关于损伤力学的建议与看法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于损伤力学的建议与看法
在别的论坛看到关于损伤力学的讨论,想起来几年前毕业的一位师兄在其论文中对损伤力学的讨论,现在发出来大家探讨一下
原文如下:
1.3 材料疲劳分析的损伤力学方法
目前,对汽轮机转子破坏过程的研究,基本采用的是线弹性断裂力学方法,其研究的是转子结构中具有明确几何边界的宏观裂纹问题。它从整体出发,对裂纹前沿的应力、应变、位移和能量场的分析,以确定控制裂纹行为的力学参数,来实现对裂纹扩展和转子安全性进行预测。而对裂纹萌生的宏观位置往往根据经验进行人为的假定。
事实上,实际转子服役过程中裂纹的萌生寿命往往很长,有的占总寿命的80%~90%。在这个阶段,材料内部微细观结构逐渐劣化,并逐步发展成为宏观裂纹[25,26,27],况且有些损伤现象并不导致断裂力学所描述的临界开裂,而且崩溃、失稳等。因此,对上述转子损伤现象进行定量的数学描述,对于转子结构的裂纹萌生及寿命预估是非常重要的。也是断裂力学无法解决的。目前,对于无裂纹转子虽能大致估计其致裂寿命,但不能定量描述裂纹的形成发展过程及确切位置和形貌,而且由于往往采用线性损伤累积理论,不能正确地反映转子材料的实际损伤发展情况,因此,其分析结果往往与实际偏差较大。
近三十年发展起来的连续介质损伤力学[28],它采用唯象学方法,引入表征损伤的内部状态变量,将损伤纳入热力学框架,重点研究微观缺陷对材料宏观整体平均力学特性的影响,因此,用损伤力学理论导得的结果,既能反映材料微观结构的变化,又能说明材料宏观力学性能的实际变化情况。可用于分析微裂纹的演化,宏观裂纹形成直至构件的完全破坏的整个过程,弥补了微观研究和断裂力学研究的不足。因此,损伤力学对于研究汽轮机转子结构在各种载荷环境条件下的灾变事故的产生和发展,进而对其进行复现与防治,有着极其重要的意义。
1.3.1 损伤力学发展概况
损伤力学的发端被公认为是1958年Kachanov 在研究金属蠕变时所做的工作,他在当时提出了连续性因子与有效应力的概念,并利用后者给出了前者的演化方程。1963年Rabotnov又定义了损伤因子的概念。在其后的一二十年当中,以Lemaitre,Chaboche,Hult,Lechie,Krajcinovic,Rousselier等为代表的一批学者,针对损伤力学的基本概念、方法等做了大量开创性的工作,这不仅使其框架渐渐明晰充实,而且还把它的适用领域从最初的蠕变分析,推广到对于弹性、塑性、粘塑性、脆性及疲劳等损伤现象的分析[29,30,31];而其所描述的材料,也从金属扩展到复合材料、陶瓷、混凝土等非(纯)金属材料。由于损伤力学已表现出可观的理论价值与应用前景,这使其逐步上升为固体力学的一个新兴分支,并已成为目前国内外力学界所关注的一个十分活跃的研究领域。
然而,从损伤力学发展的现状来看,其相当一部分工作是关于基本理论的,而关于损伤力学算法的研究则显得相对薄弱。目前,关于构件损伤分析的算例,一部分是针对简单受力情形的(如控制应力或控制应变的一维拉伸或纯剪),而对于复杂的问题则采用的是损伤耦合的有限元法。对含裂纹体的损伤力学分析也是该领域中特别引人注目的一个专题。已有的一些工作表明:无论是对于蠕变、塑性、脆性,还是对于疲劳,计及损伤的裂纹性质都显著有别于经典断裂力学中的理想情形。
这些工作虽然已将损伤力学从理论研究向实际应用朝前推进了一大步,但已有的进展还显得不够充分,尚有待于人们进一步的努力。
1.3.2损伤力学研究方法
用损伤力学方法对材料的力学特性进行研究,首先要对材料变形过程进行宏观和微观的实验观察,根据材料损伤演变的微观现象及其宏观表现,采用唯象方法,选择适当的损伤参数,作为本构关系中的内变量建立方程。如何建立能够正确反映材料的损伤本质的损伤演化方程,是未来工作的核心。
-----------------------------------------------------------------------------------
请问损伤力学如何学习?
前面有热力学的东西,头都大了!
张量也很令人费解!
有没有大侠指一条明路,谢谢!
------------------------------------------
张量是学习力学的入门知识,徐芝纶的《弹性力学简明教程》有论述。热力学的东西可以先略过,对学习损伤力学影响不大。
------------------------------------------
《损伤力学》,是在弹性力学的基础上,通过在本构方程中引入损伤变量,考虑材料的力学性能的劣化。学习损伤力学,张量分析是第一关,而张量其本身就是比较高深的东西,我的看法是,下狠工夫把张量学懂,国内比较好的教材有清华黄克智的《张量分析》,西安交大李开泰等的《张量分析及应用》,还有余天庆的《张量分析及演算》,如果哪里不懂,把它抄一遍,这是在较高层次的学习中很有效的办法。
至于《损伤力学》,国内出版了法国著名损伤力学家J.勒迈特的译著《损伤力学教程》(科学出版社,1996),还有清华余寿文,西安交大楼志文,以及余天庆《损伤理论及其应用》(国防工业出版社),杨光松《损伤力学与复合材料损伤》(国防工业出版社)等。
考虑损伤,结构分析才真实,其做为一门基础学科对结构专业很有帮助,好好学吧!
------------------------------------------
我还是第一次听说《损伤力学》,感觉好渺小啊!知识面太小了!现在感觉就是快补吧!顺便问一下,做为结构工程师,学习什么是最重要的
------------------------------------------
我不认为学习损伤力学可以跳过热力学而进行下去!损伤力学属于宏观连续介质力学,处理的是耗散系统,因整个的损伤过程为一不可逆过程,在损伤的不可逆过程中伴随着材料内部的能量耗散。作为一个不可逆热力学过程必须满足能量守恒方程(热力学第一定律)和熵不等式(热力学第二定律)。跳过热力学部分能真正理解损伤力学的概念和内容吗?
------------------------------------------
本人也认为学好损伤力学,张量分析、弹性力学、塑性力学、热力学是基础。但常见的张量分析教程一般讲述到二阶,而损伤张量往往为高阶(四阶、六阶等),对于高阶张量的展开存在相当的难度。各路高手推荐一下关于高阶张量的教程吧!
------------------------------------------
关于“高阶张量”的展开,在损伤力学的学习中确是件让人头疼的事。且正如楼上所说,“张量”的教材中几乎不讲高阶张量。其实。只要掌握二阶张量的展开,其余都可类推。
如果需要进一步学习,可参阅清华大学出版社黄克智的两本书《张量分析》及《固体本构关系》,另外多做一些练习是有帮助的。
------------------------------------------
刚参加完<损伤力学>的考试,感觉还不错.只是那么艰深的课程,老师竟然要求闭卷考,可苦坏了我们.
总的感觉,<损伤力学>很难学懂,里面一些概念都是全新的,又加进了热力学的第一第二定律,理解起来较费劲.但学习损伤力学还是可以有规律可循.
我的感觉是,一定要动手把书上的公式定理定律推导一遍,乃至几遍.很多东西我们看能看懂,但真正要自己背过课本写出来,并不是我们想象的那样,很顺利得到的.所以,一定要动手.
另外,多找一些相关的书籍辅助理解,必要时还得翻以前学过的知识.目前出版的教材起点较高,对学工的同学不利,这更需要我们多动手.
------------------------------------------
Lamaitre认为:任何对于损伤材料所建立的应变本构方程都可以用与无损伤材料同样的方式导出,但其中的应力替换为等效应力。说白了除了损伤张量的引入使得应力、应变在无损构形和实际构形存在转换外,与一般的固体力学的表达方式没有很大的差别。见笑!
------------------------------------------
小弟在读研期间跟余天庆老师学习过一段时间的损伤力学。
我感觉热力学部分的东西对于理解损伤理论,描述损伤的发展,累积过程是不可或缺的。
损伤理论分为能量损伤理论和几何损伤理论。
能量损伤理论根据能量守恒定律,一个受到力或其他作用影响的物体在损伤发生前和损伤发生后的能量是不会改变的。只是由于损伤发生,一部分应变能转变成热能或其他形式的能量。描述这个过程是能量损失理论(勒梅特一派)的关键,用到种种热力学知识,而且由于损伤发生以后是不可逆的,描述损伤的发展特别是累积也要用到了熵的理论。