电压,i0为负载电流。

对于半桥电路,逆变桥输出u1*是Ud/2或-Ud/2;对全桥电路,逆变桥输出u1*是Ud或Ud。

开环逆变电源仿真模型如图1所示。

3.2 Orcad/Pspice仿真电力电子电路
(1)Orcad/Pspice介绍。

1998年Orcad公司与开发Pspice软件的Microsim公司实现了强强联合,推出了最新版本Orcad/Pspice9,不仅大大丰富和完善了模拟电路的分析功能,也进一步增强了数字电路、数/模混合电路的分析功能。

(2)buck变换器的仿真。

buck变换器如图2所示,采用Orcad9.1进行仿真,其模型如图3所示。

4 结语
本文对电力电子电路中开关器件的仿真模型作了一个较为全面的分析和介绍,给出了各种模型的仿真原理,并对不同的模型做了比较和说明,最后还介绍了比较典型的仿真软件,希望能为广大读者的研究工作起到抛砖引玉的作用。

参考文献
[1]陈坚.电力电子学[M].高等教育出版社,2004.
[2]张亮等.MATLAB7.x系统建模与仿真[M].人民邮电出版社,2006.
[3]陈杰.MATLAB宝典[M].电子工业出版社,2007.。

相关文档
最新文档