江苏省高考数学二轮复习 专题10 数列(Ⅱ)
江苏省高考数学二轮解答题专项复习:数列
(2)若2Sn=23+a2n+4,求n.
11.已知数列{an}是各项为正数的等比数列,且a2=4, .数列{bn}是单调递增的等差数列,且b2•b3=15,b1+b4=8,
(1)求数列{an}与数列{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn.
12.设{an}是等差数列,a1=﹣10,且a2+10,a3+8,a4+6成等比数列,
(1)求数列{an}的通项公式;
(2)若Sn是数列{an}的前n项和,设bn ,求数列{bn}的前n项和Tn.
7.已知等差数列{an}的前n项和为Sn,且a2=3,S6=36.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn (n∈N*),求数列{bn}的前n项和Tn.
8.已知数列{an}的首项a1=1,Sn为其前n项和,且Sn+1﹣2Sn=n+1.
(2)设bn=an•( )n,试问数列{bn}是否理由.
22.已知{an}为单调递增的等差数列,设其前n项和为Sn,S5=﹣20,且a3,a5+1,a9成等比数列.
(1)求数列{an}的通项公式;
(2)求Sn的最小值及取得最小值时n的值.
23.已知数列{an}的前n项和为Sn,且满足an=n﹣Sn,设bn=an﹣1.
(1)求{an}和{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn.
5.已知等比数列{an}的前n项和是Sn,且S1=2,a2+1是a1与a3的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=(Sn+2)•log2an,求数列{bn}的前n项和Tn.
江苏省高考数学二轮复习:第10讲 等差数列与等比数列
专题三数列第10讲等差数列与等比数列1. 理解等差、等比数列的概念,掌握等差、等比数列的通项公式及前n项和公式.2. 数列是高中的重要内容,考试说明中,等差、等比数列都是C级要求,因而考试题多为中等及以上难度,试题综合考查了函数与方程,分类讨论等数学思想.填空题常常考查等差、等比数列的通项公式、前n项和公式及等差、等比数列的性质,考查运算求解能力;解答题综合性很强,不仅考查数列本身的知识而且还涉及到函数、不等式、解析几何等方面的知识,基本上都是压轴题.1. 在数列{a n}中,a n=4n-52,a1+a2+…+a n=an2+bn,n∈N*,其中a,b为常数,则ab=________.2.已知等差数列{a n}中,a2=6,a5=15.若b n=a2n,则数列{b n}的前5项和等于________.3.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项和为________.4.已知等比数列{a n }满足a 1>0,a 1 006=2,则log 2a 1+log 2a 2+log 2a 3+…+log 2a 2 011=________.【例1】 等差数列{a n }的各项均为正数,且a 1=1,前n 项和为S n ,{b n }为等比数列,b 1=1 ,前n 项和为T n ,且b 2S 2=12,b 3S 3=81.(1) 求a n 与b n; (2) 求S n 与T n ;(3) 设c n =a n b n ,{c n }的前n 项和为M n ,求M n .【例2】 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1) 求数列{a n }的通项a n 与前n 项和S n ;(2) 设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【例3】 设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足a 22+a 23=a 24+a 25,S 7=7.(1) 求数列{a n }的通项公式及前n 项和S n;(2) 试求所有的正整数m ,使得a m a m +1a m +2为数列{a n }中的项.【例4】 已知数列{a n }中,a 1=1,a n +a n +1=2n (n ∈N *),b n =3a n . (1) 试证数列⎩⎨⎧⎭⎬⎫a n -13×2n 是等比数列,并求数列{b n }的通项公式.(2) 在数列{b n }中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,说明理由.(3) 试证在数列{b n }中,一定存在满足条件1<r <s 的正整数r ,s ,使得b 1,b r ,b s 成等差数列;并求出正整数r ,s 之间的关系.1. (2011·广东)等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.2.(2011·辽宁)若等比数列{a n }满足a n a n +1=16n ,则公比为________.3.(2011·湖北)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.4.(2010·天津)设{a n }是等比数列,公比q =2,S n 为{a n }的前n 项和.记T n =17S n -S 2na n +1,n ∈N +,设Tn 0为数列{T n }的最大项,则n 0=________.5.(2011·湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1) 求数列{b n }的通项公式;(2) 数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.6.(2009·广东)已知点⎝⎛⎭⎫1,13是函数f(x)=a x (a>0,a ≠1)的图象上一点,等比数列{a n }的前n 项和为f(n)-c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n -S n -1=S n +S n +1(n ≥2).(1) 求数列{a n }和{b n }的通项公式;(2) 若数列⎩⎨⎧⎭⎬⎫1b n b n +1前n 项和为T n ,问T n >1 0002 009的最小正整数n 是多少?(2011·辽宁)(本小题满分12分)已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1) 求数列{a n }的通项公式;(2) 求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解:(1) 设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧a 1+d =0,2a 1+12d =-10,(2分)解得⎩⎪⎨⎪⎧a 1=1,d =-1.(4分)故数列{a n }的通项公式为a n =2-n(n ∈N *).(5分)(2) 设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1, ①故S 1=1. (7分) S n 2=a 12+a 24+…+a n2n .② 所以,当n>1时,①-②得S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n=1-⎝⎛⎭⎫12+14+…+12n -1-2-n 2n =1-⎝⎛⎭⎫1-12n -1-2-n2n ,(9分)所以S n =n 2n -1,n =1适合,综上数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和S n =n2n -1. (12分)专题三 数 列第10讲 等差数列与等比数列1. 若数列{a n },{b n }的通项公式分别是a n =(-1)n +2007·a ,b n =2+(-1)n +2008n ,且a n <b n对任意n ∈N *恒成立,则常数a 的取值范围是____________.【答案】 [-2,1] 解析: a >0时,a n 的最大值为a(n 取奇数),b n 的最小值为1,a =0,b n >0,a n <b n 恒成立,a <0时,a n 的最大值为-a(n 取偶数),b n >2,-a ≤2,综上,a ∈[-2,1).2. 已知无穷数列{a n }中,a 1,a 2,…,a m 是首项为10,公差为-2的等差数列;a m +1,a m +2,…,a 2m 是首项为12,公比为12的等比数列(其中 m ≥3,m ∈N *),并对任意的n ∈N *,均有a n +2m =a n 成立.(1) 当m =12时,求a 2 010;(2) 若a 52=1128,试求m 的值;(3) 判断是否存在m(m ≥3,m ∈N *),使得S 128m +3≥2 010成立?若存在,试求出m 的值;若不存在,请说明理由.解: (1) m =12时,数列的周期为24.∵ 2 010=24×83+18,而a 18是等比数列中的项,∴ a 2 010=a 18=a 12+6=⎝⎛⎭⎫126=164.(2) 设a m +k 是第一个周期中等比数列中的第k 项,则a m +k =⎝⎛⎭⎫12k . ∵1128=⎝⎛⎭⎫127, ∴ 等比数列中至少有7项,即m ≥7,则一个周期中至少有14项.∴ a 52最多是第三个周期中的项. 若a 52是第一个周期中的项,则a 52=a m +7=1128. ∴ m =52-7=45; 若a 52是第二个周期中的项,则a 52=a 3m +7=1128.∴ 3m =45,m =15; 若a 52是第三个周期中的项,则a 52=a 5m +7=1128.∴ 5m =45,m =9; 综上,m =45,或15,或9.(3) 2m 是此数列的周期,∴ S 128m +3表示64个周期及等差数列的前3项之和. ∴ S 2m 最大时,S 128m +3最大.∵ S 2m =10m +m (m -1)2×(-2)+12⎣⎡⎦⎤1-⎝⎛⎭⎫12m 1-12=-m 2+11m +1-12m =-⎝⎛⎭⎫m -1122+1254-12m, 当m =6时,S 2m =31-164=306364;当m ≤5时,S 2m <306364; 当m ≥7时,S 2m <-(7-112)2+1254=29<306364.∴ 当m =6时,S 2m 取得最大值,则S 128m +3取得最大值为64×306364+24=2 007.由此可知,不存在m(m ≥3,m ∈N *),使得S 128m +3≥2 010成立. 基础训练1. -1 解析:{a n }为等差数列,则S n =2n 2-12n ,∴ a =2,b =-12.2. 90 解析:a n =3n ,b n =6n.3. 1274. 2 011 解析:log 2a 1+log 2a 2+log 2a 3+…+log 2a 2 011=log 2(a 1a 2a 3…a 2 011)=log 2[(a 1a 2011)(a 2a 2 010)…(a 1 005a 1 007)a 1 006]=log 2[(22)1 005×2]=log 222 011=2 011. 例题选讲例1 解:(1) 设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =1+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧ S 3b 3=(3+3d )q 2=81,S 2b 2=(2+d )q =12, 解得⎩⎪⎨⎪⎧d =2,q =3或⎩⎪⎨⎪⎧d =-23,q =9.(舍去)故a n =1+2(n -1),a n =2n -1,b n =3n -1. (2) S n =1+3+5+…+(2n -1)=n 2,T n =1-3n 1-3=3n -12.(3) c n =(2n -1)×3n -1,M n =1+3×3+5×32+…+(2n -1)×3n -1,①3M n =1×3+3×32+5×33+…+(2n -1)×3n ,②①-②得-2M n =1+2×3+2×32+…+2×3n -1-(2n -1)×3n , M n =(n -1)×3n +1.变式训练 等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1) 求{a n }的公比q ; (2) 若a 1-a 3=3,求S n .解: (1) 依题意有a 1+(a 1+a 1q)=2(a 1+a 1q +a 1q 2), 由于a 1≠0,故2q 2+q =0, 又q ≠0,从而q =-12.(2) 由已知可得a 1-a 1⎝⎛⎭⎫-122=3,故a 1=4. 从而S n =4⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12=83⎣⎡⎦⎤1-⎝⎛⎭⎫-12n .例2 解:(1) 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴ d =2,故a n =2n -1+2,S n =n(n +2).(2) 由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2).∴ (q 2-pr)+(2q -p -r)2=0, ∵ p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0, ∴ ⎝⎛⎭⎫p +r 22=pr, (p -r)2=0, ∴ p =r.这与p ≠r 矛盾. 故数列{b n }中任意不同的三项都不可能成为等比数列.变式训练 设S n 为数列{a n }的前n 项和,S n =kn 2+n ,n ∈N *,其中k 是常数. (1) 求a 1及a n ;(2) 若对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列,求k 的值. 解: (1) 当n =1,a 1=S 1=k +1,n ≥2,a n =S n -S n -1=kn 2+n -[k(n -1)2+(n -1)]=2kn -k +1,(*) 经检验,n =1,(*)式成立,∴ a n =2kn -k +1(n ∈N *). (2) ∵ a m ,a 2m ,a 4m 成等比数列, ∴ a 22m =a m ·a 4m , 即(4km -k +1)2=(2km -k +1)(8km -k +1),整理得:mk(k -1)=0, 对任意的m ∈N *成立,∴ k =0或k =1.例3 解:(1) 设公差为d ,则a 22-a 25=a 24-a 23,由性质得-3d(a 4+a 3)=d(a 4+a 3),因为d ≠0,所以a 4+a 3=0,即2a 1+5d =0,又由S 7=7得7a 1+7×62d =7,解得a 1=-5,d =2,所以{a n }的通项公式为a n =2n -7,前n 项和S n =n 2-6n. (2) (解法1)a m a m +1a m +2=(2m -7)(2m -5)2m -3,设2m -3=t ,则a m a m +1a m +2=(t -4)(t -2)t =t +8t -6, 所以t 为8的约数.因为t 是奇数,所以t 可取的值为±1,当t =1,m =2时,t +8t-6=3,2×5-7=3,是数列{a n }中的项;当t =-1,m =1时,t +8t -6=-15,数列{a n }中的最小项是-5,不符合.所以满足条件的正整数m =2.(解法2) 因为a m a m +1a m +2=(a m +2-4)(a m +2-2)a m +2=a m +2-6+8a m +2为数列{a n }中的项,故8a m +2为整数,又由(1)知:a m +2为奇数,所以a m +2=2m -3=±1,即m =1,2,经检验,符合题意的正整数只有m =2.例4 解: (1) 证明:由a n +a n +1=2n ,得a n +1=2n -a n ,所以a n +1-13×2n +1a n -13×2n =2n -a n -13×2n +1a n -13×2n =-(a n -13×2n )a n -13×2n=-1.又因为a 1-23=13,所以数列{a n -13×2n }是首项为13,公比为-1的等比数列.所以a n -13×2n =13×(-1)n -1,即a n =13[2n -(-1)n ],所以b n =2n -(-1)n .(2) 假设在数列{b n }中,存在连续三项b k -1,b k ,b k +1(k ∈N *, k ≥2)成等差数列,则b k -1+b k +1=2b k ,即[2k -1-(-1)k -1]+[2k +1-(-1)k +1]=2[2k -(-1)k ],即2k -1=4(-1)k -1.① 若k 为偶数,则2k -1>0,4(-1)k -1=-4<0,所以,不存在偶数k ,使得b k -1,b k ,b k +1成等差数列.② 若k 为奇数,则当k ≥3时,2k -1≥4,而4(-1)k -1=4,所以,当且仅当k =3时,b k -1,b k ,b k +1成等差数列.综上所述,在数列{b n }中,有且仅有连续三项b 2,b 3,b 4成等差数列. (3) 要使b 1,b r ,b s 成等差数列,只需b 1+b s =2b r ,即3+2s -(-1)s =2[2r -(-1)r ],即2s -2r +1=(-1)s -2(-1)r -3,(﹡)① 若s =r +1,在(﹡)式中,左端2s -2r +1=0,右端(-1)s -2(-1)r -3=(-1)s +2(-1)s -3=3(-1)s -3,要使(﹡)式成立,当且仅当s 为偶数时.又s >r >1,且s ,r 为正整数, 所以当s 为不小于4的正偶数,且s =r +1时,b 1,b r ,b s 成等差数列.② 若s ≥r +2时,在(﹡)式中,左端2s -2r +1≥2r +2-2r +1=2r +1,由(2)可知,r ≥3,所以r +1≥4,所以左端2s -2r +1≥16(当且仅当s 为偶数、r 为奇数时取“=”);右端(-1)s -2(-1)s -3≤0.所以当s ≥r +2时,b 1,b r ,b s 不成等差数列.综上所述,存在不小于4的正偶数s ,且s =r +1,使得b 1,b r ,b s 成等差数列. 高考回顾 1. 10 2. 43.6766解析:设该数列为{a n },首项为a 1,公差为d ,依题意⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎨⎧a 1+7d =43,d =766.则a 5=a 1+4d =a 1+7d -3d =43-2166=6766.4. 4 解析:不妨设a 1=1,则a n =(2)n -1,a n +1=(2)n ,Sn =(2)n -12-1=a n +1-12-1,S 2n =(2)2n -12-1=a 2n +1-12-1,T n =17S n -S 2n a n +1=17·a n +1-12-1-a 2n +1-12-1a n +1=-12-1⎝⎛⎭⎫a n +1+16a n +1-17, 因为函数g(x)=x +16x (x >0)在x =4时,取得最小值,所以T n =-12-1⎝⎛⎭⎫a n +1+16a n +1-17在a n +1=4时取得最大值.此时a n +1=(2)n =4,解得n =4.即T 4为数列{T n }的最大项,则n 0=4.5. 解:(1) 设成等差数列的三个正数分别为a -d ,a ,a +d ;则a -d +a +a +d =15a =5;数列{b n }中的b 3、b 4、b 5依次为7-d,10,18+d ,则(7-d)(18+d)=100;得d =2或d =-13(舍),于是b 3=5,b 4=10b n =5·2n -3.(2) 证明:数列{b n }的前n 项和S n =5·2n -2-54,即S n +54=5·2n -2S n +1+54S n +54=5·2n -15·2n -2=2,因此数列⎩⎨⎧⎭⎬⎫S n +54是公比为2的等比数列.6. 解:(1) ∵ f(1)=a =13, ∴ f(x)=⎝⎛⎭⎫13x , a 1=f(1)-c =13-c ,a 2=[f(2)-c]-[f(1)-c]=-29,a 3=[f(3)-c]-[f(2)-c]=-227. 又数列{a n }成等比数列,a 1=a 22a 3=481-2 27=-23=13-c ,所以c =1;又公比q =a 2a 1=13,所以a n =-23⎝⎛⎭⎫13n -1=-2⎝⎛⎭⎫13n (n ∈N *); 又 S n -S n -1=(S n -S n -1)(S n +S n -1)=S n +S n -1(n ≥2),又b n >0,S n >0,∴ S n -S n -1=1;数列{S n }构成一个首项为1,公差为1的等差数列,S n =1+(n -1)×1=n ,S n =n 2. 当n ≥2,b n =S n -S n -1=n 2-(n -1)2=2n -1;又b 1=1,∴ b n =2n -1(n ∈N *). (2) T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×3+13×5+15×7+…+1(2n -1)×(2n +1)=12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+12⎝⎛⎭⎫15-17+…+12⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1,由T n =n 2n +1>1 0002 009,得n >1 0009,满足T n >1 0002 009的最小正整数为112.。
高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)
城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。
高考数学复习考点题型专题讲解10 数列的递推关系与通项
高考数学复习考点题型专题讲解专题10 数列的递推关系与通项1.求数列的通项公式是高考的重点内容,等差、等比数列可直接利用其通项公式求解,但有些数列是以递推关系给出的,需要构造新数列转为等差或等比数列,再利用公式求解.2.利用数列的递推关系求数列的通项,常见的方法有:(1)累加法,(2)累乘法,(3)构造法(包括辅助数列法,取倒数法,取对数法等).类型一利用a n与S n的关系求通项1.已知S n求a n的步骤(1)先利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,若符合,则数列的通项公式合写;若不符合,则应该分n=1与n≥2两段来写.2.S n与a n关系问题的求解思路(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.例1 (1)已知数列{a n}为正项数列,且4S1a1+2+4S2a2+2+…+4S nan+2=S n,求数列{a n}的通项公式;(2)已知数列{a n}的各项均为正数,且S n=12⎝⎛⎭⎪⎫an+1an,求数列{a n}的通项公式.解(1)由题知4S1a1+2+4S2a2+2+…+4S nan+2=S n,①则4S1a1+2+4S2a2+2+…+4S n-1an-1+2=S n-1(n≥2,n∈N*),②由①-②可得4S nan+2=a n,即4S n=a2n+2a n,n≥2,n∈N*,在已知等式中令n=1,得4S1a1+2=S1,则4S1=a1(a1+2),③满足上式,所以4S n=a2n+2a n,④则4S n-1=a2n-1+2a n-1(n≥2),⑤④-⑤可得4a n=a2n+2a n-a2n-1-2a n-1⇔2(a n+a n-1)=a2n-a2n-1. 因为a2n-a2n-1=(a n+a n-1)(a n-a n-1),a n>0,所以a n-a n-1=2,所以{a n}为公差是2的等差数列,由③可解得a1=2,所以a n=2+(n-1)×2=2n(n∈N*).(2)由S n=12⎝⎛⎭⎪⎫an+1an,得当n ≥2时,S n =12⎝ ⎛⎭⎪⎫S n -S n -1+1S n -S n -1,所以2S n =S n -S n -1+1S n -S n -1,即S n +S n -1=1S n -S n -1,所以S 2n -S 2n -1=1,所以{S 2n }为公差是1的等差数列,所以S 2n =S 21+(n -1).在S n =12⎝ ⎛⎭⎪⎫a n +1a n 中,令n =1可得S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,解得a 1=1,所以S 2n =n ,所以S n =n ,所以a n =⎩⎨⎧S n -S n -1,n ≥2,S 1,n =1=⎩⎨⎧n -n -1,n ≥2,1,n =1,所以a n =n -n -1(n ∈N *).训练1 已知正项数列{a n +2n -1}的前n 项和为S n ,且4S n =a 2n +(2n +2)a n +4n -1+2n -3.求数列{a n }的通项公式.解 由题知4S n =a 2n +(2n +2)a n +4n -1+2n -3=(a n +2n -1)2+2(a n +2n -1)-3, 令b n =a n +2n -1, 则4S n =b 2n +2b n -3,①当n ≥2时,4S n -1=b 2n -1+2b n -1-3,②由①-②,得4b n =b 2n -b 2n -1+2b n -2b n -1, 整理得(b n -b n -1-2)(b n +b n -1)=0. 因为b n >0,所以b n -b n -1=2(n ≥2). 又4S 1=b 21+2b 1-3, 即b 21-2b 1-3=0,解得b 1=3或b 1=-1(舍去),所以数列{b n }是以3为首项,2为公差的等差数列, 则b n =2n +1,所以a n =b n -2n -1=2n +1-2n -1(n ∈N *). 类型二 构造辅助数列求通项(1)形如a n =pa n -1+q (p ≠1,q ≠0)的形式,通常可构造出等比数列a n +q p -1=p ⎝⎛⎭⎪⎫a n -1+q p -1,进而求出通项公式. (2)形如a n =pa n -1+q n ,此类问题可先处理q n ,两边同时除以q n ,得a nq n =pa n -1q n+1,进而构造成a n q n =p q ·a n -1q n -1+1,设b n =a n q n ,从而变成b n =pqb n -1+1,从而将问题转化为第(1)个问题.(3)形如qa n -1-pa n =a n a n -1,可以考虑两边同时除以a n a n -1,转化为q a n -pa n -1=1的形式,进而可设b n =1a n,递推公式变为qb n -pb n -1=1,从而转变为上面第(1)个问题.(4)形如a n =ma n -1k (a n -1+b )(其中n ≥2,mkb ≠0)取倒数,得到1a n =k m ·⎝ ⎛⎭⎪⎫1+b a n -1⇔1a n=kb m ·1a n -1+km,转化为(1)中的类型. (5)形如a n =pa r n -1(n ≥2,a n ,p >0)两边取常用对数,得lg a n =r lg a n -1+lg p ,转化为(1)中的类型. 考向1 构造法求通项例2 (1)在数列{a n }中,a 1=12,a n =2a n +1-⎝ ⎛⎭⎪⎫12n(n ∈N *),求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,且a 1=1,S n +1-2S n =1,n ∈N *,求数列{a n }的通项公式. 解 (1)由a n =2a n +1-⎝ ⎛⎭⎪⎫12n,得2n a n =2n +1a n +1-1,所以数列{2n a n }是首项和公差均为1的等差数列, 于是2n a n =1+(n -1)×1=n , 所以a n =n2n (n ∈N *).(2)因为S n +1-2S n =1, 所以S n +1+1=2(S n +1),n ∈N *. 因为a 1=S 1=1, 所以可推出S n +1>0,故S n +1+1S n +1=2, 即{S n +1}为等比数列. 因为S 1+1=2,公比为2, 所以S n +1=2n , 即S n =2n -1.因为S n -1=2n -1-1(n ≥2),所以当n ≥2时,a n =S n -S n -1=2n -1, 又a 1=1也满足此式, 所以a n =2n -1(n ∈N *). 考向2 取倒数法求通项 例3 已知数列{a n }满足a n +1=a n a n +3,a 1=2,求数列{a n }的通项公式.解 对a n +1=a na n +3两边取倒数,可得1a n +1=3a n+1,由1a n +1+12=3⎝ ⎛⎭⎪⎫1a n +12. ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +12是首项为1,公比为3的等比数列,∴1a n +12=3n -1, 则a n =22·3n -1-1(n ∈N *). 考向3 取对数法求通项例4 设正项数列{a n }满足a 1=1,a n =2a 2n -1(n ≥2).求数列{a n }的通项公式. 解 对a n =2a 2n -1两边取对数得log 2a n =1+2log 2a n -1, ∴log 2a n +1=2(log 2a n -1+1), 设b n =log 2a n +1,则{b n }是以2为公比,1为首项的等比数列,所以b n =2n -1, 即log 2a n +1=2n -1, 故a n =22n -1-1(n ∈N *).训练2 (1)若数列{a n }中,a 1=3,且a n +1=a 2n ,则a n =________. (2)已知数列{a n }中,a 1=1,a n =a n -12a n -1+1,则a n =________.答案 (1)32n -1(n ∈N *) (2)12n -1(n ∈N *) 解析 (1)易知a n >0,由a n +1=a 2n 得lg a n +1=2lg a n , 故{lg a n }是以lg 3为首项,以2为公比的等比数列, 则lg a n =lg a 1·2n -1=lg 32n -1, 即a n =32n -1(n ∈N *). (2)由a n =a n -12a n -1+1,取倒数得1a n =2+1a n -1,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以2为公差,1为首项的等差数列,所以1a n=1+2(n -1)=2n -1,即a n =12n -1(n ∈N *).(3)在数列{a n }中,a 1=1,a n +1=12a n +1,求数列{a n }的通项公式.解 因为a n +1=12a n +1,所以a n +1-2=12(a n -2),所以数列{a n -2}是以-1为首项,12为公比的等比数列,所以a n -2=-1×⎝ ⎛⎭⎪⎫12n -1,所以a n =2-⎝ ⎛⎭⎪⎫12n -1,n ∈N *.一、基本技能练1.(2022·湖北新高考协作体联考)已知数列{a n }的首项a 1=2,其前n 项和为S n ,若S n +1=2S n +1,则a 7=________. 答案 96解析 因为S n +1=2S n +1, 所以S n =2S n -1+1(n ≥2), 两式相减得a n +1=2a n (n ≥2),又因为a 1=2,S 2=a 1+a 2=2a 1+1,得a 2=3, 所以数列{a n }从第二项开始成等比数列, 因此其通项公式为a n =⎩⎨⎧2,n =1,3·2n -2,n ≥2, 所以a 7=3×25=96.2.已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为________. 答案a n =2n (n +1)(n ∈N *)解析 由S n =n 2a n 可得, 当n ≥2时,S n -1=(n -1)2a n -1, 则a n =S n -S n -1=n 2a n -(n -1)2a n -1,即(n2-1)a n=(n-1)2a n-1,故anan-1=n-1n+1,所以a n=anan-1·an-1an-2·an-2an-3·…·a3a2·a2a1·a1=n-1n+1·n-2n·n-3n-1·…·24×13×1=2n(n+1).当n=1时,a1=1满足a n=2n(n+1).故数列{a n}的通项公式为a n=2n(n+1),n∈N*.3.已知正项数列{a n}满足a1=2,a n+1=a n,则a n=________.答案221-n(n∈N*)解析将a n+1=a n两边取以2为底的对数得log2a n+1=12log2an,∴数列{log2an}是以1为首项,12为公比的等比数列,故log2an=1×⎝⎛⎭⎪⎫12n-1=21-n,即a n=221-n(n∈N*).4.数列{a n}的首项a1=2,且a n+1=3a n+2(n∈N*),令b n=log3(a n+1),则b n=________. 答案n(n∈N*)解析由a n+1=3a n+2(n∈N*)可知a n+1+1=3(a n+1),又a1=2,知a n+1≠0,所以数列{a n+1}是以3为首项,3为公比的等比数列,因此a n+1=3·3n-1=3n,故b n =log 3(a n +1)=n .5.(2022·南京调研)在数列{b n }中,b 1=-1,b n +1=b n 3b n +2,n ∈N *,则通项公式b n =________.答案 12n -3(n ∈N *)解析 由b n +1=b n 3b n +2,且b 1=-1.易知b n ≠0,得1b n +1=2b n+3.因此1b n +1+3=2⎝ ⎛⎭⎪⎫1b n +3,1b 1+3=2, 故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n +3是以2为首项,2为公比的等比数列,于是1b n+3=2·2n -1,可得b n =12n-3,n ∈N *. 6.在数列{a n }中,a 1=1,a n =2a n -1+ln 3(n ≥2),则数列{a n }的通项a n =________. 答案 (1+ln 3)·2n -1-ln 3(n ∈N *)解析 由a n =2a n -1+ln 3得a n +ln 3=2(a n -1+ln 3), 则{a n +ln 3}是以1+ln 3为首项,2为公比的等比数列, 所以a n +ln 3=(1+ln 3)·2n -1, 因此a n =(1+ln 3)·2n -1-ln 3(n ∈N *).7.已知数列{a n }满足:a 1=1,a 2=3,a n +2=a n +1+2a n .某同学已经证明了数列 {a n +1-2a n }和数列{a n +1+a n }都是等比数列,则数列{a n }的通项公式是a n =________. 答案 2n +1-(-1)n -13(n ∈N *)解析因为a n+2=a n+1+2a n,所以当n=1时,a3=a2+2a1=5.令b n=a n+1-2a n,则{b n}为等比数列. 又b1=a2-2a1=1,b2=a3-2a2=-1,所以等比数列{b n}的公比q=b2b1=-1,所以b n=(-1)n-1,即a n+1-2a n=(-1)n-1.①令c n=a n+1+a n,则{c n}为等比数列,c1=a2+a1=4,c2=a3+a2=8,所以等比数列{c n}的公比q1=c2c1=2,所以c n=4×2n-1=2n+1,即a n+1+a n=2n+1.②联立①②,解得a n=2n+1-(-1)n-13.8.(2022·青岛二模)已知数列{a n},{b n}满足a1=12,a n+b n=1,b n+1=bn1-a2n,则b2 023=________.答案2 023 2 024解析因为a n+b n=1,b n+1=bn1-a2n,所以1-a n+1=1-a n(1-a n)(1+a n),a n +1=1-11+a n =a n1+a n ,所以1a n +1=1a n+1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,其公差为1,首项为1a 1=2,所以1a n=2+(n -1)×1=n +1,所以a n =1n +1, 所以b n =n n +1,所以b 2 023=2 0232 024.9.已知数列{a n }的前n 项和S n 满足2S n -na n =3n (n ∈N *),且S 3=15,则S 10=________. 答案 120解析 当n =1时,2S 1-a 1=3, 解得a 1=3. 又2S n -na n =3n ,①当n ≥2时,2S n -1-(n -1)a n -1=3(n -1),② 所以①-②得(n -1)a n -1-(n -2)a n =3,③ 当n ≥3时,(n -2)a n -2-(n -3)a n -1=3,④ 所以④-③得(n -1)·a n -1-(n -2)a n =(n -2)a n -2-(n -3)a n -1, 可得2a n -1=a n +a n -2,所以数列{a n }为等差数列,设其公差为d .因为a 1=3,S 3=3a 1+3d =9+3d =15, 解得d =2, 故S 10=10×3+10×92×2=120. 10.已知数列{a n }满足a n +1=2a n -n +1(n ∈N *),a 1=3,则数列{a n }的通项公式为________.答案a n =2n +n (n ∈N *) 解析∵a n +1=2a n -n +1, ∴a n +1-(n +1)=2(a n -n ), ∴a n +1-(n +1)a n -n=2,∴数列{a n -n }是以a 1-1=2为首项,2为公比的等比数列, ∴a n -n =2·2n -1=2n , ∴a n =2n +n (n ∈N *).11.数列{a n }满足a n +1=3a n +2n +1,a 1=-1,则数列{a n }的前n 项和S n =________. 答案3n +12-2n +2+52(n ∈N *)解析∵a n +1=3a n +2n +1, ∴a n +12n +1=32·a n2n+1, ∴a n +12n +1+2=32⎝ ⎛⎭⎪⎫a n 2n +2, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +2是以a 12+2=32为首项,32为公比的等比数列,∴a n 2n +2=32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n,∴a n =3n -2n +1,∴S n =(31+32+…+3n )-(22+23+…+2n +1)=3-3n +11-3-4-2n +21-2=3n +12-2n +2+52(n ∈N *).12.已知在数列{a n }中,a 1=1,a 2=2,a n +1=2a n +3a n -1,则{a n }的通项公式为________. 答案a n =3n -(-1)n4(n ∈N *)解析∵a n +1=2a n +3a n -1, ∴a n +1+a n =3(a n +a n -1),∴{a n +1+a n }是以a 2+a 1=3为首项,3为公比的等比数列, ∴a n +1+a n =3×3n -1=3n .① 又a n +1-3a n =-(a n -3a n -1),∴{a n +1-3a n }是以a 2-3a 1=-1为首项,-1为公比的等比数列, ∴a n +1-3a n =(-1)×(-1)n -1=(-1)n ,② 由①-②得4a n =3n -(-1)n , ∴a n =3n -(-1)n4(n ∈N *).二、创新拓展练13.(2022·金丽衢12校联考)已知数列{a n }满足a 1=1,且T n =a 1a 2…a n ,若T n +1=a n T na 2n +1,n ∈N *,则( )A.a 50∈⎝ ⎛⎭⎪⎫112,111B.a 50∈⎝ ⎛⎭⎪⎫111,110C.a 10∈⎝ ⎛⎭⎪⎫18,17D.a 10∈⎝ ⎛⎭⎪⎫16,15答案 B解析 因为T n =a 1a 2…a n , 所以a n +1=T n +1T n. 因为T n +1=a n T na 2n +1, 所以a n +1=a n a 2n +1,所以1a n +1=a n +1a n.因为a 1=1>0,所以1a n +1>1a n >0,a 2=12, 所以0<a n +1<a n ≤1, 所以1a 2n +1=a 2n +1a 2n+2,所以a 2n +2=1a 2n +1-1a 2n ∈⎝ ⎛⎦⎥⎤2,94,n ≥2.由累加法可得1a 210-1a 22∈(16,18),所以1a 10∈(20,22),所以a 10∈⎝ ⎛⎭⎪⎫2222,510,同理可得a 50∈⎝⎛⎭⎪⎫1121,110=⎝ ⎛⎭⎪⎫111,110,故选B. 14.(多选)(2022·武汉调研)已知数列{a n }满足a 1=1,a n +1=a n 2+3a n(n ∈N *),则下列结论正确的是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3为等比数列 B.{a n }的通项公式为a n =12n +1-3C.{a n }为递增数列D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =2n +2-3n -4答案 ABD 解析 因为1a n +1=2+3a na n =2a n+3, 所以1a n +1+3=2⎝ ⎛⎭⎪⎫1a n +3, 又1a 1+3=4≠0,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3是以4为首项,2为公比的等比数列,所以1a n+3=4×2n -1,则a n =12n +1-3, 所以{a n }为递减数列,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =(22-3)+(23-3)+…+(2n +1-3)=22+23+…+2n +1-3n =4(1-2n )1-2-3n =2n +2-3n -4,故ABD 正确.15.(多选)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,……,设各层球数构成一个数列{a n },则( )A.a 4=12B.a n +1=a n +n +1C.a 100=5 050D.2a n +1=a n ·a n +2答案 BC解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n , 故a n =n (n +1)2,∴a 4=4×(4+1)2=10,故A 错误;a n +1=a n +n +1,故B 正确; a 100=100×(100+1)2=5 050,故C 正确;2a n +1=(n +1)(n +2),a n ·a n +2=n (n +1)(n +2)(n +3)4,显然2a n +1≠a n ·a n +2,故D 错误.16.(多选)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依次类推,第n 项记为a n ,数列{a n }的前n 项和为S n ,则( ) A.a 60=16 B.S 18=128 C.a k 2+k 2=2k -1D.S k 2+k 2=2k -k -1答案 AC解析 由题意可将数列分组: 第一组为20, 第二组为20,21, 第三组为20,21,22, ……,则前k 组一共有1+2+…+k =k (1+k )2个数.第k 组第k 个数为2k -1, 故a k 2+k 2=2k -1,所以C 正确.因为10×(10+1)2=55,所以a 55=29,又11×(11+1)2=66,则a 60为第11组第5个数,第11组为20,21,22,23,24,25,26,27,28,29,210, 故a 60=24=16,所以A 正确.每一组数的和为20+21+…+2k -1=2k -12-1=2k -1,故前k 组数之和为21+22+ (2)-k =2(2k -1)2-1-k =2k +1-2-k ,S k 2+k 2=2k +1-k -2,所以D 错误.S 15=26-5-2=57,S 18=S 15+20+21+22 =26-5-2+7=64,所以B 错误.故选AC. 17.已知数列{a n }满足a 1=3,a n +1=7a n -2a n +4,则该数列的通项公式a n =________. 答案4·6n -1-5n -12·6n -1-5n -1(n ∈N *)解析 由a n +1-1a n +1-2=7a n -2a n +4-17a n -2a n +4-2=7a n -2-(a n +4)7a n -2-2(a n +4)=65·a n -1a n -2,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -1a n -2是首项为a 1-1a 1-2=2,公比为65的等比数列,所以a n -1a n -2=2×⎝ ⎛⎭⎪⎫65n -1,解得a n =12×⎝ ⎛⎭⎪⎫65n -1-1+2=4·6n -1-5n -12·6n -1-5n -1,n ∈N *.18.(2022·徐州考前卷)设各项均为正数的数列{a n }的前n 项和为S n ,写出一个满足S n =⎝ ⎛⎭⎪⎫2-12n -1a n 的通项公式:a n =________.答案 2n (答案不唯一)解析 当a n =2n时,S n =2(1-2n )1-2=2n +1-2,⎝ ⎛⎭⎪⎫2-12n -1a n =⎝⎛⎭⎪⎫2-22n 2n=2n +1-2=S n ,∴a n =2n 满足条件.。
高考数学二级结论快速解题:专题10 与等差数列相关的结论(解析版)
专题10与等差数列相关的结论一、结论设n S 为等差数列{}n a 的前n 项和.(1)1(1)n a a n d ;()n m a a n m d(2)(,,,)p q m n p q m n a a a a m n p q N(3)22(,,)p q m p q m a a a m p q N;(4)23243,,,m m m m m m m S S S S S S S 构成等差数列.(5)1(22n S d dn a n 是关于n 的一次函数或常数函数,数列{}n S n也是等差数列.(6)11()(1)22n n n a a n n dS na(7)若等差数列{}n a 的项数为偶数2m ,公差为d ,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和21()m m m S m a a ,=S S md 奇偶,1=m mS a S a 偶奇.(8)若等差数列{}n a 的项数为奇数21m ,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和21(21)m m S m a ,m S ma 奇,(1)m S m a 偶,=m S S a 奇偶,1S mS m奇偶.(9)在等差数列{}n a ,{}n b 中,它们的前n 项和分别记为,n n S T 则2121n n n n a S b T .二、典型例题1.(2021·山西太原·高二阶段练习)设等差数列 n a 的前n 项和为n S ,若2k S ,28k S ,则4k S ()A .28B .32C .16D .24【答案】B 【详解】由等差数列 n a 前n 项和的性质,可得k S ,2k k S S ,32k k S S ,43k k S S 成等差数列,∴ 2322k k k k k S S S S S ,解得318k S .∴2,6,10,418k S 成等差数列,可得4210618k S ,解得432k S .故选:B【反思】等差数列中依次m 项之和m S ,2m m S S ,32m m S S ,43m m S S ,…组成公差为2m d 的等差数列,此结论可以直接用语计算,但是在使用公式时注意避免公式使用错误.2.(2022·北京·人大附中高二期末)已知等差数列 n a 的前n 项和为n S ,并且120S ,130S ,若n k S S 对n *N 恒成立,则正整数k 的值为()A .4B .5C .6D .7【答案】C 【详解】由题意可得1121211267105502a a S a a a a,所以670a a ,又113137101002a a S a,所以70a ,又670a a 可得60a ,所以等差数列 n a 的前6项为正数,从第7项起为负数,所以6n S S ,所以6k .故选:C.【反思】充分利用(,,,)p q m n p q m n a a a a m n p q N和22(,,)p q m p q m a a a m p q N ,推出等差数列的正负项(或者单调性),从而确定数列 n a 中最大和k S .3.(2020·安徽宣城·高一阶段练习(文))已知等差数列 n a 共有*2n n N 项,若数列 n a 中奇数项的和为190,偶数项的和为210,11a ,则公差d 的值为()A .2B .4C .54D .52【答案】A 【详解】由题意 1211902n n n a a S na奇,2212102n n n a a S na 偶,所以, 121019020n n S S n a a nd 奇偶,1211112011902n n n a a S na n n d n n n d n n奇,所以,10n ,2d .故选:A.【反思】对于等差数列奇偶项和问题,首先要判断项数为奇数项还是偶数项,其次再代入相应公式计算,本例中 n a 共有*2n n N 项,为偶数项,代入公式:21()m m m S m a a ,=S S md 奇偶,1=m mS a S a 偶奇,计算可得到答案.4.(2021·江苏·高二单元测试)已知两个等差数列 n a 和 n b 的前n 项和分别为Sn 和Tn ,且n n S T =2703n n ,则使得n n a b 为整数的正整数n 的个数为()A .4B .5C .6D .7【答案】B 【详解】依题意,12121211211()(21)21()(21)2n n n n n n a a n S a T b b b n ,又n n S T =2703n n ,于是得21212(21)702(17)322(21)311n n n n a S n n b T n n n ,因此,要n n a b 为整数,当且仅当321n 是正整数,而n N ,则1n 是32的大于1的约数,又32的非1的正约数有2,4,8,16,32五个,则n 的值有1,3,7,15,31五个,所以使得nna b 为整数的正整数n 的个数为5.故选:B【反思】在等差数列{}n a ,{}n b 中,它们的前n 项和分别记为,n n S T 则2121n n n n a S b T ,注意此公式使用的前提:nn a b 中分子分母角标一致,比如:55a b ,1111a b .但如果是117a b 这类分子分母角标不一致,不能直接使用该公式,需另寻它法.5.(2020·贵州铜仁伟才学校高二阶段练习)已知等差数列 n a 和 n b 的前n 项和分别为n S 和n T ,且满足2132n n S n T n ,则64a b ()A .32B .23C .1314D .1【答案】D 【详解】由题意,令(21),(32)n n S kn n T kn n ,∴665443785515633a S S k k b T T k k,【反思】在此题中,由于64a b 角标不一致,不能直接使用公式2121n n n n a S b T ,所以可以回归等差数列求和公式的本质:2n S An Bn (,A B 为常数){}n a 是等差数列.三、针对训练举一反三一、单选题1.(2022·甘肃·张掖市第二中学高二期末(理))等差数列 n a 的前n 项和为n S ,若43S ,89S ,则12S ()A .12B .18C .21D .27【答案】B 【详解】因为n S 为等差数列 n a 的前n 项和,且43S ,89S ,所以484128,,S S S S S 成等差数列,所以 8441282S S S S S ,即12263(9)S ,解得12S =18,故选:B.2.(2021·宁夏·石嘴山市第三中学高三阶段练习(文))已知等差数列 n a 的前n 项和为n S ,且611S ,917S ,则15S ()A .15B .23C .28D .30【答案】D 【详解】由等差数列片段和的性质:363961291512,,,,S S S S S S S S S 成等差数列,∴633962()S S S S S ,可得3163S,同理可得12703S ,∴1299615122()S S S S S S ,可得1530S .故选:D3.(2021·河南·高二阶段练习)已知等差数列 n a 和 n b 的前n 项和分别为n S 和n T ,且有192a a ,468b b ,则99S T 的值为()A .16B .14C .2D .3【答案】B因为 ,n n a b 为等差数列,故2855522a a a a a ,即51a ,同理可得:54b ,所以19951995912492a a S ab b T b.故选:B .4.(2021·贵州大学附属中学高一阶段练习)设等差数列 n a , n b 的前n 项和为n S ,n T ,若1n n S n T n ,则55a b ()A .910B .914C .1314D .1311【答案】A 【详解】∵等差数列 n a , n b 的前n 项和为n S ,n T ,∴21(21)n n S n a ,21(21)n n T n b ∴5595599==9a a S b b T ,又1n n S nT n ∴55910a b 故选:A.5.(2021·全国·高二课时练习)设等差数列 n a 的前n 项和为*,n S n N .若12130,0S S ,则数列 n a 的最小项是()A .第6项B .第7项C .第12项D .第13项【答案】B由题意12130,0S S 及 12112671311371366,132S a a a a S a a a ,得6770,0a a a ,所以6670,a a a ,且公差0d ,所以7a ,最小.故选B .6.(2022·全国·高三专题练习)等差数列 n a 和 n b 的前n 项和分别为n S 与n T ,对一切正整数n ,都有1n n S nT n ,则56a b 等于()A .34B .56C .910D .1011【答案】A 【详解】由等差数列的求和公式得211(1)222n n n d d S na d n a n ,即满足2n S an bn 型21(1)n n S n n T n n n则可令2,(1),0n n S kn T kn n k 55425169a S S k k k ,665423012b T T k k k 5693124a kb k故选:A7.(2020·河南郑州·高二期中(理))首项为正数,公差不为0的等差数列 n a ,其前n 项和为n S ,现有下列4个命题,其中正确的命题的个数是()①若100S ,则280S S ;②若412S S ,则使0n S 的最大的n 为15;③若150S ,160S ,则 n S 中8S 最大;④若78S S ,则89S S .A .1个B .2个C .3个D .4个【答案】B 【详解】①若100S ,则110561010022a a a a ,因为数列是首项为正数,公差不为0的等差数列,所以50a ,60a ,那么18281212458402a a S S a a a a a a ,故①不成立;②若412S S ,则 124561289...40S S a a a a a ,因为数列是首项为正数,公差不为0的等差数列,所以80a ,90a ,115158151502a a S a ,11689161616022a a a a S,则使0n S 的最大的n 为15,故②成立;③115158151502a a S a, 116168916802a a S a a,则90a ,因为数列是首项为正数,公差不为0的等差数列,所以 n S 中的最大项是8S ,故③正确;④若78S S ,则8780S S a ,但989S S a ,不确定9a 的正负,故④不正确.故选:B8.(2020·河北·武邑武罗学校高二期中)已知等差数列 n a 的公差为4,项数为偶数,所有奇数项的和为15,所有偶数项的和为55,则这个数列的项数为A .10B .20C .30D .40【答案】B 【详解】设等差数列 n a 的公差为4d ,项数为n ,前n 项和为n S ,则2402nS S d n 奇偶,即这个数列的项数为20,故选择B .9.(2022·重庆·西南大学附中高二期末)已知等差数列 n a 共有21n +项,其中奇数项之和为290,偶数项之和为261,则1n a 的值为().A .30B .29C .28D .27【答案】B 【详解】奇数项共有 1n 项,其和为 121121129022n n a a an n ,∴ 11290n n a .偶数项共有n 项,其和为2211226122n n n a a an n na ,∴129026129n a .故选:B .二、填空题10.(2021·全国·高三专题练习)设Sn 为等差数列{an }的前n 项和,若{an }的前2017项中的奇数项和为2018,则S 2017的值为________.【答案】4034【详解】因为1352017100910092018a a a a a ,所以10092a ,故2017122017100920174034S a a a a .故答案为:4034.11.(2020·四川省绵阳南山中学模拟预测(理))设n S 是等差数列 n a 的前n 项和,若250S >,260S <,则数列 ,25n n S n N n a中的最大项是第______项.【答案】13【详解】解:在等差数列{}n a 中,由250S >,260S <,得125126()2502()2602a a a a,1313140a a a,则数列{}n a 是递减数列,且前13项大于0,自第14项起小于0,数列25121225,,,S S S a a a …从第14项起为负值,而13121213,,,SS Sa a a 为递增数列,数列25121225,,,S S S a a a …的最大项是第13项.故答案为:13.12.(2019·河南·郑州一中高二开学考试)等差数列 n a 中,67S S ,78S S ,给出下列命题:①0d ,②96S S ,③7a 是各项中最大的项,④7S 是n S 中最大的值,⑤ n a 为递增数列.其中正确命题的序号是______.【答案】①②④【详解】等差数列{}n a 中,67S S ,78S S ,所以126127a a a a a a ,则70a .所以127128a a a a a a ,则80a .所以①870d a a 正确.②96S S 整理得789830a a a a 正确.③7a 是各项中最大的项,应该是最小的正数项.故错误.④7S 是n S 中最大的值,正确;⑤{}n a 为递增数列.错误,应改为递减数列.故答案为:①②④.。
2023年高考数学二轮复习(新高考版) 第1部分 专题突破 专题3 微重点10 子数列问题
跟踪演练1 (2022·山东学期联考)已知数列{an}满足an-1-an=an-an+1(n≥2),
且a1=1,a7=13;数列{bn}的前n项和为Sn,且Sn=
3n-1 2.
(1)求数列{an}和{bn}的通项公式;
由已知可得,2an=an-1+an+1(n≥2), 则数列{an}为等差数列,设其公差为d, 由a7=a1+6d=13,解得d=2, ∴an=2n-1, 在数列{bn}中,当n=1时,b1=S1=1, 当 n≥2 时,bn=Sn-Sn-1=3n-2 1-3n-21-1=3n-1,
1234
4.(2022·山东联考)已知数列{an}中,a1=1,a2=2,an+2=kan(k≠1), n∈N*,a2+a3,a3+a4,a4+a5成等差数列. (1)求k的值和{an}的通项公式;
当n=1时,满足上式,∴bn=3n-1.
(2)若数列 cn=abnn, ,nn为 为奇 偶数 数, , 求数列{cn}的前 n 项和 Tn.
因为 cn=abnn, ,nn为 为奇 偶数 数, ,
则当n为偶数时,Tn=c1+c2+c3+…+cn =1+5+…+2n-3+3+…+3n-1 =n21+22n-3+3-1-3n9+1=n2-2 n+3n+81-3,
专题三 数 列
微重点10 子数列问题
子数列问题包括数列中的奇偶项、公共数列以及分段数列,是近几年高 考的重点和热点,一般方法是构造新数列,利用新数列的特征(等差、等比或 其他特征)求解原数列.
内容索引
考点一 奇数项、偶数项 考点二 两数列的公共项 考点三 分段数列
专题强化练
考点一
奇数项、偶数项
方法一 由题意知,2n≤m,即n≤log2m, 当m=1时,b1=0. 当m∈[2k,2k+1-1)时,bm=k,k∈N*, 则S100=b1+(b2+b3)+(b4+b5+…+b7)+…+(b32+b33+…+b63)+ (b64+b65+…+b100) =0+1×2+2×4+3×8+4×16+5×32+6×37=480. 方法二 由题意知bm=k,m∈[2k,2k+1), 因此,当m=1时,b1=0; 当m∈[2,4)时,bm=1;
高考数学二轮专题复习常考问题10 数列求和及其综合应用
常考问题10 数列求和及其综合应用[真题感悟]1.(2013·新课标全国Ⅰ卷)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则 ( ).A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD . S n =3-2a n解析 S n =a 1(1-q n)1-q =a 1-q ·a n 1-q =1-23a n 13=3-2a n . 故选D.答案 D2.(2013·江西卷)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析 每天植树棵数构成等比数列{a n }, 其中a 1=2,q =2.则S n =a 1(1-q n )1-q=2(2n -1)≥100,即2n +1≥102. ∴n ≥6,∴最少天数n =6.答案 63.(2013·辽宁卷)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1,∴a 1=1,a 3=4,则公比q =2,因此S 6=1×(1-26)1-2=63. 答案 634.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 由已知条件得12q +12q 2=3,即q 2+q -6=0,解得q =2,或q =-3(舍去), a n =a 5q n -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1),a 1a 2…a n =2-52-42-3…2n -6=2n 2-11n 2,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>2n (n -11)2, 由2n -5>2n (n -11)2,可求得n 的最大值为12,而当n =13时,28-2-5<213,所以n 的最大值为12.答案 125.(2013·新课标全国Ⅱ卷)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析 由已知⎩⎪⎨⎪⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,那么nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23,由于函数f (x )=x 33-10x 23在x =203处取得极小值也是最小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49.答案 -49[考题分析]题型 选择题、填空题、解答题难度 中档 ①考查数列与函数、方程、不等式的综合问题;②考查数列的通项以及前n 项和的求解.高档 考查数列与平面几何、解析几何、三角函数交汇问题.。
高考数学二轮复习专题过关检测—数列(含解析)
高考数学二轮复习专题过关检测—数列一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·内蒙古包头一模)在数列{a n }中,a 1=2,a n+1-a n -2=0,则a 5+a 6+…+a 14=( ) A.180B.190C.160D.1202.(2021·北京朝阳期末)已知等比数列{a n }的各项均为正数,且a 3=9,则log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=( ) A.52B.53C.10D.153.(2021·湖北荆州中学月考)设等比数列{a n }的前n 项和为S n ,若S10S 5=12,则S15S 5=( )A.12B.13C.23D.344.(2021·北京师大附属中学模拟)我国明代著名乐律学家明宗室王子朱载堉在《律学新说》中提出十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个c 1键的8个白键与5个黑键(如图),从左至右依次为:c ,#c ,d ,#d ,e ,f ,#f ,g ,#g ,a ,#a ,b ,c 1的音频恰成一个公比为√212的等比数列的原理,也即高音c 1的频率正好是中音c 的2倍.已知标准音a 的频率为440 Hz,则频率为220√2 Hz 的音名是( )A.dB.fC.eD.#d5.(2021·四川成都二诊)已知数列{a n}的前n项和S n=n2,设数列{1a n a n+1}的前n项和为T n,则T20的值为()A.1939B.3839C.2041D.40416.(2021·河南新乡二模)一百零八塔位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为()A.39B.45C.48D.517.(2021·陕西西安铁一中月考)在1到100的整数中,除去所有可以表示为2n(n∈N*)的整数,则其余整数的和是()A.3 928B.4 024C.4 920D.4 9248.已知函数f(n)={n2,n为奇数,-n2,n为偶数,且a n=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10 200二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·辽宁沈阳三模)已知等比数列{a n}的前n项和S n=4n-1+t,则()A.首项a1不确定B.公比q=4C.a2=3D.t=-1410.(2021·山东临沂模拟)已知等差数列{a n}的前n项和为S n,公差d=1.若a1+3a5=S7,则下列结论一定正确的是()A.a5=1B.S n的最小值为S3C.S1=S6D.S n存在最大值11.已知数列{a n}是等差数列,其前30项和为390,a1=5,b n=2a n,对于数列{a n},{b n},下列选项正确的是() A.b10=8b5 B.{b n}是等比数列C.a1b30=105D.a3+a5+a7a2+a4+a6=20919312.(2021·广东广州一模)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……第n(n∈N*)次得到数列1,x1,x2,x3,…,x k,2.记a n=1+x1+x2+…+x k+2,数列{a n}的前n项和为S n,则()A.k+1=2nB.a n+1=3a n-3C.a n =32(n 2+3n )D.S n =34(3n+1+2n-3) 三、填空题:本题共4小题,每小题5分,共20分.13.(2021·山西太原检测)在等差数列{a n }中,若a 2,a 2 020为方程x 2-10x+16=0的两根,则a 1+a 1 011+a 2 021等于 .14.(2021·江苏如东检测)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则数列{log 2a n }的前n 项和T n = .15.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 .16.(2021·新高考Ⅰ,16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm,10 dm ×6 dm,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n 次,那么∑k=1nS k =dm 2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021·海南海口模拟)已知正项等比数列{a n },a 4=116,a 5a 7=256. (1)求数列{a n }的通项公式; (2)求数列{|log 2a n |}的前n 项和.18.(12分)(2021·全国甲,理18)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n}是等差数列;③a2=3a1.19.(12分)(2021·山东济宁二模)已知数列{a n}是正项等比数列,满足a3是2a1,3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;(2)若b n=(-1)n log2a2n+1,求数列{b n}的前n项和T n.20.(12分)(2021·山东临沂一模)在①S nn =a n+12,②a n+1a n=2S n,③a n2+a n=2S n这三个条件中任选一个,补充在下面的问题中,并解答该问题.已知正项数列{a n}的前n项和为S n,a1=1,且满足.(1)求a n;(2)若b n=(a n+1)·2a n,求数列{b n}的前n项和T n.21.(12分)(2021·山东泰安一中月考)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年更换1万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数F (n );(2)若该市计划用7年的时间完成全部更换,求a 的最小值.22.(12分)(2021·广东广州检测)已知数列{a n }满足a 1=23,且当n ≥2时,a 1a 2…a n-1=2a n-2.(1)求证:数列{11−a n}是等差数列,并求数列{a n }的通项公式;(2)记T n =12a 1a 2…a n ,S n =T 12+T 22+…+T n 2,求证:当n ∈N *时,a n+1-23<S n .答案及解析1.B 解析 因为a n+1-a n =2,a 1=2,所以数列{a n }是首项为2,公差为2的等差数列.所以a n =2+(n-1)×2=2n.设{a n }的前n 项和为S n ,则S n =n(2+2n)2=n 2+n.所以a 5+a 6+…+a 14=S 14-S 4=190.2.C 解析 因为等比数列{a n }的各项均为正数,且a 3=9,所以log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=log 3(a 1a 2a 3a 4a 5)=log 3(a 35)=log 3(95)=log 3(310)=10.3.D 解析 由题意可知S 5,S 10-S 5,S 15-S 10成等比数列.∵S 10S 5=12,∴设S 5=2k ,S 10=k ,k ≠0,∴S 10-S 5=-k ,∴S 15-S 10=k2,∴S 15=3k2,∴S 15S 5=3k22k =34. 4.D 解析 因为a 的音频是数列的第10项,440=220√2×212=220√2×(2112)10−4,所以频率为220√2 Hz 是该数列的第4项,其音名是#d.5.C 解析 当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1.而a 1=1也符合a n =2n-1,所以a n =2n-1.所以1an a n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),所以T n =12(1−13+13-15+⋯+12n-1-12n+1)=121-12n+1=n2n+1,所以T 20=202×20+1=2041. 6.D 解析 设该数列为{a n },依题意,可知a 5,a 6,…成等差数列,且公差为2,a 5=5.设塔群共有n 层,则1+3+3+5+5(n-4)+(n-4)(n-5)2×2=108,解得n=12.故最下面三层的塔数之和为a 10+a 11+a 12=3a 11=3×(5+2×6)=51.7.D 解析 由2n ∈[1,100],n ∈N *,可得n=1,2,3,4,5,6,所以21+22+23+24+25+26=2×(1−26)1−2=126.又1+2+3+ (100)100×1012=5 050,所以在1到100的整数中,除去所有可以表示为2n (n ∈N *)的整数,其余整数的和为5 050-126=4 924.8.B 解析 由已知得当n 为奇数时,a n =n 2-(n+1)2=-2n-1,当n 为偶数时,a n =-n 2+(n+1)2=2n+1.所以a 1+a 2+a 3+…+a 100=-3+5-7+…+201=(-3+5)+(-7+9)+…+(-199+201)=2×50=100.9.BCD 解析 当n=1时,a 1=S 1=1+t ,当n ≥2时,a n =S n -S n-1=(4n-1+t )-(4n-2+t )=3×4n-2.由数列{a n }为等比数列,可知a 1必定符合a n =3×4n-2, 所以1+t=34,即t=-14.所以数列{a n }的通项公式为a n =3×4n-2,a 2=3, 数列{a n }的公比q=4.故选BCD . 10.AC 解析 由已知得a 1+3(a 1+4×1)=7a 1+7×62×1,解得a 1=-3.对于选项A,a 5=-3+4×1=1,故A 正确.对于选项B,a n =-3+n-1=n-4,因为a 1=-3<0,a 2=-2<0,a 3=-1<0,a 4=0,a 5=1>0,所以S n 的最小值为S 3或S 4,故B 错误.对于选项C,S6-S1=a2+a3+a4+a5+a6=5a4,又因为a4=0,所以S6-S1=0,即S1=S6,故C正确.对于选项D,因为S n=-3n+n(n-1)2=n2-7n2,所以S n无最大值,故D错误.11.BD解析设{a n}的公差为d,由已知得30×5+30×29d2=390,解得d=1629.∴a n=a1+(n-1)d=16n+12929.∵b n=2a n,∴b n+1b n =2a n+12a n=2a n+1-a n=2d,故数列{b n}是等比数列,B选项正确.∵5d=5×1629=8029≠3,∴b10b5=(2d)5=25d≠23,∴b10≠8b5,A选项错误.∵a30=a1+29d=5+16=21,∴a1b30=5×221>105,C选项错误.∵a4=a1+3d=5+3×1629=19329,a5=a1+4d=5+4×1629=20929,∴a3+a5+a7a2+a4+a6=3a53a4=a5a4=209193,D选项正确.12.ABD解析由题意,可知第1次得到数列1,3,2,此时k=1,第2次得到数列1,4,3,5,2,此时k=3,第3次得到数列1,5,4,7,3,8,5,7,2,此时k=7,第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k=15,……第n次得到数列1,x1,x2,x3,…,x k,2,此时k=2n-1,所以k+1=2n,故A项正确.当n=1时,a 1=1+3+2=6,当n=2时,a 2=a 1+2a 1-3=3a 1-3,当n=3时,a 3=a 2+2a 2-3=3a 2-3,……所以a n+1=3a n -3,故B 项正确. 由a n+1=3a n -3,得a n+1-32=3(a n -32),又a 1-32=92,所以{a n -32}是首项为92,公比为3的等比数列,所以a n -32=92×3n-1=3n+12,即a n =3n+12+32,故C 项错误.S n =(322+32)+(332+32)+…+(3n+12+32)=343n+1+2n-3,故D 项正确.13.15 解析 因为a 2,a 2 020为方程x 2-10x+16=0的两根,所以a 2+a 2 020=10.又{a n }为等差数列,所以a 1+a 2 021=a 2+a 2 020=2a 1 011=10,即a 1 011=5. 所以a 1+a 1 011+a 2 021=3a 1 011=15. 14.n(n+1)2解析 因为S n =2a n -2,所以当n ≥2时,S n-1=2a n-1-2,两式相减,得a n =2a n -2a n-1,即a n =2a n-1.当n=1时,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,所以a n =2n . 所以log 2a n =n ,所以T n =n(n+1)2.15.3n 2-2n 解析 数列{2n-1}的项均为奇数,数列{3n-2}的所有奇数项均为奇数,所有偶数项均为偶数,并且显然{3n-2}中的所有奇数均能在{2n-1}中找到,所以{2n-1}与{3n-2}的所有公共项就是{3n-2}的所有奇数项,这些项从小到大排列得到的新数列{a n }是以1为首项,以6为公差的等差数列.所以{a n }的前n 项和为S n =n×1+n(n-1)2×6=3n 2-2n.16.5 240(3−n+32n) 解析 对折3次共可以得到52 dm ×12 dm,5 dm ×6 dm,10 dm ×3 dm,20dm ×32dm 四种规格的图形,面积之和S 3=4×30=120 dm 2;对折4次共可以得到54 dm ×12 dm,52dm ×6 dm,5 dm ×3 dm,10 dm ×32dm,20 dm ×34dm 五种规格的图形,S 4=5×15=75 dm 2.可以归纳对折n 次可得n+1种规格的图形,S n =(n+1)·2402ndm 2.则∑k=1nS k =S 1+S 2+…+S n =240221+322+423+…+n+12n . 记T n =221+322+423+…+n+12n , ① 则12T n =222+323+…+n2n +n+12n+1.②①与②式相减,得T n -12T n =12T n =221+122+123+…+12n −n+12n+1=32−n+32n+1. 故T n =3-n+32n .故∑k=1nS k =240·T n =240(3−n+32n).17.解 (1)设正项等比数列{a n }的公比为q (q>0).由等比数列的性质可得a 5a 7=a 62=256,因为a n >0,所以a 6=16.所以q 2=a6a 4=256,即q=16.所以a n =a 6q n-6=16×16n-6=16n-5. (2)由(1)可知log 2a n =log 216n-5=4n-20,设b n =|log 2a n |=|4n-20|,数列{b n }的前n 项和为T n . ①当n ≤5,且n ∈N *时,T n =n(16+20-4n)2=18n-2n 2;②当n ≥6,且n ∈N *时,T n =T 5+(4+4n-20)(n-5)2=18×5-2×52+(2n-8)(n-5)=2n 2-18n+80.综上所述,T n={18n-2n2,n≤5,且n∈N*,2n2-18n+80,n≥6,且n∈N*.18.证明若选①②⇒③,设数列{a n}的公差为d1,数列{√S n}的公差为d2.∵当n∈N*时,a n>0,∴d1>0,d2>0.∴S n=na1+n(n-1)d12=d12n2+(a1-d12)n.又√S n=√S1+(n-1)d2,∴S n=a1+d22(n-1)2+2√a1d2(n-1)=d22n2+(2√a1d2-2d22)n+d22-2√a1d2+a1,∴d12=d22,a1-d12=2√a1d2-2d22,d22-2√a1d2+a1=0,∴d22=d12,d2=√a1,即d1=2a1,∴a2=a1+d1=3a1.若选①③⇒②,设等差数列{a n}的公差为d.因为a2=3a1,所以a1+d=3a1,则d=2a1,所以S n=na1+n(n-1)2d=na1+n(n-1)a1=n2a1,所以√S n−√S n-1=n√a1-(n-1)√a1=√a1.所以{√S n}是首项为√a1,公差为√a1的等差数列.若选②③⇒①,设数列{√S n}的公差为d,则√S2−√S1=d,即√a1+a2−√a1=d.∵a2=3a1,∴√4a1−√a1=d,即d=√a1,∴√S n=√S1+(n-1)d=√a1+(n-1)√a1=n√a1,即S n =n 2a 1,当n ≥2时,a n =S n -S n-1=n 2a 1-(n-1)2a 1=(2n-1)a 1, 当n=1时,a 1符合式子a n =(2n-1)a 1,∴a n =(2n-1)a 1,n ∈N *,∴a n+1-a n =2a 1, 即数列{a n }是等差数列.19.解 (1)设正项等比数列{a n }的公比为q (q>0).因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q-2=0,解得q=2或q=-12(舍去).所以a 4=a 1q 3=8a 1=16,解得a 1=2.所以a n =2×2n-1=2n . (2)由(1)可知a 2n+1=22n+1,所以b n =(-1)n log 2a 2n+1=(-1)n log 222n+1=(-1)n (2n+1), 所以T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n (2n+1), -T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n+1·(2n+1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n]-(-1)n+1(2n+1)=-3+2×1−(−1)n-12+(-1)n (2n+1)=-3+1-(-1)n-1+(-1)n (2n+1)=-2+(2n+2)(-1)n ,所以T n =(n+1)(-1)n -1. 20.解 (1)若选①,则2S n =na n+1.当n=1时,2S 1=a 2,又S 1=a 1=1,所以a 2=2. 当n ≥2时,2S n-1=(n-1)a n ,所以2a n =na n+1-(n-1)a n ,即(n+1)a n =na n+1,所以an+1n+1=a n n(n ≥2).又a 22=1,所以当n ≥2时,an n =1,即a n =n.又a 1=1符合上式,所以a n =n.若选②,则当n=1时,2S 1=a 2a 1,可得a 2=2. 当n ≥2时,2S n-1=a n a n-1,可得2a n =a n a n+1-a n a n-1. 由a n >0,得a n+1-a n-1=2.又a 1=1,a 2=2,所以{a 2n }是首项为2,公差为2的等差数列,{a 2n-1}是首项为1,公差为2的等差数列,所以a n =n.若选③,因为a n 2+a n =2S n ,所以当n ≥2时,a n-12+a n-1=2S n-1,两式相减得a n 2+a n -a n-12-a n-1=2a n ,即(a n +a n-1)(a n -a n-1-1)=0.由a n >0,得a n -a n-1-1=0,即a n -a n-1=1,所以{a n }是首项为1,公差为1的等差数列,所以a n =n.(2)由(1)知b n =(n+1)·2n ,所以T n =2×2+3×22+4×23+…+(n+1)·2n , 2T n =2×22+3×23+4×24+…+(n+1)·2n+1, 两式相减,得-T n =4+22+23+ (2)-(n+1)·2n+1=4+4(1−2n-1)1−2-(n+1)·2n+1=4-4+2n+1-(n+1)·2n+1=-n·2n+1,所以T n =n·2n+1.21.解 (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量,依题意,数列{a n }是首项为128,公比为1+50%=32的等比数列,数列{b n }是首项为400,公差为a 的等差数列.所以数列{a n }的前n 项和S n =128×[1−(32)n ]1−32=256[(32)n-1],数列{b n }的前n 项和T n =400n+n(n-1)2a.所以经过n 年,该市被更换的公交车总数F (n )=S n +T n =256[(32)n-1]+400n+n(n-1)2a.(2)若用7年的时间完成全部更换,则F (7)≥10 000, 即256[(32)7-1]+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥3 08221.又a ∈N *,所以a 的最小值为147.22.证明 (1)因为当n ≥2时,a 1a 2…a n-1=2a n-2,所以a 1a 2…a n =2an+1-2,两式相除,可得a n =1a n+1-11a n-1,所以11−a n=a n+11−a n+1=11−an+1-1,所以11−an+1−11−a n=1(n ≥2).又a 1=23,所以a 2=34,11−a 1=3,11−a 2=4,所以11−a 2−11−a 1=1,所以11−an+1−11−a n=1(n ∈N *),所以数列{11−a n}是首项为3,公差为1的等差数列.所以11−a n=3+(n-1)×1=n+2,所以a n =n+1n+2.(2)因为T n =12a 1a 2…a n =12×23×34×…×n+1n+2=1n+2,所以T n 2=1(n+2)2>1(n+2)(n+3)=1n+2−1n+3,所以S n=T12+T22+…+T n2>13−14+14−15+…+1n+2−1n+3=13−1n+3=1-1n+3−23=n+2 n+3−23=a n+1-23,所以当n∈N*时,a n+1-23<S n.。
专题10 数列-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)
专题10数列考点三年考情(2022-2024)命题趋势考点1:等差数列基本量运算2023年全国Ⅰ卷、2024年全国Ⅱ卷2023年新课标全国Ⅰ卷数学真题2022年高考全国乙卷数学(文)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2024年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题高考对数列的考查相对稳定,考查内容、频率、题型、难度均变化不大.等差数列、等比数列以选填题的形式为主,数列通项问题与求和问题以解答题的形式为主,偶尔出现在选择填空题当中,常结合函数、不等式综合考查.考点2:等比数列基本量运算2023年全国Ⅱ卷、2023年天津卷2023年高考全国甲卷数学(理)真题2022年高考全国乙卷数学(理)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题考点3:数列的实际应用2024年北京高考数学真题2023年北京高考数学真题2022年新高考全国II卷数学真题2022年高考全国乙卷数学(理)真题考点4:数列的最值问题2022年高考全国甲卷数学(理)真题2022年新高考北京数学高考真题考点5:数列的递推问题(蛛网图问题)2024年高考全国甲卷数学(文)真题2024年新课标全国Ⅱ卷数学真题2022年新高考浙江数学高考真题2023年北京高考数学真题考点6:等差数列与等比数列的综合应用2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题2024年北京高考数学真题考点7:数列新定义问题2022年新高考北京数学高考真题2024年上海夏季高考数学真题2023年北京卷、2024年北京卷考点8:数列通项与求和问题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2023年高考全国甲卷数学(理)真题2022年新高考天津数学高考真题考点9:数列不等式2023年天津高考数学真题2023年全国Ⅱ卷、2022年全国I卷考点1:等差数列基本量运算1.(2023年新课标全国Ⅰ卷数学真题)设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .2.(2022年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =.3.(2023年高考全国甲卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A .25B .22C .20D .154.(2023年高考全国乙卷数学(理)真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .125.(2024年高考全国甲卷数学(文)真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=()A .2-B .73C .1D .296.(2024年高考全国甲卷数学(理)真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =()A .72B .73C .13-D .711-7.(2023年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .8.(2024年新课标全国Ⅱ卷数学真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.9.(2023年新课标全国Ⅰ卷数学真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点2:等比数列基本量运算10.(2023年新课标全国Ⅱ卷数学真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A .120B .85C .85-D .120-11.(2023年高考全国甲卷数学(理)真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =()A .158B .658C .15D .4012.(2023年天津高考数学真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =()A .16B .32C .54D .16213.(2022年高考全国乙卷数学(理)真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A .14B .12C .6D .314.(2023年高考全国甲卷数学(文)真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为.15.(2023年高考全国乙卷数学(理)真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =.考点3:数列的实际应用16.(2024年北京高考数学真题)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为mm ,升量器的高为mm .17.(2023年北京高考数学真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =;数列{}n a 所有项的和为.18.(2022年新高考全国II 卷数学真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A .0.75B .0.8C .0.85D .0.919.(2022年高考全国乙卷数学(理)真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <考点4:数列的最值问题20.(2022年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.21.(2022年新高考北京数学高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件考点5:数列的递推问题(蛛网图问题)22.(2024年高考全国甲卷数学(文)真题)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.23.(2024年新课标全国Ⅱ卷数学真题)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =:过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意正整数n ,1n n S S +=.24.(2022年新高考浙江数学高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则()A .100521002a <<B .100510032a <<C .100731002a <<D .100710042a <<25.(2023年北京高考数学真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则()A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立考点6:等差数列与等比数列的综合应用26.(2022年新高考浙江数学高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.27.(2022年新高考全国II 卷数学真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.28.(2024年北京高考数学真题)设{}n a 与{}n b 是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若{}n a 与{}n b 均为等差数列,则M 中最多有1个元素;②若{}n a 与{}n b 均为等比数列,则M 中最多有2个元素;③若{}n a 为等差数列,{}n b 为等比数列,则M 中最多有3个元素;④若{}n a 为递增数列,{}n b 为递减数列,则M 中最多有1个元素.其中正确结论的序号是.考点7:数列新定义问题29.(2022年新高考北京数学高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.30.(2024年上海夏季高考数学真题)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.31.(2024年新课标全国Ⅰ卷数学真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.32.(2023年北京高考数学真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.33.(2024年北京高考数学真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.考点8:数列通项与求和问题34.(2024年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和,已知434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T .35.(2024年天津高考数学真题)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,*k ∈N .(ⅰ)当12,k k n a +≥=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.36.(2023年高考全国甲卷数学(理)真题)设n S 为数列{}n a 的前n 项和,已知21,2n n a S na ==.(1)求{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .37.(2022年新高考天津数学高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nk k k k k a a b +=⎡⎤--⎣⎦∑.考点9:数列不等式38.(2023年天津高考数学真题)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和()1212N n n ii a n --*=∈∑.(2)设{}n b 是等比数列,且对任意的*N k ∈,当1221k k n -≤≤-时,则1k n k b a b +<<,(Ⅰ)当2k ≥时,求证:2121kk k b -<<+;(Ⅱ)求{}n b 的通项公式及前n 项和.39.(2023年新课标全国Ⅱ卷数学真题)已知{}n a 为等差数列,6,2,n n na nb a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.40.(2022年新高考全国I 卷数学真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .。
高考数学第二轮专题复习数列教案
高考数学第二轮专题复习数列教案二、高考要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差〔比〕数列的概念,掌握等差〔比〕数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题.3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明〞这一思想方法.三、热点分析1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四那么运算法那么、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势〔1〕数列是特殊的函数,而不等式那么是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点〔2〕数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。
〔3〕加强了数列与极限的综合考查题3.熟练掌握、灵活运用等差、等比数列的性质。
等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a2a4=a32,a4a6=a52,从而有a32+2aa53+a52=25,即〔a3+a5〕2=25.4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中表达,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。
高考数学二轮复习常考题型大通关(全国卷理数)解答题:数列
高考数学二轮复习常考题型大通关(全国卷理数)解答题:数列1.等比数列{}n a 中,已知142,16a a ==(1)求数列{}n a 的通项公式;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S 。
2.已知等差数列{}n a 的前n 项和为n S ,且满足:3576,24a a a =+=.(1)求等差数列{}n a 的通项公式;(2)求数列1{}nS 的前n 项和n T .3.已知数列{}n a 和{}n b 满足112,1a b ==,()12N n n a a n *+=∈,()12311111N 23n n b b b b b n n *+++++=-∈ .(1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T .4.已知等差数列{}n a 满足36a =,前7项和为749S =.(1)求{}n a 的通项公式;(2)设数列{}n b 满足()33n n n b a =-⋅,求{}n b 的前n 项和n T .5.已知{}n a 是递增的等比数列,11a =,且22a 、332a 、4a 成等差数列.(1)求数列{}n a 的通项公式;(2)设21231log log n n n b a a ++=⋅,n *∈N ,求数列{}n b 的前n 项和n S .6.已知公差不为0的等差数列{}n a 的前3项和39S =,且125,,a a a 成等比数列.(1)求数列{}n a 的通项公式.(2)设n T 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证12n T <.7.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和.8.设数列{}n a 的前n 项和为n S ,()112,2*n n a a S n N +==+∈.(1)求数列{}n a 的通项公式;(2)令112(1)(1)n n n n b a a -+=--,求数列{}n b 的前n 项和n T ,求证:12n T <.答案以及解析1.答案:(1)设{}n a 的公比为q ,由已知得3162q =,解得2q =,∴112.n n n a a q -==(2)由(1)得358,32a a ==,则358,32b b ==,设{}n b 的公差为d ,则有1128432b d b d +=⎧⎨+=⎩解得11612b d =-⎧⎨=⎩∴1612112)2(8n b n n =+--=-,∴数列{}n b 的前n 项和2(161228)6222n n n S n n -+-==-.2.答案:(1设等差数列{}n a 的首项为1a 、公差为d ,3576,24a a a =+= ,()()111264624a d a d a d +=⎧∴⎨+++=⎩,解得:122d a =⎧⎨=⎩,(2122)n a n n ∴=+-⨯=;(2由(1)得:()1(22)(1)22n n n a a n n S n n ++===+,所以1211111111 11223(1)(1)n n n T S S S S n n n n =++++=++++-⨯⨯-+ 11111111112233411n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111n n n =-=++.3.答案:(1)由112,2n n a a a +==,知0n a ≠,故12n n a a +=,即{}n a 是以2为首项,2为公比的等比数列,得()2N n n a n *=∈.由题意知,当1n =时,121b b =-,故22b =.当2n ≥时,11n n n b b b n +=-,整理得11n n b b n n +=+,所以n b n ⎧⎫⎨⎬⎩⎭是以1为首项,1为公比的等比数列,即1n b n =,所以()N n b n n *=∈.(2)由(1)知2n n n a b n =⋅.因此231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,①23412222322n n T n +=+⋅+⋅+⋅⋅⋅+⋅,②①-②得23122222n n n T n +-=+++⋅⋅⋅+-⋅.故()()1122N n n T n n +*=-+∈.4.答案:(1)由()177477492a a S a ⨯+===,得47a =,因为36a =,所以11.4d a ==,故3n a n =+.(2)()333n n n n b a n =-⋅=⋅,所以1231323333n n T n =⨯+⨯+⨯+⋯+⨯①23131323(1)33n n n T n n +=⨯+⨯+⋯+-⨯+⨯②由①-②得1231133233333313n n n n n T n n +++--=++++-⨯=-⨯- ,所以1(21)334n n n T +-⨯+=.5.答案:(1)设数列{}n a 的公比为q ,由题意及11a =,知1q >.22a 、332a 、4a 成等差数列成等差数列,34232a a a ∴=+,2332q q q ∴=+,即2320q q -+=,解得2q =或1q =(舍去),2q ∴=.∴数列{}n a 的通项公式为1112n n n a a q --==;(2)()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭ ,11111111111232435112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.()()13113232212431114122221n n n n n n n ⎛⎫=-+ ⎪++⎝⎭+⎛⎫=--=- ⎪++++⎝⎭.6.答案:(1)由3S 9=得13a d +=①;125,,,a a a 成等比数列得:()()21114a a d a d +=+②;联立①②得11,2a d ==;故21n a n =-.(2)111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭ 11111111111233521212212n T n n n ⎛⎫⎛⎫∴=-+-+⋯+-=-< ⎪ ⎪-++⎝⎭⎝⎭.7.答案:(1)由1142,a b a b ==,则()()421234122312S T a a a a b b a a -=+++-+=+=,设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =.所以32(1)21n a n n =+-=+.设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3n n b =;(2)(21)3n n n a b n +=++,所以{}n n a b +的前n 项和为()()1212n n a a a b b b +++++++ ()2(3521)333n n =++++++++ ()()313331(321)(2)2132n n n n n n --++=+=++-8.答案:(1)()12,*n n a S n N +=+∈,①当1n =时,212a S =+,即24a =,当2n ≥时,12n n a S -=+,②由①-②可得11n n n n a a S S +--=-,即12n n a a +=,∴2222,2n n n a a n -=⨯=≥当1n =时,1122a ==,满足上式,∴()2n n a n N *=∈(2)由(1)得1112111()(21)(21)22121n n n n n n b -++==-----∴1111111111(1)(1)23372121221n n n n T ++=-+-++-=---- ∴12n T <。
江苏省2014年高考数学(文)二轮复习简易通真题感悟:常考问题10 数列的综合应用
常考问题11 直线与圆[真题感悟]1.(2012·江苏卷)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k的最大值是________.解析设圆心C(4,0)到直线y=kx-2的距离为d,则d=|4k-2|k2+1,由题意知问题转化为d≤2,即d=|4k-2|k2+1≤2,得0≤k≤43,所以k max=43.答案4 32.(2013·江苏卷)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.解(1)由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,由题意,得|3k+1|k2+1=1,解得k=0或-34,故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心在直线y=2x-4上,所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.设点M(x,y),因为|MA|=2|MO|,所以x2+(y-3)2=2 x2+y2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤|CD|≤2+1,即1≤a2+(2a-3)2≤3.整理得-8≤5a2-12a≤0.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围是⎣⎢⎡⎦⎥⎤0,125. [考题分析]高考对本内容的考查主要有:直线和圆的方程;两直线的平行与垂直关系;点到直线的距离;直线与圆的位置关系;直线被圆截得的弦长.多为B 级或C 级要求.。
高考数学二轮复习 专题10 数列求和及其应用教学案 理-人教版高三全册数学教学案
专题10 数列求和及其应用高考对本节内容的考查仍将以常用方法求和为主,尤其是错位相减法及裂项求和,题型延续解答题的形式.预测2018高考对数列求和仍是考查的重点.数列的应用以及数列与函数等的综合的命题趋势较强,复习时应予以关注.1.数列求和的方法技巧(1)公式法:直接应用等差、等比数列的求和公式求和.(2)错位相减法这种方法主要用于求数列{a n·b n}的前n项和,其中{a n}、{b n}分别是等差数列和等比数列.(3)倒序相加法这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.(5)分组转化求和法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,可先分别求和,然后再合并.2.数列的综合问题(1)等差数列与等比数列的综合.(2)数列与函数、方程、不等式、三角、解析几何等知识的综合.(3)增长率、分期付款、利润成本效益的增减等实际应用问题. 数列的实际应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.【误区警示】1.应用错位相减法求和时,注意项的对应.2.正确区分等差与等比数列模型,正确区分实际问题中的量是通项还是前n 项和.考点一.数列求和例1、25.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析(2)见解析(2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此,当3n ≥时, 21124n n n n n a a a a a --+++++=,①当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③2314n n n a a a ++++=- ()1n n a a -+,④将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为'd .在①中,取4n =,则235644a a a a a +++=,所以23'a a d =-, 在①中,取3n =,则124534a a a a a +++=,所以122'a a d =-, 所以数列{}n a 是等差数列.【变式探究】(2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *.(1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.【举一反三】 若A n 和B n 分别表示数列{a n }和{b n }的前n 项的和,对任意正整数n ,a n =2(n +1),3A n -B n =4n .(1)求数列{b n }的通项公式;(2)记c n =2A n +B n ,求{c n }的前n 项和S n .解:(1)由于a n =2(n +1), ∴{a n }为等差数列,且a 1=4. ∴A n =n (a 1+a n )2=n (4+2n +2)2=n 2+3n ,∴B n =3A n -4n =3(n 2+3n )-4n =3n 2+5n ,当n =1时,b 1=B 1=8,当n ≥2时,b n =B n -B n -1=3n 2+5n -[3(n -1)2+5(n -1)]=6n +2.由于b 1=8适合上式, ∴b n =6n +2.(2)由(1)知c n =2A n +B n =24n 2+8n =14⎝ ⎛⎭⎪⎫1n -1n +2, ∴S n =14⎣⎢⎡⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫14-16+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2= 14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2. 【变式探究】(2016·山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n .(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2=-3n ·2n +2, ∴T n =3n ·2n +2.考点二、数列和函数、不等式的交汇例4、(2016·四川卷)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n3n -1.(2)证明:由(1)可知,a n =qn -1,∴双曲线x 2-y 2a 2n =1的离心率e n =1+a 2n =1+q2(n -1). 由e 2=1+q 2=53解得q =43.∵1+q2(k -1)>q2(k -1),∴1+q2(k -1)>qk -1(k ∈N *).于是e 1+e 2+…+e n >1+q +…+q n -1=q n-1q -1,故e 1+e 2+…+e n >4n -3n3n -1.【变式探究】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n .1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328433n n n T +-=⨯+. 【解析】(I )设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由已知2312b b +=,得()2112b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以, 2n n b =. 由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =, 3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2n n b =.(II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=⨯,有()221314n n n a b n -=-⨯, 故()23245484314n n T n =⨯+⨯+⨯++-⨯,()()23414245484344314n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得()231324343434314n n n T n +-=⨯+⨯+⨯++⨯--⨯得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析(2)见解析(2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,①当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③3.【2017山东,理19】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T .【答案】(I)12.n n x -=(II )(21)21.2n n n T -⨯+=(II )过123,,,P P P ……1n P +向x 轴作垂线,垂足分别为123,,,Q Q Q ……1n Q +,由(I)得111222.n n n n n x x --+-=-= 记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以123n T b b b =+++……+n b=101325272-⨯+⨯+⨯+……+32(21)2(21)2n n n n ---⨯++⨯ ① 又0122325272n T =⨯+⨯+⨯+……+21(21)2(21)2n n n n ---⨯++⨯ ② ①-②得=1132(12)(21)2.212n n n ---+-+⨯- 所以(21)21.2n n n T -⨯+=1.【2016高考天津理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设 ()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【答案】(Ⅰ)详见解析(Ⅱ)详见解析2.【2016高考新课标3理数】已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S =,求λ.【答案】(Ⅰ)1)1(11---=n n a λλλ;(Ⅱ)1λ=-. 3.【2016高考浙江理数】设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【答案】(I )证明见解析;(II )证明见解析. 【解析】(I )由112n n a a +-≤得1112n n a a +-≤,故111222n n nn na a ++-≤,n *∈N ,所以1<,因此()1122n n a a -≥-.(II )任取n *∈N ,由(I )知,对于任意m n >,112n -<, 故3224mn ⎛⎫=+⋅ ⎪⎝⎭.4.【2016年高考北京理数】(本小题13分)设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ; (3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a .【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析.(Ⅲ)当1a a N ≤时,结论成立. 以下设1a a N >. 由(Ⅱ)知∅≠)(A G .设{}p p n n n n n n A G <⋅⋅⋅<<⋅⋅⋅=2121,,,,)(.记10=n . 则pn n n n a a a a <⋅⋅⋅<<<21.对p i ,,1,0⋅⋅⋅=,记{},ii i k n G k n k N a a *=∈<≤>N .如果∅≠i G ,取i i G m min =,则对任何iim n k i a a a m k <≤<≤,1.从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G . 从而对任意p n k N ≤≤,pn k a a ≤,特别地,pn N a a ≤.对i i n n a a p i ≤-⋅⋅⋅=-+11,1,,1,0.因此1)(111111+≤-+=--++++i i i i i n n n nn a a a a a .所以p a a a a a a i i pn pi n n N ≤-=-≤--∑=)(1111.因此)(A G 的元素个数p 不小于1N a a -.5.【2016年高考四川理数】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ .(Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且253e = ,证明:121433n nn n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q ;(Ⅱ)详见解析. (Ⅱ)由(Ⅰ)可知,1nn a q .所以双曲线2221n y x a 的离心率 22(1)11nn n e a q .由2513qq 解得43q . 因为2(1)2(1)1+k kq q 1)1*kk q kN (). 于是11211+1n n nq e e e qqq , 故1231433n n n e e e .6.【2016高考上海理数】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)316a =.(2){}n a 不具有性质P .(3)见解析. (3)[证]充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.充分性得证. 必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N , 使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠. 所以{}n a 不具有性质P ,矛盾. 必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.7.【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 8.【2016高考山东理数】(本小题满分12分)已知数列{}na 的前n 项和S n =3n 2+8n ,{}nb 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}nb 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n .【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得 所以223+⋅=n n n T9.【2016高考江苏卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12+kT t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S . (1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C CDD S S S +≥.【答案】(1)13n n a -=(2)详见解析(3)详见解析 (3)下面分三种情况证明. ①若D 是C 的子集,则2C C DC D D D D S S S S S S S +=+≥+=. ②若C 是D 的子集,则22C CDC C CD S S S S S S +=+=≥.③若D 不是C 的子集,且C 不是D 的子集. 令UE CD =,UF DC =则E ≠∅,F ≠∅,E F =∅.于是C E C D S S S =+,D F C D S S S =+,进而由C D S S ≥,得E F S S ≥. 设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠. 由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤.又k l ≠,故1l k ≤-,从而1121131133222l l k E F l a S S a a a ----≤+++=+++=≤≤, 故21E F S S ≥+,所以2()1C C DD CDS S S S -≥-+,即21C CDD S S S +≥+.综合①②③得,2C C DD S S S +≥.10.【2016高考山东理数】(本小题满分12分)已知数列{}na 的前n 项和S n =3n 2+8n ,{}nb 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}nb 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n项和T n .【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得 所以223+⋅=n n n T【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为【答案】2011【2015高考天津,理18】(本小题满分13分)已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且233445,,a a a a a a 成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列nb 的前n 项和.【答案】(I) 1222,2,.n n nn a n -⎧⎪=⎨⎪⎩为奇数,为偶数; (II) 1242n n n S -+=-.【解析】(Ⅰ) 由已知,有34234534a a a a a a a a ,即4253a a a a -=-,所以23(1)(1)a q a q -=-,又因为1q ≠,故322a a ==,由31a a q =,得2q =,当21(*)n k n N =-∈时,1122122n k n k a a ---===,当2(*)n k n N =∈时,2222nkn k a a ===,所以{}n a 的通项公式为1222,2,.n n nn a n -⎧⎪=⎨⎪⎩为奇数,为偶数【2015高考四川,理16】设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值.【答案】(1)2n n a =;(2)10.【解析】(1)由已知12n n S a a =-,有1122(1)n n n n n a S S a a n --=-=->, 即12(1)n n a a n -=>. 从而21312,4a a a a ==.又因为123,1,a a a +成等差数列,即1322(1)a a a +=+. 所以11142(21)a a a +=+,解得12a =.所以,数列{}n a 是首项为2,公比为2的等比数列. 故2n n a =. (2)由(1)得112n n a =.所以2311[1()]1111122112222212n n n nT -=++++==--. 由1|1|1000n T -<,得11|11|21000n --<,即21000n >. 因为9102512100010242=<<=, 所以10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10. 【2015高考新课标1,理17】n S 为数列{n a }的前n 项和.已知na >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 【答案】(Ⅰ)21n +(Ⅱ)11646n -+【2015江苏高考,20】(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2a a a a 依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得k n k n k n n a a a a 342321,,,+++依次成等比数列,并说明理由.【答案】(1)详见解析(2)不存在(3)不存在(3)假设存在1a ,d 及正整数n ,k ,使得1n a ,2n k a +,23n k a +,34n ka +依次构成等比数列,则()()()221112n kn k n a a d a d +++=+,且()()()()32211132n kn kn k a d a d a d +++++=+.分别在两个等式的两边同除以()21n k a +及()221n k a+,并令1d t a =(13t >-,0t ≠), 则()()()22121n kn k t t +++=+,且()()()()32211312n kn kn k t t t +++++=+.将上述两个等式两边取对数,得()()()()2ln 122ln 1n k t n k t ++=++,且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦, 且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦. 再将这两式相除,化简得()()()()()()ln 13ln 123ln 12ln 14ln 13ln 1t t t t t t +++++=++(**).令()()()()()()()4ln 13ln 1ln 13ln 123ln 12ln 1g t t t t t t t =++-++-++,则()()()()()()()()()()222213ln 13312ln 1231ln 111213t t t t t t g t t t t ⎡⎤++-+++++⎣⎦'=+++.令()()()()()()()22213ln 13312ln 1231ln 1t t t t t t t ϕ=++-+++++,则()()()()()()()613ln 13212ln 121ln 1t t t t t t t ϕ'=++-+++++⎡⎤⎣⎦. 【2015高考浙江,理20】已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112nn a a +≤≤(n ∈*N ); (2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).【答案】(1)详见解析;(2)详见解析.【解析】(1)由题意得,210n n n a a a +-=-≤,即1n n a a +≤,12n a ≤,由11(1)n n n a a a --=-得1211(1)(1)(1)0n n n a a a a a --=--⋅⋅⋅->,由102n a <≤得,211[1,2]1n n n n n n a a a a a a +==∈--,即112n n a a +≤≤;(2)由题意得21n n n a a a +=-, ∴11n n S a a +=-①,由1111=n n n n a a a a ++-和112n n a a +≤≤得,11112n n a a +≤-≤, ∴11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②,由①②得 112(2)2(1)n S n n n ≤≤++. 【2015高考山东,理18】设数列{}n a 的前n 项和为n S .已知233n n S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .【答案】(I )13,1,3,1,n n n a n -=⎧=⎨>⎩; (II )13631243n nn T +=+⨯. (Ⅱ)因为3log n n n a b a = ,所以113b =当1n > 时,()11133log 313n n nn b n ---==-⋅所以1113T b ==当1n > 时,所以()()01231132313n n T n --=+⨯+⨯++- 两式相减,得所以13631243n nn T +=+⨯ 经检验,1n = 时也适合, 综上可得:13631243n nn T +=+⨯ 【2015高考安徽,理18】设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=,证明14n T n≥. 【答案】(Ⅰ)1n n x n =+;(Ⅱ)14n T n≥.1. 【2014高考湖南理第20题】已知数列{}n a 满足111,n n n a a a p +=-=,*n N ∈.(1)若{}n a 为递增数列,且123,2,3a a a 成等差数列,求P 的值; (2)若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.【答案】(1)13p = (2) 1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩为奇数为偶数或()114332n n n a --=+ (2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以2121n n a a +->且222n n a a +<,则有22221221222121n n n n n n n n a a a a a a a a +-++-+-<-⎧⇒-<-⎨<⎩,因为(2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以21210n n a a +-->且2220n n a a +-<()2220n n a a +⇒-->,两不等式相加可得()21212220n n n n a a a a +-+--->2212221n n n n a a a a -++⇒->-,又因为2212112n n n a a ---=22212112n n n a a +++>-=,所以2210n n a a -->,即2212112n n n a a ---=,同理可得2322212n n n n a a a a +++->-且2322212n n n n a a a a +++-<-,所以212212n n n a a +-=-, 则当2n m =()*m N ∈时,21324322123211111,,,,2222m m m a a a a a a a a ---=-=--=-=,这21m -个等式相加可得2113212422111111222222m m m a a --⎛⎫⎛⎫-=+++-+++⎪ ⎪⎝⎭⎝⎭212222111111111224224113321144m m m -----=-=+--22141332m m a -⇒=+. 当21n m =+时,2132432122321111,,,,2222m m ma a a a a a a a +-=-=--=-=-,这2m 个等式相加可得2111321242111111222222m m m a a +-⎛⎫⎛⎫-=+++-+++ ⎪ ⎪⎝⎭⎝⎭2122211111111224224113321144m m m---=-=--- 21241332m m a +=-,当0m =时,11a =符合,故212241332m m a --=- 综上1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩为奇数为偶数.【考点定位】等差数列、等比数列、数列单调性2. 【2014高考江西理第17题】已知首项都是1的两个数列(),满足.(1)令,求数列的通项公式; (2)若13n n b -=,求数列的前n 项和【答案】(1)2 1.n c n =-(2)(1)3 1.nn S n =-⋅+ 【考点定位】等差数列、错位相减求和3. 【2014高考全国1第17题】已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数,(I )证明:2n n a a λ+-=;(II )是否存在λ,使得{}n a 为等差数列?并说明理由. 【答案】(I )详见解析;(II )存在,4λ=.【考点定位】递推公式、数列的通项公式、等差数列. 4. 【2014高考全国2第17题】已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.【答案】n a =312n -【解析】本题第(1)问,证明等比数列,可利用等比数列的定义来证明,之后利用等比数列,求出其通项公式;对第(2)问,可先由第(1)问求出1na ,然后转化为等比数列求和,放缩法证明不等式.试题解析:(1)证明:由131n n a a +=+得1113()22n n a a ++=+3,(2)由(1因为当1n ≥时,13123n n --≥⋅,所以+1na 1113n -≤+++=1+21a +1n a 32< 【考点定位】本小题考查等比数列的定义、数列通项公式的求解、数列中不等式的证明5. 【2014高考山东卷第19题】已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .【答案】(I )21n a n =-.(II )22,212,21n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数,(或1n 21(1)2+1n n T n -++-=)(II )11144(1)(1)(21)(21)n n n n n n nb a a n n --+=-=--+111(1)()2121n n n -=-+-+ 当n 为偶数时,1111111(1)()()()33523212121n T n n n n =+-+++--+---+1121n =-+221nn =+ 当n 为奇数时,1111111(1)()()()33523212121n T n n n n =+-++++-+---+1121n =++2221n n +=+ 所以22,212,21n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数,(或1n 21(1)2+1n n T n -++-=)【考点定位】等差数列的前n 项和、等比数列及其性质 。
2021年高中数学复习课二数列学案苏教版选修520210607130
2021年高中数学复习课二数列学案苏教版选修520210607130 复习课(二) 数列等差数列与等比数列的基本运算数列的基本运算以小题出现具多,但也可作为解答题第一步命题,主要考查利用数列的通项公式及求和公式,求数列中的项、公差、公比及前n项和等,一般试题难度较小.[考点精要]等差、等比数列的基本公式通项公式等差数列等比数列 an=a1+(n-1)d an=am+(n-m)d n?a1+an?Sn=2an=a1qn-1 an=amqn-m a1-anqSn=(q≠1) 1-qa1?1-qn?Sn=(q≠1) 1-qSn=-a1qn+(q≠1) 1-q1-qa1前n项和公式 n?n-1?Sn=na1+d 2求和公式的函数特征d?d?Sn=n2+?a1-?n 2?2?[典例] 成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5.(1)求数列{bn}的通项公式;?5??S+(2)数列{bn}的前n项和为Sn,求证:数列n?是等比数列.4??[解] (1)设成等差数列的三个正数分别为a-d,a,a+d.依题意,得a-d+a+a+d =15,解得a=5.所以{bn}中的b3,b4,b5依次为7-d,10,18+d. 依题意,(7-d)(18+d)=100,解得d=2或d=-13(舍去),∴b3=5,公比q=2,故bn=5・2n-3.5(2)证明:由(1)知b1=,公比q=2,45n?1-2?45n-2∴Sn==5・2-,1-245n-2则Sn+=5・2,41545・2n-255因此S1+=,=n-3=2(n≥2).4255・2Sn-1+4Sn+?5?5?S+∴数列n?是以为首项,公比为2的等比数列.4?2?[类题通法]对于等差、等比数列的基本运算主要是知三求二问题,解题时注意方程思想、整体思想及分类讨论思想的运用.[题组训练]1.在等比数列{an}中,Sn是它的前n项和,若a2・a3=2a1,且a4与2a7的等差中项为17,则S6=________.解析:设{an}的公比为q,则由等比数列的性质知,a2a3=a1a4=2a1,则a4=2;由a4与2a7的等差中项为17知,a4+2a7=2×17=34,得a7=16.∴q==8,即q=2,∴a1=3=16?1-2?4163,则S6==. 41-2463答案: 42.已知等差数列{an}的前n项和为Sn,且a3+a8=13,S7=35,则a7=________. 解析:设等差数列{an}的公差为d,则由已知得(a1+2d)+(a1+7d)=13,S7=7?a1+a1+6d?=35.联立两式,解得a1=2,d=1,∴a7=a1+6d=8.2答案:83.已知等差数列{an},a2=9,a5=21. (1)求{an}的通项;(2)令bn=2an,求数列{bn}的前n项和Sn. 解:(1)设等差数列{an}的首项为a1,公差为d,??a1+d=9,依题意得方程组??a1+4d=21,?3a7a4a4q解得a1=5,d=4,∴数列{an}的通项an=4n+1. (2)由an=4n+1得,bn=254n+1,4∴{bn}是首项为b1=2,公比为q=2的等比数列,2?2-1?32?2-1?于是得,数列{bn}的前n项和Sn==. 42-115254n4n等差、等比数列的性质及应用等差、等比数列的性质主要涉及数列的单调性、最值及其前n项和的性质.利用性质求数列中某一项等,试题充分体现“小”“巧”“活”的特点,题型多以填空题的形式出现,一般难度较小.[考点精要]等差、等比数列的主要性质等差数列若m+n=p+q(m,n,p,q∈N),则am+an=ap+aq. 特别地,若m+n=2p,则am+an=2ap *等比数列若m+n=p+q(m,n,p,q∈N),则am・an=ap・aq. 特别地,若m+n=2p,则am・an=ap 2*am,am+k,am+2k,?仍是等差数列,公差为kd 则{pan+qbn}仍是等差数列 am,am+k,am+2k,?仍是等比数列,公比为qk 若{an},{bn}是两个项数相同的等差数列,若{an},{bn}是两个项数相同的等比数列,则{pan・qbn}仍是等比数列 Sm,S2m-Sm,S3m-S2m,?是等差数列若数列{an}项数为2n,则S偶-S奇=nd,Sm,S2m-Sm,S3m-S2m,?是等比数列(q≠-1或q=-1且k为奇数) 若数列{an}的项数为2n,则S奇an= S偶an+1S偶=q S奇若数列{an}项数为2n+1,则S奇-S偶=an+1,若数列{an}项数为2n+1,则S奇n+1= S偶nS奇-a1=q S偶[典例] (1)已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示数列{an}的前n项和,则使得Sn取得最大值的n是________.(2)记等比数列{an}的前n项积为Tn(n∈N),已知am-1am+1-2am=0,且T2m-1=128,则m=________.[解析] (1)由a1+a3+a5=105得,3a3=105,∴a3=35. 同理可得a4=33,∴d=a4-a3=-2,an=a4+(n-4)×(-2) =41-2n.??an≥0,由??an+1<0,?*得n=20.3∴使Sn达到最大值的n是20.(2)因为{an}为等比数列,所以am-1am+1=am,又由am-1am+1-2am=0,从而am =2.由等比数列的性质可知前(2m-1)项积T2m-1=am[答案] (1)20 (2)4 [类题通法]关于等差(比)数列性质的应用问题,可以直接构造关于首项a1和公差d(公比q)的方程或方程组来求解,再根据等差(比)数列的通项公式直接求其值,此解思路简单,但运算过程复杂.[题组训练]1.等差数列{an}的前16项和为640,前16项中偶数项和与奇数项和之比为22∶18,则公差d,的值分别是________.解析:设S奇=a1+a3+?+a15,S偶=a2+a4+?+a16,则有S偶-S奇=(a2-a1)+(a4-8?a2+a16?2S偶a9a3)+?+(a16-a15)=8d,==.S奇8?a1+a15?a82??S奇+S偶=640,由???S偶∶S奇=22∶18,2m-122m-1,则2=128,故m=4.a9a8解得S奇=288,S偶=352.因此d=S偶-S奇648a9S偶11==8,==. 8a8S奇911答案:8,92.等差数列{an}中,3(a3+a5)+2(a7+a10+a13)=24,则该数列的前13项和为________.解析:3(a3+a5)+2(a7+a10+a13)=24,∴6a4+6a10=24,∴a4+a10=4,∴S13=13?a1+a13?13?a4+a10?13×4===26.222答案:26数列的通项及求和数列求和一直是考查的热点,在命题中,多以与不等式的证明或求解相结合的形式出现.一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,题型多以解答题形式出现,难度较大.[考点精要]1.已知递推公式求通项公式的常见类型 (1)类型一 an+1=an+f(n)把原递推公式转化为an+1-an=f(n),再利用累加法(逐差相加法)求解. (2)类型二 an+1=f(n)an4把原递推公式转化为an+1=f(n),再利用叠乘法(逐商相乘法)求解. an(3)类型三 an+1=pan+q(其中p,q均为常数,pq(p-1)≠0),先用待定系数法把原递推公式转化为an+1-t=p(an-t),其中t=,再利用换元法1-p转化为等比数列求解.2.数列求和(1)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把Sn=a1+a2+?+an两边同乘以相应等比数列的公比q,得到qSn=a1q+a2q+?+anq,两式错位相减即可求出Sn.(2)裂项相消法:即将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如?为常数)的数列.(3)拆项分组法:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简单的数列,最后分别求和.(4)并项求和法:与拆项分组相反,并项求和是把数列的两项(或多项)组合在一起,重新构成一个数列再求和,一般适用于正负相间排列的数列求和,注意对数列项数奇偶性的讨论.[典例] (1)已知a1=1,an+1=2an+1,则an=________. (2)已知a1=2,an+1=an+n,则an=________. (3)设数列{an}满足a1+3a2+3a3+?+3①求数列{an}的通项公式;②设bn=,求数列{bn}的前n项和Sn.[解析] (1)∵an+1=2an+1,则an+1+1=2(an+1),∴2qc??(其中{an}是各项均不为零的等差数列,c?anan+1??n-1nan=,n∈N*.3nanan+1+1=2,又a1=1,∴a1+1=2, an+1故{an+1}是首项为2,公比为2的等比数列,∴an+1=2・2n-1=2,故an=2-1.nn(2)当n取1,2,3,?,n-1时,可得n-1个等式.即an-an-1=n-1,an-1-an-2=n-2,?,a2-a1=1,将其两边分别相加,得an-a1=1+2+3+?+(n-1),5?1+n-1??n-1?n?n-1?∴an=a1+=2+. 22[答案] (1)2-1 (2)2+2nn?n-1?2(3)解:①因为a1+3a2+3a3+?+32n-1nan=,(��)3所以当n≥2时,a1+3a2+3a3+?+3(��)-(��)得3n-1n-2n-1an-1=,(��)3an=,所以an=n(n≥2).131311在(��)中,令n=1,得a1=,满足an=n,331*所以an=n(n∈N).31nn②由①知an=n,故bn==n×3.3an则Sn=1×3+2×3+3×3+?+n×3, 3Sn=1×3+2×3+3×3+?+n×3234234123nn+1,nn+1两式相减得-2Sn=3+3+3+3+?+3-n×33?2n-1?×3所以Sn=+44[类题通法]n+13?1-3?n+1=-n×3,1-3n.(1)由递推公式求数列通项公式时,一是要注意判别类型与方法.二是要注意an的完整表达式,易忽视n=1的情况.(2)数列求和时,根据数列通项公式特征选择求和法,尤其是涉及到等比数列求和时要注意公比q对Sn的影响.[题组训练]1.已知函数f(n)=ncos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+?+a100=________.解析:因为f(n)=ncos(nπ),所以a1+a2+a3+?+a100=[f(1)+f(2)+?+f(100)]+[f(2)+?+f(101)],22f(1)+f(2)+?+f(100)=-12+22-32+42-?-992+1002=(22-12)+(42-32)50?3+199?22+?(100-99)=3+7+?+199==5 050,2f(2)+?+f(101)=22-32+42-?-992+1002-1012=(22-32)+(42-52)+?+(1002-101)26感谢您的阅读,祝您生活愉快。
2021年高考数学二轮复习专题突破课时作业10递推数列及数列求和的综合问题理
课时作业 10 递推数列及数列求和的综合问题1.[2021·全国卷Ⅱ]记Sn 为等差数列{an }的前n 项和,a 1=-7,S 3=-15. (1)求{an }的通项公式; (2)求Sn ,并求Sn 的最小值.解析:(1)解:设{an }的公差为d ,由题意得3a 1+3d =-15. 由a 1=-7得d =2.所以{an }的通项公式为an =a 1+(n -1)d =2n -9. (2)解:由(1)得Sn =a 1+an2·n =n 2-8n =(n -4)2-16.所以当n =4时,Sn 取得最小值,最小值为-16.2.[2021·河北联盟考试]数列{a n }是等差数列,a 2=6,前n 项和为S n ,{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19.(1)求{a n },{b n }的通项公式; (2)求数列{b n cos(a n π)}的前n 项和T n . 解析:(1)∵数列{a n }是等差数列,a 2=6, ∴S 3+b 1=3a 2+b 1=18+b 1=19,∴b 1=1. ∵b 2=2,数列{b n }是等比数列,∴b n =2n -1.∴b 3=4,∵a 1b 3=12,∴a 1=3,∵a 2=6,数列{a n }是等差数列,∴a n =3n . (2)由(1)得,令C n =b n cos(a n π)=(-1)n 2n -1,∴C n +1=(-1)n +12n,∴C n +1C n=-2,又C 1=-1, ∴数列 {b n cos(a n π)}是以-1为首项、-2为公比的等比数列, ∴T n =-1×[1--2n]1+2=-13[1-(-2)n].3.[2021·唐山摸底考试]数列{a n }满足:1a 1+2a 2+…+n a n =38(32n -1),n ∈N *.(1)求数列{a n }的通项公式; (2)设b n =log 3a nn,求1b 1b 2+1b 2b 3+…+1b n b n +1.解析:(1)1a 1=38(32-1)=3,当n ≥2时,因为n a n =⎝ ⎛⎭⎪⎫1a 1+2a 2+…+n a n -⎝ ⎛⎭⎪⎫1a 1+2a 2+…+n -1a n -1=38(32n -1)-38(32n -2-1) =32n -1,当n =1,na n=32n -1也成立,所以a n =n32n -1.(2)b n =log 3a nn=-(2n -1), 因为1b n b n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以1b 1b 2+1b 2b 3+…+1b n b n +1=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 4.[2021·石家庄质量检测]数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n . (1)设b n =a nn,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n . 解析:(1)由a n +1=n +1n a n +n +12n ,可得a n +1n +1=a n n +12n, 又b n =a n n ,∴b n +1-b n =12n ,由a 1=1,得b 1=1,累加可得(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=121+122+…+12n -1,即b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -11-12=1-12n -1,∴b n =2-12n -1.(2)由(1)可知a n =2n -n 2n -1,设数列⎩⎨⎧⎭⎬⎫n 2n -1的前n 项和为T n ,那么T n =120+221+322+…+n2n -1 ①,12T n =121+222+323+…+n2n ②,①-②得12T n =120+121+122+…+12n -1-n 2n =1-12n1-12-n 2n =2-n +22n ,∴T n =4-n +22n -1.易知数列{2n }的前n 项和为n (n +1), ∴S n =n (n +1)-4+n +22n -1.5.[2021·湖南五校联考]各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列.(1)求数列{a n }的通项公式.(2)设T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和,假设λT n ≤a n +1对一切n ∈N *恒成立,求实数λ的最大值.解析:(1)设数列{a n }的公差为d (d ≠0),由得,⎩⎪⎨⎪⎧4a 1+6d =14,a 1+2d 2=a 1a 1+6d ,解得⎩⎪⎨⎪⎧a 1=2,d =1或⎩⎪⎨⎪⎧a 1=72,d =0(舍去),所以a n =n+1.(2)由(1)知1a n a n +1=1n +1-1n +2, 所以T n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n2n +2. 又λT n ≤a n +1恒成立,所以λ≤2n +22n=2⎝⎛⎭⎪⎫n +4n +8,而2⎝⎛⎭⎪⎫n +4n +8≥16,当且仅当n =2时等号成立.所以λ≤16,即实数λ的最大值为16.6.[2021·郑州入学测试]在等差数列{a n }中,a 3=5,且a 1,a 2,a 5为递增的等比数列. (1)求数列{a n }的通项公式;(2)假设数列{b n }的通项公式 (k ∈N *),求数列{b n }的前n 项和S n .解析:(1)设等差数列{a n }的公差为d ,易知d ≠0, 由题意得,(a 3-2d )(a 3+2d )=(a 3-d )2, 即d 2-2d =0,解得d =2或d =0(舍去),所以数列{a n }的通项公式为a n =a 3+(n -3)d =2n -1. (2)当n =2k ,k ∈N *时,S n =b 1+b 2+…+b n =b 1+b 3+…+b 2k -1+b 2+b 4+…+b 2k =a 1+a 2+…+a k +(20+21+…+2k -1)=k 1+2k -12+1-2k 1-2=k 2+2k -1=n 24+2n 2-1; 当n =2k -1,k ∈N *时,n +1=2k , 那么S n =S n +1-b n +1=n +124+2+12n -1-2+12n -1=n 2+2n -34+2-12n .综上,S n=⎩⎪⎨⎪⎧n 24+2n2-1,n =2k ,n 2+2n -34+2n -12,n =2k -1(k ∈N *).。
江苏省高考数学二轮总复习 专题10 数列的综合应用专题导练课件 理
1 若给定等差数列bn与等比数列cn,试问bn
与cn能分别是差比等数列吗?
2 若数列d n 为差比等数列,则d n 能否同时为
等比数列?若能,求出dn应满足的条件;若不
能,说明理由.
分析:本题主要考查数列的有关概念,考查 等差数列与等比数列的基础知识,考查数学 的应用意识与创新意识.
解 析 : 1当 bn的 公 差 不 为 0时 , bn为 差 比 等 数 列 , 否
6
所
以
,
由
Tn
1 3
4n3 n
,
得 n n n 1 d n n 1 2n 1 d 2 1 4n 3 n ,
6
3
所 以 2n 1 d 2 6d 8 n 1 0,
所 以 2n 1 d 4 n 1 d 2 0. 又 由 d 0, 有 2n 1 d 4 n 1 0,
k
nn 1! 1![n 1 k
1]!
nC
k 1,
n 1
且1C1n
2C
2 n
nC
n n
nC
0 n
1
nC1n 1
nC
n n
1 1
n
(C
0 n
1
C1 n 1
C
n n
1 1
)
n
2 n 1,
于是令bn n,则存在数列bn 为等差数列,且等
式 b1C1n
b2C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2013届高考数学(苏教版)二轮复习专题10 数__列(Ⅱ)回顾2008~2012年的高考题,数列是每一年必考的内容之一.其中在填空题中,会出现等差、等比数列的基本量的求解问题.在解答题中主要考查等差、等比数列的性质论证问题,只有2009年难度为中档题,其余四年皆为难题.预测在2013年的高考题中,数列的考查变化不大: 1填空题依然是考查等差、等比数列的基本性质.2在解答题中,依然是考查等差、等比数列的综合问题,可能会涉及恒等关系论证和不等关系的论证.1.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:S 100=1002(a 1+a 100)=45,a 1+a 100=910,a 1+a 99=a 1+a 100-d =25.a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10.答案:102.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10=________. 解析:由已知得a 4=a 2+a 2=-12,a 8=a 4+a 4=-24,a 10=a 8+a 2=-30. 答案:-303.设数列{a n }的前n 项和为S n ,令T n =S 1+S 2+…+S nn,称T n 为数列a 1,a 2,…,a n 的“理想数”,已知数列a 1,a 2,…,a 500的“理想数”为2 004,那么数列12,a 1,a 2,…,a 500的“理想数”为________.解析:根据理想数的意义有,2 004=500a 1+499a 2+498a 3+…+a 500500,∴501×12+500a 1+499a 2+498a 3+…+a 500501=501×12+2 004×500501=2 012.答案:2 0124.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.解析:函数y =x 2(x >0)在点(16,256)处的切线方程为y -256=32(x -16).令y =0得a 2=8;同理函数y =x 2(x >0)在点(8,64)处的切线方程为y -64=16(x -8),令y =0得a 3=4;依次同理求得a 4=2,a 5=1.所以a 1+a 3+a 5=21.答案:215.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________.解析:前n -1行共有正整数1+2+…+(n -1)个,即n 2-n2个,因此第n 行第3个数是全体正整数中第n 2-n2+3个,即为n 2-n +62.答案:n 2-n +62[典例1](1)已知正数数列{a n }对任意p ,q ∈N *,都有a p +q =a p ·a q ,若a 2=4,则a n =________. (2)数列{a n }为正项等比数列,若a 2=1,且a n +a n +1=6a n -1(n ∈N ,n ≥2),则此数列的前n 项和S n =________.[解析] (1)由a p +q =a p ·a q ,a 2=4,可得a 2=a 21=4⇒a 1=2,所以a p +1=a p ·a 1,即a p +1a p=a 1=2,即数列{a n }为等比数列,所以a n =a 1·q n -1=2·2n -1=2n .(2)设等比数列的公比为q ,由a n +a n +1=6a n -1知,当n =2时,a 2+a 3=6a 1.再由a 2=1,得1+q =6q,化简得q 2+q -6=0,解得q =-3或q =2.∵q >0,∴q =2,∴a 1=12,∴S n =121-2n1-2=2n -1-12.[答案] (1)2n(2)2n -1-12这两题分别是由“a p +q =a p ·a q ”和“a n +a n +1=6a n -1”推出其他条件来确定基本量,不过第(1)小题中首先要确定该数列的特征,而第(2)小题已经明确是等比数列,代入公式列方程求解即可.[演练1]已知{a n }是等差数列,a 10=10,前10项和S 10=70,则其公差d =________. 解析:法一:因为S 10=70,所以10a 1+a 102=70,即a 1+a 10=14.又a 10=10,所以a 1=4,故9d =10-4=6,所以d =23.法二:由题意得⎩⎪⎨⎪⎧a 1+9d =10,10a 1+45d =70,解得⎩⎪⎨⎪⎧a 1=4,d =23.答案:23[典例2]已知数列{a n }的前n 项和S n 满足S n =2a n +(-1)n,n ≥1. (1)写出数列{a n }的前三项a 1,a 2,a 3;(2)求证数列⎩⎨⎧⎭⎬⎫a n +23×-1n 为等比数列,并求出{a n }的通项公式.[解] (1)在S n =2a n +(-1)n,n ≥1中分别令n =1,2,3得⎩⎪⎨⎪⎧a 1=2a 1-1,a 1+a 2=2a 2+1,a 1+a 2+a 3=2a 3-1,解得⎩⎪⎨⎪⎧a 1=1,a 2=0,a 3=2.(2)由S n =2a n +(-1)n,n ≥1,得S n -1=2a n -1+(-1)n -1,n ≥2.两式相减得a n =2a n +(-1)n -2a n -1-(-1)n -1,n ≥2.即a n =2a n -1-2(-1)n,n ≥2.a n =2a n -1-43×(-1)n -23×(-1)n =2a n -1+43×(-1)n -1-23×(-1)n , a n +23×(-1)n =2(a n -1+23×(-1)n -1)(n ≥2),故数列⎩⎨⎧⎭⎬⎫a n +23×-1n 是以a 1-23=13为首项,2为公比的等比数列.所以a n +23×(-1)n=13×2n -1,即a n =13×2n -1-23×(-1)n.1.求数列通项公式的方法:(1)公式法;(2)根据递推关系求通项公式有:①叠加法;②叠乘法;③转化法;(3)已知前n 项和公式用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2求解.2.数列求和的基本方法:(1)公式法;(2)分组法;(3)裂项相消法;(4)错位相减法;(5)倒序相加法.[演练2]已知数列{a n }的前n 项和为S n ,且满足2S n =pa n -2n ,n ∈N *,其中常数p >2. (1)证明:数列{a n +1}为等比数列; (2)若a 2=3,求数列{a n }的通项公式;(3)对于(2)中数列{a n },若数列{b n }满足b n =log 2(a n +1)(n ∈N *),在b k 与b k +1之间插入2k -1(k ∈N *)个2,得到一个新的数列{c n },试问:是否存在正整数m ,使得数列{c n }的前m 项的和T m =2 011?如果存在,求出m 的值;如果不存在,说明理由.解:(1)证明:因为2S n =pa n -2n , 所以2S n +1=pa n +1-2(n +1), 所以2a n +1=pa n +1-pa n -2, 所以a n +1=pp -2a n +2p -2,所以a n +1+1=p p -2(a n +1). 因为2a 1=pa 1-2,且p >2,所以a 1=2p -2>0. 所以a 1+1=pp -2>0.所以a n +1+1a n +1=pp -2≠0. 所以数列{a n +1}为等比数列. (2)由(1)知a n +1=⎝ ⎛⎭⎪⎫p p -2n ,所以a n =⎝⎛⎭⎪⎫p p -2n -1.又因为a 2=3,所以⎝⎛⎭⎪⎫p p -22-1=3.所以p =4,a n =2n-1.(3)由(2)得b n =log 22n=n (n ∈N *),数列{c n }中,b k (含b k 项)前的所有项的和是(1+2+3+…+k )+(20+21+22+…+2k -2)×2=k k +12+2k-2,当k =10时,其和是55+210-2=1 077<2 011, 当k =11时,其和是66+211-2=2 112>2 011, 又因为2 011-1 077=934=467×2,是2的倍数, 所以当m =10+(1+2+22+…+28)+467=988时,T m =2 011,所以存在m =988使得T m =2 011.[典例3]将数列{a n }中的所有项按每一行比上一行多两项的规则排成如下数表:已知表中的第一列数a 1,a 2,a 5,…构成一个等差数列,记为{b n },且b 2=4,b 5=10.表中每一行正中间一个数a 1,a 3,a 7,…构成数列{c n },其前n 项和为S n .(1)求数列{b n }的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a 13=1.①求S n ;②记M ={n |(n +1)c n ≥λ,n ∈N *},若集合M 的元素个数为3,求实数λ的取值范围. [解] (1)设数列{b n }的公差为d ,则⎩⎪⎨⎪⎧b 1+d =4,b 1+4d =10,解得⎩⎪⎨⎪⎧b 1=2,d =2,所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且32<13<42, 所以a 10=b 4=8.所以a 13=a 10q 3=8q 3.又a 13=1,解得q =12.因此c n =2n ·⎝ ⎛⎭⎪⎫12n -1=n2n -2.所以S n =c 1+c 2+…+c n -1+c n =12-1+220+…+n -12n -3+n 2n -2,12S n =120+221+…+n -12n -2+n2n -1.因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1,解得S n =8-n +22n -2.②由①知c n =n 2n -2,不等式(n +1)c n ≥λ,可化为n n +12n -2≥λ.设f (n )=n n +12n -2,计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154,因为f (n +1)-f (n )=n +12-n2n -1,所以当n ≥3时,f (n +1)<f (n ). 因为集合M 的元素的个数为3, 所以λ的取值范围是(4,5].本题第二小问中②的参数取值范围问题,运用了函数的思想方法,进行参数分离转化为n n +12n -2≥λ,再构造函数求出n n +12n -2的取值范围,从而得到参数λ的取值范围,这里要注意n 只能取正整数.[演练3]下面的数组均由三个数组成,它们是:(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(a n ,b n ,c n ).(1)请写出c n 的一个表达式,c n =________;(2)若数列{c n }的前n 项和为M n ,则M 10=________.(用数字作答) 解析:由1,2,3,4,5,…猜想a n =n ; 由2,4,8,16,32,…猜想b n =2n;由每组数都是“前两个之和等于第三个”猜想c n =n +2n.从而M 10=(1+2+…+10)+(2+22+…+210)=10×10+12+2210-12-1=2 101.答案:(1)n +2n(2)2 101[专题技法归纳]1.数列的递推关系是相邻项之间的关系,高考对递推关系的考查不多,填空题中出现复杂递推关系时,可以用不完全归纳法研究.在解答题中主要是转化为等差、等比数列的基本量来求解.2.数列求和问题,主要考查利用公式法求数列的前n项和,再论证和的性质,故不过多涉及求和的技巧以及项的变形.3.数列中a n或S n的最值问题与函数处理方法类似,首先研究数列a n或S n的特征,再进一步判断数列的单调性,从而得到最值.要注意的细节是n只能取正整数.4.数列中大小比较与不等式中大小比较方法类似,同类型的多项式比较可以作差作商或用基本不等式,不同类型的比较一般要构造函数来解决.5.数列中的参数取值范围问题在处理时,首选还是参数分离,分离后根据新数列的单调性确定最值或范围.1.已知等差数列{a n}中,a7+a9=16,a4=1,则a12的值为________.解析:由a7+a9=16,得a8=8,由a4+a12=2a8,得a12=15.答案:152.已知数列{a n}满足a1=0,a n+1=a n-33a n+1(n∈N*),则a20=________.解析:由a1=0,a n+1=a n-33a n+1(n∈N*),得a2=-3,a3=3,a4=0,……由此可知:数列{a n}是周期变化的,且循环周期为3,所以可得a20=a2=- 3.答案:- 33.已知a,b,a+b成等差数列,a,b,ab成等比数列,且0<log m(ab)<1,则m的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧2b =2a +b ,b 2=a 2b ,即⎩⎪⎨⎪⎧b =2a ,b =a 2,解得⎩⎪⎨⎪⎧a =2,b =4.由0<log m 8<1,得m >8. 答案:(8,+∞)4.等差数列{a n }共有2n +1项,其中奇数项之和为319,偶数项之和为290,则n =________. 解析:由12a 1+a 2n +1n +112a 2+a 2n n =n +1n =319290,得n =10. 答案:105.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.解析:由题意可知q ≠1,∴可得2(1-q n)=(1-qn +1)+(1-qn +2),即q 2+q -2=0,解得q =-2或q =1(不合题意,舍去),∴q =-2.答案:-26.所有正奇数如下数表排列(表中下一行中的数的个数是上一行中数的个数的2倍): 第一行 1 第二行 3 5 第三行 7 9 11 13 ……则第6行中的第3个数是________.解析:由1+2+4+8+16+3=34得第六行第三个数为第34个正奇数,所以这个数是2×34-1=67.答案:677.设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.解析:记a 2=m ,则1≤m ≤q ≤m +1≤q 2≤m +2≤q 3,要q 取最小值,则m 必定为1,于是有1≤q ≤2,2≤q 2≤3,3≤q 3,所以q ≥33.答案:338.已知数列{a n }满足a 1=2,a n +1=5a n -133a n -7(n ∈N *),则数列{a n }的前100项的和为________.解析:由a 1=2,a n +1=5a n -133a n -7(n ∈N *),得a 2=5×2-133×2-7=3,a 3=5×3-133×3-7=1,a 4=5×1-133×1-7=2,则{a n }是周期为3的数列,所以S 100=(2+3+1)×33+2=200.答案:2009.已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且任意的正整数i ,j ,k ,l ,当i +j=k +l 时,都有a i +b j =a k +b l ,则12 010∑2 010i =1(a i +b i )的值是________. 解析:由题意得a 1=1,a 2=2,a 3=3,a 4=4,a 5=5;b 1=2,b 2=3,b 3=4,b 4=5,b 5=6.归纳得a n =n ,b n =n +1;设c n =a n +b n ,c n =a n +b n =n +n +1=2n +1,则数列{c n }是首项为c 1=3,公差为2的等差数列,所以12 010∑2 010i =1 (a i +b i )=12 010×2 010×3+4 0212=2 012. 答案:2 01210.对正整数n ,设曲线y =x n(1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和是________. 解析:y ′=nxn -1-(n +1)x n ,曲线y =x n (1-x )在x =2处的切线的斜率为k =n ·2n -1-(n +1)·2n ,切点为(2,-2n ),所以切线方程为y +2n =k (x -2),令x =0得a n =(n +1)·2n ,令b n =a n n +1=2n ,数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为2+22+23+…+2n =2n +1-2. 答案:2n +1-211.已知数列{a n }满足a n >0且对一切n ∈N *,有a 31+a 32+…+a 3n =S 2n ,a 1+a 2+…+a n =S n .(1)求证:对一切n ∈N *有a 2n +1-a n +1=2S n ;(2)求数列{a n }通项公式.解:(1)证明:∵a 31+a 32+…+a 3n =S 2n ,①∴a 31+a 32+…+a 3n +a 3n +1=S 2n +1.②②-①得S 2n +1-S 2n =a 3n +1,即(S n +1-S n )(S n +1+S n )=a 3n +1, a n +1(2S n +a n +1)=a 3n +1.∵a n +1≠0,∴a 2n +1-a n +1=2S n (n ∈N *).(2)由a 2n +1-a n +1=2S n 及a 2n -a n =2S n -1(n ≥2)两式相减,得(a n +1+a n )(a n +1-a n )=a n +1+a n .∵a n +1+a n >0,∴a n +1-a n =1(n ≥2).当n =1,2时,易得a 1=1,a 2=2也适合a n +1-a n =1,∴{a n }是等差数列,且a n =n .12.设数列{a n }的前n 项和为S n ,已知1S 1+1S 2+…+1S n =n n +1(n ∈N *). (1)求S 1,S 2及S n ;(2)设b n =⎝ ⎛⎭⎪⎫12a n ,若对一切n ∈N *,均有∑n k =1b k ∈⎝ ⎛⎭⎪⎫1m ,m 2-6m +163,求实数m 的取值范围. 解:依题意,n =1时,S 1=2;n =2时,S 2=6. 因为1S 1+1S 2+…+1S n=nn +1(n ∈N *),n ≥2时,1S 1+1S 2+…+1S n -1=n -1n,所以1S n =n n +1-n -1n,所以S n =n (n +1).上式对n =1也成立,所以S n =n (n +1)(n ∈N *).(2)当n =1时,a 1=2,当n ≥2时,a n =S n -S n -1=2n , 所以a n =2n (n ∈N *),b n =⎝ ⎛⎭⎪⎫14n ,b nb n -1=14.所以数列{b n }是等比数列.则∑n k =1b k =14⎝ ⎛⎭⎪⎫1-14n 1-14=13⎝ ⎛⎭⎪⎫1-14n .因为13⎝ ⎛⎭⎪⎫1-14n 随n 的增大而增大,所以14≤∑nk =1b k <13,由⎩⎪⎨⎪⎧1m <14,m 2-6m +163≥13,得⎩⎪⎨⎪⎧ m <0或m >4,m ≤1或m ≥5,所以m <0或m ≥5,即m 的取值范围为(-∞,0)∪[5,+∞).。