实验四 触发器 实验报告

合集下载

触发器功能实验报告

触发器功能实验报告

触发器功能实验报告触发器功能实验报告引言:触发器是数字电路中常见的重要元件,它能够在特定的输入条件下产生稳定的输出信号。

本实验旨在通过构建不同类型的触发器电路,探究触发器的基本原理和功能。

实验一:RS触发器RS触发器是最简单的一种触发器,由两个交叉连接的非门组成。

实验中我们使用了两个与非门来构建RS触发器电路,其中一个与非门的输出连接到另一个与非门的输入,反之亦然。

通过设置不同的输入状态,我们可以观察到RS触发器的两种稳定状态:置位和复位。

实验二:D触发器D触发器是一种常用的触发器,它具有单一输入和双输出。

实验中我们使用了两个与非门和一个或非门来构建D触发器电路。

通过输入信号的变化,我们可以观察到D触发器的工作原理:当输入信号为高电平时,输出保持之前的状态,当输入信号为低电平时,输出根据之前的状态进行切换。

实验三:JK触发器JK触发器是一种多功能的触发器,它具有两个输入和两个输出。

实验中我们使用了两个与非门和一个或非门来构建JK触发器电路。

通过设置不同的输入状态,我们可以观察到JK触发器的四种工作模式:置位、复位、切换和禁用。

实验四:T触发器T触发器是一种特殊的JK触发器,它只有一个输入和两个输出。

实验中我们使用了两个与非门和一个或非门来构建T触发器电路。

通过输入信号的变化,我们可以观察到T触发器的工作原理:当输入信号为高电平时,输出状态翻转,当输入信号为低电平时,输出保持不变。

实验五:应用实例在实验的最后,我们通过一个简单的应用实例来展示触发器的实际应用。

我们构建了一个二进制计数器电路,使用了多个D触发器和与非门。

通过输入脉冲信号,我们可以观察到计数器的工作原理:每次接收到脉冲信号,计数器的输出状态按照二进制规律进行变化。

结论:通过本次实验,我们深入了解了不同类型的触发器的功能和工作原理。

触发器在数字电路中具有重要的应用价值,能够实现各种逻辑功能和时序控制。

进一步的研究和实践将有助于我们更好地理解和应用触发器,提高数字电路设计的能力。

触发器及其应用实验报告

触发器及其应用实验报告

触发器及其应用实验报告一、实验目的通过本次实验,我们的目标是:1.了解触发器的基本原理。

2.学习触发器的分类及其应用场景。

3.通过实验了解触发器的使用方法。

二、实验器材1.示波器。

2.信号发生器。

3.逻辑门芯片。

4.电源。

5.电线、面包板等。

三、实验原理触发器是由逻辑门电路组成的电子器件,具有存储和控制的功能,它能够接收一个或多个输入信号,通过逻辑门电路进行处理,并输出结果。

因为具有存储和控制的功能,所以可以被广泛应用于数字电路中。

触发器分为锁存触发器和触发器两种。

锁存触发器存在一个叫做钟脉冲的输入信号,这个输入信号决定了锁存触发器是否工作。

当输入一个高电平的钟脉冲时,锁存触发器将会把它的输入信号“锁定”,并输出相应的结果;当钟脉冲为低电平时,锁存触发器会维持自己的状态不变。

触发器一般也有两个输入信号,分别是时钟和数据。

当时钟为高电平的时候,数据会被写入到触发器中,并且继续保存下来;当时钟为低电平的时候,触发器会维持自己的状态不变。

四、实验步骤1、搭建RS锁存器电路图将R、S两个输入端接到逻辑门芯片上,并将输出端接上示波器,调整示波器参数,实时观察输出波形。

在示波器上显示R、S各种输入波形,了解电路的工作原理和特性。

4、测试D触发器电路五、实验结果通过本次实验,我们成功地实现了RS锁存器和D触发器的搭建和测试。

我们通过不同的输入信号波形测试了电路的各种工作特性,如RS锁存器的存储和控制特性以及D触发器的时序控制特性等。

六、实验分析触发器是数字电路中的关键元件之一,它可以实现数字信号的存储和控制。

本次实验通过搭建RS锁存器和D触发器电路,并通过逻辑门芯片实现,得出了两种触发器的不同工作原理和特性。

同时,我们还通过不同的输入波形测试了它们的各种工作状态,进一步了解和掌握触发器的应用技巧和调试方法。

这对于我们深入理解和掌握数字电路原理以及实际应用具有重要意义。

同时,我们还通过实际操作锻炼了自己的实验技能,深入理解了数字电路的原理和应用。

触发器逻辑功能测试实验报告

触发器逻辑功能测试实验报告

触发器逻辑功能测试实验报告
触发器逻辑功能测试实验报告
一、实验目的
本实验旨在验证触发器在设计电路中能够准确地实现其逻辑功能,以验证设计的正确性。

二、实验流程
1.组装电路:将实验装置、电源、电路板等按照实验原理图中的连接方式安装在实验板上。

2.设定输入端信号:将输入端口的接口接上合适的电压信号,调节电位器,将输入电位调节至指定电位。

3.测量输出端电压:将万用表的探头接到输出端口,调节电位器,将输入电位调节至指定电位。

4.结果分析:根据实验波形及输入输出电压差值,分析结果,判断触发器是否能正确实现其逻辑功能。

三、实验结果
1.输入端电压:
触发端:2V
放电端:0V
2.输出端电压:
触发端:8V
放电端:0V
四、结论
本次实验证明触发器能准确地实现其逻辑功能。

触发器实验报告

触发器实验报告

触发器实验报告一、实验目的本次实验的主要目的是深入了解和掌握触发器的工作原理、功能特点以及其在数字电路中的应用。

通过实际操作和观察,提高对触发器逻辑功能的理解和运用能力,为进一步学习数字电路的相关知识打下坚实的基础。

二、实验设备与器材1、数字电路实验箱2、双踪示波器3、集成电路芯片:74LS74(D 触发器)、74LS112(JK 触发器)4、若干导线三、实验原理(一)D 触发器D 触发器是一种在时钟脉冲上升沿或下降沿触发的触发器,其逻辑功能为:当 D 端输入为 1 时,在时钟脉冲的作用下,输出 Q 变为 1;当 D 端输入为 0 时,在时钟脉冲的作用下,输出 Q 变为 0。

其逻辑表达式为:Q(n+1) = D。

(二)JK 触发器JK 触发器也是一种在时钟脉冲上升沿或下降沿触发的触发器,具有置 0、置 1、保持和翻转四种功能。

当 J=1、K=0 时,在时钟脉冲作用下,输出 Q 置 1;当 J=0、K=1 时,在时钟脉冲作用下,输出 Q 置 0;当 J=K=0 时,输出保持不变;当 J=K=1 时,输出翻转。

其逻辑表达式为:Q(n+1) = JQ' + K'Q。

四、实验内容与步骤(一)D 触发器实验1、按照实验电路图,在数字电路实验箱上正确连接 74LS74 芯片和其他相关元件。

2、将 D 端分别接高电平(1)和低电平(0),用示波器观察时钟脉冲和输出 Q 的波形,记录实验结果。

3、改变时钟脉冲的频率,观察输出 Q 的变化,分析时钟频率对触发器工作的影响。

(二)JK 触发器实验1、依照实验电路图,在实验箱上连接 74LS112 芯片及相关元件。

2、分别设置 J、K 的不同输入组合,如 J=0、K=0;J=1、K=0;J=0、K=1;J=1、K=1,用示波器观察时钟脉冲和输出 Q 的波形,并做好记录。

3、调整时钟脉冲的占空比,观察输出 Q 的变化,探讨占空比对触发器工作的影响。

五、实验数据与结果分析(一)D 触发器1、当 D 端接高电平时,在时钟脉冲上升沿,输出 Q 变为高电平;当 D 端接低电平时,在时钟脉冲上升沿,输出 Q 变为低电平。

实验四 基本RS触发器和D触发器

实验四   基本RS触发器和D触发器

实验四基本RS触发器和D触发器一、实验目的1.熟悉并验证触发器的逻辑功能;2.掌握RS和D触发器的使用方法和逻辑功能的测试方法。

二、实验预习要求1.预习触发器的相关内容;2.熟悉触发器功能测试表格。

三、实验原理触发器是一个具有记忆功能的二进制信息存储器件,是构成多种时序电路的最基本逻辑单元。

触发器具有两个稳定状态,即“0”和“1”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态。

1.基本RS触发器图实验4.1为由两个与非门交叉耦合构成的基本RS触发器。

基本RS触发器具有置“0”、置“1”和“保持”三种功能。

通常称S为置“1”端,因为S=0时触发器被置“1”;R端为置“0”端,因为R=0时触发器被置“0”;当S =R =1时,触发器状态保持。

基本RS触发器也可图实验4.1 基本RS触发器以用两个“或非门”组成,此时为高电平有效置位触发器。

2. D触发器D触发器的状态方程为:Q n+1=D。

其状态的更新发生在CP脉冲的边沿,74LS74(CC4013)、74LS175(CC4042)等均为上升沿触发,故又称之为上升沿触发的边沿触发器,触发器的状态只取决于时钟到来前D端的状态。

D触发器应用很广,可用做数字信号的寄存、移位寄存、分频和波形发生器等。

四、实验仪器设备1、TPE-AD数字实验箱1台2、双D触发器74LS74 2片3、四两输入集成与非门74LS00 1片4、双通道示波器 1台五、实验内容及方法1.测试基本RS 触发器的逻辑功能按图实验4.1连接电路,用两个与非门组成基本RS 触发器,输入端S 、R 接逻辑开关的输出口,输出端Q 、Q 接逻辑电平显示灯输入接口,按表实验4.1的要求测试并记录。

表实验4.1 RS 触发器的逻辑功能2.测试D(1)测试D R 、D S 的复位、置位功能。

在D R =0,D S =1作用期间,改变D 与CP 的状态,观察 Q 、Q 状态。

在D R =1,D S =0作用期间,改变D 与CP 的状态,观察Q 、Q 状态。

实验4触发器及其应用

实验4触发器及其应用

实验四 触发器及其应用一、实验目的1、 掌握基本RS 、JK 、D 、T 触发器的逻辑功能;2、 熟悉集成触发器的逻辑功能及使用方法;3、 学会不同逻辑功能触发器之间的转换方法。

二、实验仪器及设备1、 EEL-II 型电工电子实验台2、 数字电路实验箱3、 万用表4、 直流稳压电源5、 参考元件 三、实验内容1、 基本RS 触发器逻辑功能测试,元件用74LS00QDDQQ(a)(b)图5.1基本RS 触发器结构图2、 D 触发器逻辑功能测试,元件用74LS74(双上升沿触发D 触发器) (1) 直接复位端R D 和直接置位端S D 的功能测试 (2) D 触发器的逻辑功能测试直接复位、置位端R D 、S D 接模拟电位开关,CP 接单脉冲发生器,并改变D 的状态,将测试结果填入表5.2中。

3、 JK 触发器功能测试,选用74LS112直接复位、置位端R D 、S D 接模拟电位开关,CP 接单脉冲发生器,并改变J 、K 的状态,将测试结果填入表5.3中。

4、用D触发器构成T’触发器Q 将D触发器的D端与Q端相连,构成T’触发器。

其逻辑功能为:Q n+1=n表示每来一个CP脉冲翻转一次。

有计数功能。

(1)在CP加入单脉冲观察翻转次数和CP输入正脉冲个数间的关系。

(2)CP端加连续脉冲,用示波器观察Q与Q波形,记录填表5.4,并画出波形图。

如图5.4所示。

CPQQ图5.3波形图5、用JK触发器接T和T’触发器(1)设计电路(2)测试功能并观察CP和Q的同步波形,体会触发器的分频作用。

四、实验报告1、整理实验数据,结果填入各表格,画出要求的有关电路图;2、依实验结果总结触发器的逻辑功能。

五、思考题1、何谓基本RS触发器的记忆功能?2、D触发器翻转条件及特点是什么?3、*D触发器实现可靠计数的基本思想是什么?六、器件介绍1、D触发器74LS74图5.2上升沿触发D 触发器74LS74符号2、 JK 触发器74LS11274LS112是双主从下降沿触发JK 触发器,其逻辑符号和管脚引线排列如图5.5所示。

实验四触发器及其应用

实验四触发器及其应用

实验四触发器及其应用实验四实验四实验目的1.掌握基本RS触发器、JK触发器、D触发器和T触发器的逻辑功能。

2.熟悉各类触发器之间逻辑功能的相互转换方法。

3.了解触发器的应用。

实验四实验内容1.测试基本RS触发器的逻辑功能★选做2.测试双JK触发器74LS73逻辑功能3.测试双D触器74LS74的逻辑功能★选做4.触发器的转换①②将JK触发器加上门电路转化成D触发器。

将D触发器加上连接,构成T’触发器。

5.触发器的应用,利用74175的D触发器构成下面电路。

①竞赛抢答电路①移位寄存器实验四实验原理触发器是组成时序逻辑电路的基本单元之一,具有记忆功能的二进制信息存贮器件。

在外加信号的作用下,触发器可以从一个稳定状态转变为另一个稳定状态。

RS触发器:图6—1所示电路为由两个“与非”门交叉耦合而成的基本RS触发器,它是无触发器:触发器时钟控制低电平低电平直接触发的触发器,有直接置位、复位的功能,是组成各种功能触发器低电平的最基本单元。

基本RS触发器也可以用两个“或非”门组成,它是高电平高电平直接触发的触高电平发器。

011100011置1保持置零保持实验四实验原理JK触发器:JK触发器:本实验采用74LS73型双JK触发器,其引脚排列如图6-3所示。

它是下降边沿触发器触发的边沿触发器,即在CP脉冲下降沿(“1→0”)触发翻转,有强迫置“0”功能R(RD),没有强迫置“1”的功能,在置D=1时,根据下表可以测试出其逻辑功能。

保持置1置0翻转翻转异步清零实验四实验原理D触发器:是另一种使用广泛的触发器,它的基本结构多为维持阻塞型。

D触发器触发器:触发器是在CP脉冲上升沿触发翻转,触发器的状态取决于CP脉冲到来之前D端的状态,状态方程为Qn+1=D本实验采用74LS74型双D触发器,是上升边沿触发的边沿触发器。

它采用维持阻塞结构,在CP脉冲上升沿(“0→1”)触发翻转。

触发器的次态Qn+1取决于CP脉冲的上升来到之前D的状态,但是S=0,R=1时强行置1,S=1,R=0时强行置0。

实验4 双稳态触发器

实验4  双稳态触发器

实验四 双稳态触发器一、实验目的1.熟悉并验证触发器的逻辑功能和触发方式。

2.掌握集成JK 和D 触发器的使用方法和逻辑功能的测试方法。

3.掌握用JK 或D 触发器组成分频器的方法。

二、实验原理及实验资科触发器是一个具有记忆功能的二进制信息存储器件,是构成多种时序电路的最基本逻辑单元。

触发器具有两个稳定状态,即"0"和"1",在适当触发信号作用下,触发器的状态发生翻转,即触发器可由一 个稳态转换到另一个稳态.当输入触发信号消失后,触发器翻转后的状态保持不变(记忆功能)。

根据电路结构的不同,触发器的触发方式不同,有电平触发,主从触发和边沿触发。

根据功能的不同,触发器有RS 触发器,JK 触发器,D 触发器,T 触发器,T ′触发器等类型。

集成触发器的主要产品是JK 触发器和D 触发器,其他功能的触发器可由JK , D 触发器进行转换。

电路结构和触发方式与功能无必然联系。

比如JK 触发器既有主从式的,又有边沿式的,而主从触发器和边沿触发器都有RS 、JK 、D 触发器。

1.带清除和预置端的高速CMOS 双JK 负沿触发器CC74HC112(74HC112) (1) 功能如表5-1所示。

(2) 外引线排列见图5-3。

2.带清除和预置端的TTL 维持一阻塞双D 触发器74LS74 (1) 功能见表5-2。

(2) 外引线排列见图5-2。

表5-1 74HC112功能表图5-3 74HC112外引线排列图表5-2 74LS74 功能表三、实验内容与步骤 (一) TTL 双D 触发器74LS74 1.复位、置位功能将芯片中一个触发器的R D 、S D 和D 端各接到实验箱的一个“0”、“1”电平开关或常“1”单次脉冲上,Q 和Q 各接到一个电平指示灯上。

接通芯片电源。

操作电平开关,仿照表5-3,完成D 触发器的复位、置位实验。

2.逻辑特性接线同1。

操作电平开关和按钮开关,完成表5-5规定的实验内容。

74Ls192

74Ls192

实验四触发器及其功能转换一、实验目的1、掌握基本RS、JK、D和T触发器的逻辑功能2、掌握集成触发器的逻辑功能及使用方法3、熟悉触发器之间相互转换的方法二、实验原理触发器具有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存贮器件,是构成各种时序电路的最基本逻辑单元。

1、基本RS触发器图4-1为由两个与非门交叉耦合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。

基本RS触发器具有置“0”、置“1”和“保持”三种功能。

通常称S为置“1”端,因为S=0(R=1)时触发器被置“1”;R为置“0”端,因为R=0(S=1)时触发器被置“0”,当S=R=1时状态保持;S=R=0时,触发器状态不定,应避免此种情况发生,表9-1为基本RS触发器的功能表。

基本RS触发器。

也可以用两个“或非门”组成,此时为高电平触发有效。

2、JK触发器在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。

本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。

引脚功能及逻辑符号如图4-2所示。

JK触发器的状态方程为Q n+1=J Q n+K Q nJ和K是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组成“与”的关系。

Q与Q为两个互补输出端。

通常把 Q=0、Q=1的状态定为触发器“0”状态;而把Q=1,Q=0定为“1”状态。

图4-2 74LS112双JK触发器引脚排列及逻辑符号下降沿触发JK触发器的功能如表4-2表4-2注:×— 任意态 ↓— 高到低电平跳变 ↑— 低到高电平跳变Q n (Q n )— 现态 Q n+1(Q n+1 )— 次态 φ— 不定态 JK 触发器常被用作缓冲存储器,移位寄存器和计数器。

3、D 触发器在输入信号为单端的情况下,D 触发器用起来最为方便,其状态方程为 Q n+1=D n,其输出状态的更新发生在CP 脉冲的上升沿,故又称为上升沿触发的边沿触发器,触发器的状态只取决于时钟到来前D 端的状态,D 触发器的应用很广,可用作数字信号的寄存,移位寄存,分频和波形发生等。

实验报告 触发器

实验报告 触发器

实验报告触发器实验报告:触发器引言:触发器是数字电路中常见的重要元件,它可以存储和控制信号的传输。

本实验旨在通过实际搭建触发器电路,了解其工作原理和应用。

一、实验目的本实验的目的是通过实际搭建触发器电路,掌握触发器的工作原理、特性和应用。

二、实验器材和原理2.1 实验器材:- 电路实验板- 电源- 电压表- 电流表- 逻辑门芯片- 连接线2.2 实验原理:触发器是一种存储器件,可以存储和控制信号的传输。

它由多个逻辑门组成,根据输入信号的不同,可以分为RS触发器、D触发器、JK触发器和T触发器等多种类型。

三、实验步骤3.1 搭建RS触发器电路首先,将两个逻辑门芯片连接在电路实验板上,一个作为RS触发器的输入端,另一个作为输出端。

然后,将电源和适当的电阻连接到逻辑门芯片上,以提供所需的电压和电流。

最后,根据电路图连接连线,搭建完整的RS触发器电路。

3.2 检验和调试电路在搭建好电路后,使用电压表和电流表检验电路的电压和电流是否正常。

如果有异常,需要及时排除故障。

然后,通过改变输入信号,观察输出信号的变化。

根据实验结果,对电路进行调试,确保触发器的正常工作。

3.3 测试触发器的特性在调试完电路后,可以进行一些实验来测试触发器的特性。

例如,可以通过改变输入信号的频率和占空比,观察输出信号的变化。

还可以通过改变逻辑门芯片的类型,比较不同类型触发器的性能差异。

四、实验结果和分析通过实验,我们可以得到触发器的工作特性和性能数据。

根据实验结果,我们可以分析触发器的优缺点,以及在数字电路设计中的应用。

五、实验总结触发器作为数字电路中的重要元件,在现代电子技术中得到了广泛应用。

通过本实验,我们深入了解了触发器的工作原理、特性和应用。

同时,我们也学会了搭建触发器电路、调试电路和分析实验结果的方法。

六、实验心得通过本次实验,我深刻认识到了触发器在数字电路中的重要性。

触发器可以存储和控制信号的传输,是数字电路中的核心部件之一。

触发器功能测试实验报告

触发器功能测试实验报告

触发器功能测试实验报告触发器功能测试实验报告一、引言触发器是数字电路中常见的重要元件之一,其具有存储和放大信号的功能。

触发器的功能测试是电子工程师在设计和制造数字电路时必不可少的一项工作。

本实验旨在通过对不同类型的触发器进行功能测试,验证其在不同工作模式下的正确性和稳定性。

二、实验目的1. 了解触发器的基本原理和工作模式;2. 掌握触发器的功能测试方法;3. 验证不同类型触发器的工作特性。

三、实验器材和材料1. 实验板;2. 电源供应器;3. 逻辑分析仪;4. 电压表;5. 连接线。

四、实验步骤1. 准备工作:将实验板连接好电源供应器和逻辑分析仪,并确保连接正确;2. 功能测试:依次测试RS触发器、D触发器、JK触发器和T触发器的工作特性。

五、实验结果与分析1. RS触发器测试:a. 将RS触发器的S端和R端分别接入逻辑分析仪的输入端,CLK端接入逻辑分析仪的时钟信号输出端;b. 通过逻辑分析仪观察输入信号和输出信号的波形,并记录下来;c. 分析波形,验证RS触发器在不同输入情况下的工作特性。

2. D触发器测试:a. 将D触发器的D端接入逻辑分析仪的输入端,CLK端接入逻辑分析仪的时钟信号输出端;b. 通过逻辑分析仪观察输入信号和输出信号的波形,并记录下来;c. 分析波形,验证D触发器在不同输入情况下的工作特性。

3. JK触发器测试:a. 将JK触发器的J端和K端分别接入逻辑分析仪的输入端,CLK端接入逻辑分析仪的时钟信号输出端;b. 通过逻辑分析仪观察输入信号和输出信号的波形,并记录下来;c. 分析波形,验证JK触发器在不同输入情况下的工作特性。

4. T触发器测试:a. 将T触发器的T端接入逻辑分析仪的输入端,CLK端接入逻辑分析仪的时钟信号输出端;b. 通过逻辑分析仪观察输入信号和输出信号的波形,并记录下来;c. 分析波形,验证T触发器在不同输入情况下的工作特性。

六、实验结论通过对RS触发器、D触发器、JK触发器和T触发器的功能测试,我们可以得出以下结论:1. RS触发器具有存储和放大信号的功能,可以用于实现简单的存储器和时序电路;2. D触发器可以将输入信号在时钟脉冲到来时存储,并在下一个时钟脉冲到来时输出;3. JK触发器是一种带有异步清零和置位功能的触发器,可以用于实现频率分割和计数器等电路;4. T触发器是一种特殊的JK触发器,其输入端和输出端相连,可以实现频率分割和频率加倍等功能。

multisim实验四实验报告

multisim实验四实验报告

multisim实验四实验报告仲恺农业⼯程学院实验报告纸__⾃动化学院_(院、系)__⼯业⾃动化__专业__144_班_电⼦线路计算机仿真课程实验四:触发器及其应⽤仿真实验⼀、实验⽬的1.掌握集成JK触发器和D触发器的逻辑功能及其使⽤⽅法。

2.熟悉触发器之间相互转换的设计⽅法。

3.熟悉Multisim中逻辑分析仪的使⽤⽅法。

⼆、实验设备PC机、Multisim仿真软件。

三、实验内容1.双JK触发器74LS112逻辑功能测试(1)创建电路创建如下图所⽰电路,并设置电路参数。

图4-1 74LS112逻辑功能测试(2)仿真测试①J1和J5分别74LS112的异步复位端输⼊,J2和J4分别为J、K数据端输⼊,J3为时钟端输⼊,X1和X2指⽰74LS112的输出端Q和Q_的状态。

②异步置位和异步复位功能测试。

闭合仿真开关拨动J1为“0”、J5为“1”,其他开关⽆论为何值,则74LS112被异步置“1”,指⽰灯X1亮,X2灭。

理解异步置位的功能。

拨动J1为“1”、J5为“0”,其他开关⽆论为何值,则74LS112被异步清“0”,指⽰灯X1灭,X2灭,理解异步复位的功能。

③74LS112逻辑功能测试⾸先拨动J1和J5,设定触发器的初态。

接着,拨动J1和J5均为“1”,使74LS112处于触发器⼯作状态。

然后,拨动J2-J4,观察指⽰灯X1和X2亮灭的变化,尤其注意观察指⽰灯令亮灭变化发⽣的时刻,即J3由“1”到“0”变化的时刻,从⽽掌握下降沿触发的集成边沿JK触发器的逻辑功能。

如下图所⽰:图4-2 JK触发器逻辑功能测试设定触发器的初态为Q = 1。

将J2置1后,再将J3置1,可以观察到此时触发器状态并⽆改变。

将J3清0,观察到输出Q = 1。

同样的,将J2清0,同时将J4置1,在J3由1->0的时刻,可以观察到Q = 0。

2.JK触发器构成T触发器(1)创建电路创建如图所⽰电路,并设置电路参数。

图4-3 74LS112构成T触发器(2)仿真测试①闭合仿真开关。

触发器实验报告

触发器实验报告

触发器实验报告一、实验目的1.1 探索触发器的基本原理触发器,简单来说,就是一个能在特定条件下改变状态的电路。

它就像一扇门,只有当你用力去推的时候,才会打开。

我们的目标是搞清楚这些“门”是如何工作的。

1.2 理解触发器在电路中的应用触发器的应用范围可广泛了。

无论是数据存储,还是控制逻辑,触发器都扮演着关键角色。

它们就像是信息的守门员,决定了什么能进,什么得被拒绝。

二、实验设备2.1 实验工具这次实验,我们用的是基本的逻辑电路组件。

包括电源、开关、LED灯,还有万用表。

这些东西就像是我们的小工具箱,缺一不可。

2.2 触发器模块我们选择了D型触发器,因其结构简单,易于理解。

它的工作原理就像是一个小孩的玩具,按一下按钮就会亮灯,放开就灭。

我们把它接入电路,准备好迎接它的“表现”。

2.3 安全措施在进行实验之前,安全可不能马虎。

我们确保电源关闭,检查所有连接,确保一切正常。

毕竟,安全第一,任何小失误都可能引发“大麻烦”。

三、实验过程3.1 连接电路首先,我们根据电路图连接所有元件。

小心翼翼地将电缆接入D型触发器。

电缆像是我们的手,仔细地操控每一个连接。

看到电路成形,心中有种莫名的期待。

3.2 测试触发器一切准备好后,开启电源。

按下开关,LED灯瞬间亮起。

那一刻,仿佛看到了触发器在欢呼。

又按一下,灯灭了,状态变化真是瞬息万变。

就像生活,时刻都在变化,让人惊喜。

3.3 数据记录我们开始记录每次实验的结果。

数据像是我们收集到的“宝藏”,每一组数字都有它的故事。

这种追踪过程,就像是在解谜,寻找背后的秘密。

四、实验结果4.1 状态变化通过几轮实验,我们观察到触发器在不同输入条件下的状态变化。

每一次按下开关,触发器都准确无误地改变状态,表现得相当稳定。

这让我想起一句话:“坚持就是胜利”。

4.2 误差分析当然,实验中也不是没有波折。

偶尔会出现状态不一致的情况。

这就引发了我们的讨论,究竟是接线问题,还是外部干扰。

最终,我们发现是接触不良导致的,改正后,一切恢复正常。

触发器实验报告

触发器实验报告

触发器实验报告一、实验目的。

本实验旨在通过实际操作,加深对触发器工作原理的理解,掌握触发器的使用方法,并能够准确地进行触发器的实验测量。

二、实验仪器与设备。

1. 示波器。

2. 信号发生器。

3. 电源。

4. 电路连接板。

5. 电阻、电容、开关等元器件。

三、实验原理。

触发器是一种能够存储和放大数字信号的电子元件,根据输入信号的不同,可以分为正边沿触发器和负边沿触发器。

在本实验中,我们将主要研究正边沿触发器的工作原理和特性。

四、实验步骤。

1. 将触发器电路连接至电源、示波器和信号发生器。

2. 调节信号发生器,产生不同频率和幅值的方波信号输入至触发器。

3. 观察示波器上输出的波形,并记录下触发器的工作状态。

4. 调节输入信号的频率和幅值,重复步骤3,得到更多的实验数据。

5. 对实验数据进行分析,总结触发器的特性和工作规律。

五、实验数据与分析。

通过实验我们得到了不同频率和幅值下触发器的输出波形,观察到了触发器的触发特性和稳态特性。

在输入信号达到一定条件时,触发器会输出稳定的高电平或低电平信号,这为数字电路的稳定工作提供了重要保障。

六、实验结论。

通过本次实验,我们深入了解了触发器的工作原理和特性,掌握了触发器的使用方法,能够准确地进行触发器的实验测量。

同时,我们也意识到了触发器在数字电路中的重要作用,为今后的学习和工作打下了坚实的基础。

七、实验心得。

通过动手操作,我们不仅加深了对触发器的理解,还提高了实际动手能力和实验数据处理能力。

实验中遇到的问题和挑战,也让我们更加谨慎和细致,为今后的学习和科研工作积累了宝贵的经验。

八、参考文献。

1. 《数字电子技术基础》,XXX,XXX出版社,XXXX年。

2. 《电子技术实验指导书》,XXX,XXX出版社,XXXX年。

以上为触发器实验报告内容,希望能对大家的学习和科研工作有所帮助。

触发器实验报告

触发器实验报告

触发器实验报告一、实验目的本次实验的主要目的是深入了解和掌握触发器的工作原理、功能特性以及在数字电路中的应用。

通过实际操作和观察,增强对触发器逻辑行为的直观认识,提高电路设计和故障排查的能力。

二、实验设备和材料1、数字电路实验箱2、示波器3、逻辑分析仪4、各种集成触发器芯片(如 D 触发器、JK 触发器等)5、电阻、电容、导线若干三、实验原理1、触发器的定义和分类触发器是一种能够存储一位二进制信息的基本单元电路,根据其逻辑功能的不同,可分为 D 触发器、JK 触发器、T 触发器和 SR 触发器等。

2、 D 触发器D 触发器在时钟脉冲 CP 的上升沿(或下降沿)将输入数据 D 锁存到输出端 Q。

其逻辑表达式为:Q(n+1) = D。

3、 JK 触发器JK 触发器具有置0、置1、保持和翻转四种功能。

当J=1,K=0 时,在时钟脉冲作用下触发器置 1;当 J=0,K=1 时,触发器置 0;当J=K=0 时,触发器保持原态;当 J=K=1 时,触发器翻转。

其逻辑表达式为:Q(n+1) =JQ(n)’ +K’Q(n)。

4、触发器的触发方式触发器的触发方式分为边沿触发和电平触发。

边沿触发是指在时钟脉冲的上升沿或下降沿触发,而电平触发是指在时钟脉冲为高电平或低电平时触发。

边沿触发方式可以有效地避免空翻现象,提高电路的可靠性。

四、实验内容和步骤1、 D 触发器实验(1)按照实验电路图,在实验箱上连接好 D 触发器电路,将输入信号 D 接逻辑电平开关,时钟信号 CP 接脉冲信号源。

(2)通过改变输入信号 D 的电平状态和时钟信号 CP 的脉冲,用示波器观察输出端 Q 和Q’的波形,并记录下来。

(3)分析输出波形与输入信号之间的关系,验证 D 触发器的逻辑功能。

2、 JK 触发器实验(1)类似地,连接好 JK 触发器电路,将 J、K 输入端分别接逻辑电平开关,时钟信号 CP 接脉冲信号源。

(2)设置不同的 J、K 输入组合,观察输出端 Q 和Q’的波形,并记录。

实验四多谐震荡器及单稳态触发器

实验四多谐震荡器及单稳态触发器
测量单稳态触发器的延时时间,得到最小延时时间为1ms,最大 延时时间为2ms,符合理论值。
复位功能
观察单稳态触发器的复位功能,发现当输入信号下降沿到来时, 输出信号迅速复位。
波形观察
观察单稳态触发器的输出波形,发现波形稳定,无明显失真。
结果分析
多谐震荡器实验结果表明,通过调整R、C参数,可以改变输出频率和占空比,实现 频率和占空比的精确控制。
感谢您的观看
单稳态触发器
单稳态触发器是一种具有记忆功能的电路,它能够在接收到外部信号时从稳态翻 转到暂态,并在一段时间后自动返回稳态。单稳态触发器由电阻器、电容器和晶 体管等元件组成,通过正反馈和定时元件的作用实现暂态的维持和控制。
02 多谐震荡器
多谐震荡器的工作原理
01
振荡原理
多谐震荡器利用正反馈原理,通过在电路中引入适当的延迟,使得电路
多谐震荡器的电路组成
放大器
偏置元件
多谐震荡器通常由一个放大器组成, 用于放大电路中的电压或电流信号。
偏置元件用于为放大器提供静态工作 点,并调节多谐震荡器的振荡幅度和 频率。
反馈网络
反馈网络是多谐震荡器的重要组成部 分,它由电阻、电容和电感等元件组 成,用于产生适当的延迟和正反馈。
多谐震荡器的性能指标
频率测量
通过示波器测量多谐震荡器的输 出频率,得到频率范围为1.2kHz
至1.8kHz,符合理论值。
波形观察
观察多谐震荡器的输出波形,发 现波形稳定,无明显失真。
占空比调整
通过改变多谐震荡器的R、C参数, 观察输出波形的占空比变化,发 现占空比可调范围为50%至70%。
单稳态触发器的实验结果
延时测量
实验四:多谐震荡器及单稳态触发 器

触发器功能测试实验报告

触发器功能测试实验报告

触发器功能测试实验报告引言触发器是数据库中一种强大的功能,用于在特定条件满足时自动触发某些操作。

本实验旨在测试触发器在数据库管理系统中的功能和效果。

通过本实验,我们将深入了解触发器的工作原理,并验证其可靠性和效率。

实验环境为了进行本实验,我们使用了以下软件和工具:•数据库管理系统:MySQL 5.7•开发环境:Visual Studio Code•编程语言:SQL•操作系统:Windows 10实验步骤步骤一:创建测试数据库首先,我们需要创建一个测试数据库,用于存储我们后续实验所需的表和数据。

在MySQL中,我们可以使用以下SQL语句来创建一个名为test_db的数据库:CREATE DATABASE test_db;步骤二:创建测试表接下来,我们需要在测试数据库中创建一些表,用于模拟实际应用中的数据操作。

假设我们要创建一个名为users的表,用于存储用户信息。

该表包含以下字段:id(整型,主键)、name(字符串,用户姓名)、age(整型,用户年龄)。

使用以下SQL语句可以在test_db数据库中创建users表:CREATE TABLE users (id INT PRIMARY KEY,name VARCHAR(255),age INT);步骤三:创建触发器在本实验中,我们将创建一个简单的触发器,用于在users表中插入新记录时自动更新一个计数器表。

假设我们要创建一个名为counter的表,用于存储插入users表的记录总数。

首先,我们需要在test_db数据库中创建counter表:CREATE TABLE counter (count INT);然后,我们可以使用以下SQL语句创建触发器:DELIMITER $$CREATE TRIGGER user_insert_trigger AFTER INSERT ON usersFOR EACH ROWBEGINUPDATE counter SET count=count+1;END;$$DELIMITER ;步骤四:测试触发器现在,我们已经完成了触发器的创建,可以进行测试了。

实验报告——触发器及其应用

实验报告——触发器及其应用

实验四项目名称:触发器及其应用一、实验目的1、了解基本RS、JK和D触发器的逻辑功能2、了解时钟对触发器的触发作用3、能用触发器设计基本的时序逻辑电路二、实验设备1、数字电路实验箱2、74LS112 74LS00 74LS74三、实验内容及步骤1、测试基本RS触发器的逻辑功能本实验是选取74LS00芯片(引脚如图4-7所示)中两个与非门交叉耦合而成,如图4-8所示。

根据图4-8连线,d S、d R端分别接在实验箱上的逻辑电平选择开关上,输出Q和Q分别接在实验箱上的LED电平指示上。

按表4-5选择输入状态,测试并记录结果。

图4-7 74LS00引脚图图4-8 基本RS触发器表4-5d S d R Q Q011110112、JK触发器(1) 测试置位端S D和复位端R D 的功能按表4-6,将74LS112芯片(引脚如图4-9所示)的R D、S D、J、K端分别接逻辑电平选择开关,CP 接实验箱中的单脉冲下降沿触发输出端,Q、Q端分别接至实验箱的LED电平指示上。

根据表4-6,确定R D,S D、J、K端状态,按下单脉冲触发按钮,测试并记录实验结果(表中“×”表示无关项,即可置于任意状态)。

图4-9 74LS112引脚图表4-6(2) 测试JK触发器的逻辑功能按表4-7,测试JK触发器的逻辑功能。

将CP接单脉冲下降沿触发输出端,J、K、R D、S D端分别接逻辑电平选择开关,Q端接在实验箱的LED电平指示上。

利用置位端S D和复位端R D的功能,根据表4-6预置现态Q n ,然后R D 、S D 端同时置“1”,J 、K 状态按表4-7设定。

按下单脉冲触发按钮,测试并记录结果。

表4-73、D 触发器(1) 测试置位端S D 、复位端R D 的功能。

将74LS74芯片(引脚如图4-10所示)的D 、S D 、R D 端分别接逻辑电平选择开关,CP 接实验箱中的单脉冲上升沿触发端输出端,Q 、Q 分别接在实验箱的LED 电平指示上。

触发器仿真实验报告

触发器仿真实验报告

触发器仿真实验报告一、实验目的咱做这个触发器仿真实验呢,就是想搞清楚这触发器到底是咋工作的呗。

就像探索一个神秘小盒子的内部机关一样,看看它怎么根据输入信号做出反应,然后输出啥样的结果。

这对咱理解数字电路里的存储单元和时序逻辑那可老重要了。

二、实验器材1. 电脑:这可是咱的主力军啊,没它啥都干不了。

就像厨师没锅一样,根本没法做菜。

2. 仿真软件:这软件就像一个魔法世界,在里面咱可以随便摆弄这些电路元件,看它们表演。

三、实验原理1. RS触发器- 这个RS触发器啊,就像是两个互相监督的小卫士。

R和S是两个输入端口,就像两个小卫士的耳朵,听着外面的命令。

当R = 0,S = 1的时候,它就像被S 小卫士下了命令,输出Q就变成1了,Q'(Q的反)就变成0了。

反过来,要是R = 1,S = 0呢,Q就变成0,Q'就变成1。

要是R和S都为0呢,它就保持原来的状态,就像两个小卫士都没听到新命令,那就按原来的来呗。

但是R和S不能同时为1啊,这就像两个小卫士不能同时下相反的命令,不然就乱套了。

2. D触发器- D触发器就简单多了,它就像一个听话的小跟班。

只有一个D输入端口,就像小跟班只听一个人的话。

每当时钟信号(CLK)来一个上升沿的时候,它就把D端的信号原封不动地送到输出Q端。

就好像老板(CLK)说“现在把你听到的汇报一下”,小跟班(D触发器)就把听到的(D端的值)汇报出来(送到Q端)。

- JK触发器就比较灵活啦。

J和K是输入端口,就像两个不同的决策选项。

当J = 0,K = 0的时候,它就像一个懒虫,保持原来的状态,啥也不想变。

当J = 0,K = 1的时候,不管原来Q是啥,它都会把Q变成0。

就像被K这个“否定大师”给否定了。

要是J = 1,K = 0呢,Q就会变成1。

最有趣的是当J = 1,K = 1的时候,每来一个时钟脉冲,Q就会翻转一下,就像一个调皮的小精灵,跳来跳去的。

四、实验步骤1. 创建电路- 打开仿真软件,就像打开一个装满电路零件的大仓库。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

74LS00 二输入端四与非门
1片
74LS74 双 D 触发器
1片
74LS76 双 J-K 触发器
1片
三、实验内容步骤及记录
1. 基本 RS 触发器功能测试: 两个 TTL 与非门首尾相接构成的基本 RS 触发器的电路。如图 5.1 所示。
(1)试按下面的顺序在 S R 端加信号:
S d =0 S d =1 S d =1
_
(2)当 S d 、 Rd 都接低电平时,观察 Q、Q 端的状态,当 S d 、 Rd 同时由低电平跳
_
_
为高电平时,注意观察 Q、Q端的状态,重复 3~5 次看 Q、Q端的状
态是否相同,以正确理解“不定” 状态的含义。
_
结论: 当 S d 、 Rd 都接低电平时,Q 和Q 端的状态不定。
2. 维持-阻塞型 D 触发器功能测试 双 D 型正边沿维持-阻塞型触发器 74LS74 的逻辑符号如图 4.2 所示。
实验四 触发器 实验报告
徐旭东 11180243
物理 112 班
一、实验目的
1. 熟悉并掌握 R-S、D、J-K 触发器的特性和功能测试方法。 2. 学会正确使用触发器集成芯片。 3. 了解不同逻辑功能 FF 相互转换的方法。
二Hale Waihona Puke 实验仪器及材料1. 实验仪器设备:双踪示波器、数字万用表、数字电路实验箱 2. 器件
四、实验结论
通过本次实验对各触发器得到的更加具体的了解。基本 RS 触发器是由两个与非门首尾交 叉构成的触发器,对输入信号具有置位、保持、复位的逻辑功能,有约束。同步 D 型触发器
有跟随和锁存功能,无约束问题。D 型边沿触发器由 CP 边沿触发逻辑功能,S d 、 Rd 端分
别具有异步置 1,置 0 功能,J-K 边沿触发器有保持,翻转 同步置 1 置 0 的功能,逻辑表
图中 S d 、 Rd 端为异步置 1 端,置 0 端(或称异步置位,复位
端),CP 为时钟脉冲端。试按下面步骤做实验:
图 4.2D 逻辑符号
_
(1)分别在 S d 、 Rd 端加低电平,观察并记录 Q、Q端的状态。
(2)令 S d 、 Rd 端为高电平,D 端分别接高,低电平,用点动脉
冲作为 CP,观察并记录当 CP 为 0、 、1、 时 Q 端状态的变化。
波形图
结论
图中上端波形为 cp,下端为 Qn 波形。由图可以看出 Q 为 下降沿有效,周期变为 cp 的 2 倍。
J-K 触发器与 D 触发器波形比较: 相同:两者的 Qn 周期都为 cp 的二分之一。 不同:对于 D 触发器,其 CP 为上升沿有效。对于 J-K 触发器,其 CP 为下降沿有效。
(3)当 S d = Rd =1、CP=0(或 CP=1),改变 D 端信号,观察 Q 端的状态是否变化?
整理上述实验数据,将结果填入下表 4.2 中。
表 4.2
Sd Rd
CP
D
01
X
X
10
X
X
11
0
11
1
11
0(1)
X
Qn
Qn+1
0
1
1
1
0
0
1
0
0
0
1
0
0
1
1
1
0
0
1
1
3. 边沿 J-K 触发器功能测试 双 J-K 负边沿触发器 74LS76 芯片的逻辑符号如图 4.3 所示。自拟实验步骤,测试其功 能,并将结果填入表 4.3 中,
达式为 Q n1 J Q n KQ n ,由 CP 边沿触发逻辑功能。T 型触发器是具有保持和翻转功
能的电路。T 等于 0 时状态不变,T=1 时状态翻转。T’触发器只有翻转功能,用 cp 控制。 由 2 种简便的方法可以构造。
R d =1 R d =1 R d =0
S d =1 R d =1
_
观察并记录触发器的 Q、Q端的状态,将结果填入
图 4.1 基本 RS 触发器电 路
下表 4.1 中,并说明在上述各种输入状态下,RS 执行的是什么逻辑功能?
Sd
Rd
表 4.1
Q
逻辑功能
0
1
1
0
置1
1
1
1
0
保持
1
0
0
1
置0
1
1
0
1
保持
图 4.3 J-K 逻辑符号
试按下面步骤做实验:
(1)分别在 S d 、 Rd 端加低电平,观察并记录 Q 端的状态。 (2)令 S d 、 Rd 端为高电平,J、K 端分别接高,低电平,用点动脉冲作为 CP,观察
并记录当 CP 为 0、、 1、 时 Q 端状态的变化。 整理上述数据并填写下表 4.3。
Sd
Rd
0
1
1
0
1
1
1
1
1
1
1
1
表 4.3
CP
J
K
Q
Qn+1
X
X
X
X
1
X
X
X
X
0
0
X
0
0
1
X
0
1
X
0
1
1
X
1
1
0
4. 触发器功能转换
_
将 D 与Q连接, J=K=1 形成 T’触发器。 接入连续脉冲,观察各触发器 CP 及 Q 端波形,比较两者关系。
波形图
结论
图中上端的波形为 cp,底下 的波形为 Qn,由图可以看到, Q 为上升沿有效,且周期为 cp 周期的 2 倍。
相关文档
最新文档