二次函数分节练习基础练习小篇

合集下载

二次函数基础分类练习题 含答案

二次函数基础分类练习题 含答案

二次函数基础分类练习题含答案二次函数基础分类练习题含答案二次函数基础分类练习题(含答案)练一二次函数y=y=x2-x(1+x);③y=x2(x2+x)-4;④y=1+x;x2,b⑤y=x(1-x),其中是二次函数的是,其中a==,c=3、当m时,函数y5、当m=(m-2)x2+3x-5(m为常数)是关于x的二次函数=____时,函数y时,函数y=(m2+m)xm=(m-4)xm22-2m-1是关于x的二次函数=____-5m+6+3x是关于x的二次函数6、若点a(2,2m)在函数y=x-1的图像上,则a点的座标就是____.10、已知二次函数y=ax2+c(a≠0),当x=1时,y=-1;当x=2时,y=2,求该函数解析式.练五y=a(x-h)+k的图象与性质21、请写出一个二次函数以(2,3)为顶点,且开口向上.____________.2、二次函数y=(x-1)2+2,当x=____时,y存有最小值.3、函数y=(x-1)2+3,当x____时,函数值y随x的增大而增大.17、未知函数y=-3(x-2)+9.2(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x=时,抛物线存有最值,就是.(3)当x时,y随x的增大而增大;当x时,y随x的增大而减小.2、抛物线y=ax2+bx+c的图象和性质y=x2+4x+9的对称轴就是.y=2x2-12x+25的开口方向就是3、先行写下一个开口方向向上,对称轴为直线x=-2,且与y轴的交点座标为(0,3)的抛物线的解析式.4、将y=x2-2x+3化成y=a(x-h)2+k的形式,则y=____.5、把二次函数y=-125x-3x-的图象向上位移3个单位,再向右位移4个单位,则两次位移后22的函数图象的关系式是7、函数y=x2-6x-16与x轴交点的座标为_________;y=-2x2+x存有最____值,最值_______;1、函数yy=ax2+bx+c的性质=x2+px+q的图象是以(3,2)为顶点的一条抛物线,这个二次函数的表达式为=mx2+2x+m-4m2的图象经过原点,则此抛物线的顶点座标就是=ax2+bx+c与y轴交于点a2、二次函数y3、如果抛物线y(0,2),它的对称轴是x=-1,那么ac=b4、抛物线y=x2+bx+c与x轴的也已半轴处设点a、b两点,与y轴处设点c,且线段ab的短为1,△abc的面积为1,则b的值______.5、已知二次函数10、函数y=ax2+bx+c的图象如图所示,则a___0,b___0,c___0,b2-4ac____0;y=ax2+bx+c的图象例如图,则直线y=ax+bc的图象不经过第象y=ax+b与y=ax2+bx+c的图象如图所示,则以下选项中恰当的就是()0,c>0b、ab00,cc、ab>11、已知函数y=ax2+bx+c的图象如图所示,则函数y=ax+b的图象就是()练习八二次函数解析式1、抛物线y=ax2+bx+c经过a(-1,0),b(3,0),c(0,1)三点,则a=,b=,c=2、把抛物线y=x2+2x-3向左位移3个单位,然后向上位移2个单位,则税金的抛物线的解析式为.1、二次函数有最小值为-1、未知二次函数1,当x=0时,y=1,它的图象的对称轴为x=1,则函数的关系式y=kx2-7x-7与x轴存有交点,则k的值域范围就是.22、关于x的一元二次方程x3、抛物线2-x-n=0没实数根,则抛物线y=x-x-n的顶点在第_____象限;y=-x2+2kx+2与x轴交点的个数为()a、0b、1c、2d、以上都不对5、y=ax2+bx+c对于x的任何值都恒为负值的条件就是()>0,∆>0b、a>0,∆0d、a4a、0b、-1c、2d、6、若方程ax2+bx+c=0的两个根就是-3和1,那么二次函数y=ax2+bx+c的图象的对称轴就是直线()a、x=-3b、x=-2c、x=-1d、x=11.方程x2-2mx+9=0存有两个成正比的实数根,则m=________;2.设124,且m≠2,方程(m-2)x-(2m-1)x+m=0的根的情况是3.如果方程x2+2x=m-1没实数根,则关于x的方程x2+mx+2m-1=0的根的情况就是;2x+3x-k=0没有实数根,则k的最大整数值是;4.若方程2xxx-5x+6=0的两个根,那么x1⋅x2=;125.如果、就是方程22xxxx⋅x2x(a-1)x+x+a-1=0的两个实数根,x126.已知、是关于的方程且1+2=3,则17.未知一元二次方程x8.一元二次方程x9.如果22-3x-1=0的两个根就是x1,x2,则x1+x2=,-ax-3a=0的两根之和为2a-1,则两根之四维_________;x1,x2就是方程x2-5x+6=0的两个根,那么x1⋅x2=;m,n是方程x2+2021x-1=0的两个实数根,则m2n+mn2-mn的值是10.若1.函数12x-3的自变量x的值域范围就是;2.函数xx-1中自变量x的取值范围是;3.点a(–3,4)和点b(3,4)的关于___________轴对称;3m-22m+1,3-2)在第三象限,则m的取值范围是_____________;4.若点(5.在第一象限至x轴距离为4,至6.若点m(1–x,x+2)在第二象限内,则x的取值范围为;7.如果点p1(-1,3)和p2(1,b)关于y轴距离为7的点的座标就是______________;y轴对称,则b=;222m+4m+m+6)在第一象限的角平分线上,则m=;8.已知点q(,9.点q(3–a,5–a)在第二象限,则a2-4a+4+a2-10a+25=;10.无论x为何实数值,点p(x+1,x–1)都不在第象限;11.未知点p(2a–8,2–a)就是第三象限的整点,则p点的座标就是;12.已知a13.函数y=2-x中,自变量x的值域范围;1-x的值是;y轴的距离为;至原点的距离为;14.未知x=2,函数15.点a(-5,3)至x轴的距离为;至16.点nm2+3m,-m-3()的横纵坐标互为相反数,则m=_____;y=-1、函数x2y=2和函数xx的图象有个交点;2、反比例函数3的图象经过(-2,5)点、(a,-3)及(10,b)点,则k=,a=,3ky=(2k-1)x3、若反比例函数2-2k-1的图象经过二、四象限,则k=_______4、未知y-2与x成反比例,当x=3时,y=1,则y与x间的函数关系式为;5、已知正比例函数y=kx与反比例函数y=3x的图象都过a(m,1),则m=,正比例函数与反比例函数的解析式分别是、;。

二次函数专题训练卷(基础部分)

二次函数专题训练卷(基础部分)

二次函数专题训练卷(基础部分)一.选择题(共8小题)1.将抛物线y=x2向下平移1个单位长度,再向左平移4个单位长度,所得到的抛物线为()A.y=(x+1)2+4B.y=(x﹣4)2+1C.y=(x+4)2﹣1D.y=(x﹣1)2﹣4 2.当y=x2﹣6x﹣3的值最小时,x的取值是()A.0B.﹣3C.3D.﹣93.对于二次函数y=﹣(x﹣1)2+4的图象,下列说法错误的是()A.抛物线开口向下B.y的最大值是4C.当x<﹣1时,y随x的增大而增大D.当﹣4<x<1时,函数值y>04.二次函数y=ax2+bx+c的图象如图所示,在以下结论:①abc<0;②b2>4ac;③2a﹣b <0;④a+b+c<0.其中正确的结论个数为()A.1B.2C.3D.45.如图,抛物线与x轴交于点(﹣1,0),对称轴为直线x=1,则下列结论中正确的是()A.a<0B.x=3是一元二次方程ax2+bx+c=0的一个根C.c>0D.当x>1时,y随x的增大而增大6.已知函数y=﹣(x﹣2)2+3,则顶点坐标为()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(0,3)7.如图,在平面直角坐标系中,坐标原点为O,抛物线y=a(x﹣2)2+1(a>0)的顶点为A,过点A作y轴平行线交抛物线于点B,连接AO、BO,则△AOB的面积为()A.2B.4C.6D.88.二次函数y=ax2+bx+c(a≠0)中的自变量x与函数值y的部分对应值如下表:x…﹣3﹣2﹣1014…y…1670﹣5﹣8﹣5…则下列结论:①a<0;②当函数值y<0时,对应x的取值范围是﹣1<x<5;③顶点坐标为(1,﹣8);④若点P(﹣2,y1),Q(5,y2)在抛物线上,则y1>y2.其中,所有正确结论的序号为()A.①③B.③④C.①④D.②④二.填空题(共8小题)9.已知函数y=ax2+bx+c的部分图象如下图所示,当x时,y随x的增大而减小.10.体育老师将小华实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+9x+10,由此可知小华此次实心球训练的成绩为米.11.已知二次函数y=mx2﹣6mx+6的图象与x交于点A和点B(点B在点A的左侧),与y 轴交于点C,△ABC是以BC为底的等腰三角形,那么m的值为.12.二次函数y=ax2+bx+c(a≠0)的部分图象如图,对称轴为x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c>0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b+c>m(am+b)+c(其中m≠).正确的结论有.13.二次函数y=x2﹣2x﹣3中,当x=﹣1时,y的值是.14.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x1 1.1 1.2 1.3 1.4y﹣1﹣0.490.040.59 1.16那么方程x2+3x﹣5=0的一个近似根是;15.已知抛物线y=x2﹣2x﹣3上有且只有三个点到x轴的距离等于p,点A(m,n)在抛物线上,且点A到y轴的距离小于2.(1)p=.(2)n的取值范围是.16.设A(2,y1),B(3,y2)是抛物线y=﹣(x+1)2+k的两点,则y1y2(填<,=或>).三.解答题(共4小题)17.某服装店店主以每件140元的价格购进某厂的服装,12月份以单价200元销售,均每天可销售20件.为配合“双十二活动”,店主决定采取适当的降价措施,提高销量.店主发现,每件服装每降价1元,每天可多售出2件,设每件服装降价x元.(1)每天可销售该服装件.(用含x的代数式表示).(2)每件服装售价为多少时,每天销售该种服装获利最多?18.已知抛物线的顶点坐标为(2,0),且经过点(1,﹣3).(1)求该抛物线的解析式;(2)若点(m,﹣27)在该抛物线上,求m的值.19.如图,足球运动员在O点处将球射向球门,球射门的路线呈抛物线.当球飞行的水平距离为6米时,球达到最高点,此时球离地面3米.(1)求球运动路线的函数表达式.(2)若球门在O点正前方10米,球门高度是2.44米,问该球能否射入球门?20.如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣2),B(2,0).(1)求该抛物线的解析式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,交线段AB于点H.求PC+PD的最大值及此时点P 的坐标.。

二次函数基础分类练习测试题含参考答案修订版

二次函数基础分类练习测试题含参考答案修订版

二次函数基础分类练习测试题含参考答案修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】二次函数基础分类练习题练习一二次函数1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式.2、下列函数:①23y x ;②21y x x x ;③224y x x x ;④21y x x ; ⑤1y x x ,其中是二次函数的是,其中a ,b ,c3、当m 时,函数2235y m x x (m 为常数)是关于x 的二次函数4、当____m 时,函数2221m m y m m x 是关于x 的二次函数5、当____m 时,函数2564m m y m x +3x 是关于x 的二次函数6、若点A(2,m )在函数12-=x y 的图像上,则A 点的坐标是____.7、在圆的面积公式S =πr 2中,s 与r 的关系是( ) A 、一次函数关系 B 、正比例函数关系 C 、反比例函数关系 D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是4cm ,宽是3cm ,如果将长和宽都增加xcm ,那么面积增加ycm 2, ①求y 与x 之间的函数关系式.②求当边长增加多少时,面积增加8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y=-1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是(或),顶点坐标是,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x=时,该函数有最值是;(2)抛物线221x y -=的对称轴是(或),顶点坐标是,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x=时,该函数有最值是;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是.3、抛物线y =-x 2不具有的性质是( )A 、开口向下B 、对称轴是y 轴C 、与y 轴不相交D 、最高点是原点 4、苹果熟了,从树上落下所经过的路程s 与下落时间t 满足S =12gt 2(g =9.8),则s 与t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是()A .B .C .D . 6、已知函数24m m y mx 的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值. 8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式. 练习三函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口,对称轴是,顶点坐标是,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为,再向上平移3个单位得到的抛物线的解析式为,并分别写出这两个函数的顶点坐标、.3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是.4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是,当x=时,该抛物线有最(填大或小)值,是.5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于.练习四函数()2h x a y -=的图象与性质 1、抛物线()2321--=x y ,顶点坐标是,当x 时,y 随x 的增大而减小,函数有 最值.2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位. 3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个). 4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2,3)为顶点,且开口向上.____________.2、二次函数y =(x -1)2+2,当x =____时,y 有最小值.3、函数y =12(x -1)2+3,当x ____时,函数值y 随x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向平移3个单位,再向平移2个单位得到.5、已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是()A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y . (1) 确定下列抛物线的开口方向、对称轴和顶点坐标;(2) 当x=时,抛物线有最值,是.(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.(4) 求出该抛物线与x 轴的交点坐标及两交点间距离;(5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;(3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是.2、抛物线251222+-=x x y 的开口方向是,顶点坐标是.3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式.4、将y =x 2-2x +3化成y =a(x -h)2+k 的形式,则y =____.5、把二次函数215322y x x 的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于()A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为()A 、22B 、23C 、32D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212+-=x x y ;(2)2832-+-=x x y ;(3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1)求一次函数的关系式;2)判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七c bx ax y ++=2的性质1、函数2y x px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数2224y mx x m m 的图象经过原点,则此抛物线的顶点坐标是 3、如果抛物线2y ax bx c 与y 轴交于点A (0,2),它的对称轴是1x ,那么acb4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第象限. 7、已知二次函数2yax bx c (0≠a )的图象如图所示,则下列结论: 1),a b 同号;2)当1x和3x 时,函数值相同;3)40a b ;4)当2y 时,x 的值只能为0;其中正确的是8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2y x ax b 中,若0a b ,则它的图象必经过点()10、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是()A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是()12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有()A .4个B .3个C .2个D .1个 13、抛物线的图角如图,则下列结论:①>0;②; ③>;④<1.其中正确的结论是(????).(A )①②??(B )②③??(C )②④??(D )③④14、二次函数2yax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c 15、试求抛物线2y ax bx c 与x 轴两个交点间的距离(240b ac ) 练习八二次函数解析式1、抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,1)三点,则a=,b=,c=2、把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为.3、二次函数有最小值为1,当0x时,1y,它的图象的对称轴为1x,则函数的关系式为4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y轴交点的纵坐标为-3(3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过1,1、2,1两点,且与x轴仅有一个交点,求二次函数的解析式6、抛物线y=ax2+bx+c过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x轴交于A(-2,0)、B(3,0)两点,且函数有最大值是2.(1)求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.练习九二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是.2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为()A 、0B 、1C 、2D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是()A 、0,0>∆>aB 、0,0<∆>aC 、0,0>∆<aD 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为()A 、0B 、-1C 、2D 、41 6、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线()A 、x =-3B 、x =-2C 、x =-1D 、x =17、已知二次函数2yx px q 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值 8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、如图:(1) 求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求(1)一次函数和二次函数的解析式,(2)写出使一次函数值大于二次函数值的x 的取值范围.11、已知抛物线22y x mx m .(1)求证此抛物线与x 轴有两个不同的交点;(2)若m 是整数,抛物线22y x mx m 与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B. 若M 为坐标轴上一点,且MA=MB ,求点M 的坐标.练习十二次函数解决实际问题1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线表示这种蔬菜销售价与月份之间的关系.观察图像,你能得到关于这种蔬菜销售情况的哪些信息?(至少写出四条)2、某企业投资100万元引进一条农产品生产线,预计投产后每年可创收33万元,设生产线投产后,从第一年到第x 年维修、保养费累计..为y (万元),且y =ax 2+bx ,若第一年的维修、保养费为2万元,第二年的为4万元.求:y 的解析式.3、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度y(m)与水平距离x(m)之间的函数关系式为y =-112x 2+23x +53,求小明这次试掷的成绩及铅球的出手时的高度.4、用6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?5、商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件. ①设每件降价x 元,每天盈利y 元,列出y 与x 之间的函数关系式;②若商场每天要盈利1200元,每件应降价多少元?③每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m ,跨度为10m ,如图所示,把它的图形放在直角坐标系中.①求这条抛物线所对应的函数关系式.②如图,在对称轴右边1m处,桥洞离水面的高是多少?7、有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的解析式.(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),试求出用d表示h的函数关系式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?8、某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m,若行车道总宽度AB为6m,请计算车辆经过隧道时的限制高度是多少米?(精确到0.1m).练习一二次函数参考答案1:1、22t s =;2、⑤,-1,1,0;3、≠2,3,1;6、(2,3);7、D ;8、),2150(2254S 2<<+-=x x 189;9、x x y 72+=,1;10、22-=x y ;11、,244S 2x x +-=当a<8时,无解,168<≤a 时,AB=4,BC=8,当16≥a 时,AB=4,BC=8或AB=2,BC=16.练习二函数2ax y =的图象与性质参考答案2:1、(1)x=0,y 轴,(0,0),>0,,<0,0,小,0;(2)x=0,y 轴,(0,0),<,>,0,大,0;2、④;3、C ;4、A ;5、B ;6、-2;7、3-;8、021<<y y ;9、(1)2或-3,(2)m=2、y=0、x>0,(3)m=-3,y=0,x>0;10、292x y = 练习三函数c ax y +=2的图象与性质参考答案3:1、下,x=0,(0,-3),<0,>0;2、2312-=x y ,1312+=x y ,(0,-2),(0,1);3、①②③;4、322+=x y ,0,小,3;5、1;6、c.练习四函数()2h x a y -=的图象与性质 参考答案4:1、(3,0),>3,大,y=0;2、2)2(3-=x y ,2)32(3-=x y ,2)3(3-=x y ;3、略;4、2)2(21-=x y ;5、(3,0),(0,27),40.5;6、2)4(21--=x y ,当x<4时,y 随x 的增大而增大,当x>4时,y 随x 的增大而减小;7、-8,-2,4.练习五()k h x a y +-=2的图象与性质 参考答案5:1、略;2、1;3、>1;4、左、下;5、342-+-=x x y ;6、C ;7、(1)下,x=2,(2,9),(2)2、大、9,(3)<2、>2,(4)(32-,0)、(32+,0)、32,(5)(0,-3);(6)向右平移2个单位,再向上平移9个单位;8、(1)上、x=-1、(-1,-4);(2)(-3,0)、(1,0)、(0,-3)、6,(3)-4,当x>-1时,y 随x 的增大而增大;当x<-1时,y 随x 的增大而减小,(4)2)1(-=x y ;(5)向右平移1个单位,再向上平移4个单位或向上平移3个单位或向左平移1个单位;(6)x>1或x<-3、-3<x<1练习六c bx ax y ++=2的图象和性质参考答案6:1、x=-2;2、上、(3,7);3、略;4、2)1(2+-x ;5、5)1(212+--=x y ;6、(-2,0)(8,0);7、大、81;8、C ;9、A ;10、(1)1)2(212--=x y 、上、x=2、(2,-1),(2)310)34(32+--=x y 、下、34=x 、(310,34),(3)3)2(412---=x y 、下、x=2、(2,-3);11、有、y=6;12、(2,0)(-3,0)(0,6);13、y=-2x 、否;14、定价为3000元时,可获最大利润125000元练习七c bx ax y ++=2的性质参考答案7:1、1162+-=x x y ;2、(-4,-4);3、1;4、-3;5、>、<、>、>;6、二;7、②③;8、-7;9、C ;10、D ;11、B ;12、C ;13、B ;14、4422++-=x x y ;15、a ac b 42-练习八二次函数解析式参考答案8:1、31-、32、1;2、1082++=x x y ;3、1422+-=x x y ;4、(1)522-+=x x y、(2)3422---=x x y 、(3)41525452--=x x y 、(4)253212+-=x x y ;5、9194942+-=x x y ;6、142-+-=x x y ;7、(1)25482582582++-=x x y 、5;8、322++-=x x y 、y=-x-1或y=5x+5练习九二次函数与方程和不等式参考答案9:1、47-≥k 且0≠k ;2、一;3、C ;4、D ;5、C ;6、C ;7、2,1;8、31,3,121≤≤-=-=x x x ;9、(1)x x y 22-=、x<0或x>2;10、y=-x+1,322+--=x x y ,x<-2或x>1;11、(1)略,(2)m=2,(3)(1,0)或(0,1)练习十二次函数解决实际问题参考答案10:1、①2月份每千克3.5元 ②7月份每千克0.5克 ③7月份的售价最低 ④2~7月份售价下跌;2、y =x 2+x ;3、成绩10米,出手高度35米;4、23)1(232+--=x S ,当x =1时,透光面积最大为23m 2;5、(1)y =(40-x)(20+2x)=-2x 2+60x +800,(2)1200=-2x 2+60x +800,x 1=20,x 2=10 ∵要扩大销售 ∴x 取20元,(3)y =-2(x 2-30x)+800=-2(x -15)2+1250 ∴当每件降价15元时,盈利最大为1250元;6、(1)设y =a(x -5)2+4,0=a(-5)2+4,a =-254,∴y=-254(x -5)2+4,(2)当x =6时,y =-254+4=3.4(m);7、(1)2251x y -=,(2)h d -=410,(3)当水深超过2.76m 时;8、)64(6412≤≤-+-=x x y ,x =3,m y 75.3496=-=,m 2.325.35.075.3≈=-,货车限高为3.2m.。

二次函数基础练习题及答案

二次函数基础练习题及答案

二次函数练习题〔一〕1、 一个小球由静止开场在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s〔米〕及时间t 〔秒〕的数据如下表:写出用t 表示s 的函数关系式.2、 以下函数:① 23yx ;②()21y x x x =-+;③()224y x x x =+-;④ 21y x x ;⑤()1y x x =-,其中是二次函数的是 ,其中a,b,c3、当m 时,函数()2235y m x x =-+-〔m 为常数〕是关于x 的二次函数4、当____m =时,函数2221m m ymm x是关于x 的二次函数5、当____m =时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数6、假设点 A ( 2, m ) 在函数 12-=x y 的图像上,那么 A 点的坐标是____.7、在圆的面积公式 S =πr 2中,s 及 r 的关系是〔 〕A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15,在四个角上各剪去一个边长为x 〔〕的小正方形,用余下的局部做成一个无盖的盒子.(1)求盒子的外表积S 〔2〕及小正方形边长x 〔〕之间的函数关系式;(2)当小正方形边长为3时,求盒子的外表积.9、矩形的长是 4,宽是 3,如果将长和宽都增加 x ,那么面积增加 2,① 求 y 及 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 82.10、二次函数),0(2≠+=a c ax y 当1时, -1;当2时,2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽为x 米,那么猪舍的总面积S 〔米2〕及x 有怎样的函数关系?(2)请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长和宽的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?二次函数练习题〔二〕函数2ax y =的图象及性质1、填空:〔1〕抛物线221x y =的对称轴是 〔或 〕,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当 时,该函数有最 值是 ; 〔2〕抛物线221x y -=的对称轴是 〔或 〕,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当 时,该函数有最 值是 ; 2、对于函数22x y =以下说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④ . 3、抛物线 y =-x 2 不具有的性质是〔 〕A 、开口向下B 、对称轴是 y 轴C 、及 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 及下落时间 t 满足 S =122〔g=9.8〕,那么 s 及 t 的函数图像大致是〔 〕A B C D5、函数2ax y =及b ax y +-=的图象可能是〔 〕A .B .C .D .6、函数24mm ymx 的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1及y 2的大小关系.9、函数()422-++=m m xm y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,ys t Ost O st O sO随x 的增大而增大;(3)m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2yax 及直线1y x =-交于点,2b ,求这条抛物线所对应的二次函数的关系式.二次函数练习题〔三〕函数c ax y +=2的图象及性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都一样;②对称轴都一样;③形状一样;④ .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当 时,该抛物线有最 〔填大或小〕值,是 .5、函数2)(22+-+=x m m mx y 的图象关于y 轴对称,那么m =;6、二次函数c ax y +=2()0≠a 中,假设当x 取x 1、x 2〔x 1≠x 2〕时,函数值相等,那么当x 取x 12时,函数值等于 .二次函数练习题〔四〕函数()2h x a y -=的图象及性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时随x 的增大而减小, 函数有最 值 .2、试写出抛物线23x y =经过以下平移后得到的抛物线的解析式并写出对称轴和顶点坐标.〔1〕右移2个单位;〔2〕左移32个单位;〔3〕先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质〔至少2个〕.4、二次函数()2h x a y -=的图象如图:21=a ,,试求该抛物线的解析式.5、抛物线2)3(3-=x y 及x 轴交点为A ,及y 轴交点为B ,求A 、B 两点坐标及⊿的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.〔1〕求出此函数关系式.〔2〕说明函数值y 随x 值的变化情况.7、抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.二次函数练习题〔五〕()k h x a y +-=2的图象及性质1、请写出一个二次函数以〔2, 3〕为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12 (x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数21(3)2-2的图象可由函数212的图象向 平移3个单位,再向平移2个单位得到.5、 抛物线的顶点坐标为2,1,且抛物线过点3,0,那么抛物线的关系式是6、 如下图,抛物线顶点坐标是P 〔1,3〕,那么函数y 随自变量x 的增大而减小的x 的取值范围是〔 〕A 、x>3B 、x<3C 、x>1D 、x<1 7、函数()9232+--=x y .(1) 确定以下抛物线的开口方向、对称轴和顶点坐标; (2) 当 时,抛物线有最 值,是 .(3)当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.(4) 求出该抛物线及x 轴的交点坐标及两交点间距离;(5) 求出该抛物线及y 轴的交点坐标;(6)该函数图象可由23x y -=的图象经过怎样的平移得到的?8、函数()4y.=x+12-(1)指出函数图象的开口方向、对称轴和顶点坐标;(2)假设图象及x轴的交点为A、B和及y轴的交点C,求△的面积;(3)指出该函数的最值和增减性;(4)假设将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5)该抛物线经过怎样的平移能经过原点.(6)画出该函数图象,并根据图象答复:当x取何值时,函数值大于0;当x取何值时,函数值小于0.二次函数练习题〔六〕c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线2,且及y 轴的交点坐标为〔0,3〕的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,那么 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,那么两次平移后的函数图象的关系式是 6、抛物线1662--=x x y 及x 轴交点的坐标为; 7、函数x x y +-=22有最值,最值为 ;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,那么b 及c 分别等于〔 〕A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为〔 〕 A 、22 B 、23 C 、32 D 、3310、通过配方,写出以下函数的开口方向、对称轴和顶点坐标:〔1〕12212+-=x x y ; 〔2〕2832-+-=x x y ; 〔3〕4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,假设有,求出该最大值;假设没有,说明理由.12、求二次函数62+--=x x y 的图象及x 轴和y 轴的交点坐标13、一次函数的图象过抛物线223yx x的顶点和坐标原点1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,假设将每台提高一个单位价格,那么会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?二次函数练习题〔七〕c bx ax y ++=2的性质1、函数2yx pxq 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx xmm 的图象经过原点,那么此抛物线的顶点坐标是 3、如果抛物线2y ax bxc 及y 轴交于点A (0,2),它的对称轴是1x,那么acb4、抛物线c bx x y ++=2及x 轴的正半轴交于点A 、B 两点,及y 轴交于点C ,且线段的长为1,△的面积为1,那么b 的值为.5、二次函数c bx ax y ++=2的图象如下图,那么0,0,0,ac b 42-0;6、二次函数c bx ax y ++=2的图象如图,那么直线bc ax y +=的图象不经过第 象限.7、二次函数2yax bxc 〔0≠a 〕的图象如下图,那么以下结论:1〕,a b 同号; 2〕当1x 和3x时,函数值一样;3〕40a b;4〕当2422b b acy a-±-=-时,x 的值只能为0;其中正确的选项是 8、二次函数2224m mx x y +--=及反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,那么 9、二次函数2yx axb 中,假设0ab,那么它的图象必经过点〔 〕 A ()1,1-- B ()1,1- C1,1D ()1,1-10、函数b ax y +=及c bx ax y ++=2的图象如下图,那么以下选项中正确的选项是〔 〕A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、函数c bx ax y ++=2的图象如下图,那么函数b ax y +=的图象是〔 〕12、二次函数c bx ax y ++=2的图象如图,那么、2、、这四个代数式中,值为正数的有〔 〕A .4个B .3个C .2个D .1个 13、抛物线的图角如图,那么以下结论:1①>0;②;③>;④<1.其中正确的结论是〔 〕. 〔A 〕①② 〔B 〕②③ 〔C 〕②④ 〔D 〕③④ 14、二次函数2y ax bxc 的最大值是3a ,且它的图象经过()1,2--,1,6两点,求a 、b 、c15、试求抛物线2yax bxc 及x 轴两个交点间的距离〔240b ac〕二次函数练习题〔八〕确定二次函数解析式1、抛物线2经过A(-1,0), B(3,0), C(0,1)三点,那么 , , 2、把抛物线2+23向左平移3个单位,然后向下平移2个单位,那么所得的抛物线的解析式为 .3、 二次函数有最小值为1,当0x 时,1y ,它的图象的对称轴为1x ,那么函数的关系式为 4、根据条件求二次函数的解析式〔1〕抛物线过〔-1,-6〕、〔1,-2〕和〔2,3〕三点〔2〕抛物线的顶点坐标为〔-1,-1〕,且及y 轴交点的纵坐标为-3 〔3〕抛物线过〔-1,0〕,〔3,0〕,〔1,-5〕三点;〔4〕抛物线在x 轴上截得的线段长为4,且顶点坐标是〔3,-2〕;5、二次函数的图象经过1,1、2,1两点,且及x 轴仅有一个交点,求二次函数的解析式6、抛物线2过点(01)及点(3,2),顶点在直线33上,a<0,求此二次函数的解析式.7、二次函数的图象及x 轴交于A 〔-2,0〕、B 〔3,0〕两点,且函数有最大值是2.(1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象及x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数的图象经过点A ,及这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.二次函数练习题〔九〕二次函数及方程和不等式1、二次函数772--=x kx y 及x 轴有交点,那么k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,那么抛物线n x x y --=2的顶点在第象限;3、抛物线222++-=kx x y 及x 轴交点的个数为〔 〕 A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是〔 〕 A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 及k x x y --=2的图象相交,假设有一个交点在x 轴上,那么k 为〔 〕 A 、0 B 、-1 C 、2 D 、416、假设方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线〔 〕A 、x =-3 B 、x =-2 C 、x =-1 D 、x =17、二次函数2y x pxq 的图象及x 轴只有一个公共点,坐标为1,0,求,p q的值。

二次函数基础训练基础训练(精编)

二次函数基础训练基础训练(精编)

基础过关【抛物线对称轴的求法】1、 抛物线22x y =开口_________,对称轴是_______________ 2、 抛物线322--=x y 开口___________,对称轴是______________3、 求抛物线3422+-=x x y 的对称轴。

4、 抛物线232+-=x x y 与x 轴相交于A (2,0)、B (1,0)则抛物线的对称轴是_________。

5、 请将二次函数3522+-=x x y 配成k h x a y +-=2)(的形式,然后判断顶点坐标和对称轴。

6、 二次函数)2)(3(21+-=x x y 的对称轴是_____________7、 如图所示,该二次函数的对称轴是________________方法小结:二次函数的对称轴求法小结: (1) 对称轴公式:直线_________=x(2) 配方法配成顶点式即k h x a y +-=2)(,则对称轴是直线_________=x(3) 二次函数)0(2≠++=a c bx ax y 与x 轴相交于(1x ,0)和(0,2x ),则对称轴可以表示为_________=x基础过关【抛物线的解析式求法——顶点式】1、 二次函数)0(2≠++=a c bx ax y 的顶点坐标为)4,2(--,且过点)2,5(求其解析式。

2、 二次函数)0(2≠++=a c bx ax y 过点(2,4),且当x=1时,y 有最值6,求解析式。

3、 已知抛物线c bx ax y ++=2顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式.4、 如图所示,求二次函数的解析式。

5、二次函数)0(2≠++=a c bx ax y 的对称轴为直线x=3,最小值为-2,,且过(0,1),求此函数的解析式。

基础过关【抛物线的解析式求法——交点式】1、已知二次函数的图象与x轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式。

二次函数经典练习含答案

二次函数经典练习含答案

二次函数 知识经典练习一、知识点之二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++〔a b c ,,是常数,0a ≠〕的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的构造特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、知识点之二次函数的根本形式1. 二次函数根本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、知识点之二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,详细平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞. 概括成八个字“左加右减,上加下减〞. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕⑵c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕四、知识点之二次函数()2y a x h k =-+与2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、知识点之二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、知识点之二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a-.七、知识点之二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕.注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、知识点之二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的断定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式确实定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式.九、知识点之二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以根据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、知识点之二次函数与一元二次方程:1. 二次函数与一元二次方程的关系〔二次函数与x 轴交点情况〕:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的间隔 21AB x x =-=② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大〔小〕值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和一点对称的点坐标,或与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,提醒二次函数、二次三项式和一元二次方程之间的内在联络:二次函数图像参考:十一、知识点之函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少2-32y=-2x 22y=3(x+4)22y=3x 2y=-2(x-3)2二次函数重点练习题型1. 考察二次函数的定义、性质,有关试题常出如今选择题中,如:以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 那么m 的值是2. 综合考察正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考察两个函数的图像,试题类型为选择题,如: 如图,假如函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是〔 〕y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考察用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

九年级数学 二次函数(基础篇)(专项练习)Word版含解析

九年级数学 二次函数(基础篇)(专项练习)Word版含解析

专题2.2 二次函数(基础篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.2 二次函数(基础篇)(专项练习)一、单选题知识点一、二次函数的判断1.下列函数中是二次函数的是( )A .y =3x +1B .y =3x 2﹣6C .21y x x =+D .y =﹣2x 3+x ﹣12.下列是二次函数的是( )A .21y x x =+B .213y x =+C .1y x =+D .221x -3.下列函数中,是二次函数的是( )A .y =6x 2+1B .y =6x +1C .y =8xD .y =﹣28x +1 4.以x 为自变量的函数:①(2)(2)y x x =+-;①2(2)y x =+;①2123y x x =+-;①()21y x x x =--.是二次函数的有( )A .①①B .①①①C .①①①D .①①①① 知识点二、根据二次函数定义求参数5.若函数()2my m x =+是二次函数,那么m 的值是( ) A .2 B .-2或2C .-2D .0或2 6.若函数()2211mm y m x --=+是关于x 的二次函数,则m 的值是( )A .2B .1-或3C .3D .1-7.若()2234y a x x =--+是二次函数,则a 的取值范围是( )A .2a ≠B .0a >C .2a >D .0a ≠ 8.若函数()27321m y m x x -=--+是二次函数,则m 的值为( )A .3B .3-C .3±D .9 知识点三、列二次函数解析式9.一个边长为2厘米的正方形,如果它的边长增加()0x x >厘米,则面积随之增加y 平方厘米,那么y 与x 之间满足的函数关系是( )10.下列问题中的两个变量成反比例关系的是( )A .汽车以80千米/时的速度行驶s 千米,用时t 时B .正方形的周长C 与它的面积SC .有一水池的容量为100立方米,每小时的灌水量q (立方米)与灌满水池所需要的时间t (小时)D .圆的面积S 与它的半径r11.在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )A .216y x ππ=-+B .24y x π=-C .2(2)y x π=-D .2(4)y x =-+12.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y 元,则y 与x 的函数关系式为( )A .y=36(1﹣x )B .y=36(1+x )C .y=18(1﹣x)2D .y=18(1+x 2)二、填空题知识点一、二次函数的判断13.像y =-5x ²+100x +60000,26y x =,220S x x =-+,函数都是用自变量的_____次式表示的.一般地,若两个自变量x ,y 之间的对应关系可以表示成2y ax bx c =++ (a ,b ,c 是常数,a ≠0)的形式,则称y 是x 的______函数.其中,x 是______,a 为_______,2ax 叫做________;b 为_______,bx 叫做________;c 为_______.14.观察:①26y x =;①235y x =-+;①2200400200y x x =++;①22y x x =-;①21132y x x =-+;①()221y x x =+-.这六个式子中二次函数有___________________.(只填序号)15.关于x 的二次函数()()211y m x m x m =++-+,当0m =时,它是______函数;当1m =-时,它是______函数.16.给出下列函数:①y ①()21y x x x =-+;①21y x x=+;①()1y x x =-.其中是二次函数的有______,若把它写成2y ax bx c =++的形式,则=a ______,b =______,c =______.知识点二、根据二次函数定义求参数27m -18.已知y =()22m m m x --+3是x 的二次函数,则m =_____. 19.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.20.已知二次函数()2211y a x x a =-++-的图像经过原点,则a 的值是_______.知识点三、列二次函数解析式21.将长为20cm 的铁丝首尾相连围成扇形(忽略铁丝的粗细),扇形面积为()2cm y 、扇形半径为()cm x 且010x <<,则y 与x 之间的函数关系式为__________.22.已知()21f x x =+,则()1f -=___________23.在实数范围内定义一种运算“①”,其运算法则为a ①b =22a ab -,根据这个法则,若(3)y x =+①2,则y =________(写成一般式).24.在一幅长60cm,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm 2,设金色纸边的宽度为xcm,那么y 关于x 的函数是 ___________.三、解答题25.如果函数y =(m ﹣3)232mm x -++mx +1是二次函数,求m 的值. 26.已知()()24236--=++--m m y m x m x 是y 关于x 的二次函数,试确定m 的值.27.当m 为何值时,函数()221181m m y m x x --=++-是二次函数.28.如图2所示,有一根长60cm 的铁丝,用它围成一个矩形,写出矩形面积S(cm 2)与它的一边长x(cm)之间的函数关系式.29.某农科所研究出一种新型的花生摘果设备,一期研发成本为每台6万元,该摘果机的销售量y (台)与售价x (万元/台)之间存在函数关系:24y x =-+.(1)设这种摘果机一期销售的利润为1W (万元),问一期销售时,在抢占市场份额(提示:销量尽可能大)的前提下利润达到32万元,此时售价为多少?(2)由于环保局要求该机器必须增加除尘设备,科研所投入了7万元研究经费,使得环保达标且机器的研发成本每台降低了1万元,若科研所的销售战略保持不变,请问在二期销售中利润达到63万元时,该机器单台的售价为多少?30.如图,在△ABC中,①ACB=90°,①A=30°,AB=4,点P是AB边上一个动点,过点P作AB的垂线交AC边与点D,以PD为边作①DPE=60°,PE交BC边与点E.(1)当点D为AC边的中点时,求BE的长;(2)当PD=PE时,求AP的长;(3)设AP 的长为x,四边形CDPE的面积为y,请直接写出y与x的函数解析式及自变量x的取值范围.参考答案:1.B【分析】根据二次函数的定义:形如()20y ax bx c a =++≠的函数,判断即可.【详解】解:A 、该函数是一次函数,故本选项不符合题意;B 、该函数二次函数,故本选项符合题意;C 、该函数不是二次函数,故本选项不符合题意;D 、该函数不是二次函数,故本选项不符合题意.故选B .【点睛】本题考查了二次函数的定义,熟练掌握定义是解题的关键.2.B【分析】根据二次函数的定义,形如2(0y ax bx c a =++≠,其中,,a b c 是常数)的函数是二次函数,据此分析即可.【详解】A. 21y x x=+,不是二次函数,故该选项不符合题意; B.213y x =+,是二次函数,故该选项符合题意;C.1y x =+,是一次函数,故该选项不符合题意;D.221x -,不是函数,故该选项不符合题意.故选B .【点睛】本题考查了二次函数的定义,掌握二次函数的定义是解题的关键.3.A【分析】根据二次函数的定义求解.【详解】解:A .是二次函数,故本选项符合题意;B .是一次函数,不是二次函数,故本选项不符合题意;C .是反比例函数,不是二次函数,故本选项不符合题意;D .等式的右边是分式,不是整式,不是二次函数,故本选项不符合题意;故选:A .【点睛】本题考查二次函数的基础知识,熟练掌握二次函数的意义是解题关键.4.C【分析】根据二次函数的定义进行判断.【详解】解:①2(2)(2)=4y x x x =+--,符合二次函数的定义,故①是二次函数; ①2(2)y x =+,符合二次函数的定义,故①是二次函数;①2123y x x =+-,符合二次函数的定义,故①是二次函数;①()2221=y x x x x x x x =----=-,不符合二次函数的定义,故①不是二次函数.所以,是二次函数的有①①①,故选:C .【点睛】本题考查了二次二次函数的定义,熟记概念是解题的关键.5.A【分析】根据二次函数的定义得出20m +≠且2m =,继而即可求解.【详解】①函数()2my m x =+是二次函数, ①20m +≠且2m =,①2m =故选:A .【点睛】本题考查二次函数的定义,解题的关键是根据二次函数的定义得出:20m +≠且2m =.6.C【分析】根据二次函数的定义条件列出方程与不等式即可得解.【详解】①函数()2211m m y m x --=+是关于x 的二次函数,①2212m m --=,且10m +≠,由2212m m --=得,3m =或1m =-,由10m +≠得,1m ≠-,①m 的值是3,故选:C .【点睛】本题考查了二次函数的定义、解一元一次不等式、解一元二次方程等知识,解答本题的关键是根据二次函数的定义列出方程与不等式.7.A【分析】根据二次函数的二次项系数不为0可得关于a 的不等式,解不等式即得答案.【详解】解:由题意得: a -2 ≠0,则a ≠2.故选择:A .【点睛】本题考查了二次函数的定义,属于基础题型,掌握二次函数的概念是关键.8.C【分析】根据二次函数的定义即可得.【详解】由题意得:272320m m ⎧-=⎨-≠⎩, 解得3m =±,故选:C .【点睛】本题考查了二次函数的定义,熟记定义是解题关键.9.D【分析】根据题意列出增加的面积与原面积的关系式,即可解题.【详解】解:由题意得,222(2)24y x x x =+-=+y ∴与x 之间满足的函数关系是二次函数,故选:D .【点睛】本题考查列二次函数的表达式,是重要考点,难度较易,掌握相关知识是解题关键.10.C【分析】根据题意逐一写出两个变量之间的函数关系,逐一分析即可得到答案.【详解】解:A 、汽车以80千米/时的速度行驶s 千米,用时t 时,则80s t =,s 是t 的正比例函数,故本选项错误;B 、正方形的面积22,416C C S ⎛⎫== ⎪⎝⎭S 是C 的二次函数,故本选项错误; C 、有一水池的容量为100立方米,每小时的灌水量q (立方米)与灌满水池所需要的时间t (小时)的函数关系为:100q t =,所以q 是t 的反比例函数,故本选项正确; D 、圆的面积S 与它的半径r 的函数关系为:2,S r π= 所以S 是r 的二次函数,故本选项错误.故选:C .【点睛】本题考查的是列函数关系式,同时考查正比例函数,反比例函数,二次函数的含义,掌握反比例函数的含义是解题的关键.11.A【分析】先求出原来的圆的面积,再用x 表示挖去的圆的面积,相减得到圆环的面积.【详解】解:圆的面积公式是2S r π=,原来的圆的面积=2416ππ⋅=,挖去的圆的面积=2x π,①圆环面积216y x ππ=-.故选:A .【点睛】本题考查二次函数的列式,解题的关键是根据题意用x 表示各个量,然后列出函数关系式.12.C【分析】原价为18,第一次降价后的价格是18×(1-x ),第二次降价是在第一次降价后的价格的基础上降价的为:18×(1-x )×(1-x )=18(1-x )2,则函数解析式即可求得.【详解】解:原价为18,第一次降价后的价格是18×(1-x );第二次降价是第一次降价后的价格的基础上降价:18×(1-x )×(1-x )=18(1-x )2, 则函数解析式是:y=18(1-x )2,故选C .【点睛】本题需注意第二次降价是在第一次降价后的价格的基础上降价的.13. 二 二次 自变量 二次项系数 二次项 一次项系数 一次项 常数项【解析】略14.①①①①【分析】根据二次函数的定义可得答案.【详解】解:这六个式子中,二次函数有:①y=6x 2;①y=-3x 2+5;①y=200x 2+400x+200;①22y x x =-.故答案为:①①①①.【点睛】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键.15. 二次 一次【分析】将0m =和1m =-代入到()()211y m x m x m =++-+中即可.当0m =时,2y x x ,是二次函数;当1m =-时,21y x =--,是一次函数.【详解】当0m =时,2yx x ,是二次函数;当1m =-时,21y x =--,是一次函数.故答案为二次 一次 【点睛】本题主要考查二次函数与一次函数的定义,掌握一次函数与二次函数的定义是解题的关键.16. ① 1- 1 0【分析】根据二次函数的概念:2(0)y ax bx c a =++≠逐一进行判断即可.①①①都不满足二次函数的形式,①是二次函数【详解】①不满足二次函数的形式,所以不是二次函数;①()21y x x x x =-+=-,是一次函数,也不满足要求;①不满足二次函数的形式,所以不是二次函数;①()21y x x x x =-=-+是二次函数所以二次函数只有①其中1,1,0a b c =-==故答案为 ① 1- 1 0【点睛】本题主要考查二次函数的概念,掌握二次函数的概念是解题的关键.17.3-【分析】根据二次函数的定义得出30m -≠且272m -=,求出即可. 【详解】解:函数27(3)m y m x -=-是二次函数, 30m ∴-≠且272m -=,解得:3m =-.故答案为:3-.【点睛】本题考查了二次函数的定义,解题的关键是能熟记二次函数的定义即:表示形式为2(0)y ax bx c a =++≠.18.-1【分析】根据二次函数定义可得m 2﹣m =2,且m ﹣2≠0,再解出m 的值即可.【详解】解:由题意得:m 2﹣m =2,且m ﹣2≠0,解得:m =﹣1,故答案为:﹣1.【点睛】此题主要考查了二次函数定义,解题的关键是掌握一般地,形如2y ax bx c =++(a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.y ═ax 2+bx +c (a 、b 、c 是常数,a ≠0)也叫做二次函数的一般形式.19.3【分析】根据二次函数图象过原点,把()0,0代入解析式,求出m 的值,还需要考虑二次项系数不能为零.【详解】解:根据二次函数图象过原点,把()0,0代入解析式,得209m =-,整理得29m =,解得3m =±,①30m +≠,①3m ≠-,①3m =.故答案为:3.【点睛】本题考查二次函数图象的性质,需要注意解出的解要满足二次项系数不能为零的隐藏条件.20.1-【分析】根据二次函数图象经过原点、并结合二次项系数不为零进行解答即可.【详解】解:①二次函数()2211y a x x a =-++-的图像经过原点()0,0①21010a a -≠⎧⎨-=⎩①1a =-.故答案是:1-【点睛】本题考查了根据二次函数的定义求参数、解一元一次不等式、解一元二次方程等,熟练掌握相关知识点是解题的关键.21.210y x x =-+【分析】根据扇形的面积公式即可得. 【详解】扇形的面积公式:12S lr =扇,其中l 为扇形的弧长,r 为扇形半径, 由题意得:扇形的弧长为()202cm x -,则()12022y x x =-, 即210y x x =-+,故答案为:210y x x =-+.【点睛】本题考查了扇形的面积公式、列二次函数关系式,熟记公式是解题关键. 22.2.【分析】求()1f -的值,即是求当=1x -时,21x +的值,从而进行计算即可得到答案.【详解】解:①()21f x x =+①()()21112f -=-+=故答案为:2.【点睛】本题主要考查了函数在某一点的函数值,解题的关键是把该点的x 值代入函数解析数进行运算求解.23.223y x x =+-【分析】先根据新定义列出关系式,然后改写成一般式即可.【详解】解:由题意可得:2(3)22(3)y x x =+-⨯+整理,得:226941223y x x x x x =++--=+-故答案为:223y x x =+-【点睛】本题考查新定义问题,正确理解题意列出关系式并准确计算是解题关键.24.y =(60+2x )(40+2x )【详解】试题分析:整个挂图仍是矩形,长是:60+2x ,宽是:40+2x ,由矩形的面积公式得y =(60+2x )(40+2x ).故答案为y =(60+2x )(40+2x ).点睛:本题考查了根据实际题意列函数解析式,根据题意,找到所求量的等量关系是解决问题的关键.本题需注意长和宽的求法.25.0【分析】根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数是二次函数,即可答题.【详解】解:根据二次函数的定义:m 2﹣3m +2=2,且m ﹣3≠0,解得:m =0.【点睛】本题考查二次函数的定义,解题的关键是熟练掌握二次函数的定义.26.3m =【分析】根据二次函数的定义:最高次数是2,二次项系数不能是0,求出m 的值.【详解】解:根据题意得242m m ,260m m --=,解得12m =-,23m =, ①20m +≠,即2m ≠-,①3m =.【点睛】本题考查二次函数的定义,解题的关键是二次函数的定义.27.m=3【分析】根据二次函数的定义即可求出结论.【详解】解:①函数()221181mm y m x x --=++-是二次函数①210212m m m +≠⎧⎨--=⎩ 解得:m=3即当m=3时,函数()221181m m y m x x --=++-是二次函数.【点睛】此题考查的是根据二次函数的定义,求参数,掌握二次函数的定义是解题关键.28.S =- x 2+30x (0<x <30)【分析】由铁丝的长是60cm ,一边长xcm ,可知另一边长是(30-x )cm ,然后根据长方形的面积公式即可求出矩形面积S (cm 2)与它的一边长x (cm)之间的函数关系式.【详解】①铁丝的长是60cm ,一边长x cm ,①另一边长是(30-x )cm ,①S =x (30-x )=- x 2+30x (0<x <30).【点睛】本题考查了列二次函数解析式,解决本题的关键得到所求矩形的等量关系,易错点是得到另一边的长度;注意求自变量的取值应从线段的长为正数入手考虑.29.(1)在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台;(2)要使二期利润达到63万元,销售价应该为10万元/台.【分析】(1)先根据等量关系式:总利润=(售价-成本)⨯销售量,列出函数关系式,再将132W =代入函数关系式得出方程求解即得;(2)先根据等量关系式:总利润=(售价-新成本)⨯销售量-7,列出函数关系式,再将263W =代入函数关系式得出方程求解即得.【详解】(1)根据题意列出函数关系式如下:21(6)(6)(24)(15)81W x y x x x =-⋅=--+=--+当132W =时,2(15)8132x --+=,解得18x =,222x =.①要抢占市场份额①8x =.答:在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台.(2)降低成本之后,每台的成本为5万元,每台利润为(5)x -万元,销售量24y x =-+.依据题意得22(5)(24)729127W x x x x =--+-=-+-,当263W =时,22912763x x -+-=,解得110x =,219x =.①要继续保持扩大销售量的战略①10x =答:要使二期利润达到63万元,销售价应该为10万元/台.【点睛】本题考查函数解析式及解一元二次方程,解题关键是正确找出等量关系式:总利润=(售价-成本)⨯销售量.30.(1)54;(2)125;(3)2(03)y x x =<< 【分析】(1)根据含有30°角的直角三角形的性质和勾股定理求出AP 的长,从而求出BP 的长,然后求出BE 的长;(2)设AP= x ,则BP=4—x ,根据含有30°角的直角三角形的性质和勾股定理求出PD 和PE 的长,再根据PD=PE 列出方程即可.(3)分别用AP 表示PD 、PE 、BE,再根据ABC APD BPE y S S S ∆∆∆=--即可求出.【详解】(1)在△ABC 中,①ACB=90°,①A=30°,AB=4,12,2BC AB AC ∴==∴= ①点D 为AC 边的中点3522AD DP AP BP AB AP ∴====∴=-=, ①①DPE=60°,过点P 作AB 的垂线交AC 边与点D ,①①EPB=30°,①EB 15=24BP = (2)设AP= x ,则BP=4—x ,在两个含有30°的,Rt APD Rt BPE ∆∆中得出:AD=2DP ,BP=2BE,由勾股定理解得:),4PD PE x ==-, ①PD=PE ,)4x x =-解得125x = 即有AP= 125 (3)由(2)知:AP= x,)()1,4,42PD x PE x BE x ==-=-)()211112?4?42222(03)ABC APD BPE y S S S x x x x x ∆∆∆∴=--=⨯⨯---=<< 【点睛】本题主要考查了含有30°角的直角三角形的性质和勾股定理,以及二次函数,熟练掌握相关知识是解题的关键.。

二次函数基础(含答案)

二次函数基础(含答案)

二次函数基础分类练习题二次函数y=ax2+bx+c系数符号的确定方法一、知识要点二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.(6)由对称轴公式x=,可确定2a+b的符号.二、基础练习1、(2011•重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、c<0D、a+b+c>02、(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤3、(2011•孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、44、(2011•山西)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A、ac>0B、方程ax2+bx+c=0的两根是x1=-1,x2=3C、2a-b=0D、当x>0时,y随x的增大而减小5、(2011•泸州)已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,有下列结论:①abc>0,②b2-4ac<0,③a-b+c>0,④4a-2b+c<0,其中正确结论的个数是()A、1B、2C、3D、46、(2011•兰州)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有()A、2个B、3个C、4个D、1个7、(2011•昆明)抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()A、b2-4ac<0B、abc<0C、-b2a<-1D、a-b+c<08、(2011•鸡西)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2-4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个9、(2011•防城港)已知二次函数y=ax2的图象开口向上,则直线y=ax-1经过的象限是()A、第一、二、三象限B、第二、三、四象限C、第一、二、四象限D、第一、三、四象限10、(2010•昭通)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A、a<0,b<0,c>0,b2-4ac>0B、a>0,b<0,c>0,b2-4ac<0C、a<0,b>0,c<0,b2-4ac>0D、a<0,b>0,c>0,b2-4ac>011、(2010•梧州)已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A、ac<0B、a-b+c>0C、b=-4aD、关于x的方程ax2+bx+c=0的根是x1=-1,x2=512、(2010•文山州)已知二次函数y=ax2+bx+c的图象如图所示,则a,b,c满足()A、a<0,b<0,c>0,b2-4ac>0B、a<0,b<0,c<0,b2-4ac>0C、a<0,b>0,c>0,b2-4ac<0D、a>0,b<0,c>0,b2-4ac>013、(2010•铁岭)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论,其中正确的结论是()A、abc>0B、b>a+cC、2a-b=0D、b2-4ac<014、(2010•钦州)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②a-b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根.其中错误的结论有()A、②③B、②④C、①③D、①④15、(2010•黔南州)如图所示为二次函数y=ax2+bx+c(a≠0)的图象,在下列选项中错误的是()A、ac<0B、x>1时,y随x的增大而增大C、a+b+c>0D、方程ax2+bx+c=0的根是x1=-1,x2=316、(2010•荆门)二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A、ab<0B、ac<0C、当x<2时,函数值随x增大而增大;当x>2时,函数值随x增大而减小D、二次函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根17、(2010•福州)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A、a>0B、c<0C、b2-4ac<0D、a+b+c>018、(2010•鄂州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①a,b异号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=4时,x的取值只能为0,结论正确的个数有()个.A、1B、2C、3D、419、(2010•百色)二次函数y=-x 2+bx+c 的图象如图所示,下列几个结论:①对称轴为x=2;②当y ≤0时,x <0或x >4;③函数解析式为y=-x (x-4);④当x ≤0时,y 随x 的增大而增大.其中正确的结论有( )A 、①②③④B 、①②③C 、①③④D 、①③二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 .1、 二次函数有最小值为1-,当0x =时,1y =,它的图象的对称轴为1x =,则函数的关系式为4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y 轴交点的纵坐标为-3(3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x 轴交于A (-2,0)、B (3,0)两点,且函数有最大值是2.(1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.练习九 二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( )A 、0B 、1C 、2D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( )A 、0,0>∆>aB 、0,0<∆>aC 、0,0>∆<aD 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( )A 、0B 、-1C 、2D 、41 6、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3B 、x =-2C 、x =-1D 、x =17、已知二次函数2y x px q =++的图象与x 轴只有一个公共点,坐标为()1,0-,求,p q 的值8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、如图:(1) 求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求(1)一次函数和二次函数的解析式,(2)写出使一次函数值大于二次函数值的x 的取值范围.11、已知抛物线22y x mx m =-+-.(1)求证此抛物线与x 轴有两个不同的交点;(2)若m 是整数,抛物线22y x mx m =-+-与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B.。

二次函数分节练习基础练习小篇

二次函数分节练习基础练习小篇

一、填空题1.形如____________的函数叫做二次函数,其中______是目变量,a ,b ,c 是______且______≠0.2.函数y =x 2的图象叫做______,对称轴是______,顶点是______.3.抛物线y =ax 2的顶点是______,对称轴是______.当a >0时,抛物线的开口向______;当a <0时,抛物线的开口向______.4.当a >0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______.5.当a <0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______. 6.写出下列二次函数的a ,b ,c .(1)23x x y -= a =______,b =______,c =______. (2)y =x 2a =______,b =______,c =______.(3)105212-+=x x y a =______,b =______,c =______. (4)2316x y --=a =______,b =______,c =______.7.抛物线y =ax 2,|a |越大则抛物线的开口就______,|a |越小则抛物线的开口就______.8.二次函数y =ax 2的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)y =2x 2如图( );(2)221x y =如图( );(3)y =-x 2如图( ); (4)231x y -=如图( );(5)291x y =如图( );(6)291x y -=如图( ). 9.已知函数,232x y -=不画图象,回答下列各题. (1)开口方向______; (2)对称轴______; (3)顶点坐标______;(4)当x ≥0时,y 随x 的增大而______;一、填空题1.在下列函数中①y =-2x 2;②y =-2x +1;③y =x ;④y =x 2,回答:(1)______的图象是直线,______的图象是抛物线.(2)函数______y 随着x 的增大而增大.函数______y 随着x 的增大而减小. (3)函数______的图象关于y 轴对称. 函数______的图象关于原点对称. (4)函数______有最大值为______.函数______有最小值为______. 2.已知函数y =ax 2+bx +c (a ,b ,c 是常数).(1)若它是二次函数,则系数应满足条件______. (2)若它是一次函数,则系数应满足条件______. (3)若它是正比例函数,则系数应满足条件______.3.已知函数y =(m 2-3m )122--m mx 的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为______,对称轴为直线______,开口______. 4.已知函数y =m 222+-m m x+(m -2)x .(1)若它是二次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限.(2)若它是一次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. 5.已知函数y =m mm x+2,则当m =______时它的图象是抛物线;当m =______时,抛物线的开口向上;当m =______时抛物线的开口向下.二、选择题6.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )A .y =x (x +1)B .xy =1C .y =2x 2-2(x +1)2D .132+=x y7.在二次函数①y =3x 2;②2234;32x y x y ==③中,图象在同一水平线上的开口大小顺序用题号表示应该为( )A .①>②>③B .①>③>②C .②>③>①D .②>①>③ 8.对于抛物线y =ax 2,下列说法中正确的是( )A .a 越大,抛物线开口越大B .a 越小,抛物线开口越大C .|a |越大,抛物线开口越大D .|a |越小,抛物线开口越大 9.下列说法中错误的是( )A .在函数y =-x 2中,当x =0时y 有最大值0B .在函数y =2x 2中,当x >0时y 随x 的增大而增大C . y =2x 2,y =-x 2,221x y -=中, y =2x 2的开口最小,y =-x 2的开口最大 D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点一、填空题1.已知a ≠0,(1)抛物线y =ax 2的顶点坐标为______,对称轴为______.(2)抛物线y =ax 2+c 的顶点坐标为______,对称轴为______. (3)抛物线y =a (x -m )2的顶点坐标为______,对称轴为______.2.若函数122)21(++-=m m x m y 是二次函数,则m =______.3.抛物线y =2x 2的顶点坐标为______,对称轴是______.当x ______时,y 随x 增大而减小;当x ______时,y 随x 增大而增大;当x =______时,y 有最______值是______.4.抛物线y =-2x 2的开口方向是______,它的形状与y =2x 2的形状______,它的顶点坐标是______,对称轴是______.5.抛物线y =2x 2+3的顶点坐标为______,对称轴为______.当x ______时,y 随x 的增大而减小;当x =______时,y 有最______值是______,它可以由抛物线y =2x 2向______平移______个单位得到.6.抛物线y =3(x -2)2的开口方向是______,顶点坐标为______,对称轴是______.当x ______时,y 随x 的增大而增大;当x =______时,y 有最______值是______,它可以由抛物线y =3x 2向______平移______个单位得到.二、选择题7.要得到抛物线2)4(31-=x y ,可将抛物线231x y =( )A .向上平移4个单位B .向下平移4个单位C .向右平移4个单位D .向左平移4个单位8.下列各组抛物线中能够互相平移而彼此得到对方的是( )A .y =2x 2与y =3x 2B .2212+=x y 与2122+=x y C .y =2x 2与y =x 2+2 D .y =x 2与y =x 2-29.顶点为(-5,0),且开口方向、形状与函数231x y -=的图象相同的抛物线是( ) A .2)5(31-=x y B .5312--=x y C .2)5(31+-=x yD .2)5(31+=x y一、填空题1.二次函数y =a (x -h )2+k (a ≠0)的顶点坐标是______,对称轴是______,当x =______时,y 有最值______;当a >0时,若x ______时,y 随x 增大而减小. 23.抛物线1)3(212-+-=x y 有最______点,其坐标是______.当x =______时,y的最______值是______;当x ______时,y 随x 增大而增大.4.将抛物线231x y =向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为 .二、选择题5.一抛物线和抛物线y =-2x 2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为( ) A .y =-2(x -1)2+3 B .y =-2(x +1)2+3 C .y =-(2x +1)2+3 D .y =-(2x -1)2+36.要得到y =-2(x +2)2-3的图象,需将抛物线y =-2x 2作如下平移( )A .向右平移2个单位,再向上平移3个单位B .向右平移2个单位,再向下平移3个单位C .向左平移2个单位,再向上平移3个单位D .向左平移2个单位,再向下平移3个单位三、解答题7.将下列函数配成y =a (x -h )2+k 的形式,并求顶点坐标、对称轴及最值.(1)y =x 2+6x +10 (2)y =-2x 2-5x +7 (3)y =3x 2+2x(4)y =-3x 2+6x -2 (5)y =100-5x 2 (6)y =(x -2)(2x +1)班级 姓名二次函数练习5一、填空题1.把二次函数y =ax 2+bx +c (a ≠0)配方成y =a (x -h )2+k 形式为______,顶点坐标是______,对称轴是直线______.当x =______时,y 最值=______;当a <0时,x ______时,y 随x 增大而减小;x ______时,y 随x 增大而增大.2.抛物线y =2x 2-3x -5的顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大.3.抛物线y =3-2x -x 2的顶点坐标是______,它与x 轴的交点坐标是______,与y 轴的交点坐标是______.4.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______. 5.已知二次函数y =x 2+4x -3,当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0.6.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______.7.抛物线y =2x 2先向______平移______个单位就得到抛物线y =2(x -3)2,再向______平移______个单位就得到抛物线y =2(x -3)2+4.二、选择题8.下列函数中①y =3x +1;②y =4x 2-3x ;;422x x y +=③④y =5-2x 2,是二次函数的有( ) A .② B .②③④ C .②③ D .②④9.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )A .向下,(0,4)B .向下,(0,-4)C .向上,(0,4)D .向上,(0,-4)10.抛物线x x y --=221的顶点坐标是( )A .)21,1(-B .)21,1(- C .)1,21(- D .(1,0)11.二次函数y =ax 2+x +1的图象必过点( )A .(0,a )B .(-1,-a )C .(-1,a )D .(0,-a )班级 姓名二次函数练习61.把二次函数y =a (x -h )2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数1)1(212-+=x y 的图象.(1)试确定a ,h ,k 的值;(2)指出二次函数y =a (x -h )2+k 的开口方向、对称轴和顶点坐标.2.已知二次函数y =2x 2+4x -6.(1)将其化成y =a (x -h )2+k 的形式;(2)写出开口方向,对称轴方程,顶点坐标; (3)求图象与两坐标轴的交点坐标; (4)画出函数图象(简图);(5)说明其图象与抛物线y =x 2的关系; (6)当x 取何值时,y 随x 增大而减小; (7)当x 取何值时,y >0,y =0,y <0;(8)当x 取何值时,函数y 有最值?其最值是多少? (9)当y 取何值时,-4<x <0;(10)求函数图象与两坐标轴交点所围成的三角形面积.一、填空题1.已知抛物线y =ax 2+bx +c (a ≠0).(1)若抛物线的顶点是原点,则____________; (2)若抛物线经过原点,则____________;(3)若抛物线的顶点在y 轴上,则____________; (4)若抛物线的顶点在x 轴上,则____________.2.抛物线y =ax 2+bx 必过______点.3.若二次函数y =mx 2-3x +2m -m 2的图象经过原点,则m =______,这个函数的解析式是______.4.若抛物线y =x 2-4x +c 的顶点在x 轴上,则c 的值是______.5.若二次函数y =ax 2+4x +a 的最大值是3,则a =______. 6.函数y =x 2-4x +3的图象的顶点及它和x 轴的两个交点为顶点所构成的三角形面积为______平方单位.7.抛物线y =ax 2+bx (a >0,b >0)的图象经过第______象限.二、选择题8.函数y =x 2+mx -2(m <0)的图象是( )9.抛物线y =ax 2+bx +c (a ≠0)的图象如下图所示,那么( )A .a <0,b >0,c >0B .a <0,b <0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <01.已知二次函数y =ax 2+bx +c 的图象如右图所示,则( )A .a >0,c >0,b 2-4ac <0 B .a >0,c <0,b 2-4ac >0 C .a <0,c >0,b 2-4ac <0 D .a <0,c <0,b 2-4ac >02.已知二次函数y =ax 2+bx +c 的图象如下图所示,则( )A .b >0,c >0,=0B .b <0,c >0,=0C .b <0,c <0,=0D .b >0,c >0,>0 3.二次函数y =mx 2+2mx -(3-m )的图象如下图所示,那么m 的取值范围是( )A .m >0B .m >3C .m <0D .0<m <34.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )一、填空题1.二次函数解析式通常有三种形式:①一般式________________;②顶点式__________________;③双根式__________________________(b 2-4ac ≥0).2.若二次函数y =x 2-2x +a 2-1的图象经过点(1,0),则a 的值为______.3.已知抛物线的对称轴为直线x =2,与x 轴的一个交点为),0,23( 则它与x 轴的另一个交点为______.二、解答题4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,求:(1)对称轴方程_________;(2)函数解析式_________;(3)当x ______时,y 随x 增大而减小;(4)由图象回答:当y >0时,x 的取值范围 ;当y =0时,x = ;当y <0时,x 的取值范围 .5.抛物线y =ax 2+bx +c 过(0,4),(1,3),(-1,4)三点,求抛物线的解析式.6.抛物线y =ax 2+bx +c 过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式.7.抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式.8.二次函数y =x 2+bx +c 的图象过点A (-2,5),且当x =2时,y =-3,求这个二次函数的解析式,并判断点B (0,3)是否在这个函数的图象上.一、填空题1.二次函数y =ax 2+bx +c (a ≠0)与x 轴有交点,则b 2-4ac ______0;若一元二次方程ax 2+bx +c =0两根为x 1,x 2,则二次函数可表示为y =_________.2.若二次函数y =x 2-3x +m 的图象与x 轴只有一个交点,则m =______.3.若二次函数y =mx 2-(2m +2)x -1+m 的图象与x 轴有两个交点,则m 的取值范围是______.4.若二次函数y =ax 2+bx +c 的图象经过P (1,0)点,则a +b +c =______. 5.若抛物线y =ax 2+bx +c 的系数a ,b ,c 满足a -b +c =0,则这条抛物线必经过点______. 6.关于x 的方程x 2-x -n =0没有实数根,则抛物线y =x 2-x -n 的顶点在第______象限.二、选择题7.已知抛物线y =ax 2+bx +c 的图象如图所示,则一元二次方程ax 2+bx +c =0( )A .没有实根B .只有一个实根C .有两个实根,且一根为正,一根为负D .有两个实根,且一根小于1,一根大于28.一次函数y =2x +1与二次函数y =x 2-4x +3的图象交点( ) A .只有一个 B .恰好有两个 C .可以有一个,也可以有两个 D .无交点9.函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c -3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号实数根C .有两个相等的实数根D .无实数根10.二次函数y =ax 2+bx +c 对于x 的任何值都恒为负值的条件是( ) A .a >0,>0 B .a >0,<0 C .a <0,>0 D .a <0,<01.矩形窗户的周长是6m ,写出窗户的面积y (m 2)与窗户的宽x (m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x 的取值范围,并画出函数的图象.2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB 时,水面宽8m ,水位上升3m , 就达到警戒水位CD ,这时水面宽4m ,若洪水到来时,水位以每小时0.2m 的速度上升,求水过警戒水位后几小时淹到桥拱顶.3.如图,足球场上守门员在O 处开出一高球,球从离地面1m 的A 处飞出(A 在y 轴上),运动员乙在距O 点6m 的B 处发现球在自己头的正上方达到最高点M ,距地面约4m 高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的表达式; (2)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取734=,562=)一、填空题1.若函数y =x 2-mx +m -2的图象经过(3,6)点,则m =______. 2.函数y =2x -x 2的图象开口向______,对称轴方程是______. 3.抛物线y =x 2-4x -5的顶点坐标是______.4.函数y =2x 2-8x +1,当x =______时,y 的最______值等于______.5.抛物线y =-x 2+3x -2在y 轴上的截距是______,与x 轴的交点坐标是____________.6.把y =2x 2-6x +4配方成y =a (x -h )2+k 的形式是_______________. 7.已知二次函数y =ax 2+bx +c 的图象如图所示.(1)对称轴方程为____________; (2)函数解析式为____________;(3)当x ______时,y 随x 的增大而减小; (4)当y >0时,x 的取值范围是______. 8.已知二次函数y =x 2-(m -4)x +2m -3. (1)当m =______时,图象顶点在x 轴上; (2)当m =______时,图象顶点在y 轴上; (3)当m =______时,图象过原点.二、选择题9.将抛物线y =x 2+1绕原点O 旋转180°,则旋转后抛物线的解析式为( ) A .y =-x 2 B .y =-x 2+1 C .y =x 2-1 D .y =-x 2-1 10.抛物线y =x 2-mx +m -2与x 轴交点的情况是( )A .无交点B .一个交点C .两个交点D .无法确定11.函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别为( )A .4和-3B .5和-3C .5和-4D .-1和412.已知函数y =a (x +2)和y =a (x 2+1),那么它们在同一坐标系内图象的示意图是( )13.y =ax 2+bx +c (a ≠0)的图象如下图所示,那么下面六个代数式:abc ,b 2-4ac ,a -b +c ,a +b +c ,2a -b ,9a -4b 中,值小于0的有( )A .1个B .2个C .3个D .4个14.若b >0时,二次函数y =ax 2+bx +a 2-1的图象如下列四图之一所示,根据图象分析,则a 的值等于( )A .251+- B .-1 C .251-- D .1三、解答题15.已知函数y 1=ax 2+bx +c ,其中a <0,b >0,c >0,问:(1)抛物线的开口方向?(2)抛物线与y 轴的交点在x 轴上方还是下方? (3)抛物线的对称轴在y 轴的左侧还是右侧?(4)抛物线与x 轴是否有交点?如果有,写出交点坐标; (5)画出示意图.16.已知二次函数y =ax 2+bx +c 的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.(试用两种不同方法)17.已知二次函数y =ax 2+bx +c ,当x =-1时有最小值-4,且图象在x 轴上截得线段长为4,求函数解析式.。

(完整word版)二次函数基础知识和经典练习题.docx

(完整word版)二次函数基础知识和经典练习题.docx

-二次函数一、基础知识1. 定义:一般地,如果y ax 2bx c(a,b, c 是常数, a 0) ,那么y叫做 x 的二次函数.2. 二次函数的表示方法:数表法、图像法、表达式.3.二次函数由特殊到一般,可分为以下几种形式:① y ax2( a0);② y ax 2k ;( a0)③ y a x h2 ( a0) 顶点式);④ y a x h2k ;( a 0)⑤ y ax2bx c .它们的图像都是对称轴平行于(或重合)y 轴的抛物线 .4.各种形式的二次函数的图像性质如下表:函数解析式开口方向对称轴顶点坐标y ax2x0 ( y 轴)(0,0 )y ax 2k当 a 0 时x0 ( y 轴)(0, k )y a x2开口向上x h( h ,0) h当 a 0 时y a x h 2开口向下x h( h , k ) ky ax 2bx c x b(b4ac b22a2a ,)4a1. 抛物线y ax2bx c 中的系数 a, b, c(1)a决定开口方向:几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同 . 当 a 0 时,抛物线开口向上,顶点为其最低点;当 a 0 时,抛物线开口向下,顶点为其最高点 .( 2) b 和a共同决定抛物线对称轴的位置:当b0 时,对称轴为 y 轴;当a、 b 同号时,对称轴在y 轴左侧;当a、 b 异号时,对称轴在 y 轴右侧 .(3)c决定抛物线与 y 轴交点位置:当 c 0 时,抛物线经过原点;当 c 0时 , 相交于 y 轴的正半轴;当 c 0 时, 则相交于 y 轴的负半轴 .-2. 求抛物线的顶点、对称轴的方法b 22b 4ac b2( 1)公式法: y ax 24ac bbx c a x4a,顶点是(,),对称轴是直线2a2a4axb .2a(2)配方法:运用配方的方法,将抛物线 y ax 2bxc 的解析式化为 y a x h 2 k 的形式,得到顶点为 ( h , k ) ,对称轴是直线 x h . 其中 hb,k4ac b 2.2a4a(3)运用抛物线的对称性:抛物线是轴对称图形,所以对称点的连线的垂直平分线就是抛物线的对称轴,对称轴与抛物线的交点是顶点 ..3.用待定系数法求二次函数的解析式(1)一般式: yax 2 bx c . 已知图像上三点或三对 x 、 y 的值,通常选择一般式 .(2)顶点式: ya x h 2k . 已知图像的顶点或对称轴,通常选择顶点式.(3)两点式:已知图像与 x 轴的交点坐标 x 1 、 x 2 ,通常选用交点式: y a x x 1 x x 2 .4. 抛物线与 x 轴的交点设二次函数 y ax 2 bx c 的图像与 x 轴的两个交点的横坐标x 1 、 x 2 ,是对应一元二次方程ax 2 bx c0 的两个实数根 . 抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的判别式来判定:(1) b 2 4ac 0 抛物线与 x 轴有两个交点;(2) b 2 4ac 0 抛物线与 x 轴有一个交点(顶点在 x 轴上);(3) b 2 4ac抛物线与 x 轴没有交点 .5. 二次函数的应用一、 y ax 2bx c 的性质1.已知二次函数ykx 27x 7 与 x 轴有交点,则k 的取值范围是。

《二次函数》基础复习(知识+练习)

《二次函数》基础复习(知识+练习)

《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么称y是x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)当(轴) (轴)(,)2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于其对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧; ③(即 、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式例1.已知二次函数的图象经过原点及点11,24⎛⎫--⎪⎝⎭,且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____.举一反三:【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标.类型二、根据二次函数图象及性质判断代数式的符号例2.二次函数2y ax bx c =++的图象如图1所示,反比例函数ay x=与正比例函数y =(b+c)x 在同一坐标系中的大致图象可能是( ).类型三、数形结合例3.如图所示是二次函数2y ax bx c =++图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为(3,0),则由图象可知,不等式20ax bx c ++>的解集是________.类型四、函数与方程例4.已知抛物线c x x y ++=221与x 轴没有交点. ①求c 的取值范围; ②试确定直线1+=cx y 经过的象限,并说明理由.举一反三:【变式1】无论x 为何实数,二次函数的图象永远在x 轴的下方的条件是( ) A . B . C . D .【变式2】对于二次函数,我们把使函数值等于0的实数x 叫做这个函数的零点, 则二次函数(m 为实数)的零点的个数是( )A .1B .2C .0D .不能确定类型五、分类讨论例5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标.类型六、二次函数与实际问题例6.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足图1所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增大,但每台彩电的收益z(元)会相应降低且z与x之间也大致满足图2所示的一次函数关系.(1)在政府出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益ω(元)最大,政府应将每台补贴款额x定为多少?并求出总收益ω的最大值.《二次函数》全章复习与巩固—基础练习一、选择题1.将二次函数2y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ).A .2(1)2y x =-+ B .2(1)2y x =++ C .2(1)2y x =-- D .2(1)2y x =+- 2.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( ).3.抛物线2y x bx c =++图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为223y x x =--,则b 、c 的值为( ).A .b =2,c =2B .b =2,c =0C .b =-2,c =-1D .b =-3,c =2 4. 抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .22y x x =-- B .211122y x x =-++ C .211122y x x =--+ D .22y x x =-++5.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①240b ac ->;②abc >0;③8a+c >0;④9a+3b+c <0.其中,正确结论的个数是( ). A .1 B .2 C .3 D .4第4题 第5题6.已知点(1x ,1y ),(2x ,2y )(两点不重合)均在抛物线21y x =-上,则下列说法正确的是( ).A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >7.在反比例函数a y x=中,当0x >时,y 随x 的增大而减小,则二次函数2y ax ax =-的图象大致是图中的( ).8.已知二次函数2y ax bx c =++(其中0a >,0b >,0c <),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧. 以上说法正确的有( ).A .0个B .1个C .2个D .3个二、填空题9.已知抛物线2(0)y ax bx c a =++>的对称轴为直线1x =,且经过点1(1,)y -,2(2,)y ,试比较1y 和2y 的大小:1y ________2y (填“>”,“<”或“=”).10.抛物线2y x bx c =-++的图象如图所示,则此抛物线的解析式为___ _____. 11.抛物线22(2)6y x =--的顶点为C ,已知y =-kx+3的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为________.12.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为___ _____.第10题 第12题 第13题13.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是________. 14.烟花厂为扬州“4·18”烟花三月经贸旅游节特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为________.15.已知抛物线2y ax bx c =++经过点A(-1,4),B(5,4),C(3,-6),则该抛物线上纵坐标为-6的另一个点的坐标是________.16.若二次函数26y x x c =-+的图象过A(-1,y 1)、B(2,y 2)、C(3,y 3)三点,则y 1、y 2、y 3大小关系是 .三、解答题17.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体运动(看成一点)的路线是抛物线23315y x x =-++的一部分,如图所示.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.18. 如图所示,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上、下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上、下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x 米.(1)用含x 的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?19.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?20. 王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用了30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量)y 的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x 的取值范围;(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?(注:学习收益总量=解题的学习收益量+回顾反思的学习收益量)【答案与解析】一、选择题1.【答案】A ;【解析】2y x =向右平移1个单位后,顶点为(1,0),再向上平移2个单位后,顶点为(1,2),开口方向及大小不变,所以1a =,即2(1)2y x =-=.2.【答案】D ;【解析】由上图可知0a >,0c <,02b a->,∴ 0b <.0a b c ++<.240b ac ->, ∴ 反比例函数图象在第二、四象限内,一次函数图象经过第一、二、四象限,因此选D .3.【答案】B ;【解析】2223(1)4y x x x =--=--,把抛物线2(1)4y x =--向左平移2个单位长度,再向上平移3个单位长度后得抛物线2(1)1y x =+-,∴ 222(1)12y x bx c x x x =++=+-=+,∴ b =2,c =0.因此选B .4.【答案】D ;【解析】由图象知,抛物线与x 轴两交点是(-1,0),(2,0),又开口方向向下,所以0a <,抛物线与y 轴交点纵坐标大于1.显然A 、B 、C 不合题意,故选D .5.【答案】D ;【解析】抛物线与x 轴交于两点,则0b <.由图象可知a >0,c <0,则b <0,故abc >0.当x =-2时,y =4a-2b+c >0.∵ 12b x a=-=,∴ b =-2a , ∴ 4a-(-2a)×2+c >0,即8a+c >0.当x =3时,y =9a+3b+c <0,故4个结论都正确.6.【答案】D ;则12y y =;若120x x <<,则21y y >;若120x x <<,则12y y >.7.【答案】A ;【解析】因为a y x=,当0x >时,y 随x 增大而减小,所以a >0,因此抛物线2(1)y ax ax a x x =-=- 开口向上,且与x 轴相交于(0,0)和(1,0). 8.【答案】C ;【解析】∵ 0a >,0b >,∴ 抛物线开口向上,02b x a =-<,因此抛物线顶点在y 轴的左侧,不可能在第四象限;又0c <, 120c x x a =<·,抛物线与x 轴交于原点的两侧, 因此①③是正确的.二、填空题9.【答案】>;【解析】根据题意画出抛物线大致图象,找出x =-1,x =2时的函数值,比较其大小,易如12y y >.10.【答案】223y x x =-++;【解析】由题意和图象知抛物线与x 轴两交点为(3,0)、(-1,0),∴ 抛物线解析式为(3)(1)y x x =--+,即223y x x =-++.11.【答案】1;【解析】92k =,932y x =-+,与坐标轴交点为(0,3),2,03⎛⎫ ⎪⎝⎭. 12.【答案】 x 1=3或x 2=-1 ;【解析】由二次函数22y x x m =-++部分图象知,与x 轴的一个交点为(3,0).代入方程得m =3,解方程得x 1=3或x 2=-1.13.【答案】-1;【解析】因为抛物线过原点,所以210a -=,即1a =±,又抛物线开口向下,所以a =-1.14.【答案】4s ; 【解析】204(s)522t =-=⎛⎫⨯- ⎪⎝⎭. 15.【答案】(1,-6);【解析】常规解法是先求出关系式,然后再求点的坐标,但此方法繁琐耗时易出错,仔细分析就会注意到:A 、B 两点纵坐标相同,它们关于抛物线对称轴对称,由A(-1,4),B(5,4)得,对称轴1522x -+==,而抛物线上纵坐标为-6的一点是(3,-6),所以它关于x =2的对称点是(1,-6).故抛物线上纵坐标为-6的另一点的坐标是(1,-6).16.【答案】y 1>y 3>y 2. 【解析】因为抛物线的对称轴为6323x -==⨯.而A 、B 在对称轴左侧,且y 随x 的增大而减小,∵ -1<2,∴ y 1>y 2,又C 在对称轴右侧,且A 、B 、C 三点到对称轴的距离分别为2,1,由对称性可知:y 1>y 3>y 2.三、解答题17.【答案与解析】 (1)2233519315524y x x x ⎛⎫=-++=--+ ⎪⎝⎭. ∵ 305-<,∴ 函数的最大值是194. ∴ 演员弹跳离地面的最大高度是194米. (2)当x =4时,234341 3.45y BC =-⨯+⨯+==. ∴ 这次表演成功.18.【答案与解析】(1)横向甬道的面积为1201801502x +=(m 2). (2)依题意:2112018028015028082x x x +⨯+-=⨯⨯, 整理得21557500x x -+=,解得x 1=5,x 2=150(不合题意,舍去).∴ 甬道的宽为5米.(3)设建花坛的总费用为y 万元,则21201800.0280(1601502) 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦. ∴ y =0.04x 2-0.5x+240.当0.5 6.25220.04b x a =-==⨯时,y 的值最小. ∵ 根据设计的要求,甬道的宽不能超过6 m .∴ 当x =6m 时,总费用最少,为0.04×62-0.5×6+240=238.44(万元).19.【答案与解析】得低于3500元/个,所以5000350010025010x -≤+=,即100≤x ≤250时,购买一个需5000-10(x-100)元.故y 1=6000x-10x 2;当x >250时,购买一个需3500元.故y 1=3500x .所以215000(0100),600010(100250),3500(250),x x y x x x x x ≤≤⎧⎪=-<≤⎨⎪>⎩ y 2=5000×80%x =4000x .(2)当0<x ≤100时,y 1=5000x ≤500000<1400000;当100<x ≤250时,y 1=6000x-10x 2=-10(x-300)2+900000<1400000;所以,由3500x =1400000,得x =400.由4000x =1400000,得x =350.故选择甲商家,最多能购买400个路灯.20.【答案与解析】(1)设y =kx ,把(2,4)代入,得k =2,所以y =2x ,自变量x 的取值范围是:0≤x ≤30.(2)当0≤x <5时,设y =a(x-5)2+25,把(0,0)代入,得25a+25=0,a =-1,所以22(5)2510y x x x =--+=-+.当5≤x ≤15时,y =25. 即210(05),25(515).x x x y x ⎧-+≤<=⎨≤≤⎩(3)设王亮用于回顾反思的时间为x(0≤x <5)分钟,学习收益总量为Z ,则他用于解题的时间为(30-x)分钟.当0≤x <5时,222102(30)860(4)76Z x x x x x x =-++-=-++=--+.所以当x =4时,76Z =最大.当5≤x ≤15时,Z =25+2(30-x)=-2x+85.因为Z 随x 的增大而减小,所以当x =5时,75Z =最大.综合所述,当x =4时,76Z =最大,此时30-x =26.即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时.学习收益总量最大.。

二次函数基础分类练习题

二次函数基础分类练习题

二次函数基础分类练习题二次函数基础分类练习题二次函数是高中数学中的重要内容之一,它在数学和实际问题中都有广泛的应用。

为了更好地掌握和应用二次函数,我们需要进行一些基础分类练习题的训练。

本文将为大家提供一些常见的二次函数分类练习题,希望能够帮助大家加深对二次函数的理解和掌握。

一、求解二次函数的零点1. 已知二次函数y = ax^2 + bx + c,其中a ≠ 0,求解它的零点。

解:要求解二次函数的零点,即要找到使函数取值为0的x的取值。

对于二次函数y = ax^2 + bx + c,我们可以使用求根公式来求解它的零点。

求根公式为:x = (-b ± √(b^2 - 4ac)) / 2a其中,±表示两个解,√表示平方根。

2. 求解二次函数y = x^2 + 3x - 4的零点。

解:将二次函数转化为标准形式,得到a = 1,b = 3,c = -4。

代入求根公式,得到x = (-3 ± √(3^2 - 4*1*(-4))) / 2*1化简得到x = (-3 ± √(9 + 16)) / 2进一步化简得到x = (-3 ± √25) / 2最终得到x = (-3 ± 5) / 2即x1 = 1,x2 = -4。

所以,二次函数y = x^2 + 3x - 4的零点为x1 = 1,x2 = -4。

二、二次函数的图像特征1. 已知二次函数y = ax^2 + bx + c,其中a ≠ 0,求解它的顶点坐标。

解:二次函数的顶点坐标可以通过求解二次函数的导数为0的点来得到。

对于二次函数y = ax^2 + bx + c,它的导数为2ax + b。

令2ax + b = 0,解得x = -b / (2a)。

将x带入原函数,得到y = a(-b / (2a))^2 + b(-b / (2a)) + c,化简得到y = c - (b^2) / (4a)。

所以,二次函数的顶点坐标为(-b / (2a), c - (b^2) / (4a))。

北师大版八年级数学上册 第二章 二次函数知识整理及基础训练(含答案)

北师大版八年级数学上册 第二章 二次函数知识整理及基础训练(含答案)

第二章 二次函数知识整理及基础训练【知识整理】1. 定义:形如:c bx ax y ++=2(其中a,b,c 是常数,且a ≠0)的函数是二次函数。

2. 本质:二次函数是用自变量的二次式表示的函数。

3. 图象:二次函数的图象是抛物线,抛物线是轴对称图形,对称轴和抛物线的交点叫做抛物线的顶点。

4. 二次项的系数a 对抛物线的影响:当 a>0时,抛物线的开口向上, 当 a<0时,抛物线的开口向下;a 越大开口越小, a 越小开口越大、综上所述:a 决定抛物线的开口大小和方向,即a 决定抛物线的形状。

5. 一次项的系数b 对抛物线的影响: 当b=0时,抛物线的对称轴是y 轴; 当a,b 同号时,对称轴在y 轴的左边;当a,b 异号时,对称轴在y 轴的右边。

即“左同右异” 综上所述:a,b 决定抛物线的左右位置。

6. 常数项c 对抛物线的影响:当c>0时,抛物线与y 轴的交点在y 轴的正半轴; 当c<0时,抛物线与y 轴的交点在y 轴的负半轴; 当c=0时,抛物线经过原点、综上所述:c 决定抛物线的上下位置。

7. 判别式⊿对抛物线的影响:当⊿>0时,抛物线与x 轴有两个交点;当⊿=0时,抛物线与x 轴有一个交点,即顶点在x 轴上; 当⊿<0时,抛物线与x 轴没有交点。

综上所述:⊿决定抛物线与x 轴交点的个数。

8. 当 a>0且⊿<0时, 二次函数c bx ax y ++=2的值恒为正;当 a<0且⊿<0时, 二次函数c bx ax y ++=2的值恒为负。

9. 当x=0, 二次函数c bx ax y ++=2的值为c, 当x=1, 二次函数c bx ax y ++=2的值为c b a ++, 当x=-1, 二次函数c bx ax y ++=2的值为c b a+-,……10. 二次函数c bx ax y ++=2的对称轴为直线abx 2-=,顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,2211. 二次函数的解析式有如下三种形式:12. 当 a>0时,若a bx 2-<,y 随着x 的增大而减小,若a b x 2->,y 随着x 的增大而增大,当 a<0时,若a bx 2-<,y 随着x 的增大而增大,若ab x 2->,y 随着x 的增大而减小。

二次函数全章分节练习知识点

二次函数全章分节练习知识点

二次函数(1)【知识要点】1.形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫二次函数.2.在函数y=ax2+bx+c中,a,b,c分别是二次项系数、一次项系数及常数项.一、基础练习1.某工厂第一年的利润为20(万元),第三年的利润y(万元),与平均年增长率x 之间的函数关系式是 .2.在下列函数关系式中,哪些是二次函数(是二次函数的在括号内打上“√”,不是的打“x”). (l)y=-2x2 ( ) (2)y=x-x2 ( ) (3)y=2(x-1)2+3 ( ) (4)y=-3x-3 ( ) (5) s=a(8-b) ( )3.说出下列二次函数的二次项系数a,一次项系数b和常数项c.(1)y=x2中a= ,b= ,c= ; (2)y=5x2+2x中a= ,b= ,c= ;(3)y=(2x-1)2中a= ,b= ,c= ;4.已知二次函数y=x2+bx-c,当x=-1时,y=0;当x=3时,y=0,则b= ;c= . ★5.函数y=ax2+bx+c(a,b,c是常数)问当a,b,c满足什么条件时:(l)它是二次函数;(2)它是一次函数;(3)它是正比例函数;二、提高训练6.已知正方形边长为3,若边长增加x,那么面积增加y,则y与x的函数关系式是 .7.在半径为4cm的圆面上,从中挖去一个半径为x的同心圆面,剩下一个圆环的面积为ycm2,则y与x的函数关系式为 .8.已知二次函数y=ax2+bx+c(a≠0),若x=0时y=1;x=1时y=1;x=2时y=-1.求这个二次函数关系式.9.已知二次函数y=ax2+bx+c(a≠0),若x=1时y=3;x=-1时y=4;x=-2时y=3.求这个二次函数关系式.二次函数的图象(1)【知识要点】1.函数y=ax2的图象是一条抛物线,它的对称轴是y轴,图像的顶点是(0,0)2.函数y=ax 2,当a>0时,抛物线的开口向上;当a<0时,抛物线开口向下.3.函数y=ax 2,当a>0时,对称轴的左侧y 随x 的增大而减小,对称轴的右侧y 随x 的增大而增大;当x=0时函数y 有最小值0.一、基础练习1.函数y=ax 2(a ≠0)的图象叫做 ,它关于 轴对称,它的顶点是 .2.当a>0时,y=ax 2在x 轴上的 (其中顶点在 轴上),它的开口 并且向上无限 .3.函数212y x =-的对称轴是 ,顶点坐标是 ,对称轴的右侧y 随x 的增大而 ,当x= 时,函数y 有最 值,是 .4.函数y=3x 2与函数y=-3x 2的图象的形状 ,但 不同.5.抛物线y=ax 2与y=2x 2形状相同,则a= .6.已知函数y=ax 2当x=1时y=3,则a= , 对称轴是 ,顶点是 . 抛物线的开口 ,在对称轴的左侧,y 随x 增大而 ,当x= 时,函数y 有最 值,是 .7.若抛物线y=ax 2经过点P ( l ,-2 ),则它也经过 ( )A. P 1(-1,-2 )B. P 2(-l, 2 )C.P 3( l, 2)D.P 4(2, 1)二、提高训练8.一个函数的图象是一条以y 轴为对称轴,以原点为顶点的抛物线,且经过点A (-2,8). (l )求这个函数的解析式; (2)写出抛物线上与点A 关于y 轴对称的点B 的坐标,并计算△OAB 的面积.9.有一桥孔形状是一条开口向下的抛物线214y x =- (1)利用图象,当水面与抛物线顶点的距离为4m 时,求水面的宽;(2)当水面宽为6m 时,水面与抛物线顶点的距离是多少?二次函数的图像(2)【知识要点】函数y=a(x+m)2+k(a,m,k 是常数,a ≠0).①当a>0时,图像开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y 随x 的增大而 ,右侧y 随x 的增大而 ,当x= 时,y 有最 值,是 .②当a<0时,图像开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y 随x 的增大而 ,右侧y 随x 的增大而 ,当x= 时,y 有最 值,是 .一、基础练习1.函数y=2(x+1)2是由y=2x 2向 平移 单位得到的.2.函数y=-3(x-1)2+1是由y=-3x 2向 平移 单位,再向 平移 单位得到的.3.函数y=3(x-2)2的对称轴是 ,顶点坐标是 ,图像开口向 , 当x 时,y 随x 的增大而减小,当x 时,函数y 有最 值,是 .4.函数y=-(x+5)2+7的对称轴是 ,顶点坐标是 ,图象开口向 , 当x 时, y 随x 的增大而减小,当x 时,函数y 有最 值,是 .5. 二次函数y=(x-1)2-2的顶点坐标是( )A.(-1,-2) B.(-1,2) C.(1,-2) D.(1,2)6. 把y= -x 2-4x+2化成y= a (x+m)2 +n 的形式是( )A.y= - (x-2 )2 -2B.y= - (x-2 )2 +6C. y = - (x+2 )2 -2D. y= - (x+2 )2 +6二、提高训练7. 图象的顶点为(-2,-2 ),且经过原点的二次函数的关系式是( )A.y=12(x+2 )2 -2B.y=12(x-2 )2 -2 C. y = 2(x+2 )2 -2 D. y= 2(x-2 )2 -2 8. 经过配方,二次函数y=-3x 2+6x-4的图象, 它的对称轴为 ;顶点坐标 ,当x 时, y 随x 的增大而减小,当x 时,函数y 有最 值,是 .二次函数的图像(3)【知识要点】函数y=ax 2+bx+c (a ,b ,c 是常数a ≠0).①当a>0时,函数y 有最小值,是 . ② 当a< 0时,函数y 有最大值,是 .一、基础练习1. 函数y=2x 2-8x+1,当x= 时,函数有最 值,是 .2. 函数2133y x =---,当x= 时,函数有最 值,是 . 3. 函数y=x 2-3x-4的图象开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y 随x 的增大而 ,当x 时,函数y 有最 值,是 .4. 把二次函数215322y x x =++的图象向右平移2个单位,再向上平移3个单位,所得到图象的函数解析式是( )A .21(5)12y x =-+ B.21(1)52y x =+- C.21322y x x =++ D. 21722y x x =+- 5. 抛物线y=2x 2-5x+3与坐标轴的交点共有( )A . 1个B. 2个 C. 3个 D. 4个6. 二次函数y=(x-3)(x+2)的图象的对称轴是( )A.x=3 B.x =-2 C.x =-12 D.x=127. 二次函数y=-2x 2+4x-9的最大值是 ( )A.7 B .-7 C.9 D .-9二、提高训练8. 己知直角三角形的两直角边的和为2,求斜边长的最小值,以及当斜边长达到最小值时的两条直角边的长.9. 如图,用长20m 的篱笆,一面靠墙围成一个长方形的园子,怎么围才能使园子的面积最大?最大面积是多少?二次函数的性质【知识要点】1.若已知抛物线的顶点为(0, 0),则二次函数的关系式可设为y=ax 2(a ≠0 ).2.若已知抛物线的顶点在y 轴上,则二次函数的关系式可设为y=ax 2+k(a ≠0 ).3.若已知抛物线的顶点在x 轴上,则二次函数的关系式可设为y=a(x+m)2 (a ≠0 ).4.若已知抛物线的顶点坐标为(-m , k )则二次函数的关系式可设为y = a ( x+m )2+k(a ≠0 ) .一、基础练习1. 已知函数y=(m-1)x 2+2x+m,当m= 时,图象是一条直线;当m 时,图象是抛物线;当m 时,抛物线过坐标原点.2. 函数y=2x 2的图象向 平移5个单位,得到y=2(x+5)2的图象,再向 平移 个单位.得到y=2x 2+20x+56的图象.3. 二次函数y=2x 2-4x-3,当x= 时,有最 值,是 .4. 已知抛物线y=x 2-kx-8经过点P (2, -8), 则k= ,这条抛物线的顶点坐标是 .5. 用配方法把二次函数y=-2x 2+8x-5化成y=a(x+m)2+n 的形式,即y= ,它的对称轴是 ,顶点坐标是 .6. 一个二次函数,当x=0时,y =-5;当x =1时,y =-4;当x =-2时,y=5,则这个二次函数的关系式是( )A.y=2x 2-x-5 B.y=2x 2+x+5 C. y=2x 2-x+5 D.y=2x2+x-57. 已知二次函数y=ax2+bx+c (a≠0)的顶点坐标为M (2,-4 ),且其图象经过点A (0,0 ),则a, b , c的值是()A .a=l, b=4, c=0 B.a=1,b=-4,c=0 C.a=-1,b=-1,c=0 D.a=1,b=-4,c=88. 已知二次函数y=ax2-4x-13a有最小值-17,则a= .9. 已知抛物线与x轴交点的横坐标分别为3, l;与y轴交点的纵坐标为6,则二次函数的关系式是.10. 抛物线y=-x2+4x-1的顶点坐标是,在对称轴x=2的侧y随x的增大而减小.11. 二次函数y =ax2+bx+c的图象的形状( )A.只与a有关 B. 只与b有关 C. 只与a, b有关D.与a , b,c都有关12. 二次函数y=ax2+bx+c的图象的对称轴位置( )A.只与a有关 B. 只与b有关 C. 只与a, b有关D.与a , b,c都有关二、提高训练13. 己知二次函数y=-x2+bx+c的顶点坐标为(-1,-3 ),求b,c的值.14. 已知二次函数y =ax2 +b x-1的图象经过点(2,-1),且这个函数有最小值-3 ,求这个函数的关系式.15. 已知关于x的二次函数的图象的顶点坐标为(-l , 2 ) ,且图象过点(l ,-3 ) .(1)求这个二次函数的关系式;(2)写出它的开口方向、对称轴;二次函数的应用(1)【知识要点】运用二次函数求实际问题中的最大值或最小值,首先用应当求出函数解析式和自变量的取值范围,求得的最大值或最小值对用的字变量的值必须在自变量的取值范围内.一、基础练习1. 二次函数y=x2-3x-4的顶点坐标是, 对称轴是直线,与x轴的交点是,当x= 时,y有最值,是.2. 二次函数y=ax2+bx+c的图象如图所示,则a的符号是,b的符号是,c的符号是.当x取时,y>0,当x 时,y=0, 当x取时,y < 0 .E MF N CB DO A 正常水位3. 若二次函数y=mx 2-3x+2m-m 2的图象经过原点,则m 的值是( )A .1 B. 0 C. 2 D. 0或24. 下列各图中有可能是函数y=ax 2+c,(0,0)a y a c x=≠>的图象是( ) 5. 抛物线y=ax 2+bx ,当a>0,b<0时,它的图象象经过第 象限.6. 抛物线y=2x 2+4x 与x 轴的交点坐标分别是A( ),B( ).7. 已知二次函数y=-x 2+mx+2的最大值为94,则m= . 8. 正方形边长为 2 ,若边长增加x ,那么面积增加y ,则y 与x 的函数关系式 .9. 二次函数y=4x 2-x+1的图象与x 轴的交点个数是( )A. l 个B.2个C.0个D.无法确定10. 已知二次函数y=x 2-4x-5,若y>0,则( )A . x>5 B.-l <x <5 C. x>5或x <-1 D. x>1或2x<-5二、提高训练★11. 心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满足函数关系y=-0.1x 2+2.6x +43(0≤x ≤30).y 值越大,表示接受能力越强. (l) x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低?(2)某同学思考10分钟后提出概念,他的接受能力是多少?(3)学生思考多少时间后再提出概念,其接受能力最强?★12. 如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔 水面宽度20AB =米,顶点M 距水面6米(即6MO =米),小孔顶点N 距水面4.5米(即 4.5NC =米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽 度EF .二次函数的应用(2)【知识要点】 利用二次函数来解实际问题,体会实际问题转化为数学模型的过程, 一、基础练习 1. 有一座抛物线型拱桥(如图),正常水位时桥下河面宽20m ,河面距拱顶4m. (l)在如图所示的平面直角坐标系中,求出抛物线解析式;(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m .求水面在正常 水位基础上涨多少m 时,就会影响过往船只?2. 一高尔夫球的飞行路线为如图抛物线.(l)请用解析法表示球飞行过程中y 关于x 的函数关系式;(2)高尔夫球飞行的最大距离为多少m?最大高度为多少m?(3)当高尔夫球的高度到达5m 时,它飞行的水平距离为多少m ?二、提高训练3. 如图,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x轴,横断面的对称轴为y轴.桥拱的DGD '部分为一段抛物线,顶点G的高度为8m , AD和 A 'D '是两根高为5.5m 的支柱.OA和OA '为两个方向的汽车通行区,宽都为15m,线段CD和C'D/为两段对称的上桥斜坡,其坡度为1∶4.(1)求桥拱DGD '所在抛物线的解析式及线段CC/的长;(2)BE和B 'E '为支撑斜坡的立柱,其高都为4m,相应的AB和A 'B '为两个方向的行人及非机动车通行区.试求AB和A 'B '的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4m,今有一大型运货汽车,装载某大型设备后,其宽为4m ,车载大型设备的顶部与地面的距离均为7m.它能否从OA(或O 'A/ ')区域安全通过?请说明理由.二次函数的应用(3)【知识要点】二次函数是刻划现实生活中某些情境的数学模型.一、基础练习1. 某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,在对历年市场行情和生产的情况进行调查的基础上.对今年这种蔬菜上市后的市场售价和生产成本进行了预测,得到了以下图象:请你根据图象提供的信息说明:(1)在3月份出售这种蔬菜,每千克的收益是多少?(收益=售价-成本)(2)哪个月出售这种蔬菜,每克的收益最大?请说明理由.2. 某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500 万元进行批量生产.已知生产每件产品的成本为40元.在销售过程中发现,当销售单价定为100元时,年销售量为20万件,销瞥单价每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额一生产成本一投资)为z(万元)(l)试写出y与x之间的函数关系式(不必写出x的取值范围);(2)试写出z与x之间的函数关系式(不必写出x的取值范围);(3)公司计划:在第一年按年获利最大确定的销售单价进行销售,第二年年获利不低于1130万元.请你借助函数的大致图象说明,第二年的销售单价x(元)应确定在什么范围?3.已知二次函数y=-x2+4x-3,其图象与y轴交于点B,与x轴交于A, C两点. 求△ABC的周长和面积.4.如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0) , 且x1+x2=4,1 21 3xx.(1)求抛物线的代数表达式;(2)设抛物线与y轴交于C点,求直线BC的表达式;(3)求△ABC的面积.(1) 写出方程ax +bx +c =0的两个根;(2) 写出不等式ax 2+bx +c >0的解集;(3) 写出y 随x 的增大而减小的自变量x 的取值范值;(4) 若方程ax 2+bx +c =k 有两个不相等的实数根,求k 的取什范围。

最新沪科九上《二次函数》全章巩固小练习(基础)(辅导必备)

最新沪科九上《二次函数》全章巩固小练习(基础)(辅导必备)

《二次函数》巩固练习(基础)【巩固练习】一、选择题1.将二次函数2y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ).A .2(1)2y x =-+B .2(1)2y x =++C .2(1)2y x =--D .2(1)2y x =+-3.抛物线2y x bx c =++图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为223y x x =--,则b 、c 的值为( ).A .b =2,c =2B .b =2,c =0C .b =-2,c =-1D .b =-3,c =25.(2014•巴中)已知二次函数y=ax 2+bx+c 的图象如图,则下列叙述正确的是( )A . abc <0B .﹣3a+c <0C . b 2﹣4ac ≥0D . 将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax 2+c6.已知点(1x ,1y ),(2x ,2y )(两点不重合)均在抛物线21y x =-上,则下列说法正确的是( ).A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >7.在反比例函数a y x=中,当0x >时,y 随x 的增大而减小,则二次函数2y ax ax =-的图象大致是图中的( ).8.已知二次函数2y ax bx c =++(其中0a >,0b >,0c <),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧. 以上说法正确的有( ).A .0个B .1个C .2个D .3个二、填空题11.抛物线22(2)6y x =--的顶点为C ,已知y =-kx+3的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为________.13.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是________.16.若二次函数26y x x c =-+的图象过A(-1,y 1)、B(2,y 2)、C(32+,y 3)三点,则y 1、y 2、y 3大小关系是 .三、解答题17.(2015•温州模拟)已知:如图,抛物线y=﹣x 2+bx+c 与x 轴交于点A (﹣1,0),B (3,0),与y 轴交于点C .过点C 作CD ∥x 轴,交抛物线的对称轴于点D .(1)求该抛物线的解析式;(2)若将该抛物线向下平移m 个单位,使其顶点落在D 点,求m 的值.19.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元.(1)分别求出y 1、y 2与x 之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?【答案与解析】1.【答案】A ;3.【答案】B ;5.【答案】B ;6.【答案】D ;7.【答案】A ;8.【答案】C ;11.【答案】1; 13.【答案】-1; 16.【答案】y 1>y 3>y 2.17.【答案与解析】解:(1)抛物线解析式为y=﹣x 2+2x+3;(2)当x=0,y=3,即OC=3,∵抛物线解析式为y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点坐标为(1,4),∵对称轴为直线,∴CD=1,∵CD ∥x 轴,∴D (1,3),∴m=4﹣3=1. 19.【答案与解析】(1)由题意可知,当x ≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以5000350010025010x -≤+=,即100≤x ≤250时,购买一个需5000-10(x-100)元. 故y 1=6000x-10x 2 当x >250时,购买一个需3500元. 故y 1=3500x .所以215000(0100),600010(100250),3500(250),x x y x xx x x ≤≤⎧⎪=-<≤⎨⎪>⎩ y 2=5000×80%x =4000x .(2)当0<x ≤100时,y 1=5000x ≤500000<1400000;当100<x ≤250时,y 1=6000x-10x 2=-10(x-300)2+900000<1400000;所以,由3500x =1400000,得x =400.由4000x =1400000,得x =350.故选择甲商家,最多能购买400个路灯.。

二次函数基础知识和经典练习题

二次函数基础知识和经典练习题

二次函数基础知识和经典练习题(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除二次函数(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)两点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.4.抛物线与x 轴的交点设二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式来判定:(1)240b ac ->⇔抛物线与x 轴有两个交点;(2)240b ac -=⇔抛物线与x 轴有一个交点(顶点在x 轴上);(3)240b ac -<⇔抛物线与x 轴没有交点.5.二次函数的应用一、c bx ax y ++=2的性质1.已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 。

解:2.二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第象限。

理由:3.二次函数c bx ax y ++=2的图象如图,试判断a 、b 、c 和∆的符号。

解:4.二次函数c bx ax y ++=2的图象如图,下列结论(1)c <0;(2)b >0;(3)4a+2b+c >0;(4)(a+c )2<0,其中正确的是:( )A .1个B .2个C .3个D .4个理由:5. 二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个理由:6. 已知直线b ax y +=的图象经过第一、二、三象限,那么12++=bx ax y 的图象为( )A .B .C .D . 7.已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <1 B .x >1 C .x >-2 D .-2<x <48.二次函数y =a (x +k )2+k ,当k 取不同的实数值时,图象顶点所在的直线是( )A .y =xB .x 轴C .y =-xD .y 轴9.已知二次函数y =ax 2+bx +c 的图象如右图所示,则( )A .a >0,c >0,b 2-4ac <0B .a >0,c <0,b 2-4ac >0C .a <0,c >0,b 2-4ac <0D .a <0,c <0,b 2-4ac >010.已知二次函数y =ax 2+bx +c 的图象如下图所示,则( )A .b >0,c >0,=0B .b <0,c >0,=0C .b <0,c <0,=0D .b >0,c >0,>011.二次函数y =mx 2+2mx -(3-m )的图象如下图所示,那么m 的取值范围是( )A .m >0B .m >3C .m <0D .0<m <312.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )13.函数x ab y b ax y =+=221,(ab <0)的图象在下列四个示意图中,可能正确的是( ) 14.图中有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k >nC .k =nD .h >0,k >015.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;21>a ③;④b <1.其中正确的结论是( )A .①②B .②③C .②④D .③④16.下列命题中,正确的是( )①若a +b +c =0,则b 2-4ac <0;②若b =2a +3c ,则一元二次方程ax 2+bx +c =0有两个不相等的实数根;③若b 2-4ac >0,则二次函数y =ax 2+bx +c 的图象与坐标轴的公共点的个数是2或3; ④若b >a +c ,则一元二次方程ax 2+bx +c =0,有两个不相等的实数根.A .②④B .①③C .②③D .③④二、c bx ax y ++=2的最值1. 心理学家发现,学生对概念的接受能力y 和提出概念所用的时间x (单位:分)之间大体满足函数关系式:436.21.02++-=x x y (0≤x ≤30)。

二次函数基础练习题(必做)

二次函数基础练习题(必做)

二次函数基础练习题(必做)题目1已知二次函数方程 $y = ax^2 + bx + c$,其中 $a = 2$,$b = -3$,$c = 1$,求该二次函数的顶点坐标和对称轴方程。

解答1根据二次函数的顶点公式,顶点坐标 $(h, k)$ 可以通过公式 $h = -\frac{b}{2a}$ 和 $k = f(h)$ 求得。

带入已知的 $a$ 和 $b$,我们可以计算出顶点坐标:$$h = -\frac{-3}{2 \cdot 2} = \frac{3}{4} \\k = 2(\frac{3}{4})^2 - 3(\frac{3}{4}) + 1 = \frac{13}{8}$$所以该二次函数的顶点坐标为 $(\frac{3}{4}, \frac{13}{8})$。

对称轴方程可以通过对称轴公式 $x = h$ 得到,所以对称轴方程为 $x = \frac{3}{4}$。

题目2已知二次函数的顶点坐标是 $(2, -5)$,求该二次函数的方程。

解答2设二次函数的方程为 $y = ax^2 + bx + c$,其中 $a$,$b$,$c$ 为待求系数。

根据已知的顶点坐标 $(2, -5)$,我们可以得到以下两个方程:$$\begin{cases}-5 = a \cdot 2^2 + b \cdot 2 + c \\0 = a\end{cases}$$解方程组可以得到:$$\begin{cases}c = -5 - 4a \\a = 0\end{cases}$$代入 $a = 0$ 可以得到 $c = -5$。

所以该二次函数的方程为 $y = -5$。

题目3已知二次函数 $y = 3x^2 - 4x + 5$,求该函数的零点。

解答3零点即为函数图像与 $x$ 轴相交的点,也就是满足方程 $y = 0$ 的点。

我们可以将二次函数方程 $y = 3x^2 - 4x + 5$ 中的 $y$ 替换为$0$,得到方程:$$0 = 3x^2 - 4x + 5$$这是一个二次方程,我们可以用求根公式来求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数练习1一、填空题1.形如____________的函数叫做二次函数,其中______是目变量,a ,b ,c 是______且______≠0.2.函数y =x 2的图象叫做______,对称轴是______,顶点是______.3.抛物线y =ax 2的顶点是______,对称轴是______.当a >0时,抛物线的开口向______;当a <0时,抛物线的开口向______.4.当a >0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______.5.当a <0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______. 6.写出下列二次函数的a ,b ,c .(1)23x x y -=a =______,b =______,c =______. (2)y =x 2a =______,b =______,c =______.(3)105212-+=x x y a =______,b =______,c =______. (4)2316x y --=a =______,b =______,c =______.7.抛物线y =ax 2,|a |越大则抛物线的开口就______,|a |越小则抛物线的开口就______.8.二次函数y =ax 2的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)y =2x 2如图( );(2)221x y =如图( );(3)y =-x 2如图( ); (4)231x y -=如图( );(5)291x y =如图( );(6)291x y -=如图( ). 9.已知函数,232x y -=不画图象,回答下列各题. (1)开口方向______; (2)对称轴______; (3)顶点坐标______;(4)当x ≥0时,y 随x 的增大而______;二次函数练习2一、填空题1.在下列函数中①y =-2x 2;②y =-2x +1;③y =x ;④y =x 2,回答:(1)______的图象是直线,______的图象是抛物线.(2)函数______y 随着x 的增大而增大.函数______y 随着x 的增大而减小. (3)函数______的图象关于y 轴对称. 函数______的图象关于原点对称. (4)函数______有最大值为______.函数______有最小值为______. 2.已知函数y =ax 2+bx +c (a ,b ,c 是常数).(1)若它是二次函数,则系数应满足条件______. (2)若它是一次函数,则系数应满足条件______. (3)若它是正比例函数,则系数应满足条件______. 3.已知函数y =(m 2-3m )122--m mx 的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为______,对称轴为直线______,开口______. 4.已知函数y =m 222+-m mx +(m -2)x .(1)若它是二次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限.(2)若它是一次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. 5.已知函数y =m mmx +2,则当m =______时它的图象是抛物线;当m =______时,抛物线的开口向上;当m =______时抛物线的开口向下.二、选择题6.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )A .y =x (x +1)B .xy =1C .y =2x 2-2(x +1)2D .132+=x y 7.在二次函数①y =3x 2;②2234;32x y x y ==③中,图象在同一水平线上的开口大小顺序用题号表示应该为( )A .①>②>③B .①>③>②C .②>③>①D .②>①>③8.对于抛物线y =ax 2,下列说法中正确的是( )A .a 越大,抛物线开口越大B .a 越小,抛物线开口越大C .|a |越大,抛物线开口越大D .|a |越小,抛物线开口越大 9.下列说法中错误的是( )A .在函数y =-x 2中,当x =0时y 有最大值0B .在函数y =2x 2中,当x >0时y 随x 的增大而增大C . y =2x 2,y =-x 2,221x y -=中, y =2x 2的开口最小,y =-x 2的开口最大 D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点二次函数练习3一、填空题1.已知a ≠0,(1)抛物线y =ax 2的顶点坐标为______,对称轴为______.(2)抛物线y =ax 2+c 的顶点坐标为______,对称轴为______. (3)抛物线y =a (x -m )2的顶点坐标为______,对称轴为______.2.若函数122)21(++-=m m x m y 是二次函数,则m =______.3.抛物线y =2x 2的顶点坐标为______,对称轴是______.当x ______时,y 随x 增大而减小;当x ______时,y 随x 增大而增大;当x =______时,y 有最______值是______.4.抛物线y =-2x 2的开口方向是______,它的形状与y =2x 2的形状______,它的顶点坐标是______,对称轴是______.5.抛物线y =2x 2+3的顶点坐标为______,对称轴为______.当x ______时,y 随x 的增大而减小;当x =______时,y 有最______值是______,它可以由抛物线y =2x 2向______平移______个单位得到.6.抛物线y =3(x -2)2的开口方向是______,顶点坐标为______,对称轴是______.当x ______时,y 随x 的增大而增大;当x =______时,y 有最______值是______,它可以由抛物线y =3x 2向______平移______个单位得到. 二、选择题7.要得到抛物线2)4(31-=x y ,可将抛物线231x y =( )A .向上平移4个单位B .向下平移4个单位C .向右平移4个单位D .向左平移4个单位8.下列各组抛物线中能够互相平移而彼此得到对方的是( ) A .y =2x 2与y =3x 2 B .2212+=x y 与2122+=x y C .y =2x 2与y =x 2+2 D .y =x 2与y =x 2-29.顶点为(-5,0),且开口方向、形状与函数231x y -=的图象相同的抛物线是( )A .2)5(31-=x yB .5312--=x y C .2)5(31+-=x yD .2)5(31+=x y二次函数练习4一、填空题1.二次函数y =a (x -h )2+k (a ≠0)的顶点坐标是______,对称轴是______,当x =______时,y 有最值______;当a >0时,若x ______时,y 随x 增大而减小. 2.填表.3.抛物线1)3(212-+-=x y 有最______点,其坐标是______.当x =______时,y 的最______值是______;当x ______时,y 随x 增大而增大.4.将抛物线231x y =向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为.二、选择题5.一抛物线和抛物线y=-2x2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为( )A.y=-2(x-1)2+3 B.y=-2(x+1)2+3C.y=-(2x+1)2+3 D.y=-(2x-1)2+36.要得到y=-2(x+2)2-3的图象,需将抛物线y=-2x2作如下平移( ) A.向右平移2个单位,再向上平移3个单位B.向右平移2个单位,再向下平移3个单位C.向左平移2个单位,再向上平移3个单位D.向左平移2个单位,再向下平移3个单位三、解答题7.将下列函数配成y=a(x-h)2+k的形式,并求顶点坐标、对称轴及最值.(1)y=x2+6x+10 (2)y=-2x2-5x+7 (3)y=3x2+2x(4)y=-3x2+6x-2 (5)y=100-5x2 (6)y=(x-2)(2x+1)二次函数练习5一、填空题1.把二次函数y=ax2+bx+c(a≠0)配方成y=a(x-h)2+k形式为______,顶点坐标是______,对称轴是直线______.当x=______时,y最值=______;当a<0时,x ______时,y 随x 增大而减小;x ______时,y 随x 增大而增大.2.抛物线y =2x 2-3x -5的顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大.3.抛物线y =3-2x -x 2的顶点坐标是______,它与x 轴的交点坐标是______,与y 轴的交点坐标是______.4.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______.5.已知二次函数y =x 2+4x -3,当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0.6.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______.7.抛物线y =2x 2先向______平移______个单位就得到抛物线y =2(x -3)2,再向______平移______个单位就得到抛物线y =2(x -3)2+4. 二、选择题8.下列函数中①y =3x +1;②y =4x 2-3x ;;422x xy +=③④y =5-2x 2,是二次函数的有( ) A .② B .②③④ C .②③D .②④9.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )A .向下,(0,4)B .向下,(0,-4)C .向上,(0,4)D .向上,(0,-4)10.抛物线x x y --=221的顶点坐标是( )A .)21,1(-B .)21,1(- C .)1,21(-D .(1,0)11.二次函数y =ax 2+x +1的图象必过点( )A .(0,a )B .(-1,-a )C .(-1,a )D .(0,-a )二次函数练习61.把二次函数y =a (x -h )2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数1)1(212-+=x y 的图象. (1)试确定a ,h ,k 的值;(2)指出二次函数y =a (x -h )2+k 的开口方向、对称轴和顶点坐标.2.已知二次函数y =2x 2+4x -6. (1)将其化成y =a (x -h )2+k 的形式; (2)写出开口方向,对称轴方程,顶点坐标; (3)求图象与两坐标轴的交点坐标;(4)画出函数图象(简图);(5)说明其图象与抛物线y=x2的关系;(6)当x取何值时,y随x增大而减小;(7)当x取何值时,y>0,y=0,y<0;(8)当x取何值时,函数y有最值?其最值是多少?(9)当y取何值时,-4<x<0;(10)求函数图象与两坐标轴交点所围成的三角形面积.二次函数练习7一、填空题1.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线的顶点是原点,则____________;(2)若抛物线经过原点,则____________;(3)若抛物线的顶点在y轴上,则____________;(4)若抛物线的顶点在x轴上,则____________.2.抛物线y=ax2+bx必过______点.3.若二次函数y=mx2-3x+2m-m2的图象经过原点,则m=______,这个函数的解析式是______.4.若抛物线y=x2-4x+c的顶点在x轴上,则c的值是______.5.若二次函数y=ax2+4x+a的最大值是3,则a=______.6.函数y=x2-4x+3的图象的顶点及它和x轴的两个交点为顶点所构成的三角形面积为______平方单位.7.抛物线y=ax2+bx(a>0,b>0)的图象经过第______象限.二、选择题8.函数y=x2+mx-2(m<0)的图象是( )9.抛物线y=ax2+bx+c(a≠0)的图象如下图所示,那么( )A.a<0,b>0,c>0B.a<0,b<0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<0二次函数练习81.已知二次函数y=ax2+bx+c的图象如右图所示,则( )A.a>0,c>0,b2-4ac<0B.a>0,c<0,b2-4ac>0C.a<0,c>0,b2-4ac<0D.a<0,c<0,b2-4ac>02.已知二次函数y=ax2+bx+c的图象如下图所示,则( )A.b>0,c>0,=0B.b<0,c>0,=0C.b<0,c<0,=0D.b>0,c>0,>03.二次函数y=mx2+2mx-(3-m)的图象如下图所示,那么m的取值范围是( )A.m>0 B.m>3C.m<0 D.0<m<34.在同一坐标系内,函数y=kx2和y=kx-2(k≠0)的图象大致如图( )二次函数练习9一、填空题1.二次函数解析式通常有三种形式:①一般式________________;②顶点式________ __________;③双根式__________________________(b 2-4ac ≥0). 2.若二次函数y =x 2-2x +a 2-1的图象经过点(1,0),则a 的值为______.3.已知抛物线的对称轴为直线x =2,与x 轴的一个交点为),0,23( 则它与x 轴的另一个交点为______.二、解答题4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,求:(1)对称轴方程_________;(2)函数解析式_________;(3)当x ______时,y随x 增大而减小;(4)由图象回答:当y >0时,x 的取值范围 ;当y =0时,x = ;当y <0时,x 的取值范围 .5.抛物线y =ax 2+bx +c 过(0,4),(1,3),(-1,4)三点,求抛物线的解析式.6.抛物线y =ax 2+bx +c 过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式.7.抛物线y=ax2+bx+c的顶点为(2,4),且过(1,2)点,求抛物线的解析式.8.二次函数y=x2+bx+c的图象过点A(-2,5),且当x=2时,y=-3,求这个二次函数的解析式,并判断点B(0,3)是否在这个函数的图象上.二次函数练习10一、填空题1.二次函数y=ax2+bx+c(a≠0)与x轴有交点,则b2-4ac______0;若一元二次方程ax2+bx+c=0两根为x1,x2,则二次函数可表示为y=_________.2.若二次函数y=x2-3x+m的图象与x轴只有一个交点,则m=______.3.若二次函数y=mx2-(2m+2)x-1+m的图象与x轴有两个交点,则m的取值范围是______.4.若二次函数y=ax2+bx+c的图象经过P(1,0)点,则a+b+c=______.5.若抛物线y=ax2+bx+c的系数a,b,c满足a-b+c=0,则这条抛物线必经过点______.6.关于x的方程x2-x-n=0没有实数根,则抛物线y=x2-x-n的顶点在第______象限.二、选择题7.已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0( )A.没有实根B.只有一个实根C.有两个实根,且一根为正,一根为负D.有两个实根,且一根小于1,一根大于28.一次函数y=2x+1与二次函数y=x2-4x+3的图象交点( )A.只有一个B.恰好有两个C.可以有一个,也可以有两个D.无交点9.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是( )A.有两个不相等的实数根B.有两个异号实数根C.有两个相等的实数根D.无实数根10.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是( )A.a>0,>0 B.a>0,<0C.a<0,>0 D.a<0,<0二次函数练习111.矩形窗户的周长是6m,写出窗户的面积y(m2)与窗户的宽x(m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x的取值范围,并画出函数的图象.2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m,就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.3.如图,足球场上守门员在O处开出一高球,球从离地面1m的A处飞出(A在y轴上),运动员乙在距O点6m的B处发现球在自己头的正上方达到最高点M,距地面约4m 高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取762=)34=,5二次函数综合练习一、填空题1.若函数y=x2-mx+m-2的图象经过(3,6)点,则m=______.2.函数y=2x-x2的图象开口向______,对称轴方程是______.3.抛物线y=x2-4x-5的顶点坐标是______.4.函数y=2x2-8x+1,当x=______时,y的最______值等于______.5.抛物线y=-x2+3x-2在y轴上的截距是______,与x轴的交点坐标是____________.6.把y=2x2-6x+4配方成y=a(x-h)2+k的形式是_______________.7.已知二次函数y=ax2+bx+c的图象如图所示.(1)对称轴方程为____________;(2)函数解析式为____________;(3)当x______时,y随x的增大而减小;(4)当y>0时,x的取值范围是______.8.已知二次函数y=x2-(m-4)x+2m-3.(1)当m=______时,图象顶点在x轴上;(2)当m=______时,图象顶点在y轴上;(3)当m=______时,图象过原点.二、选择题9.将抛物线y=x2+1绕原点O旋转180°,则旋转后抛物线的解析式为( ) A.y=-x2B.y=-x2+1 C.y=x2-1 D.y=-x2-1 10.抛物线y=x2-mx+m-2与x轴交点的情况是( )A.无交点B.一个交点C.两个交点D.无法确定11.函数y=x2+2x-3(-2≤x≤2)的最大值和最小值分别为( )A.4和-3 B.5和-3 C.5和-4 D.-1和412.已知函数y=a(x+2)和y=a(x2+1),那么它们在同一坐标系内图象的示意图是( )13.y=ax2+bx+c(a≠0)的图象如下图所示,那么下面六个代数式:abc,b2-4ac,a-b+c,a+b+c,2a-b,9a-4b中,值小于0的有( )A.1个B.2个C.3个D.4个14.若b>0时,二次函数y=ax2+bx+a2-1的图象如下列四图之一所示,根据图象分析,则a的值等于( )A.251+-B.-1 C.251--D.1三、解答题15.已知函数y1=ax2+bx+c,其中a<0,b>0,c>0,问:(1)抛物线的开口方向?(2)抛物线与y轴的交点在x轴上方还是下方?(3)抛物线的对称轴在y轴的左侧还是右侧?(4)抛物线与x轴是否有交点?如果有,写出交点坐标;(5)画出示意图.16.已知二次函数y=ax2+bx+c的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.(试用两种不同方法)17.已知二次函数y=ax2+bx+c,当x=-1时有最小值-4,且图象在x轴上截得线段长为4,求函数解析式.如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档