2008-2011江西财经大学概率论与数理统计期末试卷及答案
概率论与数理统计期末考试试题及参考答案
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
《概率分析与数理统计》期末考试试题及解答(DOC)
《概率分析与数理统计》期末考试试题及
解答(DOC)
概率分析与数理统计期末考试试题及解答
选择题
1. 以下哪个选项不是概率的性质?
- A. 非负性
- B. 有界性
- C. 可加性
- D. 全备性
答案:B. 有界性
2. 离散随机变量的概率分布可以通过哪个方法来表示?
- A. 概率分布函数
- B. 累积分布函数
- C. 概率密度函数
- D. 方差公式
答案:B. 累积分布函数
计算题
3. 一批产品有10% 的不合格品。
从该批产品中随机抽查5个,计算至少有一个不合格品的概率。
解答:
设事件 A 为至少有一个不合格品的概率,事件 A 的对立事件
为没有不合格品的概率。
不合格品的概率为 0.1,合格品的概率为 0.9。
则没有不合格品的概率为 (0.9)^5。
至少有一个不合格品的概率为 1 - (0.9)^5,约为 0.409。
4. 一个骰子投掷两次,计算至少一次出现的点数大于3的概率。
解答:
设事件 A 为至少一次出现的点数大于3的概率,事件 A 的对立事件为两次投掷点数都小于等于3的概率。
一个骰子点数大于3的概率为 3/6 = 1/2。
两次投掷点数都小于等于3的概率为 (1/2)^2 = 1/4。
至少一次出现的点数大于3的概率为 1 - 1/4,约为 0.75。
以上是《概率分析与数理统计》期末考试的部分试题及解答。
希望对你有帮助!。
《概率论与数理统计》期末考试答案
1单选(2分)同时掷2颗均匀骰子,X表示点数大于4出现的个数,则以下结果正确的是得分/总分∙A.P(X<2)=5/9∙B.P(X=0)=P(X=1)∙C.P(X=2)=4/9∙D.P(X>0)=1正确答案:B你没选择任何选项2单选(2分)设随机变量(X,Y)的联合概率密度为则以下结果正确的是得分/总分∙A.∙B.P(X<0.5)=0.5∙C.E(Y)=E(X)∙D.正确答案:D你没选择任何选项3单选(2分)设总体,是来自X的简单随机样本,表示中出现的个数。
以下结果正确的是得分/总分∙A.,其中“”表示近似服从。
∙B.∙C.∙D.正确答案:C你没选择任何选项4单选(2分)研究某企业生产某种产品的产量和单位成本,数据资料如下:用Excel计算得下面两张表:设一元线性回归模型为,则以下结果不正确的是得分/总分∙A.∙B.在显著水平为0.05下回归方程的检验是不显著的∙C.的置信水平为95%的置信区间为(-4.83596,-3.07806)∙D.在显著水平为0.05下回归方程的检验是显著的正确答案:B你没选择任何选项5单选(2分)设总体具有概率密度是待估未知参数。
设是简单随机样本,是样本均值,以下说法正确的是得分/总分∙A.的极大似然估计量是∙B.的矩估计量是∙C.似然函数∙D.的极大似然估计量是正确答案:B你没选择任何选项6单选(2分)有两个独立正态总体均未知,从总体X与Y中分别取得容量均为8的独立样本,计算得样本均值分别为和,样本方差分别为和,记,取显著水平为0.05,对于假设,以下哪个结果是正确的?(备用数据:.)得分/总分∙A.p_值=0.009∙B.拒绝域为T≥1.7531∙C.拒绝域为|T|≥2.1448∙D.拒绝域为T≥1.7613正确答案:C你没选择任何选项7单选(2分)设随机变量X服从参数为2的泊松分布,则以下结果正确的是得分/总分∙A.P(X≤1)=P(X=2)∙B.P(X≥2︱X≥1)=P(X≥1)∙C.E(X)=D(X)∙D.E(X)>D(X)正确答案:C你没选择任何选项8单选(2分)在区间(0,2)中随机取一数X,X的分布函数记为F(x),数学期望为E(X),方差为D(X),则以下结果正确的是得分/总分∙A.∙B.F(0.5)=0.5∙C.D(X)=1/3∙D.F(2.2)=0正确答案:C你没选择任何选项9单选(2分)设总体X的分布律为,其中0<θ<1为待估未知参数。
江财统计学期末考试题及答案(三套)
江西财经大学08-09第二学期期末考试试卷试卷代码:06003A 授课课时:48课程名称:统计学适用对象:挂牌试卷命题人试卷审核人一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题1分,共10分)1.要了解某市国有工业企业生产设备情况,则统计总体是( )A、该市国有的全部工业企业B、该市国有的每一个工业企业C、该市国有的某一台设备D、该市国有工业企业的全部生产设备2.抽样调查和重点调查的主要区别是()A、获取调查单位的方式不同B、调查的目的不同C、调查的单位不同D、两种调查没有本质区别3.三个班上学期统计学考试平均成绩分别是83、87和90分,且一、二班人数分别占总人数的25%和37%,则三个班统计学的总平均成绩是()A、数据不全,无法计算B、87.14分C、86.67分D、90.21分4.下列等式中,不正确的是()A、发展速度=增长速度+1B、定基发展速度=相应各环比发展速度的连乘积C、定基增长速度=相应各环比增长速度的连乘积D、平均增长速度=平均发展速度-15.某种产品报告期与基期比较产量增长26%,单位成本下降32%,则生产费用支出总额为基期的( )A、166.32%B、85.68%C、185%D、54%6.在简单随机重复抽样条件下,如果允许误差缩小为原来的一半,则样本容量就要增加到原来的( ) A 、5倍 B 、4倍 C 、3倍 D 、4.5倍7.2ˆ)(y y -∑是指( ) A 、残差平方和B 、回归平方和C 、总离差平方和D 、解释变差8.标准差系数抽象了( ) A 、总体指标数值大小的影响 B 、总体单位数多少的影响 C 、标志变异的影响D 、平均水平高低对离散分析的影响9.综合指数变形为加权算术平均数指数,其权数为( ) A 、该综合指数的分子 B 、该综合指数的分母 C 、固定权数D 、视具体情况而定10.简单算术平均数和加权算术平均数的计算结果相同是因为( ) A 、权数不等 B 、权数相等 C 、不存在权数作用 D 、变量值的作用 二、判断题(请在答题纸上写明题号后,在正确的命题后打√,在错误的命题后打×。
大学《概率论与数理统计》期末考试试卷含答案
大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。
《概率论与数理统计》期末考试试题及解答.doc
《概率论与数理统计》期末考试试题及解答一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)?P(B)?0.5,则A,B至少有一个不发生的概率为__________.答案:0.3解:P(A?B)?0.3即0.3?P(A)?P(B)?P(A)?P(AB)?P(B)?P(AB)?0.5?2P(AB)所以P(AB)?0.1P(?)?P(AB)?1?P(AB)?0.9.2.设随机变量X服从泊松分布,且P(X?1)?4P(X?2),则P(X?3)?______.答案:1?1e6解答:P(X?1)?P(X?0)?P(X?1)?e????e,??P(X?2)??22e??????2?? 由P(X?1)?4P(X?2) 知e??e?2?e2 即2????1?0 解得??1,故P(X?3)?1?1e 623.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y?X在区间(0,4)内的概率密度为fY(y)?_________.答案:0?y?4,fY(y)?FY?(y)?fX? 0,其它.?解答:设Y的分布函数为FY(y),X的分布函数为FX(x),密度为fX(x)则FY(y)?P(Y?y)?P(X?2y)?y?)yX)Xy? ?)y 因为X~U(0,2),所以FX(?0,即FY(y)?FX故10?y?4,fY(y)?FY?(y)?fX? 0,其它.?另解在(0,2)上函数y?x2严格单调,反函数为h(y)?所以0?y?4,fY(y)?fX? ?0,其它.?24.设随机变量X,Y相互独立,且均服从参数为?的指数分布,P(X?1)?e,则??_________,P{min(X,Y)?1}=_________.答案:??2,P{min(X,Y)?1}?1?e-4解答:P(X?1)?1?P(X?1)?e???e?2,故??2P{min(X,Y)?1}?1?P{min(X,Y)?1}?1?P(X?1)P(Y?1)?1?e?4.5.设总体X的概率密度为???(??1)x,0?x?1, f(x)?? ???1. ?其它?0,X1,X2,?,Xn是来自X的样本,则未知参数?的极大似然估计量为_________.答案:???11nlnxi?ni?1?1解答:似然函数为L(x1,?,xn;?)??(??1)xi??(??1)n(x1,?,xn)?i?1nlnL?nln(??1)??n?lnxi?1ni解似然方程得?的极大似然估计为dlnLn???lnxi?0 d???1i?12?? ?11n?lnxini?1?1.二、单项选择题(每小题3分,共15分)1.设A,B,C为三个事件,且A,B相互独立,则以下结论中不正确的是(A)若P(C)?1,则AC与BC也独立.(B)若P(C)?1,则A?C与B也独立.(C)若P(C)?0,则A?C与B也独立.(D)若C?B,则A与C也独立. ()答案:(D).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D).事实上由图可见A与C不独立.2.设随机变量X~N(0,1),X的分布函数为?(x),则P(|X|?2)的值为(A)2[1??(2)]. (B)2?(2)?1.(C)2??(2). (D)1?2?(2). ()答案:(A)解答:X~N(0,1)所以P(|X|?2)?1?P(|X|?2)?1?P(?2?X?2)(2)??(?2)?1?[2?(2?) ?1??1]?2?[1 ? 应选(A).3.设随机变量X和Y不相关,则下列结论中正确的是(A)X与Y独立. (B)D(X?Y)?DX?DY.(C)D(X?Y)?DX?DY. (D)D(XY)?DXDY. () 3答案:(B)解答:由不相关的等价条件知,?xy?0?cov(x,y)?0 D(X?Y)?DX?DY+2cov (x,y)应选(B).4.设离散型随机变量X和Y的联合概率分布为(X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3) P111169183??若X,Y独立,则?,?的值为(A)??29,??19. (A)??129,??9.(C)??16,??16 (D)??518,??118.4 )(答案:(A)解答:若X,Y独立则有??P(X?2,Y?2)?P(X?2)P(Y?2) 1121 ?(????)(??)?(??) 393921 ???,??99 故应选(A).5.设总体X的数学期望为?,X1,X2,?,Xn为来自X的样本,则下列结论中正确的是(A)X1是?的无偏估计量. (B)X1是?的极大似然估计量.(C)X1是?的相合(一致)估计量. (D)X1不是?的估计量. ()答案:(A)解答:EX1??,所以X1是?的无偏估计,应选(A).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设A?‘任取一产品,经检验认为是合格品’B?‘任取一产品确是合格品’则(1)P(A)?P(B)P(A|B)?P()P(A|)?0.9?0.95?0.1?0.02?0.857.(2)P(B|A)?四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.5 P(AB)0.9?0.95??0.9977. P(A)0.857解:X的概率分布为P(X?k)?C3()()k25k353?kk?0,1,2,3.X即X的分布函数为P02712515412523612538 125x?0,?0,?27?,0?x?1,?125??81,1?x?2, F(x)???125?117 2?x?3,?125,?x?3.?1,?26EX?3??,552318DX?3???.5525五、(10分)设二维随机变量(X,Y)在区域D?{(x,y)|x?0,y?0,x?y?1} 上服从均匀分布. 求(1)(X,Y)关于X的边缘概率密度;(2)Z?X?Y的分布函数与概率密度.(1)(X,Y)的概率密度为?2,(x,y)?Df(x,y)??0,其它.?fX(x)?(2)利用公式fZ(z)? 其中f(x,z?x)????????????2?2x,0?x?1f(x,y)dy??0,其它??f(x,z?x)dx?2,0?x?1,0?z?x?1?x?2,0?x?1,x?z?1.??0,其它??0,其它.当z?0或z?1时fZ(z)?0 0?z?1时fZ(z)?2?z0dx?2x0?2zz6故Z的概率密度为??2z,0?z?1,fZ(z)????0,其它.Z的分布函数为fZ(z)??z??z?0?0,?0,z?0,?z??fZ(y)dy???2ydy,0?z?1??z2,0?z?1, 0??1,z?1.?z?1??1,或利用分布函数法?z?0,?0,?FZ(z)?P(Z?z z1,)?P(X?Y?)z,y0??????2dxd?D1?1,z?1.??0,?2, ??z?1,?z?0,0?z?1, z?1.?2z,?0,0?z?1,其它.fZ(z)?FZ?(z)??六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,2)分布. 求(1)命中环形区域D?{(x,y)|1?x?y?2}的概率;(2)命中点到目标中心距离Z?1)P{X,Y)?D}?222.??f(x,y)dxdyD???2??4D?x2?y28dxdy? 18?r282??2?21e?r28rdrd??(2)EZ?E? ?21e?r28d(?)??e 82??e?e;1?18?12 ?? ??r28 ????1e?04 ???1e8??x2?y28dxdy?18???2???0re?rdrd??r28r2dr7??rer2?8????0??0e?r28dr??????r28dr?.七、(11分)设某机器生产的零件长度(单位:cm)X~N(?,?2),今抽取容量为16的样本,测得样本均值?10,样本方差s2?0.16. (1)求?的置信度为0.95的置信区间;(2)检验假设H0:?2?0.1(显著性水平为0.05).(附注)t0.05(16)?1.746,t0.05(15)?1.753,t0.025(15)?2.132,解:(1)?的置信度为1??下的置信区间为(?t?/2(n?222?0.05(16)?26.296,?0.05(15)?24.996,?0.025(15)?27.488. ?t?/2(n??10,s?0.4,n?16,??0.05,t0.025(15)?2.132所以?的置信度为0.95的置信区间为(9.7868,10.2132)2 (2)H0:?2?0.1的拒绝域为?2???(n?1).15S22?15?1.6?24,?0.05 ??(15)?24.996 0.12 因为?2?24?24.996??0.05(15),所以接受H0.2《概率论与数理统计》期末考试试题(A)专业、班级:姓名:学号:一、单项选择题(每题3分共18分)891011121314151617《概率论与数理统计》课程期末考试试题(B)专业、班级:姓名:学号:181920212223242526272829共8页30。
概率论和数理统计期末考试题及答案
概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
2008-2011江西财经大学概率论与数理统计期末试卷及答案
2008-2011江西财经大学概率论与数理统计期末试卷及答案D)(C432171717372X X X X +++ )(D 321313131X X X ++4.在假设检验中,原假设0H ,备择假设1H ,显著性水平α,则检验的功效是指( ) )(A 为假}接受00|{H H P (B )为假}拒绝00|{H H P)(C 为真}接受00|{H H P )(D 为真}拒绝00|{H H P 5. 设),,,(21n X X X 为来自正态总体),(2σμN 的样本,μ已知,未知参数2σ的置信度α-1的置信区间为( ))(A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--∑∑=-=)()(,)()(221222112n X n X n i i n i i ααχμχμ )(B ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---==∑∑)()(,)()(221122212n X n X ni i n i i ααχμχμ )(C ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----∑∑=-=)1()(,)1()(221222112n X n X n i i n i i ααχμχμ )(D ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==∑∑)1()(,)1()(221122212n X n X ni i n i i ααχμχμ三、计算题(要求在答题纸上写出主要计算步骤及结果。
本题10分)两台车床加工同样的零件,第一台出现废品的概率为03.0,第二台出现废品的概率为02.0,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍。
(1)求任取一个零件是合格品的概率;(2)如果任取一个零件是废品,求它是第二台机床加工的概率。
四、计算题(要求在答题纸上写出主要计算步骤及结果。
本题10分)设两个总体X 与Y 都服从正态分布)3,20(N ,今从总体X 与Y 中分别抽得容量101=n ,152=n 的两个相互独立的样本,Y X 、分别是总体X 与Y 的样本均值,求}5.0|{|>-Y X P 。
概率论及数理统计期末试卷习题及标准答案.doc
概率论及数理统计期末试卷习题及标准答案.doc概率论与数理统计期末试卷及答案一、填空题:1、一袋中有50 个球,其中20 个红球, 30 个白球,现两人从袋中各取一球,取后不放回,则第二个人取到白球的概率为3/5。
2、设 P(A)=1/2, P(B|A)=1/3, P(A|B)=1/2,那么P( A U B )2/3。
3、若随机变量X 的概率密度为 f ( x ) Ax 2 , 1 x 1, 那么A=3/2。
4、若二维随机变量(X,Y )在以原点为圆心的单位圆内的概率密度函数是1/,其它区域都是 0,那么P( X2Y 21 )1/2。
25、掷 n 枚骰子,记所得点数之和为X,则 EX = 。
6、若 X, Y, Z 两两不相关,且DX=DY=DZ=2,则 D(X+Y+Z) = 6 。
7、若随机变量X1 , X 2 ,L , X n相互独立且同分布于标准正态分布N(0,1) ,那么它们的平方和 X 12 X 22 L X n2 服从的分布是2 ( n) 。
8、设n A是 n 次相互独立的试验中事件A 发生的次数,p是事件 A 在每次试验中发生的概率,则对任意的n Ap | } =0 。
0 ,lim {|n n9 、设总体X : N ( , 2 ),其中 2 已知,样本为X 1 , X 2 ,L , X n,设 H 0 :0 ,H 1 :X 0z 。
0 ,则拒绝域为n10、设总体 X 服从区间 [1, a] 上的均匀分布,其中 a 是未知参数。
若有一个来自这个总体的样本 2, , , , , 那么参数 a 的极大似然估计值$2.7 。
a = max{ x1 , x2 ,L , x n }二、选择题1、设10 张奖券只有一张中奖,现有10 个人排队依次抽奖,则下列结论正确的是( A )(A)每个人中奖的概率相同;( B)第一个人比第十个人中奖的概率大;(C)第一个人没有中奖,而第二个人中奖的概率是1/9 ;(D)每个人是否中奖是相互独立的2、设随机变量 X 与 Y 相互独立,且X : N (1, 2 ) ,Y : N ( 2 ,2),则X Y 服从的分布是( B )(A)N ( 1 2 , 2 ) ;(B)N ( 1 2 ,2 2 ) ;(C)N ( 1 2 , 2 ) ;(D)N ( 1 2 , 2 2 ) 3、设事件A、 B 互斥,且P ( A) 0 , P( B ) 0 ,则下列式子成立的是( D )( A)P( A | B )P( A) ;(B)P( B | A)0 ;( C)P( A | B ) P( B) ;( D)P( B | A) 0 ;4、设随机变量 X 与 Y 独立同分布, P(X= -1) = P(Y= -1) =1/2 ,P(X= 1) = P(Y= 1) =1/2 ,则下列成立的是( A )( A)P( X Y ) 1 / 2 ;( B)P( X Y ) 1 ;( C)P( X Y 0) 1/ 4 ;( D)P( XY 1) 1/ 4 ;5、有 10 张奖券,其中8 张 2 元, 2 张 5 元。
《概率论与数理统计》期末考试试题及答案
《概率论与数理统计》期末考试试题及答案一、选择题(每题5分,共25分)1. 设随机变量X的分布函数为F(x),以下哪个选项是正确的?A. F(x)是单调递增的函数B. F(x)是单调递减的函数C. F(x)是连续的函数D. F(x)是可导的函数答案:A2. 设随机变量X和Y相互独立,以下哪个选项是正确的?A. X和Y的协方差为0B. X和Y的相关系数为0C. X和Y的联合分布等于X和Y的边缘分布的乘积D. X和Y的方差相等答案:C3. 设随机变量X服从参数为λ的泊松分布,以下哪个选项是正确的?A. E(X) = λB. D(X) = λC. E(X) = λ²D. D(X) = λ²答案:A4. 在假设检验中,以下哪个选项是正确的?A. 显著性水平α越大,拒绝原假设的证据越充分B. 显著性水平α越小,接受原假设的证据越充分C. 显著性水平α越大,接受原假设的证据越充分D. 显著性水平α越小,拒绝原假设的证据越充分答案:D5. 以下哪个选项不是统计量的定义?A. 不含未知参数的随机变量B. 含未知参数的随机变量C. 不含样本数据的随机变量D. 含样本数据的随机变量答案:B二、填空题(每题5分,共25分)6. 设随机变量X和Y的方差分别为DX和DY,协方差为Cov(X,Y),则X和Y的相关系数ρ的公式为______。
答案:ρ = Cov(X,Y) / √(DX × DY)7. 设随机变量X服从标准正态分布,则X的数学期望E(X) = ______,方差D(X) = ______。
答案:E(X) = 0,D(X) = 18. 设总体X的方差为σ²,样本容量为n,样本方差为s²,则样本方差的期望E(s²) = ______。
答案:E(s²) = σ²9. 在假设检验中,原假设和备择假设分别为H₀: μ = μ₀和H₁: μ ≠ μ₀,其中μ为总体均值,μ₀为某一常数。
(完整版)江西财经大学概率论与数理统计期末试题
(完整版)江西财经大学概率论与数理统计期末试题江西财经大学12—13第二学期期末考试试卷课程代码:03054(B )授课课时:64 考试用时:110分钟课程名称:概率论与数理统计(主干课程)适用对象:11级经管类本科生试卷命题人:试卷审核人:一、填空题(将正确答案写在答题纸的相应位置,答错或未答,该题不得分。
每小题3分,共15分。
)1. 设8.0)(,6.0)(,5.0)(===A B P B P A P ,则事件A 与B 至少发生一个的概率为______.2. 10个朋友随机地并排坐在长桌的一边,则甲、乙两人坐在一起,且乙坐在甲左边的概率是 ______.3. 设正方形的边长X 服从区间[0,2]上的均匀分布,则正方形面积A =X 2的期望=______.4. 设总体X ~N (μ,σ2)(σ>0),X 1, X 2, X 3为来自该总体的样本,若3312121X aX X ++=μ)是参数μ的无偏估计,则常数a =______.5. 已知随机变量)(~n t T ,那么~2T ______.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。
答案选错或未选者,该题不得分。
每小题3分,共15分。
)1.设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )=().A. P (AB )B. P (A )C. P (B )D. 12. 下列关系式中成立的个数为().(1)A-(B-C)=(A-B)∪C (2)(A ∪B)-B=A(3)(A-B)∪B=A(4)AB 与A B 互不相容 A.0个;B.1个;C.2个;D.3个3. 设随机变量X 的概率密度函数为)(x f ,又X Y -=,则Y 的概率密度函数为().A. )(y f -;B. )(y f ;C. )(y f -; D . )(1y f -4. 设总体X ~N (0,12),从总体中取一个容量为6的样本X 1,…,X 6,设Y =(X 1+X 2+X 3)2+(X 4+X 5+X 6)2,若CY 服从2χ(2)分布,则C 为().A.3;B.31;C.9;D.91 5. 对正态总体的数学期望μ进行检验,如果在显著性水平0.05下,接受00:μμ=H ,那么在显著性水平0.01下,下列结论正确的是().A. 可能接受0H ,也可能拒绝0H ;B. 必接受0H ;C. 必拒绝0H ;D. 不接受0H ,也不拒绝0H三、计算题(要求在答题纸写出主要计算步骤及结果,12分。
江西财经大学数理统计2008年考研专业课真题
江西财经大学
2008年攻读硕士学位研究生入考试试卷
(A卷)
专业:统计学
考试科目:数理统计
重要提示:考生必须将所有答案写在答题纸上,本试题上的任何标记均不作判题依据
一、(10分)从(0.1)中随机取出两个数,求两数之各小于1.2的概率.
二、(10分)甲袋中有3个白球和2个黑球和4个白球和4个黑球,令从甲袋中任取2球入已袋中任取1球,求该球是白球的概率P;若已知从已袋中取出的球白球,求从甲袋中取出的球是一白一黑的概率q。
三、(10分)已知随知变量??~,求分子中的求知参
数a。
四、(15分)设随机变量X的分布函数
求X的概率密度及概率,,。
五、(15分)设每种商品的需求量X服从区间[10,30]上的均匀分布的随机变量,而经销商进货数量为区间[10,30]中的某一整数,商店每肖售一单位商品可获利500元;若供大于求则削价处理,每处理一单位商品亏损100元;若供不应求,则可从外部调剂供应,此时第一单位商品仅获利300元。
为使商品所获利润期望值不少于9280元,试确定最少进货量。
八、(15分)为了求出全国女性居民比例数P,进行随机抽样调查,设抽查n个居民,其中女性居民X个,则X~B(n,p),问n为多少方能使抽样误差小于0。
005的概率不小于99%。
《概率论与数理统计》期末考试试题及答案
(1)根据边缘概率与联合概率之间的关系得出-1 0 10 Nhomakorabea1
0
0
0
………….4分
(2)因为
所以 与 不相互独立
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)求 的边缘密度。
解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
1. 2. , 3. 4.
(1)如果 ,则 .
(2)设随机变量 的分布函数为
则 的密度函数 , .
(3)
(4) 设总体 和 相互独立,且都服从 , 是来自总体 的
样本, 是来自总体 的样本,则统计量
服从分布(要求给出自由度)。
三、(6分)设 相互独立, , ,求 .
解:0.88=
= (因为 相互独立)……..2分
求随机变量Y=2X+1的概率密度。
解:因为 是单调可导的,故可用公式法计算………….1分
当 时, ………….2分
由 ,得 …………4分
从而 的密度函数为 …………..5分
= …………..6分
六、(8分)已知随机变量 和 的概率分布为
而且 .
(1)求随机变量 和 的联合分布;
(2)判断 与 是否相互独立?
…………4分
即为[4.801,5.199]…………5分
令 ………..5分
于是 的最大似然估计:
。……….7分
十二、(5分)某商店每天每百元投资的利润率 服从正态分布,均值为 ,长期以来方差 稳定为1,现随机抽取的100天的利润,样本均值为 ,试求 的置信水平为95%的置信区间。( )
2008-211江西财经大学概率论与数理统计期末试卷及答案
江西财经大学2009-2010第二学期期末考试试卷试卷代码:03054C 授课课时:64 考试用时:150分钟课程名称:概率论与数理统计 适用对象:2010本科 试卷命题人 徐晔 试卷审核人 何明【本次考试允许带计算器。
做题时,需要查表获得的信息,请在试卷后面附表中查找】一、填空题(将答案写在答题纸的相应位置,不写解答过程。
每小题3分,共15分)1. 设A 和B 是任意两事件,则=))()((B A B A B A _________2. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>-=303271)(3x x x x F ,则=<<)52(X P _________3. 设随机变量)2,1(~,)1,2(~N Y N X ,且X 与Y 相互独立,则~42+-=Y X Z _________4. 设随机变量X 和Y 的数学期望分别为2和1,方差分别为1和4,而相关系数为5.0,则根据切比雪夫不等式≤≥--}61{Y X P _________5. 设总体X 的密度函数为⎪⎩⎪⎨⎧<<-=其他01)(b x a a b x f ,而n x x x ,,,21 为来自总体X 样本),,,(21b x x x a n << ,则未知参数a 最大似然估计值为_________,未知参数b 最大似然估计值为_________二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。
答案选错或未选者,该题不得分。
每小题3分,共15分)1. 设B A ,为两个随机事件,且1)(,0)(=>B A P B P ,则必有( ))(}{)()(}{)()(}{)()(}{)(B P B A P D A P B A P C B P B A P B A P B A P A ==>>2. 设随机变量()2,~σμN X ,而n X X X ,,,21 为来自总体X 的样本,样本均值和样本修正方差分别为X 和2*S ,1+n X 是对X 的又一独立样本,则统计量11+-=*+n n S X X Y n 是( ) )(A 服从()1,0N 分布 )(B 服从)1(-n t 分布)(C 服从)(2n χ分布 )(D 服从)1,(+n n F 分布 3. 设4321,,,X X X X 为来自总体),(~2σμN X 的样本,0≠=μEX ,02≠=σDX ,从无偏性、有效性考虑总体均值μ的最好的点估计量是( ))(A 432141414141X X X X +++ )(B 212121X X + )(C 432171717372X X X X +++ )(D 321313131X X X ++4.在假设检验中,原假设0H ,备择假设1H ,显著性水平α,则检验的功效是指( ) )(A 为假}接受00|{H H P (B )为假}拒绝00|{H H P)(C 为真}接受00|{H H P )(D 为真}拒绝00|{H H P 5. 设),,,(21n X X X 为来自正态总体),(2σμN 的样本,μ已知,未知参数2σ的置信度α-1的置信区间为( ))(A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--∑∑=-=)()(,)()(221222112n X n X n i i n i i ααχμχμ )(B ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---==∑∑)()(,)()(221122212n X n X n i i n i i ααχμχμ )(C ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----∑∑=-=)1()(,)1()(221222112n X n X n i i n i i ααχμχμ )(D ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==∑∑)1()(,)1()(221122212n X n X n i i n i i ααχμχμ三、计算题(要求在答题纸上写出主要计算步骤及结果。
《概率论与数理统计》期末考试试题及答案
《概率论与数理统计》期末考试试题及答案)B 从中任取3),(8a k k ==则Y X =产品中有12件是次品四、(本题12分)设⼆维随机向量(,)X Y 的联合分布律为\01210.10.20.12Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独⽴为什么五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X⼀、填空题(每⼩题3分,共30分) 1、ABC 或AB C 2、 3、2156311C C C 或411或 4、1 5、13 6、2014131555kX p 7、1 8、(2,1)N - ⼆、解设12,A A 分别表⽰取出的产品为甲企业和⼄企业⽣产,B 表⽰取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ========..... 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=?+?=................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ?=== ............................... 12分三、(本题12分)解 (1)由概率密度的性质知34=+-=+=故16k =. .......................................................... 3分 (2)当0x ≤时,()()0x F x f t dt -∞==?; 当03x <<时, 2011()()612xxF x f t dt tdt x -∞===??; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞==+-=-+-;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞?==+-=;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤< .................................. 9分(3) 77151411(1)22161248P X F F<≤=-=-=?? ????? .......................... 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = ........................................................... 4分0.40.30.3Xp ............................................... 6分120.40.6Y p ................................................... 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===?=,故{}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独⽴. .............................................. 12分五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞??==+-=+-=?........... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=.......................... 9分 221()()[()].6D XE X E X =-= ......................................... 12分⼀、填空题(每空3分,共45分)1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B)=2、设事件A 与B 独⽴,A 与B 都不发⽣的概率为19,A 发⽣且B 不发⽣的概率与B 发⽣且A 不发⽣的概率相等,则A 发⽣的概率为:;3、⼀间宿舍内住有6个同学,求他们之中恰好有4个⼈的⽣⽇在同⼀个⽉份的概率:没有任何⼈的⽣⽇在同⼀个⽉份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ??, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独⽴,则Z=max(X,Y)的分布律:;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独⽴,则D(2X-3Y)= ,1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ??≤≤?=其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ?;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ?<<其他求边缘密度函数(),()X Y x y ??;2)问X 与Y 是否独⽴是否相关计算Z = X + Y 的密度函数()Z1、(10分)设某⼈从外地赶来参加紧急会议,他乘⽕车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
概率论与数理统计期末考试试题及参考答案(最终)
概率论与数理统计复习题〔一〕一. 选择题:1、假设两个事件 A 和B 同时呈现的概率P(AB)= 0, 那么以下结论正确的选项是( ).(A) A 和B 互不相容.(C) AB 未必是不成能事件. 解此题答案应选(C).2x, x [0, c], (B) AB 是不成能事件.(D) P(A )=0 或P(B)=0.2、设f ( x) 如果c=( ), 那么f (x) 是某一随机变量的概率0, x [0, c].密度函数.1 1 3(A) . (B) . (C) 1. (D) .3 2 2c解由概率密度函数的性质 f ( x)dx 1可得 2 xdx 1, 于是c 1,故本题应选(C ).3、设X ~ N (0,1), 又常数c 满足P{ X≥c} P{ X c} , 那么c 等于( ).1(A) 1. (B) 0. (C) . (D) - 1.2解因为P{ X≥c} P{ X c} , 所以1 P{ X c} P{ X c} ,即2P{ X c} 1 , 从而P{ X c} ,即(c) , 得c=0. 因此此题应选(B).4、设X 与Y 彼此独立,且都从命N(, 2 ) , 那么有( ).(A) E( X Y) E(X ) E(Y) .(C) D( X Y)D(X) D (Y) .(B) E( X Y) 2 .(D) D(X Y) 2 2 .解注意到E(X Y) E(X)E(Y ) 0.由于X 与Y 彼此独立,所以D( X Y)D(X) D(Y) 2 2 . 选(D).25、设总体X 的均值μ与方差σ都存在但未知, 而X , X ,L , X 为来自X 的样1 2 n本, 那么均值μ与方差σ2 的矩估计量别离是() . 1nn(A) X 和S2. (B) X 和(D) X 和2(X ) .ii 1n1(C) μ和σ2. 解选(D).2( X i X ) . n i 1二、在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3 个白球; 第三箱装有 3 个黑球, 5 个白球. 现任取一箱, 再从该箱中任取一球。
《概率论与数理统计》期末考试试题及解答
( C) D ( X Y ) DX DY .
( D) D ( XY ) DXDY .
()
3
答案:( B)
解答:由不相关的等价条件知,
xy 0
D ( X Y ) DX DY +2cov( x, y)
应选( B ) .
cov( x, y) 0
4.设离散型随机变量 X 和 Y 的联合概率分布为
( X ,Y ) (1,1) (1,2) (1,3) (2,1)
解答: X ~ N (0,1) 所以 P(| X | 2) 1 P(| X | 2) 1 P( 2 X 2)
1 ( 2 ) ( 2 ) 1 [ 2 ( 2 ) 1] 2 [1
应选( A) .
3.设随机变量 X 和 Y 不相关,则下列结论中正确的是
( A ) X 与 Y 独立 .
( B) D ( X Y ) DX DY .
0, 其它 .
x f X ( x)
f ( x, y)dy
2 2x, 0 x 1 0 , 其它
( 2)利用公式 fZ (z)
f (x, z x) dx
2, 0 x 1,0 z x 1 x 2, 0 x 1, x z 1.
其中 f (x, z x) 0, 其它
0, 其它.
当 z 0 或 z 1时 fZ (z) 0
一、填空题(每小题 3 分,共 15 分)
1. 设事件 A, B 仅发生一个的概率为 0.3,且 P ( A) P(B ) 0.5 ,则 A, B 至少有一个不发
生的概率为 __________.
答案: 0.3 解:
P( AB AB) 0.3
即
0.3 P( AB ) P( AB) P(A) P( AB) P(B) P( AB) 0.5 2P( AB)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008-2011江西财经大学概率论与数理统计期末试卷及答案江西财经大学2009-2010第二学期期末考试试卷试卷代码:03054C 授课课时:64 考试用时:150分钟 课程名称:概率论与数理统计 适用对象:2010本科试卷命题人 徐晔 试卷审核人 何明【本次考试允许带计算器。
做题时,需要查表获得的信息,请在试卷后面附表中查找】 一、填空题(将答案写在答题纸的相应位置,不写解答过程。
每小题3分,共15分)1. 设A 和B 是任意两事件,则=))()((B A B A B A Y Y Y _________2. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>-=303271)(3x x x x F ,则=<<)52(X P _________3. 设随机变量)2,1(~,)1,2(~N Y N X ,且X 与Y 相互独立,则~42+-=Y X Z _________4. 设随机变量X 和Y 的数学期望分别为2和1,方差分别为1和4,而相关系数为5.0,则根据切比雪夫不等式≤≥--}61{Y X P _________5. 设总体X 的密度函数为⎪⎩⎪⎨⎧<<-=其他01)(bx a a b x f ,而n x x x ,,,21Λ为来自总体X 样本),,,(21b x x x a n <<Λ,则未知参数a 最大似然估计值为_________,未知参数b 最大似然估计值为_________二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。
答案选错或未选者,该题不得分。
每小题3分,共15分)1.设B A ,为两个随机事件,且1)(,0)(=>B A P B P ,则必有( ))(}{)()(}{)()(}{)()(}{)(B P B A P D A P B A P C B P B A P B A P B A P A ==>>Y Y Y Y2. 设随机变量()2,~σμN X ,而n X X X ,,,21Λ为来自总体X 的样本,样本均值和样本修正方差分别为X 和2*S ,1+n X 是对X 的又一独立样本,则统计量11+-=*+n n S X X Y n 是( ) )(A 服从()1,0N 分布 )(B 服从)1(-n t 分布)(C 服从)(2n χ分布 )(D 服从)1,(+n n F 分布3. 设4321,,,X X X X 为来自总体),(~2σμN X 的样本,0≠=μEX ,02≠=σDX ,从无偏性、有效性考虑总体均值μ的最好的点估计量是( ))(A 432141414141X X X X +++ )(B 212121X X +)(C432171717372X X X X +++ )(D 321313131X X X ++4.在假设检验中,原假设0H ,备择假设1H ,显著性水平α,则检验的功效是指( ) )(A 为假}接受00|{H H P (B )为假}拒绝00|{H H P)(C 为真}接受00|{H H P )(D 为真}拒绝00|{H H P 5. 设),,,(21n X X X Λ为来自正态总体),(2σμN 的样本,μ已知,未知参数2σ的置信度α-1的置信区间为( ))(A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--∑∑=-=)()(,)()(221222112n X n X n i i n i i ααχμχμ )(B ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---==∑∑)()(,)()(221122212n X n X ni i n i i ααχμχμ )(C ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----∑∑=-=)1()(,)1()(221222112n X n X n i i n i i ααχμχμ )(D ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==∑∑)1()(,)1()(221122212n X n X ni i n i i ααχμχμ三、计算题(要求在答题纸上写出主要计算步骤及结果。
本题10分)两台车床加工同样的零件,第一台出现废品的概率为03.0,第二台出现废品的概率为02.0,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍。
(1)求任取一个零件是合格品的概率;(2)如果任取一个零件是废品,求它是第二台机床加工的概率。
四、计算题(要求在答题纸上写出主要计算步骤及结果。
本题10分)设两个总体X 与Y 都服从正态分布)3,20(N ,今从总体X 与Y 中分别抽得容量101=n ,152=n 的两个相互独立的样本,Y X 、分别是总体X 与Y 的样本均值,求}5.0|{|>-Y X P 。
五、计算题(要求在答题纸上写出主要计算步骤及结果。
本题10分)设随机变量X 的密度函数为:⎩⎨⎧<<+=其它,0,10,)(2x Bx Ax x f 已知5.0)(=X E ,求(1)B A ,的值; (2)设2X Y =,求DY EY ,。
六、计算题(要求在答题纸上写出主要计算步骤及结果。
本题10分) 设某炸药厂一天中发生着火现象的次数X 的分布列为:)0,,2,1,0(!)(>===-λλλΛk k e k X P k ,λ未知,有以下250着火的次数k 0 1 2 3 4 5 6 发生k 次着75905422621火天数kη七、计算题(要求在答题纸上写出主要计算步骤及结果。
本题10分)某工厂生产一批滚珠, 其直径X 服从正态分布),(2σμN , 现从某天的产品中随机抽取6件, 测得直径为1.15,6.14,9.14,2.15,8.14,1.15,由样本观测值计算得样本修正方差为051.02=*S ,试求这批滚珠平均直径μ的%95的置信区间。
八、计算题(要求在答题纸上写出主要计算步骤及结果。
本题10分)某部门对当前市场的鸡蛋价格情况进行调查。
所抽查的全省19个集市上,算得平均售价为3.399元/500克。
根据以往经验,鸡蛋售价服从正态分布。
已知往年的平均售价一直稳定在3.25元/500克左右,标准差为0.262元/500克。
问在显著性水平0.05下,能否认为全省当前的鸡蛋售价明显高于往年?九、计算题(要求在答题纸上写出主要计算步骤及结果。
本题10分)为判断城市每月家庭消费支出y 与城市每月家庭可支配收入x 之间是否存在线性相关关x 800 1100 1400 1700 2000 2300 2600 2900 3200 3500y550630 1180 1250 1490 1600 2010 2100 2560 2650∑=101i ix=21500,∑=101i i y =16020,∑=1012i ix =53650000,∑=1012i iy =30460600,∑=101i i i y x =40353000(1)试建立城市每月家庭消费支出对城市每月家庭可支配收入的样本线性回归方程; (2)利用相关系数检验城市每月家庭消费支出与城市每月家庭可支配收入是否线性相关。
(05.0=α)附 表表1.)1,0(N 分布函数值表 x11.645 1.962.57 2.58 )(x Φ0.84130.95 0.9750.9949 0.995表2.3.18)10(295.0=χ9.16)9(295.0=χ26.6)15(2025.0=χ 26.7)15(205.0=χ 25)15(295.0=χ 5.27)15(2975.0=χ91.6)16(2025.0=χ96.7)16(205.0=χ3.26)16(295.0=χ 8.28)16(2975.0=χ表 3. 0150.2)5(95.0=t5706.2)5(975.0=t9432.1)6(95.0=t4469.2)6(975.0=t7291.1)19(95.0=t 093.2)19(975.0=t 6896.1)35(95.0=t0301.2)35(975.0=t 表 4.相关系数检验表576.0)10(,602.0)9(,632.0)8(05.005.005.0===λλλ江西财经大学09-10学年第二学期期末考试试卷评分标准试卷代码:03054C 授课课时:64课程名称:概率论与数理统计 适用对象:2008级试卷命题人 徐晔 试卷审核人 何明一、填空题(将答案写在答题纸的相应位置,不写解答过程。
每小题3分,共15分)1. AB2. 125983. )9,4(N4. 1215. },,,m in{ˆ21n L x x x a Λ= },,,max{ˆ21nL x x x b Λ=二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。
答案选错或未选者,该题不得分。
每小题3分,共15分)C B A B A三、计算题(要求在答题纸上写出主要计算步骤及结果。
本题10分)解: 设21A A 、分别表示取一个零件是由第一台车床、第二台车床加工的零件,则31)(32)(21==A P A P 21A A 、是一个完备事件组 (2分) 用B 表示取到的零件是合格品,B 表示取到的零件是废品,由题设02.0)(03.0)(21==A B P A B P(4分)(1)由全概率公式9733.098.03197.032)|()()|()()(2211=⨯+⨯=+=A B P A P A B P A P B P (7分) (2)如果任取一个零件是废品,它是第二台机床加工的概率25.09733.0102.031)()|()()|(222=-⨯==B P A B P A P B A P(10分)四、计算题(要求在答题纸上写出主要计算步骤及结果。
本题10分)解:由题设知:)153,20(~,)103,20(~N Y N X Y X 、相互独立 (4分))1,0(~5.0)5.0,0(~N YX N Y X -- 于是 (6分)3174.0))1(1(215.0}5.0|{|=-=⎭⎬⎫⎩⎨⎧>-=>-ΦY X P Y X P(10分)五、计算题(要求在答题纸上写出主要计算步骤及结果。
本题10分)解:(1) 由1)(-=⎰∞+∞dx x f 可得:12131)(102=+=+⎰B A dx Bx Ax (2分)由5.0)(-==⎰∞+∞dx x xf EX 可得:213141)(102=+=+⎰B A dx Bx Ax x (4分)6,6=-=∴B A(5分)(2).103)66()(102222=+-===⎰⎰∞+∞-dx x x x dx x f x EX EY (7分).71)66()(102444=+-==⎰⎰∞+∞-dx x x x dx x f x EX70037)103(71)(22242=-=-==EX EX DX DY (10分)六、计算题(要求在答题纸上写出主要计算步骤及结果。