导数的单调性及极值
函数的极值与导数
x3 x4 b x
1.在点x1附近都有f(x)﹤f (x1), x1叫函数f(x)的一个极大值点, f (x1)叫做函数f (x)的极大值,记作y极大值= f (x1);
2.在点x2附近都有f(x)>f (x2), x2叫函数f(x)的一个极小值点, f (x2)叫做函数f (x)的极小值,记作y极小值= f (x2);
二、问题情境:
已知y=f(x)的函数图像如下,请观察后回答:
y
R
y=f(x)
f '(x1)= ?
S
P Q
极值点
o a x1 x2
x3 x4 b x
1. f '(x)>0 的区间有:__(a_,_x_1_),_(_x_2,_x_3_),_(_x4_,_b_) f '(x)<0 的区间有:____(x_1_, _x_2)_,(_x_3_, _x_4)___
2. f '(x1)=__0__ f '(x2)=0, f '(x3)=0, f '(x4)=0,
3. x1, x2, x3, x4这些点处相应的函数值还具有怎样的特点?
三、极值概念:
已知y=f(x)的函数图像如下,请观察后回答:
y
R
y=f(x)
f '(x1)= 0
S
自变量的值
P Q
极值点
o a x1 x2
函数的极值与导数
一、知识回顾:
函数的导数与单调性:
一般地,设函数y=f(x)在某个区间(a,b)内有导数,若:
f '(x)>0
y=f(x) 在(a,b)上增函数;
f '(x)<0
y=f(x) 在(a,b)上减函数
【2021新高考数学】利用导数求函数的单调性、极值 、最值
【举一反三】
1.函数 y=4x2+1的单调增区间为________. x
1,+∞ 【答案】 2
【解析】
由
y=4x2+1,得 x
y′=8x-x12(x≠0),令
y′>0,即
8x-x12>0,解得
x>1, 2
∴函数
y=4x2+1的单调增区间为
2
.
2
2
当 x (, 2 ) 时,函数为增函数;当 x ( 2 , ) 时,函数也为增函数.
2
2
令 f (x) 6x2 3 0 ,解得 2 x 2 .当 x ( 2 , 2 ) 时,函数为减函数.
2
2
22
故函数 f (x) 2x3 3x 的单调递增区间为 (, 2 ) 和 ( 2 , ) ,单调递减区间为 ( 2 , 2 ) .
当求得的单调区间不止一个时,单调区间要用“,”或“和”字等隔开,不要用符号“∪”连接
【举一反三】 1.函数 y=4x2+1的单调增区间为________.
x 2.函数 f(x)=x·ex-ex+1 的单调增区间是________. 3.已知函数 f(x)=xln x,则 f(x)的单调减区间是________. 4.已知定义在区间(-π,π)上的函数 f(x)=xsin x+cos x,则 f(x)的单调增区间是_______.
2x 2 (1)求 a 的值; (2)求函数 f(x)的极值.
第十四讲 利用导数求函数的单调性、极值 、最值
【套路秘籍】
一.函数的单调性 在某个区间(a,b)内,如果 f′(x)>0,那么函数 y=f(x)在这个区间内单调递增;如果 f′(x)<0,那么函数 y=f(x) 在这个区间内单调递减. 二.函数的极值 (1)一般地,求函数 y=f(x)的极值的方法 解方程 f′(x)=0,当 f′(x0)=0 时:
高中数学导数与函数的极值与单调性
高中数学导数与函数的极值与单调性在高中数学中,导数与函数的极值与单调性是一个重要且基础的概念。
理解导数与函数的极值与单调性对于解决一些函数的问题非常关键。
本文将通过讨论导数的概念、求导法则以及函数的极值和单调性来详细介绍这个主题。
一、导数的概念与求导法则1. 导数的概念函数的导数表示函数在某一点的变化率,可以理解为函数曲线在该点处的切线的斜率。
导数通常用符号"f'(x)"或"dy/dx"表示。
对于函数y=f(x),其导数可以通过求导得到。
2. 求导法则求导法则是一类用于求函数导数的规则,常见的包括常数法则、幂函数法则、和差法则、乘积法则和商法则等。
这些法则可以帮助我们计算各种函数的导数,从而研究其极值和单调性。
二、函数的极值1. 极值的定义极值是函数在一定区间内取得的最大值或最小值。
极大值表示函数取得的最大值,而极小值表示函数取得的最小值。
2. 寻找极值的方法要寻找函数的极值,我们需要分析函数的导数和二阶导数。
首先,通过求导得到函数的导数,然后找到导数为零或不存在的点。
接下来,求取这些点的二阶导数,通过二阶导数的正负性来判断极值的情况。
三、函数的单调性1. 单调性的定义函数的单调性是指函数在定义域内的变化趋势。
如果函数在某个区间上的导数始终大于零,那么该函数在该区间上是递增的;如果导数始终小于零,函数在该区间上是递减的。
2. 单调性的判断方法为了判断函数的单调性,我们可以先求取函数的导数,并对导数进行分析。
通过导数的正负性可以判断函数在某个区间上是否递增或递减。
如果导数恒大于零,则函数在该区间上递增;如果导数恒小于零,则函数在该区间上递减。
四、综合应用举例下面通过一个例子来综合运用导数与函数的极值与单调性。
例:函数f(x) = x^3 - 3x^2 - 9x + 5,在[-2, 4]区间上的极值与单调性。
解:首先,求取函数的导数:f'(x) = 3x^2 - 6x - 9然后,令导数等于零,解方程:3x^2 - 6x - 9 = 0化简得:x^2 - 2x - 3 = 0解得:x = -1 或 x = 3接下来,求取导数的二阶导数:f''(x) = 6x - 6将x = -1 和 x = 3代入二阶导数得到:f''(-1) = -12f''(3) = 12根据二阶导数的正负性,当x = -1时,f(x)取得极大值;当x = 3时,f(x)取得极小值。
导数与函数的单调性与极值
返回导航页
结束放映
由函数单调性确定参数范围的方法 (1)利用集合间的包含关系处理:y=f(x)在(a,b) 上单调,则区间(a,b)是相应单调区间的子集. (2)转化为不等式的恒成立问题:即“若函数单 调递增,则f′(x)≥0;若函数单调递减,则 f′(x)≤0”来求解.
返回导航页
结束放映
变式训练2.已知函数f(x)= x3+mx2-3m2x+1,m∈R. (1)当m=1时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)若f(x)在区间(-2,3)上是减函数,求m的取值范围.
x2-ln x的单调递减区间为
D.(0,+∞)
(
) A.(-1,1]
B.(0,1]
C.[1,+∞)
解析:
1 (1)函数y= 2 x2-ln x的定义域为(0,+∞),
1 (x - 1)(x + 1) y′=x- x = ,令y′≤0,则可得0<x≤1. x
返回导航页
结束放映
当a≠b时,讨论函数f(x)的单调性.
y
a
b
c o
返回导航页
d
结束放映
e x
温馨提示: 请点击相关栏目。
考点 ·大整合 考向 ·大突破 考题 ·大攻略
返回导航页
结束放映
考点 • 大整合
1.明确导数与函数单调性的关系
在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都 不恒等于0. f′(x)≥0=>f(x)在(a,b)上为增函数; f′(x)≤0=>f(x)在(a,b)上为减函数.
返回导航页
结束放映
2.把握两个概念
(1)函数的极小值 函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值 都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0, 则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值. (2)函数的极大值 函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数 值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)< 0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值.
高考复习-利用导数研究函数的单调性及极值和最值
利用导数研究函数的单调性及极值和最值知识集结知识元利用导数研究函数的单调性问题知识讲解1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【解题方法点拨】若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件.例题精讲利用导数研究函数的单调性问题例1.函数f(x)=e x-3x+2的单调减区间为__________.例2.若函数y=-x3+ax在[1,+∞)上是单调函数,则a的最大值是___.例3.函数f(x)=sin x-x,x∈(0,)的单调递增区间是_______.利用导数研究函数的极值与最值问题知识讲解1.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f (x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f (x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.2.利用导数研究函数的最值【利用导数求函数的最大值与最小值】1、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f (x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1).一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个2、用导数求函数的最值步骤:由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.例题精讲利用导数研究函数的极值与最值问题例1.函数y=lnx-e x在[1,e]最大值为()A.1-e e B.C.-eD.例2.己知定义域为(1,+∞)的函数f(x)=e x+a-ax,若f(x)>0恒成立,则正实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)例3.函数f(x)=x2-lnx的最小值为()A.1+ln2B.1-ln2C.D.当堂练习单选题练习1.定义在R上的函数f(x)的导函数为f'(x),且,若存在实数x使不等式f(x)≤m2-am-3对于a∈[0,2]恒成立,则实数m的取值范围为()A.(-∞,-2]∪[2,+∞)B.C.D.练习2.若函数f(x)与g(x)满足:存在实数t,使得f(t)=g'(t),则称函数g(x)为f(x)的“友导”函数.已知函数为函数f(x)=x2lnx+x的“友导”函数,则k的取值范围是()A.(-∞,1)B.(-∞,2]C.(1,+∞)D.[2,+∞)练习3.函数f(x)是定义在(0,+∞)上的可导函数,f'(x)为其导函数,若xf'(x)+f(x)=e x(x-2)且f(3)=0,则不等式f(x)<0的解集为()A.(0,2)B.(0,3)C.(2,3)D.(3,+∞)练习4.已知定义在(0,+∞)上的函数f(x)的导函数为f′(x),f(x)>0且f(e)=1,若xf′(x)lnx+f(x)>0对任意x∈(0,+∞)恒成立,则不等式<lnx的解集为()A.{x|0<x<1}B.{x|x>1}C.{x|x>e}D.{x|0<x<e}练习5.已知函数f(x)=x3-x2+ax-a存在极值点x0,且f(x1)=f(x0),其中x1≠x0,x1+2x0=()A.3B.2C.1D.0练习6.若函数f(x)=e x+axlnx(e为自然对数的底数)有两个极值点,则实数a的取值范围是()A.(-∞,-e)B.(-∞,-2e)C.(e,+∞)D.(2e,+∞)填空题练习1.已知函数f(x)=,若∃,使得f(f(x0))=x0,则m的取值范围是_________练习2.设函数f(x)=e x(2x-1)-2ax+2a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是_______.练习3.已知函数,若当x1,x2∈[1,3]时,都有f(x1)<2f(x2),则a的取值范围为______________.练习4.若函数f(x)=e-x(x2+ax-a)在R上单调递减,则实数a的值为____.练习5.已知函数,g(x)=|x-t|,t∈(0,+∞).若h(x)=min{f(x),g (x)}在[-1,3]上的最大值为2,则t的值为___.练习6.已知函数f(x)=x3-ax2在(-1,1)上没有最小值,则a的取值范围是_________.解答题练习1.'已知函数f(x)=e x-a(x+1),其中a∈R.(1)讨论f(x)的单调性;(2)若a>0时,函数f(x)恰有一个零点,求实数a的值.(3)已知数列{a n}满足a n=,其前n项和为S n,求证S n>ln(n+1)(其中n∈N).'练习2.'已知函数f(x)=(a∈R).(1)当a=1时,求f(x)的单调区间;(2)设点P(x1,y1),Q(x2,y2)是函数f(x)图象的不同两点,其中0<x1<1,x2>1,是否存在实数a,使得OP⊥OQ,且函数f(x)在点Q切线的斜率为f′(x1-),若存在,请求出a的范围;若不存在,请说明理由.'练习3.'已知函数f(x)=x2+ax-alnx(1)若函数f(x)在上递减,在上递增,求实数a的值.(2)若函数f(x)在定义域上不单调,求实数a的取值范围.(3)若方程x-lnx-m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.'练习4.'已知函数f(x)=xlnx-x2-ax+1,a>0,函数g(x)=f′(x).(1)若a=ln2,求g(x)的最大值;(2)证明:f(x)有且仅有一个零点.'练习5.'已知函数f(x)=e x-ax-b.(其中e为自然对数的底数)(Ⅰ)若f(x)≥0恒成立,求ab的最大值;(Ⅱ)设g(x)=lnx+1,若F(x)=g(x)-f(x)存在唯一的零点,且对满足条件的a,b不等式m(a-e+1)≥b恒成立,求实数m的取值集合.'。
导数的应用的单调性与极值
导数的应用的单调性与极值在微积分学中,导数是一个非常重要的概念,它有着广泛的应用。
本文将讨论导数的应用方面,着重探讨其与单调性和极值的关系。
一、导数与函数的单调性在研究函数的单调性时,导数是一个非常重要的工具。
通过求函数的导数,我们可以得到函数的增减性质。
1. 单调递增如果一个函数在某个区间内的导数恒大于零,那么这个函数在该区间内是单调递增的。
也就是说,函数的图像在这个区间上是向上的。
举个例子,考虑函数f(x) = x^2,我们可以求得它的导数f'(x) = 2x。
由于2x大于零,所以函数f(x)在整个实数轴上都是单调递增的。
2. 单调递减类似地,如果一个函数在某个区间内的导数恒小于零,那么这个函数在该区间内是单调递减的。
还是以前面的例子f(x) = x^2为例,我们可以看到,函数f(x)的导数2x在负数区间上小于零,因此函数f(x)在负数区间上是单调递减的。
通过上述例子可以看出,导数可以帮助我们分析函数的单调性,从而更好地理解函数的变化规律。
二、导数与函数的极值另一个与导数密切相关的概念是函数的极值。
极值分为极大值和极小值,而导数可以帮助我们判断函数的极值点。
1. 极值点一个函数在某个点上的导数等于零时,该点就是函数的极值点。
根据导数的定义,导数为零表示函数在该点附近的变化趋势趋向于水平。
2. 极大值如果一个函数在某个点的导数从正数变为负数,那么这个点就是函数的极大值点。
在极大值点上,函数的图像从上升转向下降。
3. 极小值与极大值相反,如果一个函数在某个点的导数从负数变为正数,那么这个点就是函数的极小值点。
在极小值点上,函数的图像从下降转向上升。
例如,考虑函数f(x) = x^3,我们可以求得它的导数f'(x) = 3x^2。
当x等于零时,导数为零,说明函数在x=0处有极值。
通过进一步的分析,我们可以得知这个点是极小值点。
三、综合应用导数的应用不仅仅局限于单调性和极值的讨论,还可以应用于其他问题的求解。
函数与导数函数的单调性与极值点的几何意义分析示例
函数与导数函数的单调性与极值点的几何意义分析示例函数与导数函数是微积分中重要的概念,它们在数学和物理领域中有着广泛的应用。
本文将通过详细的分析与实例,探讨函数与导数函数的单调性以及极值点的几何意义。
一、函数的单调性与导数函数函数的单调性描述了函数在定义域上的增减情况。
若定义域内的任意两个自变量x1、x2,满足x1<x2,则函数f(x1)<f(x2)时,称函数在该定义域上是递增的;若f(x1)>f(x2),则称函数在该定义域上是递减的。
导数函数是函数f(x)在其定义域内的任意点x处的导数值构成的新函数。
导数函数可以用来研究函数的单调性。
若导数函数在某个定义域上恒大于0,则原函数在该定义域上是递增的;若导数函数在某个定义域上恒小于0,则原函数在该定义域上是递减的。
二、函数单调性的几何意义函数的单调性在几何意义上可以理解为曲线的上升或下降趋势。
当函数递增时,其对应的曲线随着自变量的增大逐渐上升;当函数递减时,其对应的曲线则随着自变量的增大逐渐下降。
以一元函数f(x)为例,当其在某个定义域上是递增的时,可以理解为曲线向上延伸,表示曲线在这个区间内的斜率是正的。
这意味着曲线的切线在每一点的斜率都是正的,从而在几何上可以理解为曲线向上倾斜;同样,函数在某个定义域上是递减的时候,对应的曲线则是向下倾斜的。
三、极值点的几何意义极值点是指函数的取值在某一区间内达到最大值或最小值的点。
在数学上,极值点可以通过函数的导数求解得到。
当函数导数在某个点处等于零,并且该点的导数存在两侧变号,那么该点就是函数的极值点。
在几何上,极值点可以理解为曲线的拐点。
当曲线从上方或下方逼近极值点时,曲线的方向会发生变化,从而在几何上形成一个拐点。
拐点的左右两侧曲线的斜率会发生变化,而极值点正好位于曲线拐点的位置。
四、实例分析我们以函数f(x) = x^3 - 3x^2 + 2x为例,来分析函数的单调性与极值点的几何意义。
用导数解决函数的单调性极值最值的方法步骤
用导数解决函数的单调性极值最值的方法步骤导数是微积分中非常重要的概念,它可以通过求取函数的斜率来提供关于函数的很多信息。
通过导数,我们能够判断函数的单调性、极值和最值。
下面,我将详细介绍使用导数进行函数分析的方法步骤。
一、函数的单调性分析:函数的单调性指的是函数在定义域上的递增或递减特性。
使用导数可以判断函数在不同区间上的单调性。
1.求出函数的导数:根据函数的定义,求出函数的导数。
若函数在其中一点存在导数,则说明函数在该点是可导的。
2.导数的符号变化:对求得的导数进行符号变化的分析,即导数求值时,符号的正负变化。
假设导数的结果是f’(x)。
通过求解f’(x)=0的解集,得到导数的零点集合。
3.导数零点的意义:对于导数零点集合中的每一个点进行分析。
如果导数在其中一点处的零点是一个正的极值点,则说明函数在该点是递增的;如果导数在其中一点处的零点是一个负的极值点,则说明函数在该点是递减的。
4.极值点的判定:在求得导数零点的基础上,通过导数的符号变化来判定函数在区间上的单调性。
当导数从正数变为负数时,说明函数在该区间上是递减的;当导数从负数变为正数时,说明函数在该区间上是递增的。
二、函数的极值分析:函数的极值是指函数在其中一点处取得的最大值或最小值。
通过导数可以判断函数的极值点。
1.求出函数的导数:根据函数的定义,求出函数的导数。
2.导数零点的极值分析:计算导数的零点,并求出零点对应的函数值,在零点处求得导数的值,在零点前后进行符号判定。
3.极值点的判定:若导数从负数增加到正数,则说明函数在该点处取得极小值;若导数从正数减小到负数,则说明函数在该点处取得极大值。
三、函数的最值分析:函数的最值是函数在定义域上取得的最大值或最小值。
通过导数可以判断函数的最值点。
1.求出函数的导数:根据函数的定义,求出函数的导数。
2.导数的变化性:通过计算导数的值和导数的符号变化来判断函数的最值。
3.导数的非零点分析:计算函数的定义域上的导数,找出导数等于零的点的集合。
导数的应用----单调性、极值精华课件
典型例题 4
设 t0, 点 P(t, 0) 是函数 f(x)=x3+ax与 g(x)=bx2+c 的图象的一 个公共点, 两函数的图象在点 P 处有相同的切线. (1)用 t 表示 a, b, c; (2)若函数 y=f(x)-g(x) 在 (-1, 3) 上单调递减, 求 t 的取值范 围. 解: (1)∵函数 f(x) 的图象过点 P(t, 0), ∴ f(t)=0t3+at=0. ∵t0, ∴a=-t2. 又∵函数 g(x) 的图象也过点 P(t, 0), ∴ g(t)=0bt2+c=0. ∴c=ab. ∵两函数的图象在点 P 处有相同的切线, ∴ f(t)=g(t). 而 f(x)=3x2+a, g(x)=2bx, ∴3t2+a=2bt. 将 a=-t2 代入上式得 b=t. ∴c=ab=-t3. 综上所述, a=-t2, b=t, c=-t3. (2)方法一 y=f(x)-g(x)=x3-tx2-t2x+t3. y=3x2-2tx-t2=(3x+t)(x-t). 当 y=(3x+t)(x-t)<0 时, y=f(x)-g(x)为减函数.
6.设函数 f(x) 在 [a, b] 上连续, 在 (a, b) 内可导, 求 f(x) 在 [a, b] 上的最大值与最小值的步骤如下: (1)求 f(x) 在 (a, b) 内的极值; (2)将 f(x) 的各极值与 f(a), f(b) 比较, 其中最大的一个是最大 值, 最小的一个是最小值.
如果应用导数解决实际问题, 最关键的是要建立恰当的数学 模型(函数关系), 然后再运用上述方法研究单调性及极(最)值.
三、知识要点
1.函数的单调性 (1)(函数单调性的充分条件)设函数 y=f(x) 在某个区间内可 导, 如果 f(x)>0, 则 y=f(x) 为增函数, 如果 f(x)<0, 则 y=f(x) 为 减函数, (2)(函数单调性的必要条件)设函数 y=f(x) 在某个区间内可 导, 如果 f(x) 在该区间单调递增(或减), 则在该区间内 f(x)≥0 (或 f(x)≤0). 注 当 f (x) 在某个区间内个别点处为零, 在其余点处均为正 (或负)时, f(x) 在这个区间上仍旧是单调递增(或递减)的. 例 f(x)=x3 在 (-1, 1) 内, f(0)=0, f(x)>0(x0). 显然 f(x)=x3 在 (-1, 1) 上仍旧是增函数.
高中数学导数的应用之极值和最值
利用导数求函数的极值与最值内容再现1、函数的单调性与其导数正负的关系:在某个区间内,如果,那么函数在这个区间内单调递增;在某个区间内,如果,那么函数在这个区间内单调递减;若恒有,则函数在这个区间内是常函数。
2、利用函数判断函数值的增减快慢:如果一个函数在某一范围内导数的绝对值,那么函数在这个范围内变化的快,这时函数的图像比较“陡峭”(向上或向下):反之,若函数在这个范围内导数的绝对值,那么函数在这个范围内变化的比较慢,这时函数的图像比较“平缓”。
3、判断函数极大、极小值的方法: 解方程,当时:(1)如果在附近的左侧,右侧,那么是极大值,是极大值点。
(2)如果在附近的左侧,右侧,那么是极小值点。
4、(1)函数的闭区间上的最值:如果在闭区间上函数的图像是一条曲线,则该函数在上一定能取得和,并且函数的最值必在或取得。
(2)求函数在区间上的最值的步骤:求函数在的;将函数的与比较,其中最大的一个是最大值,最小的一个是最小值。
三、巩固练习1、已知函数在区间内可导,且,则( )(A) (B) (C) (D)2、函数在区间 ( )(A) 上单调递减 (B) 上单调递减(C) 上单调递减 (D) 上单调递增3、已知在上有最小值,则在上,的最大值是4、已知是函数的一个极值点,其中,(I)求与的关系式;(II)求的单调区间;(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值五、典型例题1、一个物体的运动方程为其中S的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A、 7米/秒B、6米/秒C、 5米/秒D、 8米/秒DCxOA By 2、用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊接成铁盒,所做铁盒容积最大时,在四角截去的正方形的边长为( ) A .6cm B .8cm C .10cm D .12cm3、如图,某农场要修建3个养鱼塘,每个面积为10 000米2,鱼塘前面要留4米的运料通道,其余各边为2米宽的堤埂,则占地面积最少时,每个鱼塘的长宽分别为 ( ) A .长102米,宽米B .长150米,宽66米C .长宽均为100米D .长100米,宽米4、过抛物线y=x 2-3x 上一点P 的切线的倾斜角为45°,它与两坐标轴交于A ,B 两点,则△AOB 的面积是5、如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为_______时,其容积最大.6、6、某旅行社在暑假期间推出如下旅游团组团办法:达到100人的团体,每人收费1000元。
考点 利用导数求函数的单调性、极值、最值
考点:利用导数求函数的单调性、极值、最值知识点1.求函数单调区间的步骤:①确定f(x)的定义域;②求导数y ′;③令y ′>0(y ′<0),解出相应的x 的范围。
当y ′>0时,f(x)在相应区间上是增函数;当y ′<0时,f(x)在相应区间上是减函数2.求极值常按如下步骤:① 确定函数的定义域;② 求导数;③ 求方程/y =0的根及导数不存在的点,这些根或点也称为可能极值点;④通过列表法, 检查在可能极值点的左右两侧的符号,确定极值点。
3.设函数f(x)在[a,b]上连续,在(a,b )内可导,求f(x)在[a,b]上的最大(小)值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。
4.最值(或极值)点必在下列各种点之中:导数等于零的点、导数不存在的点、端点。
5.求函数f (x )的极值的步骤:①确定函数的定义区间,求导数f ′(x );②求方程f ′(x )=0的根 ③用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列表.检查f ′(x )在方程根左右的值的符号,若左正右负,则f (x )在这个根处取得极大值;若左负右正,则f (x )在这个根处取得极小值;若左右不改变符号即都正或都负,则f (x )在这个根处无极值例题1. 函数()ln (0)f x x x x =>的单调递增区间为_______________.2. 讨论下列函数的单调性:(1)x x a a x f --=)((0>a 且1≠a );(2))253(log )(2-+=x x x f a (0>a 且1≠a );3.求下列函数的极值:(1)x x x f 12)(3-=;(2)x ex x f -=2)(;(3).212)(2-+=x x x f练习1.下列说法正确的是( )A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=02.函数y =216x x +的极大值为( ) A.3 B.4 C.2 D.53.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为( )A.0B.1C.2D.44.y =ln 2x +2ln x +2的极小值为( )A.e -1B.0C.-1D.15.函数y=xsinx+cosx 在下面哪个区间内是增函数( ) A.(,) B.(π,2π) C.(,) D.(2π,3π)6.已知函数y=xf′(x)的图象如下图所示(其中f′(x )是函数f (x )的导函数).下面四个图象中y=f (x )的图象大致是( )7.函数⎪⎭⎫ ⎝⎛+=x y 11log 21在区间),0(+∞上是( ) A .增函数,且0>y B .减函数,且0>yC .增函数,且0<yD .减函数,且0<y8.函数f (x )=x 3-3x 2+7的极大值为___________.9. 求下列函数的单调区间:(1)32)(24+-=x x x f ; (2)22)(x x x f -=; (3)).0()(>+=b xb x x f10.已知)0()(23≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f .(1)试求常数a 、b 、c 的值;(2)试判断1±=x 是函数的极小值还是极大值,并说明理由.11.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1) 求a 、b 的值与函数f (x )的单调区间(2) 若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围.。
导数在函数的单调性,极值中的应用
导数在函数的单调性、极值中的应用一、知识梳理1.函数的单调性与导数在区间(a,b)内,函数的单调性与其导数的正负有如下关系:如果f_′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f_′(x)<0,那么函数y=f(x)在这个区间内单调递减;如果f_′(x)=0,那么f(x)在这个区间内为常数.问题探究1:若函数f(x)在(a,b)内单调递增,那么一定有f ′(x)>0吗?f ′(x)>0是否是f(x)在(a,b)内单调递增的充要条件?提示:函数f(x)在(a,b)内单调递增,则f ′(x)≥0,f ′(x)>0是f(x)在(a,b)内单调递增的充分不必要条件.2.函数的极值与导数(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在x=a附近其他点的函数值都小,f ′(a)=0,而且在点x=a附近的左侧f_′(x)<0,右侧f_′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f ′(b)=0,而且在点x=b附近,左侧f_′(x)>0,右侧f_′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.问题探究2:若f ′(x0)=0,则x0一定是f(x)的极值点吗?提示:不一定.可导函数在一点的导数值为0是函数在这点取得极值的必要条件,而不是充分条件,如函数f(x)=x3,在x=0时,有f ′(x)=0,但x=0不是函数f(x)=x3的极值点.二、自主检测1.函数y=x-lnx的单调减区间是( )A.(-∞,1) B.(0,1)C.(1,+∞) D.(0,2)2.函数f(x)=x3-3x2+3x的极值点的个数是( )A.0 B.1C.2 D.33.函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是( ) A.[3,+∞) B.[-3,+∞)C.(-3,+∞) D.(-∞,-3)4.(2012年山东诸城高三月考)已知函数y=f(x),其导函数y=f ′(x)的图象如图所示,则y=f(x)( )A.在(-∞,0)上为减函数B.在x=0处取极小值C.在(4,+∞)上为减函数D.在x=2处取极大值5.若函数f(x)=x3+ax2+3x-9在x=-3时取得极值,则a=( )A.2 B.3C.4 D.56.(1)函数f(x)在x=x0处可导,则“f ′(x0)=0”是“x0是函数f(x)极值点”的________条件.(2)函数f(x)在(a,b)上可导,则“f ′(x)>0”是“f(x)在(a,b)上单调递增”的________条件.(3)函数f(x)在(a,b)上可导,则“f ′(x)≥0”是“f(x)在(a,b)上单调递增”的________条件.三、考向指导考点1 求函数的单调区间1.求可导函数单调区间的一般步骤和方法(1)确定函数f(x)的定义域;(2)求 f ′(x),令f ′(x)=0,求出它在定义域内的一切实根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f ′(x)在各个开区间内的符号,根据f ′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.2.证明可导函数f(x)在(a,b)内的单调性的步骤(1)求 f ′(x).(2)确认 f ′(x)在(a,b)内的符号.(3)作出结论: f ′(x)>0时,f(x)为增函数; f ′(x)<0时,f(x)为减函数.例1 (2010年全国)已知函数f(x)=x3-3ax2+3x+1.(1)设a=2,求f(x)的单调区间;(2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围.课堂过手练习:设函数f(x)=x3+ax2-9x-1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:(1)a的值;(2)函数y=f(x)的单调区间.考点2 由函数的单调性求参数的取值范围已知函数的单调性,求参数的取值范围,应注意函数f(x)在(a,b)上递增(或递减)的充要条件应是 f ′(x)≥0(或 f ′(x)≤0),x∈(a,b)恒成立,且 f ′(x)在(a,b)的任意子区间内都不恒等于0,这就是说,函数f(x)在区间上的增减性并不排斥在区间内个别点处有 f ′(x0)=0,甚至可以在无穷多个点处 f ′(x0)=0,只要这样的点不能充满所给区间的任何一个子区间.例2 已知函数f(x)=x3-ax-1,在实数集R上y=f(x)单调递增,求实数a的取值范围.课堂过手练习:已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R 内单调递增,求a 的取值范围;(3)是否存在a ,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.考点3 求已知函数的极值运用导数求可导函数 y =f(x)极值的步骤:(1)先求函数的定义域,再求函数 y =f(x)的导数 f ′(x);(2)求方程 f ′(x)=0的根;(3)检查 f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值.如果左负右正,那么 f(x)在这个根处取得极小值.例3 设f(x)=ex1+ax 2,其中a 为正实数.(1)当a =43时,求f(x)的极值点;(2)若f(x)为R 上的单调函数,求a 的取值范围.课堂过手练习:函数f(x)=x3-3x2+1在x =________处取得极小值.考点4 利用极值求参数已知函数解析式,可利用导数及极值的定义求出其极大值与极小值;反过来,如果已知某函数的极值点或极值,也可利用导数及极值的必要条件建立参数方程或方程组,从而解出参数,求出函数解析式.例4 设x=1与x=2是函数f(x)=alnx+bx2+x的两个极值点.(1)试确定常数a和b的值;(2)试判断x=1,x=2是函数f(x)的极大值点还是极小值点,并说明理由.课堂过手练习:设函数f(x)=(x-a)2lnx,a∈R.若x=e为y=f(x)的极值点,求实数a.易错点求参数取值时出现典例:已知函数f(x)=ax3+3x2-x+1在R上是减函数,求a的取值范围.(1)当函数在某个区间内恒有f ′(x)=0,则f(x)为常数,函数不具有单调性.∴f (x)≥0是f(x)为增函数的必要不充分条件.在解题中误将必要条件作充分条件或将既不充分与不必要条件误作充要条件使用而导致的错误还很多,在学习过程中注意思维的严密性.(2)函数极值是一个局部性概念,函数的极值可以有多个,并且极大值与极小值的大小关系不确定.要强化用导数处理单调性、极值、最值、方程的根及不等式的证明等数学问题的意识.(3)如果一个函数在给定定义域上的单调区间不止一个,这些区间之间一般不能用并集符号“∪”连接,只能用“,”或“和”字隔开.纠错课堂练习:已知函数f(x)=x3+ax2+bx+c在x=1处取极值-2.(1)试用c表示a,b;(2)求f(x)的单调递减区间.1.与函数的单调性有关的问题(1)利用导数求函数的单调区间,可通过f ′(x)>0或f ′(x)<0来进行,至于区间的端点是否包含,取决于函数在端点处是否有意义,若有意义,则端点包含与不包含均可;若无意义,则必不能包含端点.(2)若函数f(x)在(a,b)上递增(或递减),则在(a,b)上f ′(x)≥0(或f ′(x)≤0)恒成立,若该不等式中含有参数,我们可利用上述结论求参数的范围,它蕴涵了恒成立思想.利用上述方法求得参数的范围后,要注意检验该参数的端点值能否使f ′(x)=0恒成立.若能,则去掉该端点值;否则,即为所求.2.与函数的极值有关的问题(1)求函数的极值点,可通过f ′(x)=0来求得,但同时还要注意检验在其两侧附近的导函数值是否异号.(2)若函数f(x)在x=x0处有极值,则一定有f ′(x0)=0,我们可利用上述结论求参数的值.。
导数的应用(单调性、极值、最值)
例5 求出函数 f ( x) x3 3x2 24x 20 的极值. 解 f ( x) 3x2 6x 24 3( x 4)(x 2) 令 f ( x) 0, 得驻点 x1 4, x2 2. f ( x) 6x 6, f (4) 18 0, 故极大值 f (4) 60,
单调区间为 (,1], [1,2],[2,).
通常用列表讨论。
例3 确定函数 f ( x) 3 x2 的单调区间.
解 D : (,).
f ( x) 2 , 33 x
( x 0)
y 3 x2
当x 0时,导数不存在.
当 x 0时,f ( x) 0, 在(,0]上单调减少;
当0 x 时, f ( x) 0, 在[0,)上单调增加;
解
f
(
x)
2
(
x
1
2) 3
( x 2)
3
当x 2时, f ( x)不存在. 但函数f ( x)在该点连续.
当x 2时,f ( x) 0;
2、若在 (a, b) 内 f '( x) 0,则 f ( x) 在 (a, b) 上单减.
例1 讨论函数 y ex x 1 的单调性.
解 y ex 1, 且 D (, ).
在(,0)内, y 0,
函数单调减少; 在(0,)内, y 0, 函数单调增加. 注意:函数的单调性是一个区间上的性质,要用 导数在这一区间上的符号来判定,而不能用一 点处的导数符号来判别一个区间上的单调性.
如 果 存 在 着 点x0的 一 个 邻 域, 对 于 这 邻 域 内 的 任何点x,除了点x0外, f ( x) f ( x0 )均成立,就称 f ( x0 )是函数f ( x)的一个极小值.
导数与单调性极值
导数在研究函数中的应用一.单调性1. 函数的单调性与导数的关系一般地,函数的单调性与其导函数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间内 ;如果()0f x '<,那么函数()y f x =在这个区间内 .2. 判别f (x 0)是极大、极小值的方法若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的 ,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是3.解题规律技巧妙法总结: 求函数的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ) . (2)求方程f ′(x )=0的根.(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查 f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值. 4.求函数最值的步骤:(1)求出()f x 在(,)a b 上的极值.(2)求出端点函数值(),()f a f b . (3)比较极值和端点值,确定最大值或最小值.例1.'()()f x f x 的关系(1) 若'()f x 的图像如图,则()f x 的图像最有可能是((2)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )A B C D例2.求下列函数的单调区间(1)4225y x x =-+的单增调区间为_____________ 单减区间_____________ (2)ln(1)y x x =+- (3)2ax y x e =(4)若1>a ,求函数)),0()(ln()(+∞∈+-=x a x x x f 的单调区间.例3。
导数与函数的单调性、极值、最值
§3.2导数与函数的单调性、极值、最值1.函数的单调性在某个区间(a,b),如果f′(x)>0,那么函数y=f(x)在这个区间单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间单调递减.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)f′(x)>0是f(x)为增函数的充要条件.(×)(2)函数在某区间上或定义域极大值是唯一的.(×)(3)函数的极大值不一定比极小值大.(√)(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×)(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√)(6)函数f(x)=x sin x有无数个极值点.( √ )2. 函数f (x )=x 2-2ln x 的单调减区间是( )A .(0,1)B .(1,+∞)C .(-∞,1)D .(-1,1)答案 A解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x (x >0).∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.3. (2013·)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则 ( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 答案 C解析 当k =1时,f ′(x )=e x ·x -1,f ′(1)≠0. ∴x =1不是f (x )的极值点.当k =2时,f ′(x )=(x -1)(x e x +e x -2)显然f ′(1)=0,且x 在1的左边附近f ′(x )<0, x 在1的右边附近f ′(x )>0, ∴f (x )在x =1处取到极小值.故选C.4. 函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)答案 B解析 设m (x )=f (x )-(2x +4), ∵m ′(x )=f ′(x )-2>0, ∴m (x )在R 上是增函数. ∵m (-1)=f (-1)-(-2+4)=0, ∴m (x )>0的解集为{x |x >-1}, 即f (x )>2x +4的解集为(-1,+∞).5. 函数f (x )=x 3+ax -2在(1,+∞)上是增函数,则实数a 的取值围是________.答案 [-3,+∞)解析 f ′(x )=3x 2+a ,f ′(x )在区间(1,+∞)上是增函数,则f′(x)=3x2+a≥0在(1,+∞)上恒成立,即a≥-3x2在(1,+∞)上恒成立.∴a≥-3.题型一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值围,若不存在,请说明理由.思维启迪函数的单调性和函数中的参数有关,要注意对参数的讨论.解f′(x)=e x-a,(1)若a≤0,则f′(x)=e x-a≥0,即f(x)在R上单调递增,若a>0,e x-a≥0,∴e x≥a,x≥ln a.因此当a≤0时,f(x)的单调增区间为R,当a>0时,f(x)的单调增区间是[ln a,+∞).(2)∵f′(x)=e x-a≤0在(-2,3)上恒成立.∴a≥e x在x∈(-2,3)上恒成立.又∵-2<x<3,∴e-2<e x<e3,只需a≥e3.当a=e3时,f′(x)=e x-e3在x∈(-2,3)上,f′(x)<0,即f(x)在(-2,3)上为减函数,∴a≥e3.故存在实数a≥e3,使f(x)在(-2,3)上为减函数.思维升华(1)利用导数的符号来判断函数的单调性;(2)已知函数的单调性求函数围可以转化为不等式恒成立问题;(3)f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.(1)设函数f (x )=13x 3-(1+a )x 2+4ax +24a ,其中常数a >1,则f (x )的单调减区间为________. 答案 (2,2a )解析 f ′(x )=x 2-2(1+a )x +4a =(x -2)(x -2a ), 由a >1知,当x <2时,f ′(x )>0, 故f (x )在区间(-∞,2)上是增函数; 当2<x <2a 时,f ′(x )<0, 故f (x )在区间(2,2a )上是减函数; 当x >2a 时,f ′(x )>0,故f (x )在区间(2a ,+∞)上是增函数. 综上,当a >1时,f (x )在区间(-∞,2)和(2a ,+∞)上是增函数, 在区间(2,2a )上是减函数.(2)若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值围是________.答案 (-∞,-1] 解析 转化为f ′(x )=-x +bx +2≤0在[-1,+∞)上恒成立, 即b ≤x (x +2)在[-1,+∞)上恒成立,令g (x )=x (x +2)=(x +1)2-1, 所以g (x )min =-1,则b 的取值围是(-∞,-1]. 题型二 利用导数求函数的极值例2 设a >0,函数f (x )=12x 2-(a +1)x +a (1+ln x ).(1)求曲线y =f (x )在(2,f (2))处与直线y =-x +1垂直的切线方程;(2)求函数f (x )的极值.思维启迪 (1)通过f ′(2)的值确定a ;(2)解f ′(x )=0,然后要讨论两个零点的大小确定函数的极值. 解 (1)由已知,得x >0,f ′(x )=x -(a +1)+ax ,y =f (x )在(2,f (2))处切线的斜率为1, 所以f ′(2)=1,即2-(a +1)+a2=1,所以a =0,此时f (2)=2-2=0, 故所求的切线方程为y =x -2. (2)f ′(x )=x -(a +1)+ax=x 2-(a +1)x +a x =(x -1)(x -a )x.①当0<a <1时,若x ∈(0,a ),f ′(x )>0, 函数f (x )单调递增;若x ∈(a,1),f ′(x )<0,函数f (x )单调递减; 若x ∈(1,+∞),f ′(x )>0,函数f (x )单调递增. 此时x =a 是f (x )的极大值点,x =1是f (x )的极小值点, 函数f (x )的极大值是f (a )=-12a 2+a ln a ,极小值是f (1)=-12.②当a =1时,f ′(x )=(x -1)2x >0,所以函数f (x )在定义域(0,+∞)单调递增, 此时f (x )没有极值点,故无极值.③当a >1时,若x ∈(0,1),f ′(x )>0,函数f (x )单调递增; 若x ∈(1,a ),f ′(x )<0,函数f (x )单调递减; 若x ∈(a ,+∞),f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点, 函数f (x )的极大值是f (1)=-12,极小值是f (a )=-12a 2+a ln a .综上,当0<a <1时,f (x )的极大值是-12a 2+a ln a ,极小值是-12;当a =1时,f (x )没有极值;当a >1时,f (x )的极大值是-12,极小值是-12a 2+a ln a .思维升华 (1)导函数的零点并不一定就是函数的极值点.所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.(2)若函数y =f (x )在区间(a ,b )有极值,那么y =f (x )在(a ,b )绝不是单调函数,即在某区间上单调函数没有极值.设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值围. 解 对f (x )求导得f ′(x )=e x·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1. 所以a 的取值围为{a |0<a ≤1}.题型三利用导数求函数的最值例3已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a=3,b=-9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值围.思维启迪(1)题目条件的转化:f(1)=g(1)且f′(1)=g′(1);(2)可以列表观察h(x)在(-∞,2]上的变化情况,然后确定k的取值围.解(1)f′(x)=2ax,g′(x)=3x2+b.因为曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,所以f(1)=g(1)且f′(1)=g′(1),即a+1=1+b且2a=3+b,解得a=3,b=3.(2)记h(x)=f(x)+g(x),当a=3,b=-9时,h(x)=x3+3x2-9x+1,所以h′(x)=3x2+6x-9.令h′(x)=0,得x1=-3,x2=1.h′(x),h(x)在(-∞,2]上的变化情况如下表所示:↗当-3<k<2时,函数h(x)在区间[k,2]上的最大值小于28.因此k的取值围是(-∞,-3].思维升华(1)求解函数的最值时,要先求函数y=f(x)在[a,b]所有使f′(x)=0的点,再计算函数y=f(x)在区间所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.(2)可以利用列表法研究函数在一个区间上的变化情况.已知函数f(x)=x ln x.(1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间[1,e]上的最小值.(其中e 为自然对数的底数). 解 (1)f ′(x )=ln x +1,x >0, 由f ′(x )=0得x =1e,所以f (x )在区间(0,1e )上单调递减,在区间(1e ,+∞)上单调递增.所以,x =1e 是函数f (x )的极小值点,极大值点不存在.(2)g (x )=x ln x -a (x -1), 则g ′(x )=ln x +1-a , 由g ′(x )=0,得x =e a -1,所以,在区间(0,e a -1)上,g (x )为递减函数, 在区间(e a -1,+∞)上,g (x )为递增函数.当e a -1≤1,即a ≤1时,在区间[1,e]上,g (x )为递增函数, 所以g (x )的最小值为g (1)=0.当1<e a -1<e ,即1<a <2时,g (x )的最小值为g (e a -1)=a -e a -1. 当e a -1≥e ,即a ≥2时,在区间[1,e]上,g (x )为递减函数, 所以g (x )的最小值为g (e)=a +e -a e. 综上,当a ≤1时,g (x )的最小值为0; 当1<a <2时,g (x )的最小值为a -e a -1; 当a ≥2时,g (x )的最小值为a +e -a e.利用导数求函数的最值问题典例:(12分)已知函数f (x )=(x -k )e x .(1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.思维启迪 (1)解方程f ′(x )=0列表求单调区间;(2)根据(1)中表格,讨论k -1和区间[0,1]的关系求最值. 规解答解 (1)由题意知f ′(x )=(x -k +1)e x . 令f ′(x )=0,得x =k -1.[2分] f (x )与f ′(x )的情况如下:所以,f([6分](2)当k-1≤0,即k≤1时,f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;[8分]当0<k-1<1,即1<k<2时,f(x)在[0,k-1)上单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.[10分]综上,当k≤1时,f(x)在[0,1]上的最小值为f(0)=-k;当1<k<2时,f(x)在[0,1]上的最小值为f(k-1)=-e k-1;当k≥2时,f(x)在[0,1]上的最小值为f(1)=(1-k)e.[12分]答题模板用导数法求给定区间上的函数的最值问题一般可用以下几步答题:第一步:求函数f(x)的导数f′(x);第二步:求f(x)在给定区间上的单调性和极值;第三步:求f(x)在给定区间上的端点值;第四步:将f(x)的各极值与f(x)的端点值进行比较,确定f(x)的最大值与最小值;第五步:反思回顾:查看关键点,易错点和解题规.温馨提醒(1)本题考查求函数的单调区间,求函数在给定区间[0,1]上的最值,属常规题型.(2)本题的难点是分类讨论.考生在分类时易出现不全面,不准确的情况.(3)思维不流畅,答题不规,是解答中的突出问题.方法与技巧1.利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,减少失分.2.求极值、最值时,要求步骤规、表格齐全;含参数时,要讨论参数的大小.3.在实际问题中,如果函数在区间只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.失误与防1.注意定义域优先的原则,求函数的单调区间和极值点必须在函数的定义域进行.2.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.3.解题时要注意区分求单调性和已知单调性的问题,处理好f′(x)=0时的情况;区分极值点和导数为0的点.A组专项基础训练(时间:35分钟,满分:57分)一、选择题1. 若函数y =f (x )的导函数y =f ′(x )的图象如图所示,则y =f (x )的图象可能为( )答案 C解析 根据f ′(x )的符号,f (x )图象应该是先下降后上升,最后下降,排除A ,D ;从适合f ′(x )=0的点可以排除B.2. 下面为函数y =x sin x +cos x 的递增区间的是( )A .(π2,3π2)B .(π,2π)C .(3π2,5π2)D .(2π,3π)答案 C解析 y ′=(x sin x +cos x )′=sin x +x cos x -sin x =x cos x , 当x ∈(3π2,5π2)时,恒有x cos x >0.故选C.3. 设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则( )A .a <-1B .a >-1C .a >-1eD .a <-1e答案 A解析 ∵y =e x +ax ,∴y ′=e x +a . ∵函数y =e x +ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解, ∵x >0时,-e x <-1,∴a =-e x <-1.4. 设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值围是( )A .1<a ≤2B .a ≥4C .a ≤2D .0<a ≤3答案 A解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),当x -9x ≤0时,有0<x ≤3,即在(0,3]上原函数是减函数,∴a -1>0且a +1≤3,解得1<a ≤2.5. 函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .4答案 C解析 ∵f ′(x )=3x 2-6x ,令f ′(x )=0,得x =0或x =2. ∴f (x )在[-1,0)上是增函数,f (x )在(0,1]上是减函数. ∴f (x )max =f (x )极大值=f (0)=2. 二、填空题6. 函数f (x )=x +9x的单调减区间为________.答案 (-3,0),(0,3)解析 f ′(x )=1-9x 2=x 2-9x 2,令f ′(x )<0,解得-3<x <0或0<x <3, 故单调减区间为(-3,0)和(0,3).7. 函数f (x )=x 3+3ax 2+3[(a +2)x +1]有极大值又有极小值,则a 的取值围是________.答案 a >2或a <-1解析 ∵f (x )=x 3+3ax 2+3[(a +2)x +1], ∴f ′(x )=3x 2+6ax +3(a +2).令3x 2+6ax +3(a +2)=0,即x 2+2ax +a +2=0. ∵函数f (x )有极大值和极小值,∴方程x 2+2ax +a +2=0有两个不相等的实根. 即Δ=4a 2-4a -8>0,∴a >2或a <-1. 8. 设函数f (x )=x 3-x 22-2x +5,若对任意的x ∈[-1,2],都有f (x )>a ,则实数a 的取值围是________. 答案 (-∞,72)解析 f ′(x )=3x 2-x -2,令f ′(x )=0,得3x 2-x -2=0, 解得x =1或x =-23,又f (1)=72,f (-23)=15727,f (-1)=112,f (2)=7,故f (x )min =72,∴a <72.三、解答题9. 已知函数f (x )=1x+ln x .求函数f (x )的极值和单调区间.解 因为f ′(x )=-1x 2+1x =x -1x2,令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞), f ′(x ),f (x )随x 的变化情况如下表:所以x =1f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).10.已知函数f (x )=x 2+b sin x -2(b ∈R ),F (x )=f (x )+2,且对于任意实数x ,恒有F (x )-F (-x )=0.(1)求函数f (x )的解析式;(2)已知函数g (x )=f (x )+2(x +1)+a ln x 在区间(0,1)上单调递减,数a 的取值围. 解 (1)F (x )=f (x )+2=x 2+b sin x -2+2=x 2+b sin x , 依题意,对任意实数x ,恒有F (x )-F (-x )=0. 即x 2+b sin x -(-x )2-b sin(-x )=0, 即2b sin x =0,所以b =0,所以f (x )=x 2-2. (2)∵g (x )=x 2-2+2(x +1)+a ln x , ∴g (x )=x 2+2x +a ln x , g ′(x )=2x +2+ax.∵函数g (x )在(0,1)上单调递减,∴在区间(0,1), g ′(x )=2x +2+a x =2x 2+2x +ax ≤0恒成立,∴a ≤-(2x 2+2x )在(0,1)上恒成立.∵-(2x 2+2x )在(0,1)上单调递减,∴a ≤-4为所求.B 组 专项能力提升(时间:25分钟,满分:43分)1. 已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (1)<e f (0),f (2 014)>e 2 014f (0)B .f (1)>e f (0),f (2 014)>e 2 014f (0)C .f (1)>e f (0),f (2 014)<e 2 014f (0)D .f (1)<e f (0),f (2 014)<e 2 014f (0) 答案 D解析 令g (x )=f (x )ex ,则g ′(x )=(f (x )e x )′=f ′(x )e x -f (x )e x e 2x =f ′(x )-f (x )e x <0,所以函数g (x )=f (x )e x 是单调减函数,所以g (1)<g (0),g (2 014)<g (0), 即f (1)e 1<f (0)1,f (2 014)e 2 014<f (0)1, 故f (1)<e f (0),f (2 014)<e 2 014f (0).2. 如图是函数f (x )=x 3+bx 2+cx +d 的大致图象,则x 21+x 22等于( )A.89B.109C.169D.289答案 C解析 由图象可得f (x )=x (x +1)(x -2)=x 3-x 2-2x , 又∵x 1、x 2是f ′(x )=3x 2-2x -2=0的两根, ∴x 1+x 2=23,x 1x 2=-23,故x 21+x 22=(x 1+x 2)2-2x 1x 2=(23)2+2×23=169. 3. 已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值围是________.答案 (0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x =-x 2+4x -3x=-(x -1)(x -3)x,由f ′(x )=0得函数f (x )的两个极值点为1,3, 则只要这两个极值点有一个在区间(t ,t +1), 函数f (x )在区间[t ,t +1]上就不单调, 由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.4. (2013·课标全国Ⅰ)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解 (1)f ′(x )=e x (ax +b )+a e x -2x -4 =e x (ax +a +b )-2x -4∵y =f (x )在(0,f (0))处的切线方程为y =4x +4, ∴f ′(0)=a +b -4=4,f (0)=b =4, ∴a =4,b =4.(2)由(1)知f ′(x )=4e x (x +2)-2(x +2) =2(x +2)(2e x -1)令f ′(x )=0得x 1=-2,x 2=ln 12,列表:∴y =f (x )的单调增区间为(-∞,-2),⎝⎛⎭⎫ln 12,+∞; 单调减区间为⎝⎛⎭⎫-2,ln 12. f (x )极大值=f (-2)=4-4e -2.5. 已知函数f (x )=(ax 2+bx +c )e x 在[0,1]上单调递减且满足f (0)=1,f (1)=0.(1)求a 的取值围.(2)设g (x )=f (x )-f ′(x ),求g (x )在[0,1]上的最大值和最小值. 解 (1)由f (0)=1,f (1)=0,得c =1,a +b =-1, 则f (x )=[ax 2-(a +1)x +1]e x , f ′(x )=[ax 2+(a -1)x -a ]e x ,依题意对于任意x ∈[0,1],有f ′(x )≤0. 当a >0时,因为二次函数y =ax 2+(a -1)x -a 的图象开口向上, 而f ′(0)=-a <0,所以需f ′(1)=(a -1)e<0,即0<a <1; 当a =1时,对于任意x ∈[0,1],有f ′(x )=(x 2-1)e x ≤0, 且只在x =1时f ′(x )=0,f (x )符合条件;当a =0时,对于任意x ∈[0,1],f ′(x )=-x e x ≤0, 且只在x =0时,f ′(x )=0,f (x )符合条件; 当a <0时,因f ′(0)=-a >0,f (x )不符合条件. 故a 的取值围为0≤a ≤1. (2)因g (x )=(-2ax +1+a )e x , g ′(x )=(-2ax +1-a )e x , ①当a =0时,g ′(x )=e x >0, g (x )在x =0处取得最小值g (0)=1, 在x =1处取得最大值g (1)=e.②当a =1时,对于任意x ∈[0,1]有g ′(x )=-2x e x ≤0, g (x )在x =0处取得最大值g (0)=2, 在x =1处取得最小值g (1)=0.③当0<a <1时,由g ′(x )=0得x =1-a2a >0.若1-a 2a ≥1,即0<a ≤13时, g (x )在[0,1]上单调递增,g (x )在x =0处取得最小值g (0)=1+a , 在x =1处取得最大值g (1)=(1-a )e. 若1-a 2a <1,即13<a <1时, g (x )在x =1-a 2a 处取得最大值g (1-a 2a )=2a e 1-a 2a ,在x =0或x =1处取得最小值,而g (0)=1+a ,g (1)=(1-a )e ,由g (0)-g (1)=1+a -(1-a )e =(1+e)a +1-e =0, 得a =e -1e +1.则当13<a ≤e -1e +1时,g (0)-g (1)≤0,g (x )在x =0处取得最小值g (0)=1+a ; 当e -1e +1<a <1时,g (0)-g (1)>0, g (x )在x =1处取得最小值g (1)=(1-a )e.。
导数与函数的单调性、极值、最值
[变式训练] (2017·北京卷)已知函数 f(x)=excos x-x. (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)求函数 f(x)在区间0,π2上的最大值和最小值.
解:(1)因为 f(x)=excos x-x,所以 f(0)=1, f′(x)=ex(cos x-sin x)-1,所以 f′(0)=0, 所以 y=f(x)在(0,f(0))处的切线方程为 y=1. (2)f′(x)=ex(cos x-sin x)-1,令 g(x)=f′(x),
考点 2 利用导数求函数的最值(讲练互动) 【例】 (2019·广东五校联考)已知函数 f(x)=ax+ln x,其中 a 为常数. (1)当 a=-1 时,求 f(x)的最大值; (2)若 f(x)在区间(0,e]上的最大值为-3,求 a 的值. 解:(1)易知 f(x)的定义域为(0,+∞), 当 a=-1 时,f(x)=-x+ln x,f′(x)=-1+1x=1-x x, 令 f′(x)=0,得 x=1. 当 0<x<1 时,f′(x)>0;当 x>1 时,f′(x)<0.
由题设知 f′(1)=0,即(1-a)e=0,解得 a=1. 此时 f(1)=3e≠0. 所以 a 的值为 1. (2)f′(x)=[ax2-(2a+1)x+2]ex =(ax-1)(x-2)ex. 若 a>12,则当 x∈(1a,2)时,f′(x)<0; 当 x∈(2,+∞)时,f′(x)>0.
②当 a>0 时,令 f′(x)=0,得 ex=a,即 x=ln a, 当 x∈(-∞,ln a)时,f′(x)<0;
当 x∈(ln a,+∞)时,f′(x)>0, 所以 f(x)在(-∞,ln a)上单调递减,在(ln a,+∞) 上单调递增,故 f(x)在 x=ln a 处取得极小值且极小值为 f(ln a)=ln a,无极大值. 综上,当 a≤0 时,函数 f(x)无极值; 当 a>0 时,f(x)在 x=ln a 处取得极小值 ln a,无极大 值.
高一数学导数与函数的单调性与极值
高一数学导数与函数的单调性与极值函数的单调性和极值是数学中的重要概念,对于理解函数的性质和解决实际问题都具有重要意义。
在这篇文章中,我们将探讨高一数学中导数与函数的单调性和极值的概念、性质及其应用。
一、导数与函数的单调性函数的单调性是指函数在定义域上的变化趋势。
在数学中,导数是描述函数变化率的重要工具。
1.1 导数的定义对于函数 y=f(x),若函数在点 x0 处可导,则导数 f'(x0) 的定义如下:f'(x0) = lim(h->0) [f(x0+h) - f(x0)] / h其中,lim 表示极限,h 为自变量的增量。
1.2 单调性的判定通过导数的符号来判断函数的单调性:若在某一区间内,f'(x)>0,函数单调递增;若在某一区间内,f'(x)<0,函数单调递减;若在某一区间内,f'(x)=0,函数在该区间内可能有极值点。
1.3 单调性的应用函数的单调性在实际问题的建模和求解中具有重要应用,例如在经济学中,可以利用函数的单调性来研究供求关系、市场行为等问题。
在求解最优化问题时,函数的单调性也是一个重要考虑因素。
二、导数与函数的极值函数的极值包括最大值和最小值,用于描述函数的局部极限。
2.1 极值点的定义对于函数 y=f(x),若存在 a,使得 f(a) 是函数在该点上的最大值或最小值,则称 a 为函数的极值点,而 f(a) 称为函数的极值。
2.2 极值点的判定通过导数的性质来判断函数的极值点:1) 若 f'(x) 在 a 点两侧变号,则 a 点是函数的极值点;2) 若 f'(x) 在 a 点两侧保持符号相同,则 a 点不是函数的极值点。
2.3 极值点的应用函数的极值在实际问题的求解中起着重要的作用。
例如,在工程中优化设计问题,可以通过求解函数的极值来找到最优解。
在生物学中,可以利用极值点来研究生物体的最佳生长环境。
总结:通过学习导数与函数的单调性和极值,我们可以更深入地理解函数的性质和变化趋势。
导数与函数单调性和极值最值的关系
导数与函数单调性和极值最值的关系一、知识导学1.函数的单调性与导数的关系在某个区间),(b a 内,如果0)('>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)('<x f ,那么函数)(x f y =在这个区间内单调递减。
2.函数的单调性与极值的关系一般地,对于函数y =f(x),且在点a 处有f ′(a)=0.(1)若在x =a 附近的左侧导数小于0,右侧导数大于0,则f(a)为函数y =f(x)的极小值.(2)若在x =a 附近的左侧导数大于0,右侧导数小于0,则f(a)为函数y =f(x)的极大值.求函数)(x f 极值的步骤:①求导数)(x f '。
求方程0)(='x f 的根.②求方程0)(/=x f 的根.③列表;④下结论。
3.函数的最大值和最小值(1)设)(x f y =是定义在区间[]b a ,上的函数,)(x f y =在),(b a 内有导数,求函数)(x f y =在[]b a ,上的最大值与最小值,可分两步进行.①求)(x f y =在),(b a 内的极值.②将)(x f y =在各极值点的极值与)(a f 、)(b f 比较,其中最大的一个为最大值,最小的一个为最小值.(2)若函数)(x f 在[]b a ,上单调增加,则)(a f 为函数的最小值,)(b f 为函数的最大值;若函数)(x f 在[]b a ,上单调递减,则)(a f 为函数的最大值,)(b f 为函数的最小值. 注意:(1)在求函数的极值时,应注意:使导函数)(x f '取值为0的点可能是它的极值点,也可能不是极值点。
例如函数3)(x x f =的导数23)(x x f =',在点0=x 处有0)0(='f ,即点0=x 是3)(x x f =的驻点,但从)(x f 在()+∞∞-,上为增函数可知,点0=x 不是)(x f 的极值点.(2) 在求实际问题中的最大值和最小值时,一般是先找出自变量、因变量,建立函数关系式,并确定其定义域.如果定义域是一个开区间,函数在定义域内可导(其实只要是初等函数,它在自己的定义域内必然可导),并且按常理分析,此函数在这一开区间内应该有最大(小)值,然后通过对函数求导,发现定义域内只有一个点使得导函数为0,那么立即可以断定在这个点处的函数值就是最大(小)值。
导数与方程单调性和极值点的关系
导数与方程单调性和极值点的关系导数是微积分中的一个重要概念,它可以帮助我们研究函数的单调性和极值点。
本文将探讨导数与方程单调性以及极值点之间的关系。
方程单调性与导数在研究方程的单调性时,我们可以利用导数的概念。
一个函数在某个区间上是递增的,意味着它的导数在该区间上大于零;而一个函数在某个区间上是递减的,意味着它的导数在该区间上小于零。
通过这种方式,我们可以将方程的单调性与导数联系起来。
例如,考虑一个函数f(x),它在区间[a, b]上是递增的。
这意味着f'(x) > 0,其中f'(x)表示函数f(x)的导数。
因此,在区间[a, b]上,方程f'(x) = 0没有解。
这是因为导数大于零表明函数在该区间上是递增的,不可能同时存在一个点使得导数等于零。
同样地,如果一个函数在某个区间上是递减的,意味着它的导数在该区间上小于零。
在这种情况下,方程f'(x) = 0可能有解,因为导数小于零表明函数在该区间上是递减的,可能存在一个点使得导数等于零。
极值点与导数极值点是函数在某个区间上的最大值或最小值点。
导数可以帮助我们确定一个函数的极值点的位置。
考虑一个函数f(x)在区间[a, b]上有一个极值点。
如果这个极值点是一个局部最小值点,那么在该点处的导数f'(x) = 0。
同样地,如果这个极值点是一个局部最大值点,那么在该点处的导数f'(x) = 0。
这是因为极值点的定义需要函数在该点的导数为零。
然而,需要注意的是,导数为零的点并不一定是极值点。
在寻找极值点时,我们还需要考虑导数的符号变化。
如果一个函数在某个点的左侧导数大于零,而在右侧导数小于零,那么该点就是一个局部最大值点。
相反,如果一个函数在某个点的左侧导数小于零,而在右侧导数大于零,那么该点就是一个局部最小值点。
综上所述,导数与方程的单调性和极值点之间存在密切关系。
通过导数,我们可以确定一个函数在某个区间上的单调性以及极值点的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的单调性及极值
1.已知函数()cos x f x xe =(e 为自然对数的底数),当[],x ππ∈-时, ()y f x =的图象大致是()
A.
B.
C.
D.
2.函数x y xe -=,[0,4]x ∈的最小值为( )
A .0
B .1e C.44e D .22
e
3.已知函数()y f x =的图象是下列四个图象之一,且其导函数'()y f x =的图象如图所示, 则该函数的图象是( )
A .
B . C. D .
4.函数32()f x x bx cx d =+++图象如图,则函数222log ()33
c y x bx =++的单调递减区间为( )
A.(,2]-∞-
B.[3,)+∞
C.[2,3]--
D.1[,2+∞)
5.函数()f x 的定义域为开区间(,)a b ,导函数'()f x 在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有极小值点( )
A .1个
B .2个 C. 3个 D .4个
6.对于R 上可导的任意函数()f x ,若满足10'()
x f x -≤,则必有( ) A .(0)(2)2(1)f f f +> B .(0)(2)2(1)f f f +≤ C .(0)(2)2(1)f f f +< D .(0)(2)2(1)f f f +≥
7.已知R 上的可导函数()f x 的图象如图所示,则不等式()
()2230x x f x '-->的解集为
A .()
(),21,-∞-+∞ B .()(),21,2-∞- C .()()(),11,13,-∞--+∞ D .()()(),11,02,-∞--+∞
8.已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则实数a 的取值范围是
A .21<<-a
B .63<<-a
C .3-<a 或6>a
D .1-<a 或2>a
9.若函数12
3)(23++-=x x a x x f 在区间)3,21(上单调递减,则实数a 的取值范围为 A.)310,25( B.),310(+∞ C.),3
10[+∞ D.),2[+∞ 10.已知函数()321f x x ax x =-+--在(),-∞+∞上是单调函数,则实数a 的取值范围是()
A .(),3,⎡-∞+∞⎣
B . (()
,3,-∞+∞
C .⎡⎣
D .( 11.设3
21()252
f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的取值范围为 A.7m > B.15727m > C.157727m << D.7m < 12.已知函数()33f x x x =-,若对于区间[]3,2-上任意的12,x x 都有()()12f x f x t -≤,则实数t 的最
小值是( )
A .0
B .10
C .18
D .20
13.已知()f x 是定义在()0+∞,
上的可导函数,其导函数为()'f x ,且当0x >时,恒有()()'l n 0f x x x f x +<,则使得()0f x >成立的x 的取值范围是( )
A .()01,
B .()1+∞,
C .()()011+∞,,
D .∅
14.已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,当0>x 时,有0)()(2>-'x x f x f x 成立,则不等
式0)(>⋅x f x 的解集是( )
(A )),1()1,(+∞⋃--∞ (B ))1,0()0,1(⋃- (C )),1(+∞ (D )),1()0,1(+∞⋃- 15.已知函数
(Ⅰ)若函数在点处的切线与直线垂直,求切线的方程; (Ⅱ)求函数
的极值.
16.设函数()32
395f x x ax x =+-+,若()f x 在1x =处有极值. (1)求实数a 的值;
(2)求函数()f x 的极值;
(3)若对任意的[]4,4x ∈-,都有()2f x c <,求实数 c 的取值范围.。