选修2-2第一章推理与证明练习题

合集下载

(典型题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)

(典型题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)

一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种 2.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 3.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= A .()f xB .()f x -C .()g xD .()g x -4.图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的面积的和为( )A .nB .2nC .1n +D .1n -5.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立B .当7n =时该命题成立C .当9n =时该命题不成立D .当9n =时该命题成立6.用反证法证明命题①:“已知332p q +=,求证:2p q +≤”时,可假设“2p q +>”;命题②:“若24x =,则2x =-或2x =”时,可假设“2x ≠-或2x ≠”.以下结论正确的是( ) A .①与②的假设都错误 B .①与②的假设都正确 C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确7.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确8.一位数学老师在黑板上写了三个向量(,2)a m =,(1,)b n =,(4,4)c =-,其中m ,n 都是给定的整数.老师问三位学生这三个向量的关系,甲回答:“a 与b 平行,且a 与c 垂直”,乙回答:“b 与c 平行”,丙回答:“a 与c 不垂直也不平行”,最后老师发现只有一位学生判断正确,由此猜测m ,n 的值不可能为( ) A .3m =,2n =B .2m =-,1n =-C .2m =,1n =D .2m n ==-9.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .50510.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A .aB .bC .cD .d11.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( ) A .丁B .乙C .丙D .甲12.已知222233+=333388+=44441515+=m m m mt t+=()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( ) A .)22,⎡+∞⎣B .(),22-∞C .(),3-∞D .[1,3]二、填空题13.甲、乙、丙三位同学被问到是否去过,,A B C 三个城市时,甲说:我没去过C 城市;乙说:我去过的城市比甲多,但没去过B 城市;丙说:我们三人去过同一城市,由此可判断甲去过的城市为__________.14.我们称形如以下形式的等式具有“穿墙术”:222233=,333388=,44441515=,55552424=,…. 按照以上规律,若11111111n n=具有“穿墙术”,则n =_______. 15.在圆中:半径为r 的圆的内接矩形中,以正方形的面积最大,最大值为22r .类比到球中:半径为R 的球的内接长方体中,以正方体的体积最大,最大值为__________. 16.观察下列关系式:11x x +=+;()2112x x +≥+; ()3113x x +≥+;由此规律,得到的第n 个关系式为__________17.甲、乙、丙、丁四人商量去不去看一部电影,他们之间有如下对话:甲说:乙去我才去;乙说:丙去我才去;丙说:甲不去我就不去;丁说:乙不去我就不去.最终这四人中有人去看了这部电影,有人没去看这部电影,没有去看这部电影的人一定是__________. 18.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块. 19.已知数列{}n a 的前n 项和为n S ,且11n S n =+ , n *∈N . 算出数列的前4项的值后,猜想该数列的通项公式是__________.20.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是__________.三、解答题21.已知数列{}n a 的前n 项和为n S ,满足1n a ≥,且()241n n S a =+,n N +∈.(1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法予以证明.22.已知数列{}n a 满足:()1(2)1n n na n a +=+-,且16(11)(211)a ==+⨯+. (Ⅰ)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (Ⅱ)试用数学归纳法证明(Ⅰ)中的猜想. 23.已知数列{}n x 满足1111,,21n nx x x +==+其中n *∈N . (Ⅰ)写出数列{}n x 的前6项;(Ⅱ)猜想数列2{}n x 的单调性,并证明你的结论. 24.数列{}n a 的前n 项和为n S ,且满足()*12N n n na S n S =+-∈.(Ⅰ)求1S ,2S ,3S ,4S 的值;(Ⅱ)猜想数列{}n S 的通项公式,并用数学归纳法证明你的结论. 25.已知数列{}n a 各项均为正数,满足2333(1)122n n a n +⎛⎫+++= ⎪⎝⎭.(1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法证明你的结论.26.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.D解析:D 【分析】求出当n k =时,左边的代数式,当1n k =+时,左边的代数式,相减可得结果. 【详解】当n k =时,左边的代数式为11112k k k k++⋯++++, 当1n k =+时,左边的代数式为11111232122k k k k k k ++⋯++++++++, 故用1n k =+时左边的代数式减去n k =时左边的代数式的结果为:11111212212122k k k k k +-=-+++++,故选D . 【点睛】本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n k =到1n k =+项的变化,属于中档题.3.D解析:D 【解析】由归纳推理可知偶函数的导数是奇函数,因为()f x 是偶函数,则()()g x f x '=是奇函数,所以()()g x g x -=-,应选答案D .4.C解析:C 【分析】由图二,可以求出当1n =时,所有正方形的面积,结合选项即可排除A 、B 、D 选项. 【详解】由题意知,当1n =时,“勾股树”所有正方形的面积的和为2,当2n =时,“勾股树”所有正方形的面积的和为3,以此类推,可得所以正方形面积的和为1n +;也可以通过排除法,当1n =时,“勾股树”所有正方形的面积的和为2,选项A 、B 、D 都不满足题意,从而选出答案. 故选C. 【点睛】本题考查了归纳推理,考查了勾股定理的应用,属于基础题.5.A解析:A 【解析】分析:利用互为逆否的两个命题同真同假的原来,当()P n 对n k =不成立时,则对1n k =-也不成立,即可得到答案.详解:由题意可知,原命题成立的逆否命题成立, 命题()P n 对8n =不成立时,则()P n 对7n =也不成立, 否则当7n =时命题成立,由已知必推得8n =也成立, 与当8n =时命题不成立矛盾,故选A .点睛:本题主要考查了数学归纳法以及归纳法的性质,互为逆否的两个命题同真同假的性质应用,其中正确四种命题的关系是解答的关键,着重考查了推理与论证能力,属于基础题.6.C解析:C 【解析】分析:利用命题的否定的定义判断即可.详解:①2p q +≤的命题否定为2p q +>,故①的假设正确.2x =-或2x =”的否定应是“2x ≠-且2x ≠”② 的假设错误,所以①的假设正确,②的假设错误,故选C.点睛:本题主要考查反证法,命题的否定,属于简单题. 用反证法证明时,假设命题为假,应为原命题的全面否定.7.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题8.D解析:D 【解析】分析:讨论三种情况,甲判断正确,乙、丙判断不正确;乙判断正确,甲、丙判断不正确;丙判断正确,甲、乙判断不正确,由向量平行和垂直的条件,解方程结合选项即可得到结论.详解:若甲判断正确,乙、丙判断不正确, 可得2mn =且480m -+=,解得2,1m n ==, 则()()()2,2,1,1,4,4a b c ===-, 可得b 与c 不平行,a 与c 垂直, 则乙、丙判断不正确符合题意; 若判断正确,甲、丙判断不正确,可得44n -=且480m -+=且48m =-,解得2,1m n ==-或2,1m n =-=-, 则()()()2,2,1,1,4,4a b c ==-=- 或()()()2,2,1,1,4,4a b c =-=-=- 可得b 与c 不平行,a 与c 垂直, 则甲、丙判断不正确,符合题意; 若丙判断正确,甲、乙判断不正确, 可得480m -+≠且48m ≠-且44n -≠ 解得2m ≠且2m ≠-且1n ≠-,则3,2m n ==成立;2,1m n =-=-也成立;2,1m n ==也成立.2m n ==-,则甲乙丙判断均错.故选D.点睛:本题考查向量的平行和垂直的坐标表示,考查判断能力和运算能力,以及推理能力.9.D解析:D 【解析】n阶幻方共有2n个数,其和为()222112...,2n nn n++++=阶幻方共有n行,∴每行的和为()()2221122n nn nn++=,即()()2210110101,50522nn nN N+⨯+=∴==,故选D.10.A解析:A【解析】由题意得,甲同学说:1号门里是b,3号门里是c,乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c c,若他们每人猜对了一半,则可判断甲同学中1号门中是b是正确的;乙同学说的2号门中有d是正确的;并同学说的3号门中有c是正确的;丁同学说的4号门中有a是正确的,则可判断在1,2,3,4四扇门中,分别存有,,,b dc a,所以4号门里是a,故选A.点睛:本题主要考查了归纳推理问题,通过具体事例,根据各位同学的说法给出判断,其中正确理解题意,合理作出推理是解答此类问题的关键,同时注意仔细审题,认真梳理.11.D解析:D【分析】利用反证法,可推导出丁说的是真话,甲乙丙三人说的均为假话,进而得到答案.【详解】假定甲说的是真话,则丙说“甲说的对”也为真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故甲说的是谎话;假定乙说的是真话,则丁说:“反正我没有责任”也为真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故乙说的是谎话;假定丙说的是真话,由①知甲说的也是真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故丙说的是谎话;综上可得:丁说是真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,故甲负主要责任,故答案为甲【点睛】本题主要考查了命题真假的判断,以实际问题为背景考查了逻辑推理,属于中档题.解题时正确使用反证法是解决问题的关键.12.C解析:C【解析】分析:由等式归纳得出m和t的关系,从而得出关于m的恒等式,利用函数单调性得出最小值即可得出λ的范围.=21t m =-, 30m t λ--<恒成立,即220m m λ--<恒成立,m N *∈且2m ≥,222m m m mλ+∴<=+.令()2f m m m =+,()221f m m ='-,2m ≥,()0f m ∴'>,()f m ∴单调递增,∴当2m =时,()f m 取得最小值()23f =,3λ∴<.故选:C.点睛:若f (x )≥a 或g (x )≤a 恒成立,只需满足f (x )min ≥a 或g (x )max ≤a 即可,利用导数方法求出f (x )的最小值或g (x )的最大值,从而问题得解.二、填空题13.A 【解析】分析:一般利用假设分析法找到甲去过的城市详解:假设甲去过的城市为A 则乙去过的城市为AC 丙去过A 城市假设甲去过的城市为B 时则乙说的不正确所以甲去过城市不能为B 故答案为A 点睛:(1)本题主要考解析:A 【解析】分析:一般利用假设分析法,找到甲去过的城市.详解:假设甲去过的城市为A,则乙去过的城市为A,C ,丙去过A 城市.假设甲去过的城市为B 时,则乙说的不正确,所以甲去过城市不能为B.故答案为A.点睛:(1)本题主要考查推理证明,意在考查学生对该知识的掌握水平和推理能力.(2)类似本题的题目,一般都是利用假设分析推理法找到答案.14.120【解析】分析:观察所告诉的式子找到其中的规律问题得以解决详解:…则按照以上规律可得n=故答案为120点睛:本题考查了归纳推理的问题关键是发现规律属于基础题解析:120 【解析】分析:观察所告诉的式子,找到其中的规律,问题得以解决.详解:=,==,,….则按照以上规律=n=2111120-=故答案为120.点睛:本题考查了归纳推理的问题,关键是发现规律,属于基础题.15.【解析】分析:圆的内接矩形中以正方形的面积最大当边长等于时类比球中内接长方体中以正方体的体积最大棱长为详解:圆的内接矩形中以正方形的面积最大当边长时解得时类比球中内接长方体中以正方体的体积最大当棱长3R 【解析】时,类比球中内接长方体详解:圆的内接矩形中,以正方形的面积最大,当边长222a a (2)r +=时,解得a =时,类比球中内接长方体中,以正方体的体积最大,当棱长2222a a a (2)R ++=, 解得a R =时,正方体的体积为39R点睛:类比推理,理会题意抓住题目内在结构相似的推导过程,不要仅模仿形式上的推导过程。

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试(含答案解析)

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试(含答案解析)

一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 2.在数学归纳法的递推性证明中,由假设n k =时成立推导1n k =+时成立时,()f n =1+1112321n ++⋅⋅⋅+-增加的项数是( ) A .1B .21k +C .2kD .21k -3.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第n 个图案中正六边形的个数是()f n .由(1)1f =,(2)7f =,(3)19f ,…,可推出(10)f =( ) A .271B .272C .273D .2744.已知n 为正整数用数学归纳法证明2()135(21)f n n n =++++-=时,假设*(n k k N =∈)时命题为真,即2()f k k =成立,则当1n k =+时,需要用到的(1)f k +与()f k 之间的关系式是( )A .(1)()23f k f k k +=+-B .(1)()21f k f k k +=+-C .(1)()21f k f k k +=++D .(1)()23f k f k k +=++5.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .326.用数学归纳法证明 11151236n n n ++⋅⋅⋅+≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .112313233k k k +-+++C .11331k k -++ D .133k + 7.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.1258.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲B .乙C .丙D .丁9.用反证法证明“自然数,,a b c 中至多有一个偶数”时,假设原命题不成立,等价于( )A .,,a b c 没有偶数B .,,a b c 恰好有一个偶数C .,,a b c 中至少有一个偶数D .,,a b c 中至少有两个偶数10.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁11.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -12.下面推理过程中使用了类比推理方法,其中推理正确的是( )A .平面内的三条直线,若,则.类比推出:空间中的三条直线,若,则 B .平面内的三条直线,若,则.类比推出:空间中的三条向量,若,则C .在平面内,若两个正三角形的边长的比为,则它们的面积比为.类比推出:在空间中,若两个正四面体的棱长的比为,则它们的体积比为 D .若,则复数.类比推理:“若,则”二、填空题13.记I 为虚数集,设,,,a b R x y I ∈∈,则下列类比所得的结论正确的是__________.①由·a b R ∈,类比得·x y I ∈ ②由20a ≥,类比得20x ≥③由()2222a b a ab b +=++,类比得()2222x y x xy y +=++ ④由0,a b a b +>>-,类比得0,x y x y +>>- 14.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=15.设数列{}n a 的前n 项和为n S ,已知*()n n S n a n N =-∈,猜想n a =__________.16.在xOy 平面上,将双曲线的一支221916x y -=(0)x >及其渐近线43y x =和直线0y =、4y =围成的封闭图形记为D ,如图中阴影部分,记D 绕y 轴旋转一周所得的几何体为Ω,过(0,)y (04)y ≤≤作Ω的水平截面,计算截面面积,利用祖暅原理得出Ω体积为________17.对于自然数方幂和()12k kk k S n n =+++(n *∈N ,k *∈N ),1(1)()2n n S n +=,2222()12S n n =+++,求和方法如下:23﹣13=3+3+1, 33﹣23=3×22+3×2+1, ……(n +1)3﹣n 3=3n 2+3n +1,将上面各式左右两边分别,就会有(n +1)3﹣13=23()S n +13()S n +n ,解得2()S n =16n (n +1)(2n +1),类比以上过程可以求得54324()A B C D E F S n n n n n n =+++++,A ,B ,C ,D ,E ,F ∈R 且与n 无关,则A +F 的值为_______. 18.现有如下假设:所有纺织工都是工会成员,部分梳毛工是女工,部分纺织工是女工,所有工会成员都投了健康保险,没有一个梳毛工投了健康保险.下列结论可以从上述假设中推出来的是__________.(填写所有正确结论的编号) ①所有纺织工都投了健康保险 ②有些女工投了健康保险 ③有些女工没有投健康保险 ④工会的部分成员没有投健康保险19.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________.20.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为22n n+,记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数:211(,3)22N n n n =+;正方形数:2(,4)N n n =;五边形数:231(,5)22N n n n =-;六边形数:2(,6)2N n n n =-,…,由此推测(8,8)N =__________.三、解答题21.在数列{}n a 中,11a =,()*121n n n a a n N n++=+∈. (1)求2a 、3a 、4a 的值;(2)猜想{}n a 的通项公式,并用数学归纳法证明. 22.在数列{a n }中, a 1=1, 131nn n a a a +=+,n =1,2,3... (1)计算a 2, a 3, a 4的值,并猜想数列{a n }的通项公式. (2)用数学归纳法证明你的猜想. 23.当*n N ∈时,111111234212n S n n=-+-++--,11111232n T n n n n=+++++++ (Ⅰ)求1S ,2S ,1T ,2T ;(Ⅱ)猜想n S 与n T 的关系,并用数学归纳法证明. 24.已知数列11111,,,,,12233445(1)n n ⨯⨯⨯⨯⨯+,…的前n 项和为n S .(1)计算1234,,,S S S S 的值,根据计算结果,猜想n S 的表达式;(2)用数学归纳法证明(1)中猜想的n S 表达式. 25.设a >0,f (x )=axa x+,令a 1=1,a n +1=f (a n ),n ∈N *. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论. 26.已知数列{}n a 中,11a =,()122nn na a n N a ++=∈+ (1)求2a ,3a ,4a 的值,猜想数列{}n a 的通项公式; (2)运用(1)中的猜想,写出用三段论证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列时的大前提、小前提和结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出当n k =时,左边的代数式,当1n k =+时,左边的代数式,相减可得结果. 【详解】当n k =时,左边的代数式为11112k k k k++⋯++++, 当1n k =+时,左边的代数式为11111232122k k k k k k ++⋯++++++++, 故用1n k =+时左边的代数式减去n k =时左边的代数式的结果为:11111212212122k k k k k +-=-+++++,故选D . 【点睛】本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n k =到1n k =+项的变化,属于中档题.2.C解析:C 【解析】分析:分别计算当n k =时,()1?f k = + 1112321k ++⋅⋅⋅+-,当1n k =+成立时,()1?f k = + 1111123212221k k k k ++⋅⋅⋅+++⋅⋅⋅+-+-,观察计算即可得到答案 详解:假设n k =时成立,即()1?f k = + 1112321k ++⋅⋅⋅+- 当1n k =+成立时,()1?f k = + 1111123212221k k k k ++⋅⋅⋅+++⋅⋅⋅+-+- ∴增加的项数是()()221212k k k k +---=故选C点睛:本题主要考查的是数学归纳法。

高中数学选修2-2第一章《推理与证明》测试(答案解析)

高中数学选修2-2第一章《推理与证明》测试(答案解析)

一、选择题1.我国南宋数学家杨家辉所著的《详解九章算法》一书中记录了一个由正整数构成的三角形数表,我们通常称之为杨辉三角.以下数表的构造思路就来源于杨辉三角.( )从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数a ,则a 的值为( )A .100820182⨯B .100920182⨯C .100820202⨯D .100920202⨯2.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .3.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲B .乙C .丙D .丁4.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2D .至少有一个大于25.某单位实行职工值夜班制度,已知,,,,5A B C D E 共名职工每星期一到星期五都要值一次夜班,且没有两人同时值夜班,星期六和星期日不值夜班,若A 昨天值夜班,从今天起,B C 至少连续4天不值夜班,D 星期四值夜班,则今天是星期几( )A .五B .四C .三D .二6.设ABC ∆的三边长分别为a ,b ,c ,面积为S ,内切圆半径为r ,则()12S r a b c =++.类比这个结论可知:四面体S ABC -的四个面的面积分别为1S ,2S ,3S ,4S ,体积为V ,内切球半径为R ,则V =( )A .()1234R S S S S +++B .()123412R S S S S +++ C .()123413R S S S S +++ D .()123414R S S S S +++ 7.已知一列数按如下规律排列,1,3,-2,5,-7,12,-19,31,…,则第9个数是( ) A .50B .42C .-50D .-428.设a R ∈,则三个数2,2,23a a a a +++( ) A .都大于13B .都小于13C .至少有一个不大于13D .至少有一个不小于139.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .410.在等差数列{}n a 中,如果,,,m n p r N *∈,且3m n p r ++=,那么必有3m n p r a a a a ++=,类比该结论,在等比数列{}n b 中, 如果,,,m n p r N *∈,且3m n p r ++=,那么必有( )A .3++=m n p r b b b bB .3++=m n p r b b b b C .3=m n p r b b b bD .3m n p r b b b b =11.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A .aB .bC .cD .d12.如果把一个多边形的所有便中的任意一条边向两方无限延长称为一直线时,其他个边都在此直线的同旁,那么这个多边形就叫凸多边形.平行内凸四边形由2条对角线,凸五边形有5条对角线,以此类推,凸16变形的对角线条为( )A .65B .96C .104D .112二、填空题13.有甲、乙、丙、丁四位学生参加数学竞赛,其中只有一名学生获奖,有其他学生问这四个学生的获奖情况,甲说:“是乙或丙获奖”,乙说:“甲、丙都没有获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位学生的话有且只有两个人的话是对的,则获奖的学生是__________.14.设数列{}n a 的前n 项和为n S ,已知*()n n S n a n N =-∈,猜想n a =__________.15.观察下面数表: 1, 3,5, 7,9,11,13,15,17,19,21,23,25,27,29,………..设1027是该表第m 行的第n 个数,则m n +等于________.16.甲、乙、丙、丁四人商量去不去看一部电影,他们之间有如下对话:甲说:乙去我才去;乙说:丙去我才去;丙说:甲不去我就不去;丁说:乙不去我就不去.最终这四人中有人去看了这部电影,有人没去看这部电影,没有去看这部电影的人一定是__________.17.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________. 18.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.19.已知,,a b c 为三条不同的直线,给出如下两个命题:①若,a b b c ⊥⊥,则//a c ;②若//,a b b c ⊥,则a c ⊥.试类比以上某个命题,写出一个正确的命题:设,,αβγ为三个不同的平面,__________.20.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖__________________块.三、解答题21.已知数列{}n a 的前n 项和为n S ,且满足22n n S a n =+(1)求1a ,2a ,3a 的值,并猜想数列{}n a 的通项公式并用数学归纳法证明; (2)令11n n n b a a +=⋅,求数列{}n b 的前n 项和n T .22.已知数列{}n a 的前n 项和为n S ,且20S =,()*2n n S n na n N +=∈.(1)试写出数列{}n a 的任意前后两项(即n a 、1n a +)构成的等式; (2)用数学归纳法证明:()*23n a n n N=-∈.23.如图,已知点O 是ABC 内任意一点,连接AO 、BO 、CO ,并延长交对边于1A 、1B 、1C ,则1111111OA OB OC AA BB CC ++=,这是平面几何中的一个命题,其证明常采用“面积法”.运用类比猜想点O 是空间四面体A BCD -内的任意一点,连接AO 、BO 、CO 、DO ,并延长分别交面BCD 、ACD 、ABD 、ABC 于点1A 、1B 、1C 、1D ,试写出结论,并加以证明.24.已知函数()()211xx f x a a x -=+>+. (1)判断()f x 在()1,-+∞上的单调性并证明; (2)用适当的方法证明方程()0f x =没有负根. 25.用数学归纳法证明:()2135(21)N n n n ++++⋯+-=∈.26.给出下列等式: 1=1, 1-4=-(1+2), 1-4+9=1+2+3, 1-4+9-16=-(1+2+3+4), ……(1)写出第5个和第6个等式,并猜想第n(n ∈N *)个等式;(2)用数学归纳法证明你猜想的等式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据每一行的第一个数的变化规律即可得到结果. 【详解】解:第一行第一个数为:0112=⨯; 第二行第一个数为:1422=⨯; 第三行第一个数为:21232=⨯; 第四行第一个数为:33242=⨯;,第n 行第一个数为:1n 2n n a -=⨯;一共有1010行,∴第1010行仅有一个数:10091008a 1010220202=⨯=⨯; 故选C . 【点睛】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.2.C解析:C 【分析】 结合题意可知,代入数据,即可.【详解】A 选项,13不满足某个数的平方,故错误;B 选项,,故错误;C 选项,故正确;D 选项,,故错误.故选C. 【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.3.D解析:D 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁.【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾,假设乙打碎了玻璃,甲、乙说了谎,矛盾,假设丙打碎了玻璃,丙、乙说了谎,矛盾,假设丁打碎了玻璃,只有丁说了谎,符合题意,所以是丁打碎了玻璃;故选:D【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.4.D解析:D【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案.详解:因为1116a b cb c a+++++>与都不大于2矛盾,所以A错误.若1315,,2,343a b ab==+=<所以B错误.若111,,,222a b c<<<则a>2,b>2,c>2,所以C错误. 故答案为D点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.5.B解析:B【解析】分析:A昨天值夜班,D周四值夜班,得到今天不是周一也不是周五,假设今天是周二,则周二与周三B,C至少有一人值夜班,与已知从今天起B,C至少连续4天不值夜班矛盾;若今天是周三,则周五与下周一B,C至少有一人值夜班,与已知从今天起B,C至少连续4天不值夜班矛盾;由此得到今天是周四.详解:∵A昨天值夜班,D周四值夜班,∴今天不是周一也不是周五,若今天是周二,则周一A值夜班,周四D值夜班,则周二与周三B,C至少有一人值夜班,与已知从今天起B,C至少连续4天不值夜班矛盾;若今天是周三,则A周二值夜班,D周四值夜班,则周五与下周一B,C至少有一人值夜班,与已知从今天起B,C至少连续4天不值夜班矛盾;若今天是周四,则周三A值夜班,周四D值夜班,周五E值夜班,符合题意.故今天是周四.故答案为:B.点睛:(1)本题主要考查推理证明,意在考查学生对该知识的掌握水平和分析推理能力.(2)类似这种题目,一般利用假设分析法,先逐一假设,找到矛盾,就否定这种假设.6.C解析:C 【解析】分析:根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.详解:设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R , 所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和. 则四面体的体积为1234123411111()33333A BCD V S R S R S R S R S S S S R -=+++=+++ 故答案为:C.点睛:(1)本题主要考查类比推理和几何体体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力.(2)类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).7.C解析:C 【解析】分析:由题意结合所给数据的特征确定第九个数即可. 详解:观察所给的数列可知,数列的特征为:121,3a a ==,()213n n n a a a n --=-≥,则978193150a a a =-=--=-. 本题选择C 选项.点睛:本题主要考查数列的递推关系,学生的推理能力等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D 【解析】分析:由题意结合反证法即可确定题中的结论. 详解:不妨假设2,2,23a a a a +++都小于13, 由不等式的性质可知:()()()22231a a a a +++++<,事实上:()()()2223aa a a +++++245a a =++()2211a =++≥,与假设矛盾,故假设不成立,即2,2,23a a a a +++至少有一个不小于13. 本题选择D 选项.点睛:本题主要考查不等式的性质,反证法及其应用等知识,意在考查学生的转化能力和计算求解能力.9.C解析:C 【详解】分析:根据题意,利用类比推理的概念逐一判定,即可得到结论.详解:由题意,对于①中,根据复数的表示和复数的几何意义,可知“若复数12,z z ,则1212z z z z +≤+”是正确的;对于②中,根据平面与空间的类比推理可得:“在半径为R 的球内接长方体中,正方体的体积最大”是正确的;对于③中,由球的体积公式为343V R π=,其表面积公式为24S R π=,所以V S '=,所以是正确的;对于④中,如在极坐标系中,点(1,0),(1,)2C D π,此时CD 的中点坐标为(,)24π,不满足“极坐标系中两点1122(,),(,)C D ρθρθ的中点坐标为1212(,)22ρρθθ++”,所以不正确,综上,正确命题的个数为三个,故选C .点睛:本题主要考查了命题的真假判定,以及类比推理的应用,其中熟记类比推理的概念和应用,以及命题的真假判定是解答的关键,着重考查了分析问题和解答问题,以及推理与论证能力.10.D解析:D 【详解】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论.详解:由题意,类比上述性质:在等比数列{}n b 中,则由“如果,,,m n p r N *∈,且3m n p r ++=”,则必有“3m n p r b b b b =”成立,故选D.点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:①找出等差数列与等比数列之间的相似性或一致性;②用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想).11.A解析:A 【解析】由题意得,甲同学说:1号门里是b ,3号门里是c ,乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是cc ,若他们每人猜对了一半,则可判断甲同学中1号门中是b 是正确的;乙同学说的2号门中有d 是正确的;并同学说的3号门中有c 是正确的;丁同学说的4号门中有a 是正确的,则可判断在1,2,3,4四扇门中,分别存有,,,b d c a ,所以4号门里是a ,故选A. 点睛:本题主要考查了归纳推理问题,通过具体事例,根据各位同学的说法给出判断,其中正确理解题意,合理作出推理是解答此类问题的关键,同时注意仔细审题,认真梳理.12.C解析:C 【解析】可以通过列表归纳分析得到;16边形有2+3+4+…+14=2=104条对角线. 故选C .二、填空题13.丙【解析】分析:分别假设甲乙丙丁的一个人获奖分析四个人的话能求出获奖的同学详解:若甲获奖则都说了假话不符合题意若乙获奖则甲乙丁说了真话丙说了假话不符合题意若丁获奖则甲丙丁说假话乙说真话不符合题意故丙解析:丙【解析】分析:分别假设甲,乙,丙,丁的一个人获奖,分析四个人的话,能求出获奖的同学详解:若甲获奖,则都说了假话,不符合题意若乙获奖,则甲,乙,丁说了真话,丙说了假话,不符合题意 若丁获奖,则甲,丙,丁说假话,乙说真话,不符合题意故丙获奖点睛:本题是一个简单的合情推理题,主要考查了合情推理的含义和作用。

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(3)

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(3)

一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 2.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥ 3.用反证法证明某命题时,对其结论“a ,b 都是正实数”的假设应为( ) A .a ,b 都是负实数B .a ,b 都不是正实数C .a ,b 中至少有一个不是正实数D .a ,b 中至多有一个不是正实数4.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .45.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20646.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲B .乙C .丙D .丁7.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .238.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁9.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D10.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理 11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+= 12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.在圆中:半径为r 的圆的内接矩形中,以正方形的面积最大,最大值为22r .类比到球中:半径为R 的球的内接长方体中,以正方体的体积最大,最大值为__________. 15.某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分:1 2 3 4 5 得分甲 4 乙 3 丙2则甲同学答错的题目的题号是__________.16.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.17.在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行: 设实系数一元二次方程22100a x a x a ++=……①在复数集C 内的根为1x ,2x ,则方程①可变形为()()2120a x x x x --=, 展开得()222122120a x a x x x a x x -++=.……②比较①②可以得到:11220122a x x a a x x a ⎧+=-⎪⎪⎨⎪=⎪⎩类比上述方法,设实系数一元n 次方程11100nn n n a x a xa x a --++++=(2n ≥且*N n ∈)在复数集C 内的根为1x ,2x ,…,n x ,则这n 个根的积1ni i x ==∏ __________.18.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.19.小明在做一道数学题目时发现:若复数111cos i?sin ?,z αα=+222 cos i?sin ,z αα=+,333cos i?sin z αα=+(其中123,,R ααα∈), 则121212cos()i?sin(+)z z αααα⋅=++,232323cos()i?sin(+)z z αααα⋅=++ ,根据上面的结论,可以提出猜想: z 1·z 2·z 3=__________________. 20.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.三、解答题21.设数列{}n a 的前n 项和为n S ,对任意*n ∈N 都有2132n n S n a =+. (1)求数列{}n a 的通项公式;(2)记*4()n n b a n N =+∈*1)nn N b ++<∈ 22.已知数列{}n a 满足11a =,1(5)5n n n a a a ++=. (1)计算234,,a a a 的值,猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中的猜想. 23.已知数列1111,,,,,112123123n+++++++,其前n 项和为n S ;(1)计算1234,,,S S S S ;(2)猜想n S 的表达式,并用数学归纳法进行证明.24.(1)当1x >时,求2()1x f x x =-的最小值.(2)用数学归纳法证明:11111222n n n +++≥++*()n N ∈. 25.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 26.已知()()()()20121111nnn x a a x a x a x +=+-+-++-(2,*n n N ≥∈),(1)当5n =时,求12345a a a a a ++++的值; (2)设2233,2n n n n a b T b b b -==+++,试用数学归纳法证明:当2n ≥时,()()113n n n n T +-=。

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试卷(答案解析)(2)

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试卷(答案解析)(2)

一、选择题1.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立 B .当7n =时该命题成立 C .当9n =时该命题不成立D .当9n =时该命题成立2.用反证法证明“若x y <,则33x y <”时,假设内容应是( ) A .33x y =B .33x y >C .33x y =或33x y >D .33x y =或33x y <3.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确4.下面结论正确的是( )①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”,这是三段论推理,但其结论是错误的.②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适. ③由平面三角形的性质推测空间四面体的性质,这是一种合情推理.④一个数列的前三项是1,2,3,那么这个数列的通项公式必为()n a n n =∈*N .A .①③B .②③C .③④D .②④5.若a ,b 是常数,a >0,b >0,a ≠b ,x ,y ∈(0,+∞),则()222a b a b x y x y ++≥+,当且仅当a x =b y 时取等号.利用以上结论,可以得到函数f (x )=3413x x +- (0<x <13)的最小值为( ) A .5 B .15 C .25D .26.利用数学归纳法证明不等式()()1111++++,2,232n f n n n N +<≥∈的过程中,由n k =变成1n k =+时,左边增加了( )A .1项B .k 项C .12k -项D .2k 项7.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .23 8.用数学归纳法证明“11112321n++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +9.用反证法证明“平面四边形中至少有一个内角不超过90︒”,下列假设中正确的是( )A .假设有两个内角超过90︒B .假设有三个内角超过90︒C .假设至多有两个内角超过90︒D .假设四个内角均超过90︒10.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁11.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D12.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -二、填空题13.已知f (x )=21xx +(x >0),若f 1(x )=f (x ),f n +1=f (f n (x )),n ∈N *,则猜想f 2020(x )=_____.14.已知从2开始的连续偶数蛇形排列成宝塔形的数表,第一行为2,第二行为4,6,第三行为12,10,8,第四行为14,16,18,20,…,如图所示,在该数表中位于第i 行、第j 行的数记为ij a ,如3,210=a ,5,424=a .若2018ij a =,则i j +=__________.15.数表的第1行只有两个数字3,7,从第2行开始,先按序照搬上一行的数再在相邻两数之间插入这两个数的和,如下图所示,那么第10行的各个数之和等于__________.16.“开心辞典”中有这样一个问题:给出一组数,要你根据规律填出后面的第几个数.现给出一组数:11315,,,,228432---,…,则第8个数可以是__________.17.将自然数1,2,3,4,…排成数阵(如右图所示),在2处转第一个弯,在3处转第二个弯,在5处转第三个弯,…,则转第100个弯处的数是______.18.研究cos n α的公式,可以得到以下结论:2cos )22cos )32cos )42cos )22cos )52cos )32cos )62cos )42cos )22cos )72cos )52cos )32cos 2(2,2cos3(3(2cos ),2cos 4(4(2,2cos5(5(5(2cos ),2cos 6(6(9(2,2cos 7(7(14(7(2cos ααααααααααααααααααααα=-=-=-+=-+=-+-=-+-),以此类推:422cos8(2cos )(2cos )(2cos )16(2cos )m p n q r ααααα=++-+,则m n p q r ++++=__________.19.如图,将全体正整数排成一个三角形数阵:根据以上排列规律,数阵中第n (3)n ≥行的从左至右的第3个数是_____.20.用反证法证明“,a b N ∈,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,应假设_______.三、解答题21.设数列{}n a 的前n 项和为n S ,且满足2n n S a n =-. (1)求1234,,,a a a a ;(2)猜想数列{}n a 的通项公式n a ,并用数学归纳法证明.22.已知数列{}n x 满足1111,,21n nx x x +==+其中n *∈N . (Ⅰ)写出数列{}n x 的前6项;(Ⅱ)猜想数列2{}n x 的单调性,并证明你的结论. 23.已知数列{}n a 各项均为正数,满足2333(1)122n n a n +⎛⎫+++= ⎪⎝⎭.(1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法证明你的结论.24.已知函数()2231x f x x -=+.(1)计算()()13,4,3f f f ⎛⎫ ⎪⎝⎭及14f ⎛⎫⎪⎝⎭的值; (2)由(1)的结果猜想一个普遍的结论,并加以证明; (3)求值:()()()111122015232015f f f f f f ⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.25.已知各项均不为零的数列{}n a 的前n 项和为n S ,且()141n n n S a a n N *+=⋅+∈,其中11a =.(1)求证:135,,a a a 成等差数列; (2)求证:数列{}n a 是等差数列;(3)设数列{}n b 满足()121nb nn N a *=+∈,且n T 为其前n 项和,求证:对任意正整数n ,不等式212log n n T a +>恒成立.26.在数列{}n a ,{}n b 中,12a =,14b =,且n a ,n b ,1n a +成等差数列,n b ,1n a +,1n b +成等比数列(*n N ∈).(1)求2a ,3a ,4a 及2b ,3b ,4b ;(2)根据计算结果,猜想{}n a ,{}n b 的通项公式,并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:利用互为逆否的两个命题同真同假的原来,当()P n 对n k =不成立时,则对1n k =-也不成立,即可得到答案.详解:由题意可知,原命题成立的逆否命题成立, 命题()P n 对8n =不成立时,则()P n 对7n =也不成立, 否则当7n =时命题成立,由已知必推得8n =也成立, 与当8n =时命题不成立矛盾,故选A .点睛:本题主要考查了数学归纳法以及归纳法的性质,互为逆否的两个命题同真同假的性质应用,其中正确四种命题的关系是解答的关键,着重考查了推理与论证能力,属于基础题.2.C解析:C 【解析】试题分析:∵用反证法证明命题时,应先假设命题的否定成立, 而“33x y <”的否定为:“33x y ≥”,故选C . 考点:反证法与放缩法.3.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题4.A解析:A 【解析】①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”这是三段论推理,但其结论是错误的,原因是大前提“所有2的倍数都是4的倍数”错误,故①正确;②在类比时,平面中的三角形与空间中的四面体作为类比对象较为合适,故②错误;③由平面三角形的性质推测空间四面体的性质,这是一种合情推理,且是类比推理,正确;④一个数列的前三项是1,2,3,那么这个数列的通项公式是()n a n n N *=∈错误,如数列1,2,3,5,故④错误,∴正确的命题是①③,故选A.5.C解析:C 【解析】由题意可得f (x )=3413x x +-=2232313x x +-≥()232313x x ++-=25, 当且仅当33x =213x -,即x =15时取等号,故最小值为25.故选:C6.D解析:D 【分析】分别写出n k =、1n k =+时,不等式左边的式子,从而可得结果. 【详解】当n k =时,不等式左边为1111232k ++++,当1n k =+时,不等式左边为1111111232212k k k +++++++++,则增加了112(21)1222k k k k k ++-++=-=项,故选D. 【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.7.C解析:C【解析】可以用归纳思想,1条弦,分圆成2个部分。

长沙市高中数学选修2-2第一章《推理与证明》测试题(含答案解析)

长沙市高中数学选修2-2第一章《推理与证明》测试题(含答案解析)

一、选择题1.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .2.从计算器屏幕上显示的数为0开始,小明进行了五步计算,每步都是加1或乘以2.那么不可能是计算结果的最小的数是( ) A .12B .11C .10D .93.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第n 个图案中正六边形的个数是()f n .由(1)1f =,(2)7f =,(3)19f ,…,可推出(10)f =( ) A .271 B .272C .273D .2744.设k 1111S k 1k 2k 32k=+++⋯++++,则1k S +=( ) A .()k 1S 2k 1++B .()k 11S 2k 12k 1++++ C .()k 11S 2k 12k 1+-++ D .()k 11S 2k 12k 1+-++5.下列类比推理正确的是( )A .把()a b c +与x y a +类比,则有x y x y a a a +=+B .把()a a b +与()a a b ⋅+类比,则有()2a ab a a b ⋅+=+⋅C .把()nabc 与)n x y z (++类比,则有)n n n n x y z x y z ++=++( D .把()ab c 与()a b c ⋅⋅类比,则有()()a b c c a b ⋅⋅=⋅⋅6.我们把平面几何里相似的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就称它们是相似体,给出下面的几何体:①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥,则一定是相似体的个数是( ) A .4B .2C .3D .17.周末,某高校一学生宿舍甲乙丙丁四位同学正在做四件事情,看书、写信、听音乐、玩游戏,下面是关于他们各自所做事情的一些判断: ①甲不在看书,也不在写信; ②乙不在写信,也不在听音乐;③如果甲不在听音乐,那么丁也不在看书; ④丙不在看书,也不写信.已知这些判断都是正确的,依据以上判断,请问乙同学正在做的事情是( ) A .玩游戏 B .写信 C .听音乐 D .看书8.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( ) A .0B .13C .12D .19.利用数学归纳法证明不等式()()1111++++,2,232n f n n n N +<≥∈的过程中,由n k =变成1n k =+时,左边增加了( )A .1项B .k 项C .12k -项D .2k 项10.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁11.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁12.已知,,(0,2)a b c ∈,则(2),(2),(2)a b b c c a ---中( ) A .至少有一个不小于1 B .至少有一个不大于1 C .都不大于1D .都不小于1二、填空题13.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成.通过观察可以发现第10个图形中火柴棒的根数是 ________.14.已知数列{}n a 为等差数列,则有12320a a a -+= 1234330a a a a -+-= 123454640a a a a a -+-+=类似上三行,第四行的结论为________________.15.已知[x]表示不大于x 的最大整数,设函数f (x )=[log 2x 219+],得到下列结论:结论1:当2<x<3时,f (x )max=-1. 结论2:当4<x<5时,f (x )max=1. 结论3:当6<x<7时,f (x )max=3. ……照此规律,结论6为_____16.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________. 17.现有这么一列数,2,32,54,78,( ),1332,1764,…,按照规律,( )中的数应为__________.18.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.19.36的所有约数之和可以按以下方法得到:因为223623=⨯,所以36的所有正约数之和为()()()()()22222222133223232232312213391++++⋅+⋅++⋅+⋅=++++=,参照上述方法,可求得200的所有正约数之和为__________. 20.已知数列{}n a 的前n 项和为n S ,且11n S n =+ , n *∈N . 算出数列的前4项的值后,猜想该数列的通项公式是__________.三、解答题21.设数列{}n a 的前n 项和为n S ,且对任意的正整数n 都满足()21n n n S a S -=.(1)求1S ,2S ,3S 的值,猜想n S 的表达式;(2)用数学归纳法证明(1)中猜想的n S 的表达式的正确性. 22.在数列{}n a 中,11a =,()*121n n n a a n N n++=+∈. (1)求2a 、3a 、4a 的值;(2)猜想{}n a 的通项公式,并用数学归纳法证明. 23.数列{}n a 满足2(n n S n a n =-∈N *). (1)计算1234,,,a a a a ,并由此猜想通项公式n a ; (2)用数学归纳法证明(1)中的猜想.24.已知数列{}n a 满足()*12n n n a a n n +⋅=∈+N ,11a =2. (I )求2a ,3a ,4a 的值;(Ⅱ)归纳猜想数列{}n a 的通项公式,并用数学归纳法证明.25.证明:223333(1)1234n n n ++++⋯+=,其中*n N ∈.26.不等式证明:(1)证明不等式:x y x y yx+≥+(其中,x y 皆为正数)(2)已知0a >,0b >,2a b +>,求证:11,b aa b++至少有一个小于2.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 结合题意可知,代入数据,即可.【详解】A 选项,13不满足某个数的平方,故错误;B 选项,,故错误;C 选项,故正确;D 选项,,故错误.故选C. 【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.2.B解析:B 【分析】由题意,可列出树形图,逐步列举,即可得到答案. 【详解】由题意,列出树形图,如图所示由树形图可知,不可能是计算结果的最小数是11,故选B.【点睛】本题主要考查了简单的合情推理,以及树形图的应用,其中解答中认真分析题意,列出树形图,结合树形图求解是解答的关键,着重考查了推理与论证能力,属于基础题.3.A解析:A 【分析】观察图形,发现,第一个图案中有一个正六边形,第二个图案中有7个正六边形;… 根据这个规律,即可确定第10个图案中正六边形的个数. 【详解】由图可知,()11f =,()212667f =+⨯-=,()()312362619f =++⨯-⨯=, ()()212362619f =++⨯-⨯=, ()()4123463637f =+++⨯-⨯=,…()()101234...10696271.f =+++++⨯-⨯=故选A. 【点睛】此类题要能够结合图形,发现规律:当2n ≥时,()()()161.f n f n n --=-4.C解析:C 【解析】分析:由题意将k 替换为1k +,然后和k S 比较即可. 详解:由题意将k 替换为1k +,据此可得:()()()()1111111121321k S k k k k +=+++++++++++()111123421k k k k =++++++++()11111123422121k k k k k k =+++++++++++ ()111111111234221211k k k k k k k k =+++++++-+++++++ ()1111111123422121k k k k k k k =++++++-++++++ ()112121k S k k =+-++. 本题选择C 选项.点睛:本题主要考查数学归纳法中由k 到k +1的计算方法,意在考查学生的转化能力和计算求解能力.5.B解析:B 【解析】分析:由题意逐一考查所给命题的真假即可. 详解:逐一考查所给命题的真假:A . 由指数的运算法则可得x y x y a a a +=,原命题错误;B . 由向量的运算法则可知:()2a ab a a b ⋅+=+⋅,原命题正确; C . 由多项式的运算法则可知)n n n n x y z x y z ++≠++(,原命题错误; D . 由平面向量数量积的性质可知()()a b c c a b ⋅⋅≠⋅⋅,原命题错误; 本题选择B 选项.点睛:本题主要考查类比推理及其应用等知识,意在考查学生的转化能力和计算求解能力.6.B解析:B 【解析】分析:根据题意,结合题中所给的新定义,根据形状相同,大小不一定相同的几何体被视为相似体,逐一判断,可得结论.详解:两个长方体的长宽高的比值不能确定,两个正三棱柱的高与底面边长的比不能确定,两个正四棱锥的高与底面边长不能确定,所以②④⑤不能确定是正确的, 只有所有的球体和所有的正四面体都是相似体,所以有两个是正确的,故选B.点睛:该题属于新定义的问题,属于现学现用型,这就要求我们必须把握好题中的条件,然后对选项中的几何体逐一判断,最后求得结果.7.D解析:D【解析】由①知甲在听音乐或玩游戏,由②知乙在看书或玩游戏,由④知丙在听音乐或玩游戏,由③知,丁在看书,则甲在听音乐,丙在玩游戏,乙在看书,故选D.8.B解析:B 【解析】∵三个数a ,b ,c 的和为1,其平均数为13∴三个数中至少有一个大于或等于13假设a ,b ,c 都小于13,则1a b c ++< ∴a ,b ,c 中至少有一个数不小于13故选B.9.D解析:D 【分析】分别写出n k =、1n k =+时,不等式左边的式子,从而可得结果. 【详解】当n k =时,不等式左边为1111232k++++,当1n k =+时,不等式左边为1111111232212k k k +++++++++,则增加了112(21)1222k k k k k ++-++=-=项,故选D. 【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.10.A解析:A 【解析】四人中只有一人说了真话,只有一人会证明此题,丙:丁会证明;丁:我不会证明,所以丙与丁中有一个是正确的;若丙说了真话,则甲必是假话,矛盾;若丁说了真话,则甲说的是假话,甲就是会证明的那个人,符合题意,以此类推,即可得到甲说真话,故选A.11.A解析:A 【解析】四人中只有一人说了真话,只有一人会证明此题,丙:丁会证明;丁:我不会证明,所以丙与丁中有一个是正确的;若丙说了真话,则甲必是假话,矛盾;若丁说了真话,则甲说的是假话,甲就是会证明的那个人,符合题意,以此类推,即可得到甲说真话,故选A.12.B解析:B 【分析】用反证法证明,假设同时大于1,推出矛盾得出结果 【详解】假设()21a b ->,()21b c ->,()21c a ->, 三式相乘得()()()2221a b b c c a -⋅-⋅->,由()02a b c ,,,∈,所以()220212a a a a -+⎛⎫<-≤= ⎪⎝⎭,同理()21b b -≤,()21c c -≤,则()()()2221a a b b c c -⋅-⋅-≤与()()()2221a b b c c a -⋅-⋅->矛盾,即假设不成立,所以()()()222a b b c c a ---,,不能同时大于1,所以至少有一个不大于1, 故选B 【点睛】本题考查的是用反证法证明数学命题,把要证的结论进行否定,在此基础上推出矛盾,是解题的关键,同时还运用了基本不等式,本题较为综合二、填空题13.31【解析】分析:由图形的特点只需看第10个图形中火柴的根数是在的基础上增加几个即可详解:第1个图形中有根火柴棒;第2个图形中有根火柴棒;第3个图形中有根火柴棒;第10个图形中有根火柴棒点睛:本题主解析:31 【解析】分析:由图形的特点,只需看第10个图形中火柴的根数是在4的基础上增加几个3即可. 详解:第1个图形中有4根火柴棒; 第2个图形中有437+= 根火柴棒; 第3个图形中有43210+⨯= 根火柴棒;第10个图形中有43931+⨯= 根火柴棒.点睛:本题主要考查了归纳推理的应用,齐总解答中根据图形的变化规律,得到火柴棒的根数是在4的基础上增加几个3的关系是解答的关键,着重考查了推理与运算能力.14.【解析】观察前三个式子可知三个式子的项数分别是所以第四个式子有项前三个式子奇数项为正偶数项为负项的系数满足二项式定理系数的形式所以第四项的结论:故答案为【方法点睛】本题通过观察几组多项式式归纳出一般解析:1234565101050a a a a a a -+-+-=【解析】观察前三个式子,可知三个式子的项数分别是3,4,5,所以第四个式子有6项,前三个式子奇数项为正,偶数项为负,项的系数满足二项式定理系数的形式,所以第四项的结论:1234565101050a a a a a a -+-+-=,故答案为1234565101050a a a a a a -+-+-=.【方法点睛】本题通过观察几组多项式式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.15.当时【解析】由题意得当时其中根据上述的运算规律可以归纳得出结论当时点睛:本题考查归纳推理的应用解答中根据给定式子的计算得到计算的规律是解答的关键归纳推理属于合情推理对于合情推理主要包括归纳推理和类比解析:当1213x <<时,()122392max f x =⨯-= 【解析】由题意得,当1213x <<时,其中()max f x 根据上述的运算规律, 可以归纳得出结论当1213x <<时,()max 122392f x =⨯-=. 点睛:本题考查归纳推理的应用,解答中根据给定式子的计算,得到计算的规律是解答的关键,归纳推理属于合情推理,对于合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.(而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).16.3【解析】由①②可知甲取出的小球编号为2乙取出的小球编号可能是3或4又|1-4|=3>2|1-3|=2所以由③可知乙取出的小球编号是4丙取出的小球编号是1故丁取出的小球编号是3解析:3 【解析】由①②可知,甲取出的小球编号为2,乙取出的小球编号可能是3或4.又|1-4|=3>2,|1-3|=2,所以由③可知,乙取出的小球编号是4,丙取出的小球编号是1,故丁取出的小球编号是3.17.【解析】由题意可得分子为连续的质数分母依次为首项为2公比为2的等比数列故括号中的数应该为点睛:归纳推理是由部分到整体由特殊到一般的推理由归纳推理所得的结论不一定正确通常归纳的个体数目越多越具有代表性解析:1116【解析】由题意可得,分子为连续的质数,分母依次为首项为2、公比为2的等比数列,故括号中的数应该为1116. 点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.18.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11 【解析】A 到E 的时间,为2+4=6小时,或5小时, A 经C 到D 的时间为3+4=7小时, 故A 到F 的最短时间就为9小时, 则A 经F 到G 的时间为9+2=11小时, 即组装该产品所需要的最短时间是11小时19.【解析】试题分析:类比的所有正约数之和的方法有:的所有正约数之和可按如下方法得到:因为所以的所有正约数之和为所以的所有正约数之和为故应填考点:1合情推理解析:465. 【解析】试题分析:类比36的所有正约数之和的方法有:200的所有正约数之和可按如下方法得到:因为3220025=⨯,所以200的所有正约数之和为232(1222)(155)465+++++=,所以200的所有正约数之和为465,故应填465.考点:1、合情推理.20.;【解析】;;…猜想该数列的通项公式是故答案为【方法点睛】本题主要考查归纳推理属于中档题归纳推理的一般步骤:一通过观察个别情况发现某些相同的性质二从已知的相同性质中推出一个明确表述的一般性命题(猜想解析:n a = 【解析】1121221,1S a S a a a ===+=⇒=;3233S S a a =+⇒=;4344S S a a =+⇒猜想该数列的通项公式是n a =n a =【方法点睛】本题主要考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.三、解答题21.(1)112S =,223S =,334S =,1n n S n =+,*n N ∈;(2)证明见解析. 【分析】(1)1n =时,可求出1S ,2n ≥时,利用1n n n a S S -=-可得到关于n S 的递推关系,即可求出2S ,3S 的值,进而猜想出n S 的表达式;(2)根据数学归纳法的步骤证明即可.【详解】(1)当1n =时,()22111S S -=,∴112S =, 当2n ≥时,()()211n n n n S S S S --=-,∴112n n S S -=-, ∴223S =,334S =, 猜想1n n S n =+,*n N ∈; (2)下面用数学归纳法证明: ①当1n =时,112S =,112n n =+,猜想正确; ②假设n k =时,猜想正确,即1k k S k =+, 那么当1n k =+时, 可得()111121121k k k S k S k k ++===-++-+,即1n k =+时,猜想也成立. 综上可知,对任意的正整数n ,1n n S n =+都成立. 【点睛】本题考查数学猜想和数学归纳法的应用,属于中档题.22.(1)24a =,39a =,416a =;(2)2n a n =,证明见解析.【分析】(1)根据数列递推关系,把1n =、2、3分别代入,求出2a 、3a 、4a 的值;(2)先假设n k =时,2k a k =成立,再证明1n k =+时,猜想也成立.【详解】(1)11a =,1n a +21n n a n+=+,22314a a ∴=+=,32219a a =+=,4351163a a =+=; (2)由(1)猜想2n a n =,用数学归纳法证明如下:①当1n =时,11a =,猜想显然成立;②设n k =时,猜想成立,即2k a k =,则当1n k =+时,()22121211k k k a a k k k k++=+=++=+, 即当1n k =+时猜想也成立, 由①②可知,猜想成立,即2n a n =.【点睛】运用数学归纳法证明命题时,要求严格按照从特殊到一般的思想证明,特别是归纳假设一定要用到,否则算是没有完成证明.23.(1)123437151,,,248a a a a ====,1212n n n a --=;(2)证明见解析. 【解析】试题分析:(1)分别令1,2,3,4n =,可求解1234,,,a a a a 的值,即可猜想通项公式n a ;(2)利用数学归纳法证明.试题(1)123437151,,,248a a a a ====,由此猜想1212n n n a --=; (2)证明:当1n =时,11a =,结论成立;假设n k =(1k ≥,且k N +∈),结论成立,即1212k k k a --= 当+1n k =(1k ≥,且k N +∈)时,()11112122k k k k k k k a S S k a k a a a ++++=-=+--+=+-,即122k k a a +=+,所以11112122212222k k k k k k a a +-+--++-===,这表明当1n k =+时,结论成立, 综上所述,1212n n n a --=()n N +∈.考点:数列的递推关系式及数学归纳法的证明.24.(1)234234,,345a a a ===(2)1n n a n =+ 【解析】试题分析:(1)利用递推关系可求得234234,,345a a a ===; (2) 猜想1n n a n =+ ,按照数学归纳法的过程证明猜想即可. 试题解:(1)计算得234234,,345a a a === 猜想1n n a n =+ 证明如下:①当n=1时,猜想显然成立; ②假设当n=k (k ∈N +)时猜想成立,即1k k a k =+成立, 则当1n k =+时,()11112211k k k k k k a k a k k k +++=⋅=⋅=++++, 即1n k =+时猜想成立由①②得对任意*n N ∈,有1n n a n =+ 25.证明见解析【分析】由等式的特点利用数学归纳法证明题中的等式即可.【详解】①当1n =时,左边311==,右边221214⨯==,左边=右边,等式成立; ②假设当n k =时,等式成立,即:223333(1)1234k k k ++++⋯+=, 当1n k =+时,左边()()22333333(1)123114k k k k k +=+++⋯+++=++ ()()()()22221411244k k k k k ⎡⎤+++++⎣⎦==, 即当1n k =+时,等式也成立, 综合①②可得223333(1)1234n n n ++++⋯+=. 【点睛】1.数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学问题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据.2.在用数学归纳法证明时,第(1)步验算n =n 0的n 0不一定为1,而是根据题目要求选择合适的起始值.第(2)步,证明n =k +1时命题也成立的过程,一定要用到归纳假设,否则就不是数学归纳法.26.(1)证明见详解;(2)证明见详解.【分析】(1)用分析法,将不等式进行转化,即可容易证明;(2)用反证法,假设11,b a a b ++都大于等于2,结合已知条件,推出矛盾即可证明. 【详解】(1+≥0>,⎫≥,也就是证:≥只需证:()0x y -≥,即只要证:20≥,而20≥显然成立, 则上述不等式也成立,≥. (2)假设11,b a a b ++都大于等于2, 即112,2b a a b++≥≥, 又因为0a >,0b >,故可得12,12b a a b +≥+≥,两式相加可得222a b a b ++≥+,即2a b +≤,这与2a b +>矛盾,故假设不成立, 则11,b a a b++至少有一个小于2. 【点睛】本题考查利用分析法和反证法证明不等式,这两种方法都是证明不等式的重要方法,需熟练掌握.。

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(4)

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(4)

一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .3.某地铁换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下: 安全出口编号 A ,BB ,CC ,DD ,EA ,E疏散乘客时间(s )186125160175145则疏散乘客最快的一个安全出口的编号是( ) A .AB .BC .CD .D4.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .325.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( ) A .0B .13C .12D .16.利用数学归纳法证明不等式()()1111++++,2,232n f n n n N +<≥∈的过程中,由n k =变成1n k =+时,左边增加了( )A .1项B .k 项C .12k -项D .2k 项7.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯8.用数学归纳法证明“11112321n++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +9.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A .aB .bC .cD .d10.如果把一个多边形的所有便中的任意一条边向两方无限延长称为一直线时,其他个边都在此直线的同旁,那么这个多边形就叫凸多边形.平行内凸四边形由2条对角线,凸五边形有5条对角线,以此类推,凸16变形的对角线条为( ) A .65B .96C .104D .11211.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -12.已知 222233+=,333388+=,44441515+=,m m m mt t+=()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( ) A .)22,⎡+∞⎣B .(),22-∞C .(),3-∞D .[1,3]二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为22(133)(22323)++++⨯+⨯22222(22323)(122)++⨯+⨯=++2(133)91++=,参照上述方法,可得100的所有正约数之和为__________.15.平面上画n 条直线,且满足任何2条直线都相交,任何3条直线不共点,则这n 条直线将平面分成__________个部分. 16.利用数学归纳法证明不等式“()*11112,23212n n n n N +++⋯+>≥∈-”的过程中,由“n k =”变到“1n k =+”时,左边增加了_____项.17.将正整数对作如下分组,第1组为()(){}1,2,2,1,第2组为()(){}1,3,3,1,第3组为()()()(){}1,4,2,3,3,2,4,1,第4组为()()()(){}1,5,2,44,25,1⋅⋅⋅⋅⋅⋅则第30组第16个数对为__________.18.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________. 19.观察下面的数阵,则第40行最左边的数是__________.20.观察下列式子:,,,,…,根据以上规律,第个不等式是_________.三、解答题21.若数列{}n a 的前n 项和为n S ,且13a =,()211324222n n S S n n n -=+-+≥. (1)求2a ,3a ,4a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 22.若10a >,11a ≠,121+=+nn na a a (n =1,2,…). (1)求证:1+≠n n a a ; (2)令112a =,写出2a ,3a ,4a ,5a 的值,观察并归纳出这个数列的通项公式n a ,并用数学归纳法证明.23.已知数列11111,,,,,12233445(1)n n ⨯⨯⨯⨯⨯+,…的前n 项和为n S .(1)计算1234,,,S S S S 的值,根据计算结果,猜想n S 的表达式; (2)用数学归纳法证明(1)中猜想的n S 表达式.24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式. 25.依次计算数列114⎛⎫-⎪⎝⎭,111149⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭,1111114916⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,11111111491625⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,的前4项的值,由此猜想21111111111491625(1)n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(n *∈N )的结果,并用数学归纳法加以证明.26.设a ,b 均为正数,且ab .证明:(1)664224a b a b a b +>+(2)a b a b b a+>+【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.C解析:C 【分析】 结合题意可知,代入数据,即可.【详解】A 选项,13不满足某个数的平方,故错误;B 选项,,故错误;C 选项,故正确;D 选项,,故错误.故选C. 【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.3.C解析:C 【解析】分析:根据疏散1000名乘客所需的时间,两两对比,即可求出结果. 详解:同时开放其中的两个安全出口,疏散1000名乘客,所需时间对比:开方AB 、出口时间为186s ,开方BC 、出口时间为125s ,得C 比A 快; 开方CD 、出口时间为160s ,开方DE 、出口时间为175s ,得C 比E 快;开方AB 、出口时间为186s ,开方A E 、出口时间为145s ,得E 比B 快; 开方BC 、出口时间为125s ,开方CD 、出口时间为160s ,得B 比D 快; 综上,疏散乘客最快的安全出口的编号是C. 故选C.点睛:本题考查简单的合情推理,考查学生推理论证能力.4.B解析:B 【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解n 的所有可能的取值. 详解:如果正整数n 按照上述规则施行变换后第八项为1, 则变换中的第7项一定为2, 变换中的第6项一定为4,变换中的第5项可能为1,也可能是8, 变换中的第4项可能是2,也可能是16,变换中的第4项为2时,变换中的第3项是4,变换中的第2项是1或8,变换中的第1项是2或6,变换中的第4项为16时,变换中的第3项是32或5,变换中的第2项是64或108,变换中的第1项是128或21或20,或3,则n 的所有可能的取值为2,3,16,20,21,128,共6个,故选B.点睛:本题主要考查了归纳推理的应用,其中解答中正确理解题意,利用变换规则,进行逆向逐项推理、验证是解答的关键,着重考查了推理与论证能力,试题有一定的难度,属于中档试题.5.B解析:B 【解析】∵三个数a ,b ,c 的和为1,其平均数为13∴三个数中至少有一个大于或等于13假设a ,b ,c 都小于13,则1a b c ++<∴a ,b ,c 中至少有一个数不小于13故选B.6.D解析:D 【分析】分别写出n k =、1n k =+时,不等式左边的式子,从而可得结果. 【详解】当n k =时,不等式左边为1111232k++++,当1n k =+时,不等式左边为1111111232212k k k +++++++++,则增加了112(21)1222k k k k k ++-++=-=项,故选D. 【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.7.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ , 表中最后一行仅有一个数,则这个数是201501822⨯.8.C解析:C 【解析】左边的特点:分母逐渐增加1,末项为121n -; 由n=k ,末项为121k-到n=k+1,末项为11121212k k k+=--+, ∴应增加的项数为2k . 故选C .9.A解析:A【解析】由题意得,甲同学说:1号门里是b ,3号门里是c ,乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是cc ,若他们每人猜对了一半,则可判断甲同学中1号门中是b 是正确的;乙同学说的2号门中有d 是正确的;并同学说的3号门中有c 是正确的;丁同学说的4号门中有a 是正确的,则可判断在1,2,3,4四扇门中,分别存有,,,b d c a ,所以4号门里是a ,故选A. 点睛:本题主要考查了归纳推理问题,通过具体事例,根据各位同学的说法给出判断,其中正确理解题意,合理作出推理是解答此类问题的关键,同时注意仔细审题,认真梳理.10.C解析:C 【解析】可以通过列表归纳分析得到;16边形有2+3+4+…+14=2=104条对角线. 故选C .11.B解析:B 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.12.C解析:C 【解析】分析:由等式归纳得出m 和t 的关系,从而得出关于m 的恒等式,利用函数单调性得出最小值即可得出λ的范围.=21t m =-, 30m t λ--<恒成立,即220m m λ--<恒成立,m N *∈且2m ≥,222m m m mλ+∴<=+.令()2f m m m =+,()221f m m ='-,2m ≥,()0f m ∴'>,()f m ∴单调递增,∴当2m =时,()f m 取得最小值()23f =,3λ∴<.故选:C.点睛:若f (x )≥a 或g (x )≤a 恒成立,只需满足f (x )min ≥a 或g (x )max ≤a 即可,利用导数方法求出f (x )的最小值或g (x )的最大值,从而问题得解.二、填空题13.【解析】分析:由题意结合所给等式的规律归纳出第个等式即可详解:首先观察等式左侧的特点:第1个等式开头为1第2个等式开头为2第3个等式开头为3第4个等式开头为4则第n 个等式开头为n 第1个等式左侧有1个解析:2(1)(32)(21)n n n n ++++-=-.【解析】分析:由题意结合所给等式的规律归纳出第n 个等式即可. 详解:首先观察等式左侧的特点: 第1个等式开头为1,第2个等式开头为2, 第3个等式开头为3,第4个等式开头为4, 则第n 个等式开头为n ,第1个等式左侧有1个数,第2个等式左侧有3个数, 第3个等式左侧有5个数,第4个等式左侧有7个数, 则第n 个等式左侧有2n -1个数, 据此可知第n 个等式左侧为:()()132n n n ++++-,第1个等式右侧为1,第2个等式右侧为9, 第3个等式右侧为25,第4个等式右侧为49, 则第n 个等式右侧为()221n -, 据此可得第n 个等式为()()()213221n n n n ++++-=-.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.14.217【分析】根据题意类比36的所有正约数之和的方法分析100的所有正约数之和为(1+2+221+5+52)计算可得答案【详解】根据题意由36的所有正约数之和的方法:100的所有正约数之和可按如下方解析:217 【分析】根据题意,类比36的所有正约数之和的方法,分析100的所有正约数之和为(1+2+22)(1+5+52),计算可得答案. 【详解】根据题意,由36的所有正约数之和的方法:100的所有正约数之和可按如下方法得到:因为100=22×52, 所以100的所有正约数之和为(1+2+22)(1+5+52)=217. 可求得100的所有正约数之和为217; 故答案为:217. 【点睛】本题考查简单的合情推理应用,关键是认真分析36的所有正约数之和的求法,并应用到100的正约数之和的计算.15.【解析】分析:根据几何图形列出前面几项根据归纳推理和数列中的累加法即可得到结果详解:1条直线将平面分成2个部分即2条直线将平面分成4个部分即3条直线将平面分为7个部分即4条直线将平面分为11个部分即解析:(1)12n n ++ 【解析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。

(典型题)高中数学高中数学选修2-2第一章《推理与证明》测试卷(包含答案解析)

(典型题)高中数学高中数学选修2-2第一章《推理与证明》测试卷(包含答案解析)

一、选择题1.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式 2.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩 甲:我不能及格. 乙:丁肯定能及格. 丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是( ) A .甲 B .乙 C .丙 D .丁3.用反证法证明某命题时,对其结论“a ,b 都是正实数”的假设应为( ) A .a ,b 都是负实数B .a ,b 都不是正实数C .a ,b 中至少有一个不是正实数D .a ,b 中至多有一个不是正实数4.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确5.命题“若,x y >则()()()()332222x y x y x yx xy y -+=--+”的证明过程:“要证明()()()()332222x y x y x y x xy y -+=--+, 即证()()()()()3322.x y x y x y x y x xy y -+=-+-+因为,x y >即证()()3322x y x y x xy y +=+-+,即证33322223,x y x x y xy x y xy y +=-++-+ 即证3333,x y x y +=+因为上式成立,故原等式成立应用了( ) A .分析法B .综合法C .综合法与分析法结合使用D .演绎法6.下面结论正确的是( )①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”,这是三段论推理,但其结论是错误的.②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.③由平面三角形的性质推测空间四面体的性质,这是一种合情推理.④一个数列的前三项是1,2,3,那么这个数列的通项公式必为()n a n n =∈*N .A .①③B .②③C .③④D .②④7.我们把顶角为的等腰三角形称为黄金三角形......其作法如下:①作一个正方形;②以的中点为圆心,以长为半径作圆,交延长线于;③以为圆心,以长为半径作D ;④以为圆心,以长为半径作A 交D 于,则为黄金三角形.根据上述作法,可以求出( )A .B .C .D .8.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中 A .一定有3号球B .一定没有3号球C .可能有5号球D .可能有6号球9.用数学归纳法证明“11112321n++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +10.利用反证法证明“若220x y +=,则0x =且0y =”时,下列假设正确的是( ) A .0x ≠且0y ≠ B .0x =且0y ≠ C .0x ≠或0y ≠D .0x =或0y =11.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( ) A .丁B .乙C .丙D .甲12.已知222233+=333388+=44441515+=m m m mt t+=()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( ) A .)22,⎡+∞⎣B .(),22-∞C .(),3-∞D .[1,3]二、填空题13.设数列{}n a 的前n 项和为n S ,已知*()n n S n a n N =-∈,猜想n a =__________.14.甲、乙、丙三位同学被问到是否去过,,A B C 三个城市时,甲说:我没去过C 城市;乙说:我去过的城市比甲多,但没去过B 城市;丙说:我们三人去过同一城市,由此可判断甲去过的城市为__________. 15.利用数学归纳法证明不等式“()*11112,23212n n n n N +++⋯+>≥∈-”的过程中,由“n k =”变到“1n k =+”时,左边增加了_____项.16.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术,得诀自诩无所阻,额上纹起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:222233=,333388=,44441515=,55552424=……则按照以上规律,若100100100100n n=,具有“穿墙术”,则n =_____. 17.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成.通过观察可以发现第10个图形中火柴棒的根数是 ________.18.已知[x]表示不大于x 的最大整数,设函数f (x )=[log 2x219+],得到下列结论:结论1:当2<x<3时,f (x )max=-1. 结论2:当4<x<5时,f (x )max=1. 结论3:当6<x<7时,f (x )max=3. ……照此规律,结论6为_____19.已知结论“1a ,*2R a ∈,且121a a +=,则12114a a +≥;若1a 、2a 、*3R a ∈,且1231a a a ++=,则1239111a a a ++≥”,请猜想若1a 、2a 、…、*R n a ∈,且121n a a a +++=,则12111na a a +++≥__________. 20.给出下列等式:;;,由以上等式推出一个一般结论: 对于=________________________.三、解答题21.在数列{}n a 中,已知11a =,112nn na a a +=+. (1)计算2a ,3 a ,4a ;(2)根据计算结果猜想出{}n a 的通项公式n a ,并用数学归纳法证明你的结论. 22.若数列{}n a 的前n 项和为n S ,且13a =,()211324222n n S S n n n -=+-+≥. (1)求2a ,3a ,4a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明.23.设等差数列{}n a 的前n 项和为n S ,23a =-,()4521S a =+,数列{}n b 的前n 项和为n T ,满足11b =-,()*11n n n b T T n N ++=∈.(1)求数列{}n a 、{}n b 的通项公式; (2)记nn na c T =,*n N ∈,证明:()122214n c c c n n +++<+. 24.已知数列{}n a 满足:12a =,1(1)(1)n n na n a n n +=+++,*n N ∈. (1)求证:数列{}na n为等差数列,并求出数列{}n a 的通项公式; (2)记2(1)n nb n a =+(*n N ∈),用数学归纳法证明:12211(1)n b b b n +++<-+,*n N ∈25.选修4-5:不等式选讲 已知,,函数的最小值为.(1)求的值;(2)证明:与不可能同时成立. 26.设等差数列的公差,且,记(1)用分别表示,并猜想;(2)用数学归纳法证明你的猜想.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.2.A解析:A【解析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙 , 丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾, 故甲预测错误. 故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.3.C解析:C 【解析】分析:“都是”的否定为“不都是”,观察选项只有C 符合.详解:“都是”的否定为“不都是”,故“a ,b 都是正实数”否定为“a ,b 中至少有一个不是正实数”. 故选C.点睛:本题考查命题的否定,属基础题.4.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题5.A解析:A 【解析】分析:由题意结合分析法的定义可知题中的证明方法应用了分析法. 详解:题中的证明方法为执果索因,这是典型的分析法, 即原等式成立应用了分析法. 本题选择A 选项.点睛:本题主要考查分析法的特征及其应用,意在考查学生的转化能力和知识应用能力.6.A解析:A 【解析】①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”这是三段论推理,但其结论是错误的,原因是大前提“所有2的倍数都是4的倍数”错误,故①正确;②在类比时,平面中的三角形与空间中的四面体作为类比对象较为合适,故②错误;③由平面三角形的性质推测空间四面体的性质,这是一种合情推理,且是类比推理,正确;④一个数列的前三项是1,2,3,那么这个数列的通项公式是()n a n n N *=∈错误,如数列1,2,3,5,故④错误,∴正确的命题是①③,故选A.7.B解析:B 【分析】不妨假设2AD =,则1DG =,故1cos364︒=. 故选B.8.D解析:D 【解析】甲说:“我无法确定.”说明两球编号的和可能为7包含(2,5),(3,4),可能为8包含(2,6),(3,5),可能为9包含(3,6),(2,7)乙说:“我无法确定.”说明两球编号的乘积为12包含(3,4)或(2 ,6) 根据以上信息,可以推断出抽取的两球中可能有6号球故选D点睛:本题是一道通俗易懂的合情推理题目,主要考查同学们的逻辑思维能力和推理能力,问题难度不大,认真审题是关键.9.C解析:C 【解析】左边的特点:分母逐渐增加1,末项为121n-; 由n=k ,末项为121k -到n=k+1,末项为11121212k k k+=--+,∴应增加的项数为2k . 故选C .10.C解析:C 【解析】“且”的否定为“或”,故选C : 0x ≠或0y ≠11.D解析:D 【分析】利用反证法,可推导出丁说的是真话,甲乙丙三人说的均为假话,进而得到答案. 【详解】假定甲说的是真话,则丙说“甲说的对”也为真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故甲说的是谎话;假定乙说的是真话,则丁说:“反正我没有责任”也为真话, 这与四人中只有一个人说的是真话相矛盾, 故假设不成立,故乙说的是谎话;假定丙说的是真话,由①知甲说的也是真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故丙说的是谎话;综上可得:丁说是真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,故甲负主要责任,故答案为甲 【点睛】本题主要考查了命题真假的判断,以实际问题为背景考查了逻辑推理,属于中档题.解题时正确使用反证法是解决问题的关键.12.C解析:C 【解析】分析:由等式归纳得出m 和t 的关系,从而得出关于m 的恒等式,利用函数单调性得出最小值即可得出λ的范围.=21t m =-, 30m t λ--<恒成立,即220m m λ--<恒成立,m N *∈且2m ≥,222m m m mλ+∴<=+.令()2f m m m =+,()221f m m ='-,2m ≥,()0f m ∴'>,()f m ∴单调递增,∴当2m =时,()f m 取得最小值()23f =,3λ∴<.故选:C.点睛:若f (x )≥a 或g (x )≤a 恒成立,只需满足f (x )min ≥a 或g (x )max ≤a 即可,利用导数方法求出f (x )的最小值或g (x )的最大值,从而问题得解.二、填空题13.【解析】分析:令可求得由得两式相减得可依次求出观察前四项找出规律从而可得结果详解:中令可求得由得两式相减得即可得…归纳可得故答案为点睛:归纳推理的一般步骤:一通过观察个别情况发现某些相同的性质二从已解析:212n n -【解析】分析:令1n =,可求得112a =,由()n n S n a n N *=-∈,得()1112n n S n a n --=--≥, 两式相减,得()1122n n a a n -+=≥,可依次求出234,,a a a ,观察前四项,找出规律,从而可得结果.详解:n n S n a =- 中令1n ,=可求得1a =1112122-= 由()n n S n a n N *=-∈,得()1112n n S n a n --=--≥,两式相减,得11n n n a a a -=-+, 即()1122n n a a n -+=≥, 可得222321;42a -==333721;82a -==4341521;182a -==…归纳可得212n n na -=,故答案为212n n -. 点睛:归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.14.A 【解析】分析:一般利用假设分析法找到甲去过的城市详解:假设甲去过的城市为A 则乙去过的城市为AC 丙去过A 城市假设甲去过的城市为B 时则乙说的不正确所以甲去过城市不能为B 故答案为A 点睛:(1)本题主要考解析:A 【解析】分析:一般利用假设分析法,找到甲去过的城市.详解:假设甲去过的城市为A,则乙去过的城市为A,C ,丙去过A 城市.假设甲去过的城市为B 时,则乙说的不正确,所以甲去过城市不能为B.故答案为A.点睛:(1)本题主要考查推理证明,意在考查学生对该知识的掌握水平和推理能力.(2)类似本题的题目,一般都是利用假设分析推理法找到答案.15.【分析】分析题意根据数学归纳法的证明方法得到时不等式左边的表示式是解答该题的突破口当时左边由此将其对时的式子进行对比得到结果【详解】当时左边当时左边观察可知增加的项数是故答案是【点睛】该题考查的是有解析:2k . 【分析】分析题意,根据数学归纳法的证明方法得到1n k =+时,不等式左边的表示式是解答该题的突破口,当1n k =+时,左边11111112321221k k k +=+++⋯+++⋯+--,由此将其对n k =时的式子进行对比,得到结果.【详解】当n k =时,左边11112321k =++++-…, 当1n k =+时,左边11111112321221k k k +=+++⋯+++⋯+--, 观察可知,增加的项数是1121(21)222k k k k k ++---=-=, 故答案是2k . 【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.16.9999【解析】分析:观察所告诉的式子找到其中的规律问题得以解决详解:按照以上规律可得故答案为9999点睛:常见的归纳推理类型及相应方法常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数解析:9999 【解析】分析:观察所告诉的式子,找到其中的规律,问题得以解决.详解:=,==,,按照以上规律=210019999n =-=. 故答案为9999.点睛:常见的归纳推理类型及相应方法 常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等. (2)形的归纳主要包括图形数目归纳和图形变化规律归纳.17.31【解析】分析:由图形的特点只需看第10个图形中火柴的根数是在的基础上增加几个即可详解:第1个图形中有根火柴棒;第2个图形中有根火柴棒;第3个图形中有根火柴棒;第10个图形中有根火柴棒点睛:本题主解析:31 【解析】分析:由图形的特点,只需看第10个图形中火柴的根数是在4的基础上增加几个3即可. 详解:第1个图形中有4根火柴棒; 第2个图形中有437+= 根火柴棒; 第3个图形中有43210+⨯= 根火柴棒;第10个图形中有43931+⨯= 根火柴棒.点睛:本题主要考查了归纳推理的应用,齐总解答中根据图形的变化规律,得到火柴棒的根数是在4的基础上增加几个3的关系是解答的关键,着重考查了推理与运算能力.18.当时【解析】由题意得当时其中根据上述的运算规律可以归纳得出结论当时点睛:本题考查归纳推理的应用解答中根据给定式子的计算得到计算的规律是解答的关键归纳推理属于合情推理对于合情推理主要包括归纳推理和类比解析:当1213x <<时,()122392max f x =⨯-= 【解析】由题意得,当1213x <<时,其中()max f x 根据上述的运算规律, 可以归纳得出结论当1213x <<时,()max 122392f x =⨯-=. 点睛:本题考查归纳推理的应用,解答中根据给定式子的计算,得到计算的规律是解答的关键,归纳推理属于合情推理,对于合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.(而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).19.【解析】由题意知:结论左端各项分别是和为的各数的倒数右端时为时为故时结论为故答案为【方法点睛】本题通过观察几组不等式归纳出一般规律来考察归纳推理属于中档题归纳推理的一般步骤:一通过观察个别情况发现某 解析:2n【解析】由题意,知:结论左端各项分别是和为1的各数i a 的倒数()1,2,...,i n =,右端2n =时为242,3n ==时为293=,故12,...1i n a R a a a +∈+++=时,结论为()212111...2nn n a a a +++≥≥,故答案为2n . 【方法点睛】本题通过观察几组不等式,归纳出一般规律来考察归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.20.1-【解析】解:根据已知的表达式可以观察归纳得到=1-解析:1-1(1)2nn +⋅.【解析】解:根据已知的表达式可以观察归纳得到=1-三、解答题21.(1)213a =,315a =,417a =;(2)121n a n =-,证明见解析.【分析】(1)利用()*11112nn na a a n N a +==∈+,,n 分别取234,,可求出234,,a a a ,并由此猜想数列{}n a 的通项公式n a 的表达式;(2)根据计算结果猜想数列{}n a 的通项公式n a 的表达式,用数学归纳法证明①当1n =时,111211a ==⨯-,猜想成立;②假设n k =成立,利用()*112n n n a a n N a +=∈+,可证得当1n k =+时猜想也成立,故可得结论. 【详解】(1)∵111,(1,2,3,)12nn a a a n a+===⋅⋅⋅+, ∴1211123a a a ==+, 同理可得:315a =,417a =. (2)由(1)计算结果猜想121n a n =-, 下面用数学归纳法证明: ①当1n =时,111211a ==⨯-,猜想成立, ②假设当()*1n k k N =+∈时,猜想成立,即:121k a k =-. 则当()*1n k k N =+∈时,111121212212(1)1121k k k a k a a k k k +-====+++-+-,所以,当1n k =+时,猜想成立.根据①②可知猜想对任何*n N ∈都成立. 【点睛】本题主要考查了以数列递推式为载体,考查了数列的通项的猜想与证明,解题的关键是利用数学归纳法证明,尤其第二步的证明.属于中档题.22.(1)2346,13,28a a a ===;(2)12n n a n +=-,证明见解析【分析】(1)由已知条件分别取2,3,4n =,能依次求出2a ,3a ,4a 的值; (2)猜想12n n a n +=-.证明当1n =是否成立,假设()n k k N +=∈时,猜想成立,即:12k k a k +=-,证明当1n k =+也成立,可得证明【详解】解:(1)由题意:13a =,()211324222n n S S n n n -=+-+≥, 当2n =时,可得121213222422a a a =+⨯-⨯++,可得26a =同理当3n =时:123122132(33422)a a a a a =+⨯-+⨯+++,可得313a = 当4n =时:12341232132(2)4442a a a a a a a +=+⨯-++⨯+++,可得428a = (2)猜想12n n a n +=-.证明如下:①1n =时,111321a +==-符合猜想,所以1n =时,猜想成立.②假设()n k k N +=∈时,猜想成立,即:12k k a k +=-.21132422k k S S k k -=+-+(2k ≥),2k+1132(1)(1)422k S S k k ∴=++-++,两式作差有:121,(2)k k a a k k +=+-≥,又21211a a =+-,所以121k k a a k +=+-对k N +∈恒成立. 则1n k =+时,12(1)11212(2)12(1)2(1)k k k k k a a k k k k k +++++=+-=-+-=-+=-+,所以1n k =+时,猜想成立. 综合①②可知,12n n a n +=-对n ∈+N 恒成立.【点睛】本题主要考查数列的递推式及通项公式的应用,数学归纳法的证明方法的应用,考查学生的计算能力与逻辑推理能力,属于中档题.23.(1)21n a n =-+,()1,11,21n n b n n n -=⎧⎪=⎨≥⎪-⎩.(2)见解析【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组求出1a 和d ,进而可得{}n a 的通项公式;由11n n n b T T ++=⋅,得1111n n T T +-=-,可得1n T n=-,利用1n n n b T T -=-,可得{}n b 的通项公式;(2)利用数学归纳法, ①当1n =时,左边1=,右边4=②假设n k =时成立,即()12214k c c c k k +++<+,证明当1n k =+时,不等式也成立. 【详解】解:(1)设首项为1a ,公差为d ,则()111346241a d a d a d +=-⎧⎨+=++⎩,解得11a =-,2d =-,故21n a n =-+,由11n n n b T T ++=⋅,得11n n n n T T T T ++=⋅-,即1111n n T T +-=-,11T =-,所以1nn T =-,即1n T n=-,所以()()1121n n n b T T n n n -=-=≥-,故()1,11,21n n b n n n -=⎧⎪=⎨≥⎪-⎩. (2)由(1)知n c =()1221n c c c n +++<+, ①当1n =时,左边1=,右边=②假设n k =时成立,即()1221k c c c k +++<+, 即当1n k =+时,()21214k k c c c c k k+++++<++()21k k =++⎢⎣()214k k ⎡=++⎢⎣ 22k k =++⎢⎣))()224312344k k k k k <+++=++. 即当1n k =+时,不等式也成立.由①,②可知,不等式()1212n c c c n n +++<+对任意*n N ∈都成立. 【点睛】本题考查等差数列的通项公式以及n S 法求数列的通项公式,考查数列归纳法,是中档题. 24.(1)证明见解析,(1)n a n n =+;(2)见解析 【分析】 (1)定义法证明:11n na a d n n+-=+;(2)采用数学归纳法直接证明(注意步骤). 【详解】由1(1)(1)n n na n a n n +=+++可知:1(1)(1)(1)(1)(1)n n na n a n n n n n n n n +++=++++,则有111n n a a n n +=++,即111n n a a n n +-=+,所以{}n a n为等差数列,且首相为121a=,公差1d =,所以1na n n=+,故(1)n a n n =+; (2)22(1)n b n n =+ ,当1n =时,111124b =<-成立; 假设当n k =时,不等式成立则:12211(1)k b b b k +++<-+;当1n k =+时,12122121(1)(1)(2)k k b b b b k k k +++++<-++++,因为22222212112111(1)(1)(2)(2)(2)(1)(2)(1)k k k k k k k k ⎛⎫⎛⎫-+--=+- ⎪ ⎪++++++++⎝⎭⎝⎭ 222222(1)2(1)(2)10(1)(2)(1)(2)k k k k k k k +++-+-==<++++ , 所以22212111(1)(1)(2)(2)k k k k ⎛⎫⎛⎫-+<- ⎪ ⎪++++⎝⎭⎝⎭, 则121211(2)k k b b b b k +++++<-+,故1n k =+时不等式成立,综上可知:12211(1)n b b b n +++<-+.【点睛】数学归纳法的一般步骤:(1)1n =命题成立;(2)假设n k =命题成立;(3)证明1n k =+命题成立(一定要借助假设,否则不能称之为数学归纳法).25.(1) (2)见解析【解析】试题分析:(Ⅰ)首先利用三角绝对值不等式的性质求得最小值的表达式,然后结合已知条件求解即可;(Ⅱ)首先由(1)及基本不等式,得,然后假设与同时成立,推出且,与相矛盾,即证得结论.试题 (1)∵,∴. (2)∵且,由基本不等式知道:,∴假设与同时成立,则由及,得.同理,∴,这与矛盾,故与不可能同时成立.考点:1、基本不等式;2、三角绝对值不等式的性质;3、反证法. 26.(1).;(2)见解析.【解析】试题分析:(1)分别求出的值,观察共有性质,从而可归纳猜想出;(2)根据数学归纳法的基本原理,①当n=1时,验证猜想正确,②假设当n=k时(k∈N*)时结论成立,证明当n=k+1时结论正确即可.试题(1)T1==;T2=+=×=×=;T3=++=×=×=由此可猜想T n=.(2)证明:①当n=1时,T1=,结论成立.②假设当n=k时(k∈N*)时结论成立,即T k=.则当n=k+1时,T k+1=T k+=+==.即n=k+1时,结论成立.由①②可知,T n=对于一切n∈N*恒成立.。

数学北师大版高中选修2-2第一章 推理与证明练习题

数学北师大版高中选修2-2第一章 推理与证明练习题

第一章 推理与证明练习题1.“蛇、鳄鱼、海龟、蜥蜴等爬行动物是用肺呼吸的,所以所有的爬行动物都是用肺呼吸的.”此推理方法是: ;2.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为: ;3.证明n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式等于: ;4.否定结论“至多有两个解”的说法是: ;5.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为: ;6.某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1)种走法,从平地上到第二级台阶时有f (2)种走法……则他从平地上到第n 级(n ≥3)台阶时的走法f (n )等于: ;7.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定: ;8.数列{a n }满足a 1=12,a n +1=1-1a n,则a 2 013等于: ;9.一个数列{a n }的前n 项为35,12,511,37,717,….则猜想它的一个通项公式为a n =________.10.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形.图111.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________.12.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论:________________.13.已知a +b +c =0,比较ab +bc +ca 的大值与0的大小;14.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,….根据上述规律,第五个等式为________________________.15.(本小题满分12分)若a 1>0,a 1≠1,a n +1=2a n1+a n(n =1,2,…).(1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n .16.(2014·银川模拟)用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”的第二步是( )A .假设n =2k +1时正确,再推n =2k +3时正确(k ∈N +)B .假设n =2k -1时正确,再推n =2k +1时正确(k ∈N +)C .假设n =k 时正确,再推n =k +1时正确(k ∈N +)D .假设n ≤k (k ≥1)时正确,再推n =k +2时正确(k ∈N +)17.f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72.推测:当n ≥2时,有____________.18.(2014·陕西文,14)已知f (x )=x1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +, 则f 2014(x )的表达式为________.19.(本小题满分12分)某少数民族的刺绣有着悠久的历史,图2为她们刺绣中最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图2(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f +1f -1+1f -1+…+1f n -1的值.20.(本小题满分14分)函数列{f n (x )}满足f 1(x )=x1+x2(x >0),f n +1(x )=f 1[f n (x )].(1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明.21.已知数列{a n },a 1=5且S n -1=a n (n ≥2,n ∈N +). (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式.22.(山东高考)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +),证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.[解析] (1)解:因为对任意n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r均为常数)的图像上,所以S n =b n+r .当n =1时,a 1=S 1=b +r ,当n ≥2时,a n =S n -S n -1=b n +r -(b n -1+r )=b n -b n -1=(b -1)b n -1,又因为{a n }为等比数列,所以r =-1,公比为b ,a n =(b -1)b n -1.(2)证明:当b =2时,a n =(b -1)b n -1=2n -1, b n =2(log 2a n +1)=2(log 22n -1+1)=2n , 则b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n.下面用数学归纳法证明不等式:32·54·76…·2n +12n>n +1.①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.②假设当n =k (k ∈N +)时,不等式成立, 即32·54·76·…·2k +12k>k +1.则当n =k +1时, 左边=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=k +2k +=k +2+k ++1k +=k ++1+1k +>k ++1, 所以当n =k +1时,不等式也成立.由①②可得,不等式对任何n ∈N +都成立, 即b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1恒成立.【解】 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4,…由以上规律,可得出f (n +1)-f (n )=4n ,因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n ,所以f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)=…=f [n -(n -1)]+4(n -1)+4(n -2)+4(n -3)+…+4[n -(n -1)]=2n 2-2n +1.(3)当n ≥2时,1f n -1=12n n -=12(1n -1-1n),所以1f +1f -1+1f -1+…+1f n -1=1+12(1-12+12-13+13-14+…+1n -1-1n )=1+12(1-1n )=32-12n.18.(本小题满分14分)函数列{f n (x )}满足f 1(x )=x1+x2(x >0),f n +1(x )=f 1[f n (x )].(1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明. 解:(1)f 1(x )=x1+x2(x >0),f 2(x )=x1+x21+x 21+x 2=x1+2x 2,f 3(x )=x1+2x 21+x 21+2x2=x 1+2x 2+x 2=x1+3x 2. (2)猜想f n (x )=x1+nx2,下面用数学归纳法证明: ①当n =1时,命题显然成立.②假设当n =k 时,f k (x )=x1+kx2,那么f k +1(x )=x1+kx 21+x21+kx2=x1+kx 2+x2=x 1+k +x 2.这就是说,当n =k +1时命题成立.由①②,可知f n (x )=x1+nx2对所有n ∈N +均成立.20.已知数列{a n },a 1=5且S n -1=a n (n ≥2,n ∈N +). (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式.[分析] 利用不完全归纳法猜想归纳出a n ,然后用数学归纳法证明.解题的关键是根据已知条件和假设寻找a k 与a k +1和S k 与S k +1之间的关系.[解析] (1)由已知,得a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10,a 4=S 3=a 1+a 2+a3=5+5+10=20,a n =⎩⎪⎨⎪⎧n =5×2n -2n .(2)①当n =2时,a 2=5×22-2=5,表达式成立.当n =1时显然成立,下面用数学归纳法证明n ≥2时结硫化亦成立.②假设n =k (k ≥2,k ∈N +)时表达式成立,即a k =5×2k -2, 则当n =k +1时,由已知条件和假设有 a k +1=S k =a 1+a 2+…+a k=5+5+10+…+5×2k -2=5+-2k -11-2=5×2k -1=5×2(k +1)-2.故当n =k +1时,表达式也成立.由①②可知,对一切n (n ≥2,n ∈N +)都有a n =5×2n -2.[点评] 本题先用不完全归纳法猜想出通项,然后用数学归纳法证明,考查了由特殊到一般的数学思想,也考查了数列知识,在高考中这类题往往是压轴题.解决方法是观察与分析法,也就是说解决这类题要注意观察数列中各项与其序号的变化关系,归纳出构成数列的规律,同时还要注意第一项与其他各项的差异,从而发现其中的规律.21.(山东高考)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +),证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.[解析] (1)解:因为对任意n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r均为常数)的图像上,所以S n =b n+r .当n =1时,a 1=S 1=b +r ,当n ≥2时,a n =S n -S n -1=b n +r -(b n -1+r )=b n -b n -1=(b -1)b n -1,又因为{a n }为等比数列,所以r =-1,公比为b ,a n =(b -1)b n -1.(2)证明:当b =2时,a n =(b -1)b n -1=2n -1, b n =2(log 2a n +1)=2(log 22n -1+1)=2n , 则b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n.下面用数学归纳法证明不等式:32·54·76…·2n +12n>n +1.①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.②假设当n =k (k ∈N +)时,不等式成立, 即32·54·76·…·2k +12k>k +1.则当n =k +1时, 左边=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=k +2k +=k +2+k ++1k +=k ++1+1k +>k ++1, 所以当n =k +1时,不等式也成立.由①②可得,不等式对任何n ∈N +都成立, 即b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1恒成立.第一章 推理与证明 (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.“蛇、鳄鱼、海龟、蜥蜴等爬行动物是用肺呼吸的,所以所有的爬行动物都是用肺呼吸的.”此推理方法是( )A .演绎推理B .归纳推理C .类比推理D .以上都不对【解析】 由部分推断全体,是归纳推理. 【答案】 B2.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为( ) A .25 B .6 C .7 D .8【解析】 将数列分组得(1),(2,2),(3,3,3),(4,4,4,4),…,这样每一组的个数为1,2,3,4,…;其和为n n +2,令n =6,则有6×72=21,所以第25项在第7组,因此第25项是7.【答案】 C3.证明n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式等于( )A .1B .1+12C .1+12+13D .1+12+13+14【解析】 中间的式子共有2n 项,故n =2时,中间的式子等于1+12+13+14.【答案】 D4.否定结论“至多有两个解”的说法中,正确的是( ) A .有一个解 B .有两个解C .至少有三个解D .至少有两个解【解析】 “至多有两个解”包含有两解,仅有一解,和无解,故其否定为至少有三个解.【答案】 C5.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <bC .a =bD .a ,b 大小不定【解析】 a =1c +1+c ,b =1c +c -1,显然a <b .【答案】 B6.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r (S 1,S 2,S 3,S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高)【解析】 设△ABC 的内心为O ,连接OA ,OB ,OC ,将△ABC 分割为三个小三角形,这三个小三角形的高都是r ,底边长分别为a ,b ,c ;类比:设四面体A -BCD 的内切球的球心为O ,连接OA ,OB ,OC ,OD ,将四面体分割为四个以O 为顶点,以原来面为底面的四面体,高都为r ,所以有V =13(S 1+S 2+S 3+S 4)r .【答案】 C 7.某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1)种走法,从平地上到第二级台阶时有f (2)种走法……则他从平地上到第n 级(n ≥3)台阶时的走法f (n )等于( )A .f (n -1)+1B .f (n -2)+2C .f (n -2)+1D .f (n -1)+f (n -2)【解析】 要到达第n 级台阶有两种走法:(1)在第n -2级的基础上到达;(2)在第n -1级的基础上到达.【答案】 D8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A .大于零B .等于零C .小于零D .正负都可能【解析】 f (x )=x 3+x 是奇函数且在R 上是增函数,由a +b >0,得a >-b ,故f (a )>f (-b ),可得f (a )+f (b )>0.同理f (a )+f (c )>0,f (b )+f (c )>0.所以f (a )+f (b )+f (c )>0.【答案】 A9.(2012·江西高考)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199【解析】 记a n +b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.【答案】 C10.数列{a n }满足a 1=12,a n +1=1-1a n,则a 2 013等于( )A.12B .-1C .2D .3【解析】 ∵a 1=12,a n +1=1-1a n,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2,∴a n +3k =a n (n ∈N *,k ∈N *)∴a 2 013=a 3+3×670=a 3=2. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在横线上)11.一个数列{a n }的前n 项为35,12,511,37,717,….则猜想它的一个通项公式为a n =________.【解析】 数列可写成35,48,511,614,717,….猜想通项公式a n =n +23n +2.【答案】 n +23n +212.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形.图1【解析】根据规律和第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.【答案】 28 n +n +213.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________.【解析】 就x 是否等于a ,b 而言有四种情形:①x =a ,x ≠b ;②x ≠a ,x =b ;③x =a ,x =b ;④x ≠a ,x ≠b .故应假设x =a 或x =b . 【答案】 x =a 或x =b14.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论:________________.【解析】 根据等差、等比数列中运算的性质知: 在等比数列{b n }中会有10a 11·a 12·…·a 20=30a 1·a 2·…·a 30.【答案】 10a 11·a 12·…·a 20=30a 1·a 2·…·a 30三、解答题(本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)用反证法证明:如果x >12,那么x 2+2x -1≠0.【证明】 假设x 2+2x -1=0, 则解得x 1=2-1,x 2=-2-1.又x 1<12,x 2<12,这与已知x >12矛盾.故假设不成立,x 2+2x -1≠0成立.16.(本小题满分12分)试比较2n 与n 2(n ∈N *)的大小关系,并用数学归纳法证明.【证明】 当n =1时,21>12,即2n >n 2,当n =2时,22=22,即2n =n 2,当n =3时,23<32,即2n <n 2,当n =4时,24=42,即2n =n 2,当n =5时,25>52,即2n >n 2,当n =6时,26>62,即2n >n 2, …猜测,当n ≥5时,2n >n 2.下面用数学归纳法证明猜测成立. ①当n =5时,由上可知猜测成立.②设n =k (k ≥5)时,命题成立,即2k >k 2. ∴2k +1=2·2k >2k 2=k 2+k 2>k 2+(2k +1)=(k +1)2,即n =k +1时命题也成立.由①和②可得,n ≥5时,2n >n 2(n ∈N *).17.(本小题满分12分)某少数民族的刺绣有着悠久的历史,图2为她们刺绣中最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图2(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f +1f -1+1f -1+…+1f n -1的值.【解】 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由以上规律,可得出f (n +1)-f (n )=4n ,因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n ,所以f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)=…=f [n -(n -1)]+4(n -1)+4(n -2)+4(n -3)+…+4[n -(n -1)]=2n 2-2n +1.(3)当n ≥2时,1f n -1=12n n -=12(1n -1-1n),所以1f +1f -1+1f -1+…+1f n -1=1+12(1-12+12-13+13-14+…+1n-1-1n)=1+12(1-1n)=32-12n.18.(本小题满分14分)已知a、b、c>0,求证:a3+b3+c3≥13(a2+b2+c2)(a+b+c).【证明】∵a、b、c>0,∴a2+b2≥2ab,∴(a2+b2)(a+b)≥2ab(a+b),∴a3+b3+a2b+ab2≥2ab(a+b)=2a2b+2ab2,∴a3+b3≥a2b+ab2.同理,b3+c3≥b2c+bc2,a3+c3≥a2c+ac2,将三式相加得,2(a3+b3+c3)≥a2b+ab2+b2c+bc2+a2c+ac2.∴3(a3+b3+c3)≥(a3+a2b+a2c)+(b3+b2a+b2c)+(c3+c2a+c2b)=(a2+b2+c2)(a+b+c).∴a3+b3+c3≥13(a2+b2+c2)(a+b+c).。

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试卷(含答案解析)

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试卷(含答案解析)

一、选择题1.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点()3,4A -,且法向量为(1,2)n =-的直线(点法式)方程为:()()()13240x y ⨯++-⨯-=,化简得2110x y -+=.类比以上方法,在空间直角坐标系中,经过点()1,2,3A ,且法向量为(1,2,1)m =--的平面的方程为( ) A .220x y z +--= B .220x y z ---= C .220x y z ++-=D .220x y z +++=2.在数学归纳法的递推性证明中,由假设n k =时成立推导1n k =+时成立时,()f n =1+1112321n ++⋅⋅⋅+-增加的项数是( ) A .1B .21k +C .2kD .21k -3.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立 B .当7n =时该命题成立 C .当9n =时该命题不成立D .当9n =时该命题成立4.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确5.用数学归纳法证明 11151236n n n ++⋅⋅⋅+≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .112313233k k k +-+++ C .11331k k -++ D .133k + 6.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20647.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中 A .一定有3号球B .一定没有3号球C .可能有5号球D .可能有6号球8.在平面几何中,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的13.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( ) A .12B .14C .16D .189.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12510.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+=12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -二、填空题13.已知数列{},{}n n a b 的通项公式分别为*31,2,nn n a n b n N =-=∈,将{}n a 与{}n b 中的各项混合,并按照从小到大的顺序排成一个新数列(相同元素以一个计):2,4,5,8,11,,记新的数列为{}n c ,若2021n c =,则n =___________.14.我们称形如以下形式的等式具有“穿墙术”:222233=,333388=,44441515=,55552424=,…. 按照以上规律,若11111111n n=具有“穿墙术”,则n =_______. 15.观察下列等式:请你归纳出一般性结论______.16.点00(,)x y 到直线0Ax By C ++=的距离公式为0022d A B=+,通过类比的方法,可求得:在空间中,点(0,1,3)到平面2330x y z +++=的距离为__________. 17.研究cos n α的公式,可以得到以下结论:2cos )22cos )32cos )42cos )22cos )52cos )32cos )62cos )42cos )22cos )72cos )52cos )32cos 2(2,2cos3(3(2cos ),2cos 4(4(2,2cos5(5(5(2cos ),2cos 6(6(9(2,2cos 7(7(14(7(2cos ααααααααααααααααααααα=-=-=-+=-+=-+-=-+-),以此类推:422cos8(2cos )(2cos )(2cos )16(2cos )m p n q r ααααα=++-+,则m n p q r ++++=__________.18.已知结论“1a ,*2R a ∈,且121a a +=,则12114a a +≥;若1a 、2a 、*3R a ∈,且1231a a a ++=,则1239111a a a ++≥”,请猜想若1a 、2a 、…、*R n a ∈,且121n a a a +++=,则12111na a a +++≥__________. 19.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.20.甲、乙、丙、丁四人分别去买体育彩票各一张,恰有一人中奖.他们的对话如下,甲说:“我没中奖”;乙说:“我也没中奖,丙中奖了”;丙说:“我和丁都没中奖”;丁说:“乙说的是事实”.已知四人中有两人说的是真话,另外两人说的是假话,由此可判断中奖的是__________.三、解答题21.设数列{}n a 的前n 项和为n S ,且对任意的正整数n 都满足()21n n n S a S -=.(1)求1S ,2S ,3S 的值,猜想n S 的表达式;(2)用数学归纳法证明(1)中猜想的n S 的表达式的正确性. 22.已知函数2()1f x x =-,数列{}n a 的前n 项和为n S ,且满足2425()n n S n n f a +=+. (1)求1234,,,a a a a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明.23.已知数列{}n a 的前n 项和为n S ,且20S =,()*2n n S n na n N +=∈.(1)试写出数列{}n a 的任意前后两项(即n a 、1n a +)构成的等式;(2)用数学归纳法证明:()*23n a n n N =-∈.24.数列{}n a 满足2(n n S n a n =-∈N *). (1)计算1234,,,a a a a ,并由此猜想通项公式n a ; (2)用数学归纳法证明(1)中的猜想.25.已知各项均不为零的数列{}n a 的前n 项和为n S ,且()141n n n S a a n N *+=⋅+∈,其中11a =.(1)求证:135,,a a a 成等差数列; (2)求证:数列{}n a 是等差数列;(3)设数列{}n b 满足()121nb nn N a *=+∈,且n T 为其前n 项和,求证:对任意正整数n ,不等式212log n n T a +>恒成立. 26.给出下面的数表序列:其中表()1,2,3,...n n =有n 行,第1行的n 个数是1,3,5,…,21n -,从第2行起,每行中的每个数都等于它肩上的两数之和.(1)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表()3n n ≥(不要求证明)(2)每个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为{}n b ,求数列{}n b 的前n 项和【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】类比平面中求动点轨迹方程的方法,在空间任取一点P (x ,y ,z ),则AP =(x ﹣1,y ﹣2,z ﹣3),利用平面法向量为n =(﹣1,﹣2,1),即可求得结论. 【详解】类比平面中求动点轨迹方程的方法,在空间任取一点P (x ,y ,z ),则AP =(x ﹣1,y ﹣2,z ﹣3)∵平面法向量为n =(﹣1,﹣2,1), ∴﹣(x ﹣1)﹣2×(y ﹣2)+1×(z ﹣3)=0 ∴x +2y ﹣z ﹣2=0, 故选A . 【点睛】本题考查了类比推理,考查了空间向量数量积的坐标运算,由于平面向量与空间向量的运算性质相似,利用求平面曲线方程的办法,构造向量,利用向量的性质解决空间内平面方程的求解问题,属于中档题.2.C解析:C 【解析】分析:分别计算当n k =时,()1?f k = + 1112321k ++⋅⋅⋅+-,当1n k =+成立时, ()1?f k = + 1111123212221k k k k++⋅⋅⋅+++⋅⋅⋅+-+-,观察计算即可得到答案 详解:假设n k =时成立,即()1?f k = + 1112321k ++⋅⋅⋅+- 当1n k =+成立时,()1?f k = + 1111123212221k k k k++⋅⋅⋅+++⋅⋅⋅+-+- ∴增加的项数是()()221212k k k k +---=故选C点睛:本题主要考查的是数学归纳法。

选修2-2第一章推理与证明练习题

选修2-2第一章推理与证明练习题

推理与证明过关检测试题1.考察下列一组不等式: ,5252522233⋅+⋅>+ ,5252523344⋅+⋅>+,525252322355⋅+⋅>+.将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是 . 2.已知数列{}n a 满足12a =,111n n na a a ++=-(*n ∈N ),则3a 的值为 , 1232007a a a a ⋅⋅⋅⋅ 的值为 . 3. 已知2()(1),(1)1()2f x f x f f x +==+*x N ∈(),猜想(f x )的表达式为( ) A.4()22xf x =+; B.2()1f x x =+; C.1()1f x x =+; D.2()21f x x =+.4. 某纺织厂的一个车间有技术工人m 名(m N *∈),编号分别为1、2、3、……、m ,有n 台(n N *∈)织布机,编号分别为1、2、3、……、n ,定义记号i j a :若第i 名工人操作了第j 号织布机,规定1i j a =,否则0i j a =,则等式41424343n a a a a ++++= 的实际意义是( ) A 、第4名工人操作了3台织布机; B 、第4名工人操作了n 台织布机; C 、第3名工人操作了4台织布机; D 、第3名工人操作了n 台织布机. 5. 已知*111()1()23f n n N n=++++∈ ,计算得3(2)2f =,(4)2f >,5(8)2f >,(16)3f >,7(32)2f >,由此推测:当2n ≥时,有6. 观察下图中各正方形图案,每条边上有(2)n n ≥个圆圈,每个图案中圆圈的总数是n S ,按此规律推出:当2n ≥时,n S 与n 的关系式24n S == 38n S == 412n S ==7.观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,则可得出一般结论: . 8.函数()f x 由下表定义:若05a =,1()n n a f a +=,0,1,2,n = ,则2007a = .9.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰是由6颗珠宝构成如图1所示的正六边形, 第三件首饰是由15颗珠宝构成如图2所示的正六边形, 第四件首饰是由28颗珠宝构成如图3所示的正六边形, 第五件首饰是由45颗珠宝构成如图4所示的正六边形, 以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上应有_______颗珠宝;则前n 件首饰所用珠宝总数为_ 颗.(结果用n 表示)……10.那么2003应该在第 行,第 列。

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(有答案解析)

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(有答案解析)

一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥ 3.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式4.某地铁换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下: 安全出口编号 A ,BB ,CC ,DD ,EA ,E疏散乘客时间(s )186125160175145则疏散乘客最快的一个安全出口的编号是( )A .AB .BC .CD .D5.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第n 个图案中正六边形的个数是()f n .由(1)1f =,(2)7f =,(3)19f ,…,可推出(10)f =( ) A .271B .272C .273D .2746.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立 B .当7n =时该命题成立 C .当9n =时该命题不成立D .当9n =时该命题成立7.体育课上,小红、小方、小强、小军四位同学都在进行足球、篮球、羽毛球、乒乓球等四项体自运动中的某一种,四人的运动项目各不相同,下面是关于他们各自的运动项目的一些判断:①小红没有踢足球,也没有打篮球; ②小方没有打篮球,也没有打羽毛球;③如果小红没有打羽毛球,那么小军也没有踢足球; ④小强没有踢足球,也没有打篮球.已知这些判断都是正确的,依据以上判断,请问小方同学的运动情况是( ) A .踢足球 B .打篮球 C .打羽毛球 D .打乒乓球8.周末,某高校一学生宿舍甲乙丙丁四位同学正在做四件事情,看书、写信、听音乐、玩游戏,下面是关于他们各自所做事情的一些判断: ①甲不在看书,也不在写信; ②乙不在写信,也不在听音乐;③如果甲不在听音乐,那么丁也不在看书; ④丙不在看书,也不写信.已知这些判断都是正确的,依据以上判断,请问乙同学正在做的事情是( ) A .玩游戏 B .写信 C .听音乐 D .看书9.利用反证法证明“若220x y +=,则0x =且0y =”时,下列假设正确的是( ) A .0x ≠且0y ≠ B .0x =且0y ≠ C .0x ≠或0y ≠D .0x =或0y =10.在平面直角坐标系中,方程1x ya b+=表示在x 轴、y 轴上的截距分别为,a b 的直线,类比到空间直角坐标系中,在x 轴、y 轴、z 轴上的截距分别为(),,0a b c abc ≠的平面方程为( ) A .1x y z a b c ++= B .1x y z ab bc ca++= C .1xy yz zx ab bc ca++= D .1ax by cz ++=11.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( ) A .乙B .甲C .丁D .丙12.已知,,(0,2)a b c ∈,则(2),(2),(2)a b b c c a ---中( ) A .至少有一个不小于1 B .至少有一个不大于1 C .都不大于1D .都不小于1二、填空题13.数表的第1行只有两个数字3,7,从第2行开始,先按序照搬上一行的数再在相邻两数之间插入这两个数的和,如下图所示,那么第10行的各个数之和等于__________.14.已知函数()11112f x x x x =++++,由()111111f x x x x -=++-+是奇函数,可得函数()f x 的图象关于点()1,0-对称,类比这一结论,可得函数()237126x x x g x x x x +++=++++++的图象关于点___________对称. 15.甲、乙、丙、丁四人商量去不去看一部电影,他们之间有如下对话:甲说:乙去我才去;乙说:丙去我才去;丙说:甲不去我就不去;丁说:乙不去我就不去.最终这四人中有人去看了这部电影,有人没去看这部电影,没有去看这部电影的人一定是__________.16.在平面几何中,正三角形ABC 的内切圆半径为1r ,外接圆半径为2r ,则1212r r =,推广到空间可以得到类似结论:已知正四面体P ABC -的内切球半径为1R ,外接球半径为2R ,则12R R =__________. 17.在平面几何中有如下结论:正三角形ABC 的内切圆面积为1S ,外接圆面积为2S ,则1214S S =,推广到空间可以得到类似结论:已知正四面体P ABC -的内切球体积为1V ,外接球体积为2V ,则12V V =____. 18.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是__________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.小明在做一道数学题目时发现:若复数111cos i?sin ?,z αα=+222 cos i?sin ,z αα=+,333cos i?sin z αα=+(其中123,,R ααα∈), 则121212cos()i?sin(+)z z αααα⋅=++,232323cos()i?sin(+)z z αααα⋅=++ ,根据上面的结论,可以提出猜想: z 1·z 2·z 3=__________________. 三、解答题21.已知数列{}n a 满足11a =,1(5)5n n n a a a ++=. (1)计算234,,a a a 的值,猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中的猜想. 22.用数学归纳法证明:()()22222222212311321n n n ++++-++-++++()21213n n =+.23.已知数列{}n a 满足1a a =,112n na a +=-(*n N ∈); (1)求2a 、3a 、4a ; (2)猜想数列{}n a 的通项公式; (3)用数学归纳法证明你的猜想; 24.选修4-5:不等式选讲 已知,,函数的最小值为.(1)求的值;(2)证明:与不可能同时成立.25.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈. 26.若,x y 都是正实数,且2x y +>,求证:12x y +<或12yx+<中至少有一个成立.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先阅读题意,再结合简单的合情推理即可得解.【详解】(1)A→D调5辆,D→C调1辆,B→C调3辆,共调整:5+1+3=9次,(2)A→D调4辆,A→B调1辆,B→C调4辆,共调整:4+1+4=9次,故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.B解析:B【分析】由线面垂直与线面平行的判定,结合反证法,即可得出结果.【详解】当正四面体过点D的高与平面α垂直时,平面ABC平面α,所以BC平面α;⊥,所以AD⊂平面α,或AD平面α,此时若BC⊥平面α,因为正四面体中BC ADAD与平面α所成角为0,与条件矛盾,所以BC不可能垂直平面α;故选B【点睛】本题主要考查直线与平面平行与垂直的判定,在验证BC与平面α是否垂直时,可借助反证的思想来解决,属于中档试题.3.C解析:C【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.4.C解析:C 【解析】分析:根据疏散1000名乘客所需的时间,两两对比,即可求出结果. 详解:同时开放其中的两个安全出口,疏散1000名乘客,所需时间对比:开方AB 、出口时间为186s ,开方BC 、出口时间为125s ,得C 比A 快; 开方CD 、出口时间为160s ,开方DE 、出口时间为175s ,得C 比E 快;开方AB 、出口时间为186s ,开方A E 、出口时间为145s ,得E 比B 快; 开方BC 、出口时间为125s ,开方CD 、出口时间为160s ,得B 比D 快; 综上,疏散乘客最快的安全出口的编号是C. 故选C.点睛:本题考查简单的合情推理,考查学生推理论证能力.5.A解析:A 【分析】观察图形,发现,第一个图案中有一个正六边形,第二个图案中有7个正六边形;… 根据这个规律,即可确定第10个图案中正六边形的个数. 【详解】由图可知,()11f =,()212667f =+⨯-=, ()()312362619f =++⨯-⨯=, ()()212362619f =++⨯-⨯=, ()()4123463637f =+++⨯-⨯=,…()()101234...10696271.f =+++++⨯-⨯=故选A. 【点睛】此类题要能够结合图形,发现规律:当2n ≥时,()()()161.f n f n n --=-6.A解析:A 【解析】分析:利用互为逆否的两个命题同真同假的原来,当()P n 对n k =不成立时,则对1n k =-也不成立,即可得到答案.详解:由题意可知,原命题成立的逆否命题成立, 命题()P n 对8n =不成立时,则()P n 对7n =也不成立, 否则当7n =时命题成立,由已知必推得8n =也成立, 与当8n =时命题不成立矛盾,故选A .点睛:本题主要考查了数学归纳法以及归纳法的性质,互为逆否的两个命题同真同假的性质应用,其中正确四种命题的关系是解答的关键,着重考查了推理与论证能力,属于基础题.7.A解析:A【解析】分析:由题意结合所给的逻辑关系进行推理论证即可. 详解:由题意可知:小红、小方、小强都没有打篮球,故小军打篮球; 则小军没有踢足球,且已知小红、小强都没有踢足球,故小方踢足球. 本题选择A 选项.点睛:本题主要考查学生的推理能力,意在考查学生的转化能力和计算求解能力.8.D解析:D【解析】由①知甲在听音乐或玩游戏,由②知乙在看书或玩游戏,由④知丙在听音乐或玩游戏,由③知,丁在看书,则甲在听音乐,丙在玩游戏,乙在看书,故选D.9.C解析:C 【解析】“且”的否定为“或”,故选C : 0x ≠或0y ≠10.A解析:A 【分析】平面上直线方程的截距式推广到空间中的平面方程的截距式是1x y za b c++=. 【详解】由类比推理得:若平面在x 轴、y 轴、z 轴上的截距分别为,,a b c ,则该平面的方程为:1x y za b c++=,故选A. 【点睛】平面中的定理、公式等类比推理到空间中时,平面中的直线变为空间中的直线或平面,平面中的面积变为空间中的体积.类比推理得到的结论不一定正确,必要时要对得到的结论证明.如本题中,可令0,0x y ==,看z 是否为c .11.A解析:A 【分析】由题意,这个问题的关键是四人中有两人说真话,另外两人说了假话,通过这一突破口,进行分析,推理即可得到结论. 【详解】在甲、乙、丙、丁四人的供词中,可以得出乙、丁两人的观点是一致的,因此乙丁两人的供词应该是同真同假(即都是真话或都是假话,不会出现一真一假的情况);假设乙、丁两人所得都是真话,那么甲、丙两人说的是假话,由乙说真话可推出丙是犯罪的结论;由甲说假话,推出乙、丙、丁三人不是犯罪的结论;显然这两人是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙的供词可以断定乙是犯罪的,乙、丙、丁中有一人是犯罪的, 由丁说假话,丙说真话推出乙是犯罪的,综上可得乙是犯罪的,故选A. 【点睛】本题主要考查了推理问题的实际应用,其中解答中结合题意,进行分析,找出解决问题的突破口,然后进行推理是解答的关键,着重考查了推理与论证能力.12.B解析:B 【分析】用反证法证明,假设同时大于1,推出矛盾得出结果 【详解】假设()21a b ->,()21b c ->,()21c a ->, 三式相乘得()()()2221a b b c c a -⋅-⋅->,由()02a b c ,,,∈,所以()220212a a a a -+⎛⎫<-≤= ⎪⎝⎭,同理()21b b -≤,()21c c -≤,则()()()2221a a b b c c -⋅-⋅-≤与()()()2221a b b c c a -⋅-⋅->矛盾,即假设不成立,所以()()()222a b b c c a ---,,不能同时大于1,所以至少有一个不大于1, 故选B 【点睛】本题考查的是用反证法证明数学命题,把要证的结论进行否定,在此基础上推出矛盾,是解题的关键,同时还运用了基本不等式,本题较为综合二、填空题13.【解析】分析:归纳出第一行第二行第三行…各个数之和的规律从而即可得到答案详解:第一行的和为;第二行的和为;第三行的和为;第四行的和为;…第n 行的和为;故第10行的各个数之和等于故答案为:点睛:归纳推 解析:95(31)⨯+【解析】分析:归纳出第一行、第二行、第三行、…各个数之和的规律,从而即可得到答案.详解:第一行的和为()1110531-=⨯+;第二行的和为()2120531-=⨯+;第三行的和为()3150531-=⨯+; 第四行的和为()41140531-=⨯+;…第n 行的和为()1531n -⨯+;故第10行的各个数之和等于()9531⨯+. 故答案为:()9531⨯+.点睛:归纳推理的一般步骤:(1)通过观察个别情况发现某些相同特征;(2)从已知的相同性质中推出一个明确表述的一般性命题.14.【解析】由题得所以是奇函数所以函数的图象关于点对称故填解析:7,62⎛⎫- ⎪⎝⎭【解析】 由题得234567()6111111123456x x x x x x g x x x x x x x ++++++-=-+-+-+-+-+-++++++ 111111123456x x x x x x =+++++++++++ 7111111()67777772123456222222g x x x x x x x --=+++++-+-+-+-+-+-+ 7111111()6()5311352222222g x f x x x x x x x --=+++++=---+++ 111111()()531135222222f x f x x x x x x x ∴-=+++++=--------+-+-+所以()f x 是奇函数,所以函数()237126x x x g x x x x +++=++++++的图象关于点7,62⎛⎫- ⎪⎝⎭对称. 故填7,62⎛⎫-⎪⎝⎭. 15.丁【解析】如果甲不去那么丙也不去乙丁都不去;如果乙不去那么丁不去甲丙都不去;如果乙不去那么丁不去甲丙也都不去;如果丁不去那么甲乙丙都去了才符合题意故答案为丁解析:丁 【解析】如果甲不去,那么丙也不去,乙、丁都不去;如果乙不去,那么丁不去,甲、丙都不去;如果乙不去,那么丁不去,甲、丙也都不去;如果丁不去,那么甲、乙、丙都去了,才符合题意,故答案为丁.16.【解析】从平面图形类比空间图形从二维类比三维可得出如下结论:正四面体的外接球和内切球半径之经是3:1所以填解析:13【解析】从平面图形类比空间图形,从二维类比三维,可得出如下结论:正四面体的外接球和内切球半径之经是3:1.所以填13。

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试(含答案解析)(2)

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试(含答案解析)(2)

一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 2.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28B .76C .123D .1993.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2 D .至少有一个大于24.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第n 个图案中正六边形的个数是()f n .由(1)1f =,(2)7f =,(3)19f ,…,可推出(10)f =( ) A .271B .272C .273D .2745.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立 B .当7n =时该命题成立 C .当9n =时该命题不成立D .当9n =时该命题成立6.在等差数列{}n a 中,如果,,,m n p r N *∈,且3m n p r ++=,那么必有3m n p r a a a a ++=,类比该结论,在等比数列{}n b 中, 如果,,,m n p r N *∈,且3m n p r ++=,那么必有( )A .3++=m n p r b b b bB .3++=m n p r b b b b C .3=m n p r b b b bD .3m n p r b b b b =7.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20648.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了9.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .2310.用反证法证明“自然数,,a b c 中至多有一个偶数”时,假设原命题不成立,等价于( ) A .,,a b c 没有偶数 B .,,a b c 恰好有一个偶数 C .,,a b c 中至少有一个偶数D .,,a b c 中至少有两个偶数11.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队 B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变12.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( ) A .丁B .乙C .丙D .甲二、填空题13.已知1111()1232f n n n n n=+++++++,则()(1)f k f k +=+_________. 14.某同学在解决一道数学题时发现01212323434234345445567----222222222222====,,,,,依此规律可以求得112nk k k =+∑关于n 的最简表达式为__________.15.在平面几何中有如下结论:若正三角形ABC 的内切圆周长为1C ,外接圆周长为2C ,则1212C C =.推广到空间几何可以得到类似结论:若正四面体ABCD 的内切球表面积为1S ,外接球表面积为2S,则12S S =__________. 16.观察下列各式:(1) 2()2x x '=,(2) 43()4x x '=,(3) (cos )sin x x '=-,……,根据以上事实,由归纳推理可得:若定义在R 上的偶函数()f x 的导函数为()g x ,则(0)g =____. 17.将自然数1,2,3,4,…排成数阵(如右图所示),在2处转第一个弯,在3处转第二个弯,在5处转第三个弯,…,则转第100个弯处的数是______.18.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》中提出了一个“茭草形段”问题:“今有茭草六百八十束,欲令‘落一形’埵(同垛)之,问底子几何?”他在这一问题中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上一束,下一层3束,再下一层6束,……,)成三角锥的堆垛,故也称三角垛,如图,表示从上往下第二层开始的每层茭草束数,则本问题中的三角垛倒数第二层茭草总束数为______.19.在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行: 设实系数一元二次方程22100a x a x a ++=……①在复数集C 内的根为1x ,2x ,则方程①可变形为()()2120a x x x x --=, 展开得()222122120a x a x x x a x x -++=.……②比较①②可以得到:11220122a x x a a x x a ⎧+=-⎪⎪⎨⎪=⎪⎩类比上述方法,设实系数一元n 次方程11100nn n n a x a xa x a --++++=(2n ≥且*N n ∈)在复数集C 内的根为1x ,2x ,…,n x ,则这n 个根的积1ni i x ==∏ __________.20.在平面几何中有如下结论:正三角形ABC 的内切圆面积为1S ,外接圆面积为2S ,则1214S S =,推广到空间可以得到类似结论:已知正四面体P ABC -的内切球体积为1V ,外接球体积为2V ,则12V V =____. 三、解答题21.已知数列{}n x 满足10x =,21n n n x x x c +=-++()n N*∈,104c <≤,求证:数列{}n x 是递增数列.22.已知数列1111,,,,,112123123n+++++++,其前n 项和为n S ;(1)计算1234,,,S S S S ;(2)猜想n S 的表达式,并用数学归纳法进行证明. 23.已知数列{}n a 中,11a =,136nn na a a +=-. (1)写出234,,a a a 的值,猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中你的结论. 24.数列{}n a 满足2(n n S n a n =-∈N *). (1)计算1234,,,a a a a ,并由此猜想通项公式n a ; (2)用数学归纳法证明(1)中的猜想. 25.已知()()()2012211+=+-+-nx a a x a x ()()1++-∈nn a x n *N .(1)求0a 及12n n S a a a =+++;(2)试比较n S 与223n n -的大小,并用数学归纳法证明.26.证明:223333(1)1234n n n ++++⋯+=,其中*n N ∈.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出当n k =时,左边的代数式,当1n k =+时,左边的代数式,相减可得结果. 【详解】当n k =时,左边的代数式为11112k k k k++⋯++++,当1n k =+时,左边的代数式为11111232122k k k k k k ++⋯++++++++, 故用1n k =+时左边的代数式减去n k =时左边的代数式的结果为:11111212212122k k k k k +-=-+++++,故选D . 【点睛】本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n k =到1n k =+项的变化,属于中档题.2.C解析:C 【详解】 由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=, 294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.3.D解析:D 【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.4.A解析:A 【分析】观察图形,发现,第一个图案中有一个正六边形,第二个图案中有7个正六边形;… 根据这个规律,即可确定第10个图案中正六边形的个数. 【详解】由图可知,()11f =,()212667f =+⨯-=,()()312362619f =++⨯-⨯=, ()()212362619f =++⨯-⨯=,()()4123463637f =+++⨯-⨯=,…()()101234...10696271.f =+++++⨯-⨯=故选A. 【点睛】此类题要能够结合图形,发现规律:当2n ≥时,()()()161.f n f n n --=-5.A解析:A 【解析】分析:利用互为逆否的两个命题同真同假的原来,当()P n 对n k =不成立时,则对1n k =-也不成立,即可得到答案.详解:由题意可知,原命题成立的逆否命题成立, 命题()P n 对8n =不成立时,则()P n 对7n =也不成立, 否则当7n =时命题成立,由已知必推得8n =也成立, 与当8n =时命题不成立矛盾,故选A .点睛:本题主要考查了数学归纳法以及归纳法的性质,互为逆否的两个命题同真同假的性质应用,其中正确四种命题的关系是解答的关键,着重考查了推理与论证能力,属于基础题.6.D解析:D 【详解】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论.详解:由题意,类比上述性质:在等比数列{}n b 中,则由“如果,,,m n p r N *∈,且3m n p r ++=”,则必有“3m n p r b b b b =”成立,故选D.点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:①找出等差数列与等比数列之间的相似性或一致性;②用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想).7.B解析:B 【解析】第一行数字之和为1112-=;第二行数字之和为2122-=;第三行数字之和为3142-=; 第四行数字之和为4182,...-=,第n 行数字之和为12n na ,31041122a a ∴+=+810241032=+=,故选B.【方法点睛】本题主要考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8.C解析:C【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.9.C解析:C【解析】可以用归纳思想,1条弦,分圆成2个部分。

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试卷(包含答案解析)(1)

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试卷(包含答案解析)(1)

一、选择题1.我国南宋数学家杨家辉所著的《详解九章算法》一书中记录了一个由正整数构成的三角形数表,我们通常称之为杨辉三角.以下数表的构造思路就来源于杨辉三角.( )从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数a ,则a 的值为( )A .100820182⨯B .100920182⨯C .100820202⨯D .100920202⨯2.如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成( )A .2450B .2451C .2452D .24533.从计算器屏幕上显示的数为0开始,小明进行了五步计算,每步都是加1或乘以2.那么不可能是计算结果的最小的数是( ) A .12B .11C .10D .94.在数学归纳法的递推性证明中,由假设n k =时成立推导1n k =+时成立时,()f n =1+1112321n ++⋅⋅⋅+-增加的项数是( ) A .1B .21k +C .2kD .21k -5.用反证法证明“若x y <,则33x y <”时,假设内容应是( ) A .33x y =B .33x y >C .33x y =或33x y >D .33x y =或33x y <6.用数学归纳法证明 11151236n n n ++⋅⋅⋅+≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .112313233k k k +-+++C .11331k k -++ D .133k + 7.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20648.下面结论正确的是( )①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”,这是三段论推理,但其结论是错误的.②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适. ③由平面三角形的性质推测空间四面体的性质,这是一种合情推理.④一个数列的前三项是1,2,3,那么这个数列的通项公式必为()n a n n =∈*N .A .①③B .②③C .③④D .②④9.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( ) A .0B .13C .12D .110.用反证法证明命题:“若x ,那么(1)f ,(2)f ,(3)f 中至少有一个不小于12”时,反设正确的是( ) A .假设(1)f ,(2)f ,(3)f 至多有两个小于12B .假设(1)f ,(2)f ,(3)f 至多有一个小于12C .假设(1)f ,(2)f ,(3)f 都不小于12D .假设(1)f ,(2)f ,(3)f 都小于1211.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .23 12.用数学归纳法证明“1112n n ++++…111()24n N n n +≥∈+”时,由n k =到1n k =+时,不等试左边应添加的项是( )A .12(1)k +B .112122k k +++ C .11121221k k k +-+++ D .1111212212k k k k +--++++ 二、填空题13.记I 为虚数集,设,,,a b R x y I ∈∈,则下列类比所得的结论正确的是__________.①由·a b R ∈,类比得·x y I ∈ ②由20a ≥,类比得20x ≥③由()2222a b a ab b +=++,类比得()2222x y x xy y +=++ ④由0,a b a b +>>-,类比得0,x y x y +>>-14.类比初中平面几何中“面积法”求三角形内切圆半径的方法,可以求得棱长为a 的正四面体的内切球半径为__________.15.设数列{}n a 的前n 项和为n S ,已知*()n n S n a n N =-∈,猜想n a =__________.16.36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为22(133)(22323)++++⨯+⨯22222(22323)(122)++⨯+⨯=++2(133)91++=,参照上述方法,可得100的所有正约数之和为__________. 17.我们称形如以下形式的等式具有“穿墙术”:====….按照以上规律,若=“穿墙术”,则n =_______. 18.已知函数()11112f x x x x =++++,由()111111f x x x x -=++-+是奇函数,可得函数()f x 的图象关于点()1,0-对称,类比这一结论,可得函数()237126x x x g x x x x +++=++++++的图象关于点___________对称. 19.在平面内,点,,P A B 三点共线的充要条件是:对于平面内任一点O ,有且只有一对实数,x y ,满足向量关系式OP xOA yOB =+,且1x y +=.类比以上结论,可得到在空间中,,,,P A B C 四点共面的充要条件是:对于平面内任一点O ,有且只有一对实数,,x y z 满足向量关系式__________.20.求“方程34155x x ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭的解”有如下解题思路:设函数()3455x xf x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则函数()f x 在R 上单调递减,且()21f =,所以原方程有唯一解2x =.类比上述解题思路,方程()3622323x x x x +=+++的解集为____________.三、解答题21.在数列{}n a 中,已知11a =,112nn na a a +=+. (1)计算2a ,3 a ,4a ;(2)根据计算结果猜想出{}n a 的通项公式n a ,并用数学归纳法证明你的结论. 22.已知数列{}n a 的前n 项和为n S ,满足1n a ≥,且()241n n S a =+,n N +∈.(1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法予以证明.23.已知数列{}n a 的前n 项和为n S ,且20S =,()*2n n S n na n N +=∈.(1)试写出数列{}n a 的任意前后两项(即n a 、1n a +)构成的等式;(2)用数学归纳法证明:()*23n a n n N =-∈.24.数列{}n a 满足2(n n S n a n =-∈N *). (1)计算1234,,,a a a a ,并由此猜想通项公式n a ; (2)用数学归纳法证明(1)中的猜想.25.在数列{}n a ,{}n b 中,12a =,14b =,且n a ,n b ,1n a +成等差数列,n b ,1n a +,1n b +成等比数列(*n N ∈).(1)求2a ,3a ,4a 及2b ,3b ,4b ;(2)根据计算结果,猜想{}n a ,{}n b 的通项公式,并用数学归纳法证明. 26.已知,a b ∈R ,且1a b +=求证:()()2225222a b +++≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据每一行的第一个数的变化规律即可得到结果. 【详解】解:第一行第一个数为:0112=⨯; 第二行第一个数为:1422=⨯;第三行第一个数为:21232=⨯; 第四行第一个数为:33242=⨯;,第n 行第一个数为:1n 2n n a -=⨯;一共有1010行,∴第1010行仅有一个数:10091008a 1010220202=⨯=⨯; 故选C . 【点睛】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.2.B解析:B 【解析】 【分析】设第n 个图案的点的个数为n a ,由图归纳可得()121,1n n a a n n --=--个式子相加,由等差数列的求和公式可得结果. 【详解】设第n 个图案的点的个数为n a ,由题意可得123451,3,7,13,21a a a a a =====, 故213243542,4,6,8,...a a a a a a a a -=-=-=-=, 由此可推得()121n n a a n --=-,以上1n -个式子相加可得:()()()()()2132431...246...21n n a a a a a a a a n --+-+-++-=++++-,化简可得()()()1222112n n n a n n -+--==-,故()11n a n n =-+, 故50504912451a =⨯+=,即第50个图形由2451个点组成,故选B . 【点睛】本题主要考查归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.3.B解析:B 【分析】由题意,可列出树形图,逐步列举,即可得到答案.由题意,列出树形图,如图所示由树形图可知,不可能是计算结果的最小数是11,故选B.【点睛】本题主要考查了简单的合情推理,以及树形图的应用,其中解答中认真分析题意,列出树形图,结合树形图求解是解答的关键,着重考查了推理与论证能力,属于基础题.4.C解析:C 【解析】分析:分别计算当n k =时,()1?f k = + 1112321k ++⋅⋅⋅+-,当1n k =+成立时, ()1?f k = + 1111123212221k k k k ++⋅⋅⋅+++⋅⋅⋅+-+-,观察计算即可得到答案 详解:假设n k =时成立,即()1?f k = + 1112321k ++⋅⋅⋅+- 当1n k =+成立时,()1?f k = + 1111123212221k k k k ++⋅⋅⋅+++⋅⋅⋅+-+- ∴增加的项数是()()221212k k k k +---=故选C点睛:本题主要考查的是数学归纳法。

(易错题)高中数学高中数学选修2-2第一章《推理与证明》检测卷(包含答案解析)(1)

(易错题)高中数学高中数学选修2-2第一章《推理与证明》检测卷(包含答案解析)(1)

一、选择题1.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲B .乙C .丙D .丁2.用反证法证明“若x y <,则33x y <”时,假设内容应是( ) A .33x y =B .33x y >C .33x y =或33x y >D .33x y =或33x y <3.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,1()f x '=,2()f x '=,*1())n f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+D .(cos sin )x e x x --4.甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人分别采访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是( ) A .甲 B .乙 C .丙 D .丁5.已知n 为正整数用数学归纳法证明2()135(21)f n n n =++++-=时,假设*(n k k N =∈)时命题为真,即2()f k k =成立,则当1n k =+时,需要用到的(1)f k +与()f k 之间的关系式是( )A .(1)()23f k f k k +=+-B .(1)()21f k f k k +=+-C .(1)()21f k f k k +=++D .(1)()23f k f k k +=++6.命题“若,x y >则()()()()332222x y x y x yx xy y -+=--+”的证明过程:“要证明()()()()332222x y x y x y x xy y -+=--+, 即证()()()()()3322.x y x y x y x y x xy y -+=-+-+因为,x y >即证()()3322x y x y x xy y +=+-+,即证33322223,x y x x y xy x y xy y +=-++-+ 即证3333,x y x y +=+因为上式成立,故原等式成立应用了( ) A .分析法B .综合法C .综合法与分析法结合使用D .演绎法7.(河南省南阳市第一中学2018届高三第十四次考试)某校有A ,B ,C ,D 四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖.在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下: 甲说:“A 、B 同时获奖”; 乙说:“B 、D 不可能同时获奖”; 丙说:“C 获奖”;丁说:“A 、C 至少一件获奖”.如果以上四位同学中有且只有二位同学的预测是正确的,则获奖的作品是 A .作品A 与作品B B .作品B 与作品C C .作品C 与作品DD .作品A 与作品D8.对命题“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的什么位置? A .正三角形的顶点 B .正三角形的中心C .正三角形各边的中点D .无法确定9.数列0,75-,135,6317-,…的一个通项公式是( ) A .()312111n n n +--+ B .()32111nn n --+C .()312111n n n ---- D .()32111nn n ---10.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D11.请观察这些数的排列规律,数字1位置在第一行第一列表示为(1,1),数字14位置在第四行第三列表示为(4,3),根据特点推算出数字2019的位置A .(45,44)B .(45,43)C .(45,42)D .该数不会出现12.用数学归纳法证明“1112n n ++++…111()24n N n n +≥∈+”时,由n k =到1n k =+时,不等试左边应添加的项是( ) A .12(1)k +B .112122k k +++ C .11121221k k k +-+++ D .1111212212k k k k +--++++ 二、填空题13.已知1111()1232f n n n n n=+++++++,则()(1)f k f k +=+_________. 14.类比初中平面几何中“面积法”求三角形内切圆半径的方法,可以求得棱长为a 的正四面体的内切球半径为__________.15.在平面几何中有如下结论:若正三角形ABC 的内切圆周长为1C ,外接圆周长为2C ,则1212C C =.推广到空间几何可以得到类似结论:若正四面体ABCD 的内切球表面积为1S ,外接球表面积为2S ,则12S S =__________. 16.已知[x]表示不大于x 的最大整数,设函数f (x )=[log 2x 219+],得到下列结论:结论1:当2<x<3时,f (x )max=-1. 结论2:当4<x<5时,f (x )max=1. 结论3:当6<x<7时,f (x )max=3. ……照此规律,结论6为_____17.某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分:1 2 3 4 5 得分甲 4 乙 3 丙2则甲同学答错的题目的题号是__________.18.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为22n n+,记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数:211(,3)22N n n n =+;正方形数:2(,4)N n n =;五边形数:231(,5)22N n n n =-;六边形数:2(,6)2N n n n =-,…,由此推测(8,8)N =__________.19.在ABC ∆中,D 为BC 的中点,则()12AD AB AC =+,将命题类比到三棱锥中去得到一个类比的命题为__________.20.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是__________.三、解答题21.在数列{}n a 中,1131,23n n n a a a a +==+ (1)求出23,a a 并猜想n a 的通项公式; (2)用数学归纳方证明你的猜想.22.设等差数列{}n a 的前n 项和为n S ,23a =-,()4521S a =+,数列{}n b 的前n 项和为n T ,满足11b =-,()*11n n n b T T n N ++=∈.(1)求数列{}n a 、{}n b 的通项公式; (2)记n c =,*n N ∈,证明:()12214n c c c n +++<+. 23.已知1111,,,,,112123123n +++++++,其前n 项和为n S .(1)计算1234,,,S S S S ;(2)猜想n S 的表达式,并用数学归纳法进行证明.24.用数学归纳法证明:()()()2222*24(2)221335212121n n n n N n n n +++⋯+=∈⋅⋅-++. 25.已知函数()f x 满足()()233log log .f x x x =-(1).求函数()f x 的解析式;(2).当n *∈N 时,试比较()f n 与3n 的大小,并用数学归纳法证明你的结论. 26.给出下面的数表序列:其中表()1,2,3,...n n =有n 行,第1行的n 个数是1,3,5,…,21n -,从第2行起,每行中的每个数都等于它肩上的两数之和.(1)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表()3n n ≥(不要求证明)(2)每个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为{}n b ,求数列{}n b 的前n 项和【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁. 【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾, 假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.2.C解析:C 【解析】试题分析:∵用反证法证明命题时,应先假设命题的否定成立, 而“33x y <”的否定为:“33x y ≥”,故选C . 考点:反证法与放缩法.3.B解析:B 【解析】分析:易得到f n (x )表达式以8为周期,呈周期性变化,由于2018÷8余2,故f 2008(x )= f 2(x ),进而得到答案详解:∵f 0(x )=e x (cosx+sinx ),∴f 0′(x )=e x (cosx+sinx )+e x (﹣sinx+cosx )=2e x cosx , ∴f1(x )'f x x cosx ,∴f1′(x )x (cosx ﹣sinx ), ∴f 2(x )'f x =e x (cosx ﹣sinx ),∴f 2′(x )=e x (cosx ﹣sinx )+e x (﹣sinx ﹣cosx )=﹣2e x sinx , ∴f3(x )=x sinx , ∴f3′(x )=x (sinx+cosx ), ∴f 4(x )=﹣e x (cosx+sinx ), ∴f 4′(x )=﹣2e x cosx , ∴f5(x )=x cosx , ∴f 6(x )=﹣e x (cosx ﹣sinx ), ∴f7(x )x sinx , ∴f 8(x )=e x (cosx+sinx ), …,∴()2018f x == f 2(x )=()cos sin xe x x -,故选:B .点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.4.A【解析】分析:因为四位歌手中只有一个人说的是真话,假设某一个人说的是真话,如果与条件不符,说明假设不成立,如果与条件相符,说明假设成立. 详解:若乙是获奖的歌手,则甲、乙、丁都说的真话,不符合题意; 若丙是获奖的歌手,则甲、丁都说的真话,不符合题意; 若丁是获奖的歌手,则乙、丙都说的真话,不符合题意;若甲是获奖的歌手,则甲、乙、丙都说的假话,丁说的真话,符合题意; 故选A.点睛:本题考查合情推理,属基础题.5.C解析:C 【解析】分析:先根据条件确定()1f k +式子,再与()f k 相减得结果. 详解:因为()()13521f n n =++++-,所以()()13521f k k =++++-()()()11352121f k k k +=++++-++,所以()()121f k f k k +-=+,选C.点睛:本题考查数学归纳法,考查数列递推关系.6.A解析:A 【解析】分析:由题意结合分析法的定义可知题中的证明方法应用了分析法. 详解:题中的证明方法为执果索因,这是典型的分析法, 即原等式成立应用了分析法. 本题选择A 选项.点睛:本题主要考查分析法的特征及其应用,意在考查学生的转化能力和知识应用能力.7.D解析:D 【解析】根据题意,,,,A B C D 作品中进行评奖,由两件获奖, 且有且只有二位同学的预测是正确的,若作品A 与作品B 获奖,则甲、乙,丁是正确的,丙是错误的,不符合题意; 若作品B 与作品C 获奖,则乙、并、丁是正确的,甲是错误的,不符合题意; 若作品C 与作品D 获奖,则甲、乙,丙是正确的,丁是错误的,不符合题意; 只有作品A 与作品D 获奖,则乙,丁是正确的,甲、丙是错误的,符合题意, 综上所述,获奖作品为作品A 与作品D ,故选D.8.B解析:B分析:由题意结合几何体的空间关系进行类比推理即可求得最终结果.详解:绘制正三棱锥的内切球效果如图所示,很明显切点在面内而不在边上,则选项AC 错误,由“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的正三角形的中心. 本题选择B 选项.点睛:在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.9.A解析:A 【解析】在四个选项中代n=2,选项B,D 是正数,不符,A 选项值为75-,符合,C 选项值为73-,不符.所以选A. 【点睛】对于选择题的选项是关于n 的关系式,可以考虑通过赋特殊值检验法,来减少运算,或排除选项.10.B解析:B 【解析】由图知,A 表示圆,B 表示三角形,C 表示竖线,D 表示矩形,()5∴表示B D *,()6表示A C *,故选B.11.C解析:C 【分析】由所给数的排列规律得到第n 行的最后一个数为2n ,然后根据2452025=可推测2019所在的位置. 【详解】由所给数表可得,每一行最后一个数为2221,2,3,,由于22441936,452025==,2244201945<<, 所以故2019是第45行的倒数第4个数, 所以数字2019的位置为(45,42). 故选C . 【点睛】(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识. (2)解决归纳推理问题的基本步骤①发现共性,通过观察特例发现某些相似性(特例的共性或一般规律); ②归纳推理,把这种相似性推广为一个明确表述的一般命题(猜想).12.C解析:C 【分析】分别代入,1n k n k ==+,两式作差可得左边应添加项. 【详解】 由n=k 时,左边为11112k k k k+++++, 当n=k+1时,左边为11111231(1)(1)k k k k k k k k +++++++++++++ 所以增加项为两式作差得:11121221k k k +-+++,选C. 【点睛】运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n 取第一个值n 0(n 0∈N *)时命题成立,第二步是归纳递推(或归纳假设)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立,只要完成这两步,就可以断定命题对从n 0开始的所有的正整数都成立,两步缺一不可.二、填空题13.【分析】根据题意共有项且各项的分母从变到故得到的代数式再用表示【详解】故答案为【点睛】本题主要考查了数学归纳法的应用考查了数列的递推式解题时要认真审题仔细解答注意公式的灵活运用 解析:11121221k k k +-+++ 【分析】根据题意()f k 共有k 项且各项的分母从1k +变到2k ,故得到()1f k +的代数式,再用()f k 表示【详解】()11111232f n n n n n =+++++++, ()11111232f k k k k k∴=+++++++ ()()()()()1111111121321f k k k k k +=+++++++++++111112342122k k k k k =++++++++++()11121221f k k k k =++-+++ 故答案为11121221k k k +-+++ 【点睛】本题主要考查了数学归纳法的应用,考查了数列的递推式,解题时要认真审题,仔细解答,注意公式的灵活运用.14.【解析】分析:先根据类比将正四面体分割成四个小三棱锥再根据体积关系求内切球半径详解:设正四面体的内切球半径为各面面积为所以点睛:等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到解析:12a 【解析】分析:先根据类比将正四面体分割成四个小三棱锥,再根据体积关系求内切球半径. 详解:设正四面体的内切球半径为r ,各面面积为S , 所以114334hh S r S r ⨯⨯=⨯⨯⨯∴===. 点睛:等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高或内切球的半径,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.15.【解析】分析:平面图形类比空间图形二维类比三维得到类比平面几何的结论确定正四面体的外接球和内切球的半径之比即可求得结论详解:平面几何中圆的周长与圆的半径成正比而在空间几何中球的表面积与半径的平方成正解析:19【解析】分析:平面图形类比空间图形,二维类比三维得到,类比平面几何的结论,确定正四面体的外接球和内切球的半径之比,即可求得结论.详解:平面几何中,圆的周长与圆的半径成正比,而在空间几何中,球的表面积与半径的平方成正比,因为正四面体的外接球和内切球的半径之比是13,1219S S ∴=,故答案为19. 点睛:本题主要考查类比推理,属于中档题.类比推理问题,常见的类型有:(1)等差数列与等比数列的类比;(2)平面与空间的类比;(3)椭圆与双曲线的类比;(4)复数与实数的类比;(5)向量与数的类比.16.当时【解析】由题意得当时其中根据上述的运算规律可以归纳得出结论当时点睛:本题考查归纳推理的应用解答中根据给定式子的计算得到计算的规律是解答的关键归纳推理属于合情推理对于合情推理主要包括归纳推理和类比解析:当1213x <<时,()122392max f x =⨯-= 【解析】由题意得,当1213x <<时,其中()max f x 根据上述的运算规律, 可以归纳得出结论当1213x <<时,()max 122392f x =⨯-=. 点睛:本题考查归纳推理的应用,解答中根据给定式子的计算,得到计算的规律是解答的关键,归纳推理属于合情推理,对于合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.(而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).17.5【解析】根据表格得到甲同学答错的是第五题乙同学答错的是第三个和第五个丙同学答错的是第一个三个五个故第五题的正确的答案为:A 故答案为(1)5(2)A解析:5 【解析】根据表格得到甲同学答错的是第五题,乙同学答错的是第三个和第五个,丙同学答错的是第一个三个,五个.故第五题的正确的答案为:A . 故答案为(1). 5 (2). A.18.176【解析】原已知式子可化为:正方形数:五边形数六边形数……由此推测由归纳推理可得故解析:176 【解析】原已知式子可化为:211,322N n n n ==+() 正方形数:()22,402N n n n ==+ 五边形数()231,5?22N n n n ==-六边形数()242,6?22N n n n ==-……由此推测由归纳推理可得()224,22k kN n k n n --=+ 故()2648,88817622N =⨯+⨯= 19.在四面体A -BCD 中G 为△BCD 的重心则【解析】由类比四面体中点类比重心有由类比可得在四面体中为的重心则有故答案为在四面体中为的重心则有点睛:本题考查了从平面类比到空间属于基本类比推理利用类比推理可解析:在四面体A -BCD 中,G 为△BCD 的重心,则1()3AG AB AC AD =++ 【解析】由“ABC ”类比“四面体A BCD -”,“中点”类比“重心”有,由类比可得在四面体A BCD -中,G 为BCD 的重心,则有1()3AG AB AC AD =++,故答案为在四面体A BCD -中,G 为BCD 的重心,则有1()3AG AB AC AD =++. 点睛: 本题考查了从平面类比到空间,属于基本类比推理.利用类比推理可以得到结论、证明类比结论时证明过程与其类比对象的证明过程类似或直接转化为类比对象的结论,属于基础题;由条件根据类比推理,由“ABC ”类比“四面体A BCD -”,“中点”类比“重心”,从而得到一个类比的命题.20.跑步【解析】由题意得由(4)可知乙参加了铅球比赛由(2)可知乙不是最高的所以三人中身高居中;再由(1)可知甲是最矮的参加了跳远丙是最高的参加了跑步比赛解析:跑步 【解析】由题意得, 由(4)可知,乙参加了铅球比赛,由(2)可知乙不是最高的,所以三人中身高居中;再由(1)可知,甲是最矮的,参加了跳远,丙是最高的,参加了跑步比赛.三、解答题21.(1)2333,78a a ==;35n a n =+;(2)见详解 【分析】(1)先根据递推关系,依次求得23,a a 的值,并猜想通项公式为35n a n =+; (2)根据数学归纳法证明的过程,对猜想进行证明即可. 【详解】解:(1) ∵1131,23n n n a a a a +==+, ∴1223123133333372,1337383327a a a a a a ⨯⨯======++++ 因此可猜想: 35n a n =+()n N *∈; (2)当1n =时,112a =,等式成立, 假设n k =时,等式成立,即35k a k =+, 则当1n k =+时,1333335336(1)535k k k a k a a k k k +⨯+====++++++,即当1n k =+时,等式也成立,综上所述,对任意自然数n *∈N ,35n a n =+. 【点睛】方法点睛:用数学归纳法证明恒等式的步骤及注意事项:①明确初始值0n 并验证真假;②“假设n k =时命题正确”并写出命题形式;③分析“1n k =+时”命题是什么,并找出与“n k =”时命题形式的差别.弄清左端应增加的项;④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.22.(1)21n a n =-+,()1,11,21n n b n n n -=⎧⎪=⎨≥⎪-⎩.(2)见解析【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组求出1a 和d ,进而可得{}n a 的通项公式;由11n n n b T T ++=⋅,得1111n n T T +-=-,可得1n T n=-,利用1n n n b T T -=-,可得{}n b 的通项公式;(2)利用数学归纳法, ①当1n =时,左边1=,右边4=②假设n k =时成立,即()12214k c c c k k +++<+,证明当1n k =+时,不等式也成立. 【详解】解:(1)设首项为1a ,公差为d ,则()111346241a d a d a d +=-⎧⎨+=++⎩,解得11a =-,2d =-,故21n a n =-+, 由11n n n b T T ++=⋅,得11n n n n T T T T ++=⋅-,即1111n n T T +-=-,11T =-,所以1nn T =-,即1n T n=-,所以()()1121n n n b T T n n n -=-=≥-,故()1,11,21n n b n n n -=⎧⎪=⎨≥⎪-⎩. (2)由(1)知n c =()1221n c c c n +++<+, ①当1n =时,左边1=,右边=②假设n k =时成立,即()1221k c c c k +++<+, 即当1n k =+时,()21214k k c c c c k k +++++<++()21k k =++⎢⎣()214k k ⎡=++⎢⎣ 22k k =++⎢⎣))()224312344k k k k k <+++=++. 即当1nk =+时,不等式也成立.由①,②可知,不等式()1212n c c c n n +++<+对任意*n N ∈都成立. 【点睛】本题考查等差数列的通项公式以及n S 法求数列的通项公式,考查数列归纳法,是中档题. 23.(1)4381,,,325;(2)21n n S n =+,证明见解析. 【解析】 【分析】(1)由题可得前4项,依次求和即可得到答案;(2)由(1)得到前四项和的规律可猜想21n nS n =+,由数学归纳法,即可做出证明,得到结论。

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试卷(包含答案解析)(2)

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试卷(包含答案解析)(2)

一、选择题1.某个命题与正整数n 有关,如果当()*,n k k N =∈ 时命题成立,那么可推得当1n k =+时命题也成立. 现已知当n=8时该命题不成立,那么可推得 ( )A .当n=7时该命题不成立B .当n=7时该命题成立C .当n=9时该命题不成立D .当n=9时该命题成立2.某单位实行职工值夜班制度,已知,,,,5A B C D E 共名职工每星期一到星期五都要值一次夜班,且没有两人同时值夜班,星期六和星期日不值夜班,若A 昨天值夜班,从今天起,B C 至少连续4天不值夜班,D 星期四值夜班,则今天是星期几( )A .五B .四C .三D .二3.用反证法证明命题①:“已知332p q +=,求证:2p q +≤”时,可假设“2p q +>”;命题②:“若24x =,则2x =-或2x =”时,可假设“2x ≠-或2x ≠”.以下结论正确的是( ) A .①与②的假设都错误 B .①与②的假设都正确 C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确4.甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人分别采访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是( ) A .甲 B .乙 C .丙 D .丁5.已知一列数按如下规律排列,1,3,-2,5,-7,12,-19,31,…,则第9个数是( ) A .50B .42C .-50D .-426.我们把平面几何里相似的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就称它们是相似体,给出下面的几何体:①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥,则一定是相似体的个数是( ) A .4B .2C .3D .17.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,它体现了一种无限与有限的转化过程.比如在表达式11111+++中“…”即代表无限次重复,但原式却是个定值,它可以通过方程11x x+=求得12x +==( )AB .3C .6D .8.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩9.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁10.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1nax n x +≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -11.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )2017 2016 2015 2014……6 5 4 3 2 1 4033 4031 4029…………11 9 7 5 3 8064 8060………………20 16 12 8 16124……………………36 28 20 ……………………… A .201620172⨯ B .201501822⨯ C .201520172⨯ D .201601822⨯12.已知====()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( )A .)⎡+∞⎣B .(,-∞C .(),3-∞D .[1,3]二、填空题13.已知数列{},{}n n a b 的通项公式分别为*31,2,nn n a n b n N =-=∈,将{}n a 与{}n b 中的各项混合,并按照从小到大的顺序排成一个新数列(相同元素以一个计):2,4,5,8,11,,记新的数列为{}n c ,若2021n c =,则n =___________.14.类比初中平面几何中“面积法”求三角形内切圆半径的方法,可以求得棱长为a 的正四面体的内切球半径为__________.15.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术,得诀自诩无所阻,额上纹起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:222233=,333388=,44441515=,55552424=……则按照以上规律,若100100100100n n=,具有“穿墙术”,则n =_____. 16.我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S ,如11S =,22S =,32S =,44S =,……,则126S =______17.求“方程34155x x ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭的解”有如下解题思路:设函数()3455x xf x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则函数()f x 在R 上单调递减,且()21f =,所以原方程有唯一解2x =.类比上述解题思路,方程()3622323x x x x +=+++的解集为____________.18.观察下列不等式: (1)221sin cos 1αα≤≤+ (2)441sin cos 12αα≤≤+ (3)661sin cos 14αα≤≤+ …… …… …… …… …… ……由此规律推测,第n 个不等式为:__________.19.研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”,有如下解法:由22110()()0ax bx c a b c x x-+>⇒-+>,令1y x =,则1(,1)2y ∈,所以不等式20cx bx a -+>的解集为1(,1)2,类比上述解法,已知关于x 的不等式0k x b x a x c ++<++的解集为(2,1)(2,3)--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为__________.20.小明在做一道数学题目时发现:若复数111cos i?sin ?,z αα=+222 cos i?sin ,z αα=+,333cos i?sin z αα=+(其中123,,R ααα∈), 则121212cos()i?sin(+)z z αααα⋅=++,232323cos()i?sin(+)z z αααα⋅=++ ,根据上面的结论,可以提出猜想: z 1·z 2·z 3=__________________. 三、解答题21.用数学归纳法证明:()()22222222212311321n n n ++++-++-++++()21213n n =+.22.(1)已知数列{}n a 通项公式为()12n n n a +=,写出数列前5项. (2)记数列3333331,2,3,4,5,,,n 的前n 项和为n S ,写出n S 的前5项并归纳出nS 的计算公式.(3)选择适当的方法对(2)中归纳出的公式进行证明. 23.已知正项数列{}n a中,11a =且1111,.n n n na a n N a a *++-=+∈ (1)分别计算出234,,a a a 的值,然后猜想数列{}n a 的通项公式; (2)用数学归纳法证明你的猜想.24.数列{}n a 满足()*2N n n S n a n =-∈.(1)计算123a a a 、、,并猜想n a 的通项公式; (2)用数学归纳法证明(1)中的猜想.25.证明:223333(1)1234n n n ++++⋯+=,其中*n N ∈.26.设a ,b 均为正数,且a b .证明:(1)664224a b a b a b +>+(2>【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【解析】分析:本题考查的知识点是数学归纳法,由归纳法的性质,我们由P (n )对n=k 成立,则它对n=k+1也成立,由此类推,对n >k 的任意整数均成立,结合逆否命题同真同假的原理,当P (n )对n=k 不成立时,则它对n=k-1也不成立,由此类推,对n <k 的任意正整数均不成立,由此不难得到答案.详解:由题意可知,原命题成立则逆否命题成立, P (n )对n=8不成立,P (n )对n=7也不成立, 否则n=7时成立,由已知推得n=8也成立. 与当n=7时该命题不成立矛盾 故选:A .点睛:当P (n )对n=k 成立,则它对n=k+1也成立,由此类推,对n >k 的任意整数均成立;结合逆否命题同真同假的原理,当P (n )对n=k 不成立时,则它对n=k-1也不成立,由此类推,对n <k 的任意正整数均不成立.2.B解析:B 【解析】分析:A 昨天值夜班,D 周四值夜班,得到今天不是周一也不是周五,假设今天是周二,则周二与周三B ,C 至少有一人值夜班,与已知从今天起B ,C 至少连续4天不值夜班矛盾;若今天是周三,则周五与下周一B ,C 至少有一人值夜班,与已知从今天起B ,C 至少连续4天不值夜班矛盾;由此得到今天是周四.详解:∵A 昨天值夜班,D 周四值夜班,∴今天不是周一也不是周五,若今天是周二,则周一A 值夜班,周四D 值夜班,则周二与周三B ,C 至少有一人值夜班,与已知从今天起B ,C 至少连续4天不值夜班矛盾;若今天是周三,则A 周二值夜班,D 周四值夜班,则周五与下周一B ,C 至少有一人值夜班,与已知从今天起B ,C 至少连续4天不值夜班矛盾;若今天是周四,则周三A 值夜班,周四D 值夜班,周五E 值夜班,符合题意. 故今天是周四. 故答案为:B .点睛:(1)本题主要考查推理证明,意在考查学生对该知识的掌握水平和分析推理能力.(2)类似这种题目,一般利用假设分析法,先逐一假设,找到矛盾,就否定这种假设.3.C解析:C 【解析】分析:利用命题的否定的定义判断即可.详解:①2p q +≤的命题否定为2p q +>,故①的假设正确.2x =-或2x =”的否定应是“2x ≠-且2x ≠”② 的假设错误,所以①的假设正确,②的假设错误,故选C.点睛:本题主要考查反证法,命题的否定,属于简单题. 用反证法证明时,假设命题为假,应为原命题的全面否定.4.A解析:A【解析】分析:因为四位歌手中只有一个人说的是真话,假设某一个人说的是真话,如果与条件不符,说明假设不成立,如果与条件相符,说明假设成立. 详解:若乙是获奖的歌手,则甲、乙、丁都说的真话,不符合题意; 若丙是获奖的歌手,则甲、丁都说的真话,不符合题意; 若丁是获奖的歌手,则乙、丙都说的真话,不符合题意;若甲是获奖的歌手,则甲、乙、丙都说的假话,丁说的真话,符合题意; 故选A.点睛:本题考查合情推理,属基础题.5.C解析:C 【解析】分析:由题意结合所给数据的特征确定第九个数即可. 详解:观察所给的数列可知,数列的特征为:121,3a a ==,()213n n n a a a n --=-≥,则978193150a a a =-=--=-. 本题选择C 选项.点睛:本题主要考查数列的递推关系,学生的推理能力等知识,意在考查学生的转化能力和计算求解能力.6.B解析:B 【解析】分析:根据题意,结合题中所给的新定义,根据形状相同,大小不一定相同的几何体被视为相似体,逐一判断,可得结论.详解:两个长方体的长宽高的比值不能确定,两个正三棱柱的高与底面边长的比不能确定,两个正四棱锥的高与底面边长不能确定,所以②④⑤不能确定是正确的, 只有所有的球体和所有的正四面体都是相似体,所以有两个是正确的,故选B.点睛:该题属于新定义的问题,属于现学现用型,这就要求我们必须把握好题中的条件,然后对选项中的几何体逐一判断,最后求得结果.7.A解析:A 【解析】由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的()0m m =>,则两边平方得,得23m =,即23m m +=,解得1122m m ==舍去,故选A. 8.D解析:D 【解析】 【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案 【详解】解:四人所知只有自己看到,老师所说及最后甲说话, 甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩,给甲看乙丙成绩,甲不知道自已的成绩,说明乙丙一优一良,假定乙丙都是优,则甲是良,假定乙丙都是良,则甲是优,那么甲就知道自已的成绩了.给乙看丙成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了 故选:D . 【点睛】本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,属于中档题.9.A解析:A 【解析】四人中只有一人说了真话,只有一人会证明此题,丙:丁会证明;丁:我不会证明,所以丙与丁中有一个是正确的;若丙说了真话,则甲必是假话,矛盾;若丁说了真话,则甲说的是假话,甲就是会证明的那个人,符合题意,以此类推,即可得到甲说真话,故选A.10.B解析:B 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=;据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.11.B解析:B 【分析】数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M ,由此可得结论. 【详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014, 故从右到左第1行的第一个数为:2×2﹣1, 从右到左第2行的第一个数为:3×20, 从右到左第3行的第一个数为:4×21, …从右到左第n 行的第一个数为:(n+1)×2n ﹣2, 第2017行只有M ,则M=(1+2017)•22015=2018×22015 故答案为:B . 【点睛】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.12.C解析:C 【解析】分析:由等式归纳得出m 和t 的关系,从而得出关于m 的恒等式,利用函数单调性得出最小值即可得出λ的范围.=21t m =-, 30m t λ--<恒成立,即220m m λ--<恒成立,m N *∈且2m ≥,222m m m mλ+∴<=+.令()2f m m m =+,()221f m m ='-,2m ≥,()0f m ∴'>,()f m ∴单调递增,∴当2m =时,()f m 取得最小值()23f =,3λ∴<.故选:C.点睛:若f (x )≥a 或g (x )≤a 恒成立,只需满足f (x )min ≥a 或g (x )max ≤a 即可,利用导数方法求出f (x )的最小值或g (x )的最大值,从而问题得解.二、填空题13.【分析】由等差数列和等比数列的通项公式求得它们的公共项归纳它们之间的项数计算可得所求值【详解】由可得:::可得与中的公共项为:且到之间有两个元素到之间有个元素到之间有个元素到之间有个元素到之间有个元 解析:679【分析】由等差数列和等比数列的通项公式,求得它们的公共项,归纳它们之间的项数,计算可得所求值. 【详解】由*31,2,nn n a n b n N =-=∈可得:{}n a :2,5,8,11,14,17,20,23,26,29,32,35,,{}n b :2,4,8,16,32,64,128,256,512,1024,2048,, 可得{}n a 与{}n b 中的公共项为:2,8,32,128,512,2048,,且2到8之间有两个元素,8到32之间有8个元素,32到128之间有32个元素,128到512之间有128个元素,512到2048之间有512个元素;由2832128512682++++=, 而102420212048<<, 且2021在数列{}n a 中, 而2021到2048之间有8个元素, 则68258679n =+-=; 故答案为:679. 【点睛】关键点睛:本题主要考查归纳推理的应用.利用{}n a 与{}n b 的通项公式得到{}n a 与{}n b 的公共项,归纳它们之间的项数是解决本题的关键.14.【解析】分析:先根据类比将正四面体分割成四个小三棱锥再根据体积关系求内切球半径详解:设正四面体的内切球半径为各面面积为所以点睛:等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到【解析】分析:先根据类比将正四面体分割成四个小三棱锥,再根据体积关系求内切球半径. 详解:设正四面体的内切球半径为r ,各面面积为S ,所以114334hh S r S r ⨯⨯=⨯⨯⨯∴===. 点睛:等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高或内切球的半径,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.15.9999【解析】分析:观察所告诉的式子找到其中的规律问题得以解决详解:按照以上规律可得故答案为9999点睛:常见的归纳推理类型及相应方法常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数解析:9999 【解析】分析:观察所告诉的式子,找到其中的规律,问题得以解决.详解:=,==,,按照以上规律=210019999n =-=. 故答案为9999.点睛:常见的归纳推理类型及相应方法 常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等. (2)形的归纳主要包括图形数目归纳和图形变化规律归纳.16.【分析】将杨辉三角中的奇数换成1偶数换成0可得第1次全行的数都为1的是第2行第2次全行的数都为1的是第4行…由此可知全奇数的行出现在2n 的行数即第n 次全行的数都为1的是第2n 行126=27﹣2故可得解析:【分析】将杨辉三角中的奇数换成1,偶数换成0,可得第1次全行的数都为1的是第2行,第2次全行的数都为1的是第4行,…,由此可知全奇数的行出现在2n 的行数,即第n 次全行的数都为1的是第2n 行.126=27﹣2,故可得.所以第128行全是1,那么第127行就是101010…101,第126行就是11001100…110011,问题得以解决. 【详解】解:由题意,将杨辉三角中的奇数换成1,偶数换成0,可得第1次全行的数都为1的是第2行,第2次全行的数都为1的是第4行,…, 由此可知全奇数的行出现在2n 的行数,即第n 次全行的数都为1的是第2n 行.126=27﹣2,故可得第128行全是1,那么第127行就是101010…101,第126行就是11001100…110011,11又126÷4=31+2,∴S 126=2×31+2=64, 故答案为:64点睛:本题考查归纳推理,属中档题.17.【解析】类比上述解题思路设f(x)=x3+x 由于f′(x)=3+1⩾0则f(x)在R 上单调递增由即()3+=(2x+3)3+2x+3∴=2x+3解之得x=−1或x=3所以方程的解集为{−13}故答案为 解析:{1,3}-【解析】类比上述解题思路,设f (x )=x 3+x ,由于f ′(x )=32x +1⩾0,则f (x )在R 上单调递增, 由()3622323x x x x +=+++即(2x )3+2x =(2x +3)3+2x +3,∴2x =2x +3, 解之得,x =−1或x =3.所以方程()3622323x x x x +=+++的解集为{−1,3}.故答案为{}1,3-.18.【解析】观察已知的三个不等式:第1个不等式:;第2个不等式;第3个不等式:由此规律推测第个不等式为故答案为点睛:本题考查了合情推理的归纳推理;关键是发现已知等式与序号之间的关系总结归纳规律;归纳推理 解析:2211sin cos 12n nn αα-≤+≤ 【解析】观察已知的三个不等式:第1个不等式:1121211sin cos 12αα-⨯⨯⎛⎫≤+≤ ⎪⎝⎭;第2个不等式2122221sincos12αα-⨯⨯⎛⎫≤+≤ ⎪⎝⎭;第3个不等式:3132321sin cos 12αα-⨯⨯⎛⎫≤+≤ ⎪⎝⎭,由此规律推测,第n 个不等式为2211sin cos 12n n n αα-≤+≤,故答案为2211sin cos 12n n n αα-≤+≤. 点睛:本题考查了合情推理的归纳推理;关键是发现已知等式与序号之间的关系,总结归纳规律;归纳推理一般步骤:(1)对有限的资料进行观察、分析、归纳、整理;(2)提出带有规律性的结论,即猜想;(3)检验猜想.19.【解析】解析:111,,1232⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭【解析】关于x 的不等式1011kx bx ax cx -+<--可化为1011b k x a c x x-+<--, 则由题设中提供的解法可得:1111(2,1)(2,3)(,)(,1)232x x -∈--⋃⇒∈--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为111(,)(,1)232--,应填答案111(,)(,1)232--. 20.【解析】试题分析:运用推理考点:1归纳推理2复数的运算 解析:()()123123cos sin i αααααα+++++【解析】试题分析:运用推理()()123123cos sin i αααααα+++++ 考点:1.归纳推理.2.复数的运算.三、解答题21.证明见解析 【分析】用数学归纳法证明:(1)当1n =时,证明等式成立;(2)假设当n k =时,等时成立,用归纳假设证明当1n k =+时,等式也成立即可. 【详解】(1)当1n =,左边=1,右边1313⨯==,此时等式成立. (2)假设当,n k k N *=∈时,()()()222222222212311132121,3k k k k k k N *+++⋯-++-+⋯+++=+∈成立.当1n k =+时,左边22222222123(1)21k k k =+++⋯+++++⋯++()222121(1)3k k k k =++++ 21(1)2(1)13k k ⎡⎤=+++⎣⎦= 右边, 即当1n k =+时等式成立.根据(1)(2),可知对n *∈N 等式成立.本题主要考查的是数学归纳法的应用,解题的关键是熟练掌握数学归纳法解题的一般步骤,是基础题.22.(1)11a =,23a =,36a =,410a =,515a =;(2)11S =,29S =,336S =,4100S =,5225S =,()2214n n n S +=;(3)证明见解析. 【分析】(1)根据通项公式直接计算前5项即可.(2)首先计算n S 的前5项,再归纳n S 即可.(3)首先验证1n =时等式成立,假设n k =时,等式成立,再证明1n k =+时等式也成立即可证明. 【详解】(1)11a =,23a =,36a =,410a =,515a =.(2)11S =,32129S =+=,339336S =+=,34364100S =+=,351005225S =+=,故()2214n n n S +=(3)当1n =时,1n S =,显然等式成立.假设n k =时,等式成立,即有()2214kk k S +=, 则当1n k =+时有:()()()223311114k kk k S S k k ++=++=++ ()()()()()()22222211112114 44k k k k kk k +++++⎡⎤=+++==⎥⎣⎡⎤⎣⎦⎢⎦所以当1n k =+时,等式也成立. 故原等式成立,归纳公式正确. 【点睛】本题主要考查数学归纳法的证明,同时考查了数列的通项公式,属于中档题. 23.(1)23422a a a ==;n a 2)见解析. 【解析】 【分析】(1)逐个计算计算出234,,a a a的值,再通过观察可猜n a 2)先检验n=1满足,再假设()*1,n k k k N =≥∈时(*)式成立,即k a =1n k =+1k a +即可证明。

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(3)

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(3)

一、选择题1.甲、乙、丙、丁四位同学一起去向老师询问数学考试的成绩老师说:你们四人中有两位优秀、两位良好,我现在给乙看甲、丙的成绩,给甲看丙的成绩,给丁看乙的成绩,看后乙对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .甲可以知道四人的成绩 B .丁可以知道四人的成绩 C .甲、丁可以知道对方的成绩D .甲、丁可以知道自己的成绩2.图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的面积的和为( )A .nB .2nC .1n +D .1n -3.已知数组1()1,12(,)21,123()321,,,…,121(,,,,)121n nn n --,…,记该数组为1()a ,23(,)a a ,456(,,)a a a ,…,则200a =( )A .911B .1011C .1112D .9104.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .45.对命题“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的什么位置? A .正三角形的顶点B .正三角形的中心C .正三角形各边的中点D .无法确定6.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20647.已知甲、乙、丙三人中,一人是数学老师、一人是英语老师、一人是语文老师.若丙的年龄比语文老师大;甲的年龄和英语老师不同;英语老师的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是数学老师、乙是语文老师、丙是英语老师B .甲是英语老师、乙是语文老师、丙是数学老师C .甲是语文老师、乙是数学老师、丙是英语老师D .甲是语文老师、乙是英语老师、丙是数学老师 8.根据给出的数塔猜测12345697⨯+=( )19211⨯+=1293111⨯+= 123941111⨯+= 12349511111⨯+=1234596111111⨯+=…A .1111110B .1111111C .1111112D .11111139.用数学归纳法证明“11112321n++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +10.“因为e 2.71828=是无限不循环小数,所以e 是无理数”,以上推理的大前提是( )A .实数分为有理数和无理数B .e 不是有理数C .无限不循环小数都是无理数D .无理数都是无限不循环小数11.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁12.用数学归纳法证明“1112n n ++++…111()24n N n n +≥∈+”时,由n k =到1n k =+时,不等试左边应添加的项是( )A .12(1)k +B .112122k k +++ C .11121221k k k +-+++ D .1111212212k k k k +--++++ 二、填空题13.已知数列1,12,21,13,22,31,14,23,32,41,,则76是数列中的第__________项. 14.观察下列等式:请你归纳出一般性结论______. 15.某同学在解决一道数学题时发现01212323434234345445567----222222222222====,,,,,依此规律可以求得112nk k k =+∑关于n 的最简表达式为__________.16.观察下列各式:(1) 2()2x x '=,(2) 43()4x x '=,(3) (cos )sin x x '=-,……,根据以上事实,由归纳推理可得:若定义在R 上的偶函数()f x 的导函数为()g x ,则(0)g =____. 17.现有这么一列数,2,32,54,78,( ),1332,1764,…,按照规律,( )中的数应为__________.18.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为22n n+,记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数:211(,3)22N n n n =+;正方形数:2(,4)N n n =;五边形数:231(,5)22N n n n =-;六边形数:2(,6)2N n n n =-,…,由此推测(8,8)N =__________.19.观察下列数表: 1 3 5 7 9 11 1315 17 19 21 23 25 27 29设2017是该表第m 行的第n 个数,则m n +的值为__________.20.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是__________.三、解答题21.观察下列等式:11122-= 11111123434-+-=+ 11111111123456456-+-+-=++ ……(1)根据给出等式的规律,归纳猜想出等式的一般结论; (2)用数学归纳法证明你的猜想.22.如图,已知点O 是ABC 内任意一点,连接AO 、BO 、CO ,并延长交对边于1A 、1B 、1C ,则1111111OA OB OC AA BB CC ++=,这是平面几何中的一个命题,其证明常采用“面积法”.运用类比猜想点O 是空间四面体A BCD -内的任意一点,连接AO 、BO 、CO 、DO ,并延长分别交面BCD 、ACD 、ABD 、ABC 于点1A 、1B 、1C 、1D ,试写出结论,并加以证明.23.求证:()()2333*1212L n L n n N +++=+++∈.24.在数列{}n a 中,112a =,133n n na a a +=+,求2a 、3a 、4a 的值,由此猜想数列{}n a 的通项公式,并用数学归纳法证明你的猜想. 25.已知f (x)=f (0)+f (1),f (﹣1)+f (2),f (﹣2)+f (3),然后归纳猜想一般性结论,并证明你的结论. 26.设数列{}n a 满足关系式:12a p ,212nn p a p a (p 是常数).(1)求234,,a a a ;(2)猜想{}n a 的通项公式,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先由乙不知道自己成绩出发得知甲、丙和乙、丁都是一优秀、一良好,那么甲、丁也就结合自己看的结果知道自己成绩了. 【详解】解:乙看后不知道自己成绩,说明甲、丙必然是一优秀、一良好,则乙、丁也必然是一优秀、一良好;甲看了丙的成绩,则甲可以知道自己和丙的成绩;丁看了乙的成绩,所以丁可以知道自己和乙的成绩,故选D. 【点睛】本题考查了推理与证明,关键是找到推理的切入点.2.C解析:C 【分析】由图二,可以求出当1n =时,所有正方形的面积,结合选项即可排除A 、B 、D 选项. 【详解】由题意知,当1n =时,“勾股树”所有正方形的面积的和为2,当2n =时,“勾股树”所有正方形的面积的和为3,以此类推,可得所以正方形面积的和为1n +;也可以通过排除法,当1n =时,“勾股树”所有正方形的面积的和为2,选项A 、B 、D 都不满足题意,从而选出答案.故选C. 【点睛】本题考查了归纳推理,考查了勾股定理的应用,属于基础题.3.B解析:B 【解析】 【分析】设a 200在第n 组中,则()()1120022n n n n -+≤<(n ∈N *),由等差数列求和得:a 200在第20组中,前19组的数的个数之和为:19202⨯=190, 再进行简单的合情推理得:a 20010102010111==-+,得解.【详解】由题意有,第n 组中有数n 个,且分子由小到大且为1,2,3…n ,设a 200在第n 组中,则()()1120022n n n n -+≤<(n ∈N *),解得:n =20,即a 200在第20组中,前19组的数的个数之和为:19202⨯=190, 即a 200在第20组的第10个数,即为10102010111=-+,a 2001011=, 故选B . 【点睛】本题考查了阅读理解及等差数列求和与进行简单的合情推理能力,属中档题.4.C解析:C 【详解】分析:根据题意,利用类比推理的概念逐一判定,即可得到结论.详解:由题意,对于①中,根据复数的表示和复数的几何意义,可知“若复数12,z z ,则1212z z z z +≤+”是正确的;对于②中,根据平面与空间的类比推理可得:“在半径为R 的球内接长方体中,正方体的体积最大”是正确的;对于③中,由球的体积公式为343V R π=,其表面积公式为24S R π=,所以V S '=,所以是正确的;对于④中,如在极坐标系中,点(1,0),(1,)2C D π,此时CD 的中点坐标为2(,)24π,不满足“极坐标系中两点1122(,),(,)C D ρθρθ的中点坐标为1212(,)22ρρθθ++”,所以不正确,综上,正确命题的个数为三个,故选C .点睛:本题主要考查了命题的真假判定,以及类比推理的应用,其中熟记类比推理的概念和应用,以及命题的真假判定是解答的关键,着重考查了分析问题和解答问题,以及推理与论证能力.5.B解析:B 【解析】分析:由题意结合几何体的空间关系进行类比推理即可求得最终结果.详解:绘制正三棱锥的内切球效果如图所示,很明显切点在面内而不在边上,则选项AC 错误,由“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的正三角形的中心. 本题选择B 选项.点睛:在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.6.B解析:B 【解析】第一行数字之和为1112-=;第二行数字之和为2122-=;第三行数字之和为3142-=; 第四行数字之和为4182,...-=,第n 行数字之和为12n na ,31041122a a ∴+=+810241032=+=,故选B.【方法点睛】本题主要考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.7.C解析:C【解析】丙的年龄比语文老师大,则丙是数学老师或英语老师,不是语文老师;甲的年龄和英语老师不同,则甲是数学老师或语文老师,不是英语老师;选项B错误;英语老师的年龄比乙小,则乙是数学老师或语文老师,不是英语老师;选项D错误;选项A中,英语老师的年龄比乙大,选项A错误;据此可得:甲是语文老师、乙是数学老师、丙是英语老师.本题选择C选项.8.B解析:B【解析】由1×9+2=11;12×9+3=111;123×9+4=1111;1234×9+5=11111;…归纳可得:等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,∴123456×9+7=1111111,本题选择B选项.9.C解析:C【解析】左边的特点:分母逐渐增加1,末项为121 n-;由n=k,末项为121k-到n=k+1,末项为11121212k k k+=--+,∴应增加的项数为2k.故选C.10.C解析:C【解析】由题意得: 大前提是无限不循环小数都是无理数,选C. 11.A解析:A【解析】四人中只有一人说了真话,只有一人会证明此题,丙:丁会证明;丁:我不会证明,所以丙与丁中有一个是正确的;若丙说了真话,则甲必是假话,矛盾;若丁说了真话,则甲说的是假话,甲就是会证明的那个人,符合题意,以此类推,即可得到甲说真话,故选A.12.C解析:C 【分析】分别代入,1n k n k ==+,两式作差可得左边应添加项. 【详解】 由n=k 时,左边为11112k k k k+++++, 当n=k+1时,左边为11111231(1)(1)k k k k k k k k +++++++++++++ 所以增加项为两式作差得:11121221k k k +-+++,选C. 【点睛】运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n 取第一个值n 0(n 0∈N *)时命题成立,第二步是归纳递推(或归纳假设)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立,只要完成这两步,就可以断定命题对从n 0开始的所有的正整数都成立,两步缺一不可.二、填空题13.【解析】分析:将所给数据分组发现每组数据分子分母以及分子与分母和的共同规律结合等差数列的求和公式求解即可详解:发现数列第一组分子与分组和为第二组分子与分母和为第三组分子与分母和为因为所以是第组第七个 解析:73【解析】分析:将所给数据分组,发现每组数据分子、分母以及分子与分母和的共同规律,结合等差数列的求和公式求解即可. 详解:1,12,21,13,22,31,14,23,32,41,,发现数列第一组11→分子与分组和为2, 第二组12,21→分子与分母和为3, 第三组13,22,31→分子与分母和为4,因为6713+=,所以76是第12组第七个数, 第12组前面共有111212311662⨯++++==个数, 76是第66773+=项,故答案为73. 点睛:本题主要考查归纳推理,属于中档题. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质.②从已知的相同性质中推出一个明确表述的一般性命题(猜想),由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能,对科学的发现十分有用,观察、实验、对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.14.【解析】分析:根据题意观察各式可得其规律用将规律表示出来即可(且为正整数)详解:根据题意观察各式可得:第①式中;②式中第③式中;…规律可表示为:即答案为点睛:本题要求学生通过观察分析归纳并发现其中的 解析:222222(7)(74)(75)(71)(72)(76)k k k k k k ++++=+++++k z ∈【解析】分析:根据题意,观察各式可得其规律,用k 将规律表示出来即可.(2k ≥,且k 为正整数)详解:根据题意,观察各式可得: 第①式中,1k =-; ②式中,0k = 第③式中,1k =;…规律可表示为:()()()()()()22222277475717276k k k k k k ++++=+++++ k z ∈ 即答案为()()()()()()22222277475717276k k k k k k ++++=+++++ k z ∈. 点睛:本题要求学生通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.15.【解析】分析:由已知中:可得:利用裂项相消法可得答案详解:由已知中:归纳可得:故故答案为:点睛:常见的归纳推理类型及相应方法常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数字归纳和式子解析:332nn +-. 【解析】 分析:由已知中:01212323234345456,,, (222222222)=-=-=- 可得:1123222k k k k k k -+++=-,利用裂项相消法,可得答案.详解:由已知中:01212323234345456,,, (222222222)=-=-=-, 归纳可得:1123222k k k k k k -+++=-. 故011223111344556233...+32222222222nk n n n k k n n n -=++++=-+-+-+-=-∑. 故答案为:332nn +-. 点睛:常见的归纳推理类型及相应方法 常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等. (2)形的归纳主要包括图形数目归纳和图形变化规律归纳.16.0【解析】由(x2)=2x 中原函数为偶函数导函数为奇函数;(x4)=4x3中原函数为偶函数导函数为奇函数;(cosx )=﹣sinx 中原函数为偶函数导函数为奇函数;…我们可以推断偶函数的导函数为奇函数解析:0 【解析】由(x 2)'=2x 中,原函数为偶函数,导函数为奇函数; (x 4)'=4x 3中,原函数为偶函数,导函数为奇函数; (cosx )'=﹣sinx 中,原函数为偶函数,导函数为奇函数; …我们可以推断,偶函数的导函数为奇函数. 若定义在R 上的函数f (x )满足f (﹣x )=f (x ), 则函数f (x )为偶函数,又∵g (x )为f (x )的导函数,则g (x )奇函数 故g (﹣x )+g (x )=0,即g (﹣0)=﹣g (0),g (0)=0 故答案为:0.17.【解析】由题意可得分子为连续的质数分母依次为首项为2公比为2的等比数列故括号中的数应该为点睛:归纳推理是由部分到整体由特殊到一般的推理由归纳推理所得的结论不一定正确通常归纳的个体数目越多越具有代表性 解析:1116【解析】由题意可得,分子为连续的质数,分母依次为首项为2、公比为2的等比数列,故括号中的数应该为1116. 点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.18.176【解析】原已知式子可化为:正方形数:五边形数六边形数……由此推测由归纳推理可得故解析:176 【解析】原已知式子可化为:211,322N n n n ==+() 正方形数:()22,402N n n n ==+ 五边形数()231,5?22N n n n ==-六边形数()242,6?22N n n n ==-……由此推测由归纳推理可得()224,22k kN n k n n --=+ 故()2648,88817622N =⨯+⨯= 19.【解析】根据数表的数的排列规律都是连续奇数第一行有个数第二行有个数且第一个数是;第三行有个数且第一个数是;第四行有个数且第一个数是第行有个数且第一个数是在第行是第行的第个数故答案为 解析:508【解析】根据数表的数的排列规律,1,3,5,...都是连续奇数第一行,有1个数,第二行,有2个数,且第一个数是221-;第三行,有3个数,且第一个数是321-;第四行,有4个数,且第一个数是42 1...-,第n 行,有n 个数,且第一个数是21n - ,1011211023,212047-=-=, 2017∴在第10行,()20171023+12,498n n =-⨯=,2017∴是第10行的第498个数,10498508m n ∴+=+=,故答案为508.20.跑步【解析】由题意得由(4)可知乙参加了铅球比赛由(2)可知乙不是最高的所以三人中身高居中;再由(1)可知甲是最矮的参加了跳远丙是最高的参加了跑步比赛解析:跑步 【解析】由题意得, 由(4)可知,乙参加了铅球比赛,由(2)可知乙不是最高的,所以三人中身高居中;再由(1)可知,甲是最矮的,参加了跳远,丙是最高的,参加了跑步比赛.三、解答题21.(1)111111111234212122n n n n n-+-+⋯+-=++⋯+-++;(2)证明见解析. 【分析】(1)根据给出等式的规律,直接写出一般结论;(2)利用数学归纳法证明猜想的结论,递推部分利用n k =时的结论来推导证明当1n k =+时,等式仍然成立.【详解】 (1)111111111234212122n n n n n-+-+⋯+-=++⋯+-++. (2)证明:①当1n =时,左边11122=-=,右边12=,左边=右边∴当1n =时,等式成立; ②假设当n k =时等式成立,即111111111234212122k k k k k-+-+⋯+-=++⋯+-++ 则当1n k =+时 左边111111112342122122k k k k =-+-++-+--++ (111111222122)k k k k k =++⋯++-++++ 111112321122k k k k k ⎛⎫⎛⎫=++++- ⎪ ⎪+++++⎝⎭⎝⎭…1111232122k k k k =++++=++++…右边 ∴当1n k =+时,等式也成立由①②可知,对一切n *∈N ,等式都成立. 【点睛】本题主要考查了归纳推理和数学归纳法,考查了学生逻辑推理与运算求解能力. 22.结论:111111111OA OB OC OD AA BB CC DD +++=,证明见解析. 【分析】设点A 、O 到平面BCD 的距离分别为h 、1h ,证明出11O BCDA BCD V OA AA V --=,同理得出11O ACD A BCD V OB BB V --=,11O ABD A BCD V OC CC V --=,11O ABCA BCDV OD DD V --=,将四个等式全加可得结论. 【详解】设点A 、O 到平面BCD 的距离分别为h 、1h ,则111h OA h AA =, A BCD O BCD O ACD O ABD O ABC V V V V V -----=+++,11111313BCD O BCD A BCD BCD S hV h OA V h AA S h --⋅===⋅△△, 同理可得11O ACD A BCD V OB BB V --=,11O ABD A BCD V OC CC V --=,11O ABCA BCDV OD DD V --=, 上述四个等式相加得111111111O BCD O ACD O ABD O ABCA BCDV V V V OA OB OC OD AA BB CC DD V -----++++++==. 【点睛】本题考查类比推理,同时也考查了锥体体积公式的应用,考查计算能力与推理能力,属于中等题. 23.见解析. 【解析】试题分析:等式是关于正整数n 的一个式子,所以可以用数学归纳法证明,先检验n=1的情况,再假设当*n k,k 1,k N =≥∈时,等式成立,即()23331+2++k 1+2++k =,继而证明n k 1=+时, ()()()3233331+2++k +k 11+2++k +k 1+=+成立,即可。

高二数学选修2-2 第一章推理与证明练习 试题

高二数学选修2-2 第一章推理与证明练习 试题

高二数学选修2-2 第一章推理与证明练习班级: 姓名: 分数:一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.右边所示的三角形数组是我国古代数学家杨辉发现的, 称为杨辉三角形,根据图中的数构成的规律,a 所表示 的数是(A)2 (B) 4 (C ) 6 (D) 8 2.下列推理正确的是(A) 把()a b c + 与 log ()a x y + 类比,则有:log ()log log a a a x y x y +=+ . (B) 把()a b c + 与 sin()x y+ 类比,则有:sin()sin sin x yx y +=+.(C) 把()nab 与()na b + 类比,则有:nnn()x yx y +=+. (D ) 把()a b c ++与 ()xy z 类比,则有:()()xy z x yz =. 3.用演绎法证明函数y = x 3是增函数时的小前提是( )A 、增函数的定义B 、函数y = x 3满足增函数的定义C 、若x 1<x 2,则f (x 1)< f (x 2)D 、若x 1>x 2,则f (x 1)> f (x 2)4.把下面在平面内成立的结论类比地推广到空间,结论还正确的是(A) 如果一条直线与两条平行线中的一条相交,则他与另一条相交 . (B ) 如果一条直线与两条平行线中的一条垂直,则他与另一条垂直.(C) 如果两条直线同时与第三条直线相交,则这两条直线相交. (D) 如果两条直线同时与第三条直线垂直,则这两条直线平行.5.下面几种推理是类比推理的是 ( )(A )两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =1800(B )由平面三角形的性质,推测空间四边形的性质(C )某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.(D )一切偶数都能被2整除,1002是偶数,所以1002能被2整除.6.等比数列{},243,9,52==a a a n 中则其前4项和为( )A 81B 120C 168D 1927.四个小动物换座位,开始是鼠、猴、兔、猫分别坐1,2,3,4号位子上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2005次互换座位后,小兔的座位对应的是(A )编号1 (B) 编号2 (C) 编号3 (D) 编号48.在古腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 61015则第n 个三角形数为( )(A )n (B ))1(21+n n (C )12-n (D ))1(21-n n9.定义A*B 、B*C 、C*D 、D*B 分别对应下列图形(左),那么下列图形(右)中,可以表示A*D 、A*C 的分别是( )1 12 1 13 3 1 14 a 4 1第三次第二次第一次开始①②③④(1)(2)(3)(4)A、(1)(2)B、(2)(3)C、(2)(4)D、(1)(4)分析:①②的共同特征是都有矩形所以B是矩形A是竖线C是横线同理D是小矩形10.对“cba、、是不全相等的正数”,给出下列判断:①0)()()(222≠-+-+-accbba;②bababa=<>及与中至少有一个成立;③,,a cbc a b≠≠≠不能同时成立,其中判断正确的个数是()A、0B、1C、2D、311.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是().A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度12.等比数列{}na中,15361=a,公比21-=q,用nP表示数列的前n项的积,则n P中最大的是()A 9PB 10PC 11PD 12P分析:先判断出BC选项都为负值,再用作商法91233111211109121)10241536(PPPPaaaa∴===二、填空题:本大题共4小题,每小题4分,共16分.13.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四体的下列的一些性质,①各棱长相等,同一顶点上的两条棱的夹角相等;②各个面都是全等的正三角形,相邻两个面所成的二面角相等;③各个面都是全等的正三角形,同一顶点上的任何两条棱的夹角相等.你认为比较恰当的是.答案:③14.由图(1)有面积关系: PA BPABS PA PBS PA PB''∆∆''⋅=⋅,则由(2) 有体积关系:.P A B CP ABCVV'''--=答案:PCPBPAPCPBPA⋅⋅⋅⋅'''15..当1n=时,有22()()a b a b a b-+=-;当2n=时,有2233()()a b a ab b a b-++=-;当3n=时,有322344()()a b a a b ab b a b-+++=-;当4n=时,有43223455()()a b a a b a b ab b a b-++++=-;当+∈Nn时,你能得到的结论是:;(a-b)(a N+a n-1b1+a n-2b2+……b n)=a n+1-b n+116.已知:23150sin90sin30sin222=++,23125sin65sin5sin222=++通过观察上述两等式的规律,请你写出一般性的命题:_________________________________________________=23答案:解:一般形式:23)120(sin)60(sinsin222=++++ααα三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a满足11a=,且11429n n n na a a a++-+=(n N∈+)(1)求出前四项的值(2)由(1)猜想{}na的通项公式,(1)11=a372=a5133=a (2)1256--=nnan18.(本小题满分12分)求证:15175+>+欲证15175+>+图(1)_图(2)_B'只需证22)151()75(+>+,展开得:12+235>16+215,即235>4+215只需证(235)2>(4+215)2,即4>15,这显然成立。

北师大版选修2-2第一章推理与证明综合测试题

北师大版选修2-2第一章推理与证明综合测试题

北师大版选修2-2第一章推理与证明综合测试题一、单选题10=,则0x y ==”,以下假设正确的是( ) A .x 、y 都不为0B .x 、y 不都为0C .x 、y 都不为0,且x y ≠D .x 、y 至少有一个为02.给出演绎推理的“三段论”,已知函数f (x )=1x 在(-∞,0)∪(0,+∞)是单调递减的,又因为-1<2,所以f (-1)>f (2),即-1>12,这显然是不对的,那么这个推理是( ) A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.在用数学归纳法求证:(1)(2)()2135(21)n n n n n n +++=⋅⋅⋅⋅-的过程中,n N ∈从“k 到1k +”左边需增乘的代数式为( ). A .22k + B .(21)(22)k k ++ C .221k k ++ D .2(21)k + 4.用数学归纳法证明命题“当n 为奇数时,n n x y +能被x y +整除”,在证明1n =正确后,归纳假设应写成( ).A .假设()*n k k N=∈时命题成立B .假设()*n k k N ∈时命题成立C .假设()*21n k k N=+∈时命题成立 D .假设()*21n k k N =-∈时命题成立5.观察下列各式:553125=,6515625=,7578125=,85390625=,…,则下列各数的末四位数字为8125的是( ).A .20155B .20175C .20185D .20195 6.观察如图,可推断出“x ”应该填的数字是( )A .171B .183C .205D .2687.观察下列各式:若111a b ,223a b +=,334a b +=,447a b +=,5511a b +=,…,则77a b +等于( )A .18B .29C .47D .158.在应用数学归纳法证明凸n 边形的对角线为()132n n -条时,第一步应验证n 等于( )A .1B .2C .3D .4 9.用数学归纳法证明等式123(21)(1)(21)n n n +++++=++时,从n k =到1n k =+等式左边需增添的项是( )A .22k +B .[]2(1)1k ++C .[(22)(23)]k k +++D .[][](1)12(1)1k k ++++ 10.一次数学考试共有8道判断题,每道题5分,满分40分.规定正确的画√,错误的画╳.甲、乙、丙、丁四名同学的解答及得分情况如表所示,则m 的值为( ) 题号学生12 3 4 5 6 7 8 得分甲╳ √ ╳ √ ╳ ╳ √ ╳ 30 乙╳ ╳ √ √ √ ╳ ╳ √ 25 丙√ ╳ ╳ ╳ √ √ √ ╳ 25 丁╳ √ ╳ √ √ ╳ √ √ mA .35B .30C .25D .20 11.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程比如在表达式11111+++⋯中“⋯”即代表无限次重复,但原式却是个定值,它可以通过方程11x x +=求得x =,类似上述过程及方法.) ABC .7 D.12.用数学归纳法证明“()221111,N 1n n a a a a a n a++*-++++=≠∈-”,在验证1n =是否成立时,左边应该是( )A .1B .1a +C .21a a ++D .231a a a +++二、填空题13.观察下列不等式:1112-<,111233-<,111345-<,111457-<,111569-<,……,由此猜测到第n 个不等式为________. 14.利用数学归纳法证明不等式1111()2321n f n ++++<-(2n ≥,*n N ∈)的过程中,由n k =到1n k =+时,左边增加了________项;15.观察下列一组数据:11a =235a =+37911a =++413151719a =+++…则20a 从左到右第一个数是__________.16.①用数学归纳法证明不等式11112321n ++++-<n (n ≥2,n ∈N *)的过程中,由n =k 到n =k +1,不等式的左边增加了2k ﹣1项.②一段演绎推理的“三段论”是这样的:对于可导函数f (x ),如果f ′(x 0)=0,那x =x 0为函数f (x )的极值点因为f (x )=x 3满足f ′(0)=0,所以x =0是函数f (x )=x 3的极值点此三段论的结论错误是因为大前提错误;③在直角△ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 外接圆半径为r =2.运用此类比推理,若一个三棱锥的三条侧棱两两垂直,且长度分别为a ,b ,c ,则该三棱锥外接球的半径为R 以上三个命题不正确的是____.三、解答题17.证明以下结论:(1>(2)(0,0)n a n m n a m a m+>>>>+. 18.(1)已知,,a b c ∈R ,证明:若1a b c ++<,则a ,b ,c 中至少有一个小于13; (2)已知,,a b c ∈R ,判断“1a b c ++<”是“a ,b ,c 中至少有一个小于13”的什么条件?并说明理由.19.数列{}n a 满足:116a =,前n 项和()12n n n n S a +=. (1)求2a ,3a ,4a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法证明你的猜想.20.已知函数9()33f x x -=++数列{}n a 对于*n N ∈﹐总有1()n n a f a +=,112a =. (1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式;(2)用数学归纳法证明你的猜想.21.已知数列114⨯ ,147⨯ ,1710⨯ ,...,1(32)(31)n n -⨯+,...,记数列的前n 项和n S .(1)计算1S ,2S ,3S ,4S ;(2)猜想n S 的表达式,并证明.22.下面图形都是由小正三角形构成的,设第n 个图形中的黑点总数为()f n .(1)求()()()()2,3,4,5f f f f 的值;(2)找出()f n 与()1f n +的关系,并求出()f n 的表达式.① ② ③ ④参考答案1.B【分析】将原命题的结论否定可得出结果.【详解】0=,则0x y ==”的结论否定可得出“0x ≠或0y ≠”,即x 、y 不都为0.故选:B.【点睛】本题考查反证法的应用,属于基础题.2.A【分析】利用函数f (x )=1x在(-∞,0)和(0,+∞)是单调递减的.可知大前提错误. 【详解】 函数f (x )=1x在(-∞,0)和(0,+∞)是单调递减的. 所以函数f (x )=1x 在(-∞,0)∪(0,+∞)是单调递减的是错误的.即大前提错误. 故选:A【点睛】本题考查演绎逻辑推理的基本方法,考查函数的单调性,解本题的关键在于正确理解函数的单调性定义,分析出大前提是错误的.3.D【分析】根据题意,分别得到n k =和1n k =+时,左边对应的式子,两式作商,即可得出结果.【详解】当n k =时,左边(1)(2)()(1)(2)(2)A k k k k k k k =+++=++,当1n k =+时,左边(1)(2)(11)(2)(3)(22)B k k k k k k k =+++++=+++, 则(2)(3)(2)(21)(22)(21)(22)2(21)(1)(2)(2)1B k k k k k k k k A k k k k ++++++===++++.【点睛】本题主要考查数学归纳法的应用,属于基础题型.4.D【分析】在第一步中已验证了1n =时等式成立,根据数学归纳法的证题步骤要求,第二步所取的值的范围应从1n =开始取值所有奇数,即()*21n k k N=-∈. 【详解】解:此题所成立的数是所有的正奇数,根据数学归纳法的证题步骤要求,第二步所取的值的范围应从1n =开始取值所有奇数,即()*21n k k N=-∈. 故选:D .【点睛】本题考查了用数学归纳法证明的原理,归纳假设要含已验证的第一个取值,推理才有基础和依据,属于容易题.5.D【分析】由合情推理可知其,5,5n n n Z ≥∈值的末四位数成周期性变化,其8125对应为第3个,由周期性计算对应指数值即可.【详解】经观察易知55的末四位数字为3125,65的末四位数字为5625,75的末四位数字为8125,85的末四位数字为0625,95的末四位数字为3125,故周期4T =.由于201950443=⨯+,因此20195的末四位数字是8125,故选:D【点睛】本题考查合情推理的应用,属于基础题.6.B【分析】观察图形,得到规律:中间数=外围数的平方和,由此能够求出结果.由前两个图形发现:中间数等于四周四个数的平方和,即222222221346622458109+++=+++=,,所以“x ”处该填的数字是222235710183+++=.故选:B .【点睛】本题考查简单的合情推理的应用,是基础题.解题时要认真审题,仔细解答.7.B【分析】寻找式子之间的关系,从第3个开始,每个数都是前面两个的和,由此可得.【详解】由题意6671118a b +=+=,77111829a b +=+=.故选:B .【点睛】本题考查归纳推理,解题关键是找到相邻数之间的关系.8.C【分析】数学归纳法第一步应验证n 最小时,命题是否成立.【详解】多边形的边数最少是3,即三角形,所以第一步应验证n 等于3.故选:C.【点睛】本题考查数学归纳法的定义及步骤,考查学生对数学归纳法的理解,是一道容易题. 9.C【分析】分别写出n k =和1n k =+时,等式左边的表达式,比较2个式子,可得出答案.【详解】当n k =时,左边123(21)k =+++++,共21k +个连续自然数相加,当1n k =+时,左边123(21)(22)(23)k k k =+++++++++,所以从n k =到1n k =+,等式左边需增添的项是[(22)(23)]k k +++.故选:C.10.B【分析】根据乙、丙得分一样得到第2,5两题答案正确,再结合甲的答案推得正确答案为:╳╳╳√√╳√╳,即可计算m【详解】因为乙、丙第2,5题答案相同,且总得分相同,所以第2,5两题答案正确,又因为甲得分30分即甲错两题且第2题、第5题答案均与乙丙不同,故其余6题答案均正确,故而这8道判断的答案分别是:╳╳╳√√╳√╳,对比丁的答案,可知其2、8两题错误,故得分m =6×5=30, 故选:B .【点睛】本题主要考查了学生的逻辑推理能力,属于基础题.11.B【分析】x =x =,然后转化为一元二次方程,解出x 的值,并排除不正确的值,即可得到结果.【详解】x =x =,整理,得270x x --=,解得x =x =0x ,12x +∴=,∴=. 故选:B .【点睛】本题主要考查类比推理的能力,考查了转化与化归思想,一元二次方程的求解,以及类比推理能力和数学运算能力,本题属基础题.12.C 【分析】首先分析题目在验证1n =是否成立时,把1n =代入左边,即可得出结果. 【详解】用数学归纳法证明“()221111,N 1n n a a a aa n a++*-++++=≠∈-”,在验证1n =时,把1n =代入,左边21a a =++.故选:C. 【点睛】本题主要考查数学归纳法,属于基础题. 13.111121n n n -<+-,*n N ∈ 【分析】由前面有限几项各项的分母的规律进行归纳即可. 【详解】 由1112-<, 111233-<, 111345-<, 111457-<, 111569-<,⋯⋯, 由此猜测到第n 个不等式为:111121n n n -<+-,,*n N ∈. 故答案为:111121n n n -<+-,*n N ∈. 【点睛】本题考查了归纳推理能力,属于基础题. 14.2k 【分析】根据数学归纳法的知识,判断出增加的项数. 【详解】当n k =时,不等式左边为11112321k ++++-; 当1n k =+时,不等式坐标为11111111232122121kk k k +++++++++-+-;故增加的项数为()121212222k k k k k +---=⨯-=.故答案为:2k 【点睛】本小题主要考查数学归纳法的知识,考查分析、思考与解决问题的能力,属于基础题. 15.381 【分析】先计算前19行数字的个数,进而可得20a 从左到右第一个数. 【详解】解:依题意,前从1a 到19a 共有119191902+⨯=个数字, 所以20a 从左到右第一个数是第191个奇数, 第n 个奇数为21n -,所以第191个奇数为21911381⨯-=. 故答案为:381. 16.①③. 【分析】对于①,当n =k 时,不等式左边为1+12+…+121k -,当n =k +1时,不等式左边为1+12+…+11+212k k -+…+1121k +-,由此可判断①;对于②,由极值点的定义可判断②;对于③,可将三棱锥补为以互相垂直的三条侧棱为边的长方体,可得长方体的对角线为外接球的直径,可判断. 【详解】解:对于①,当n =k 时,不等式左边为1+12+…+121k -, 当n =k +1时,不等式左边为1+12+…+11+212k k -+…+1121k +-,可得增加了2k +1﹣1﹣2k +1=2k 项,故①错误;对于②,如果f ′(x 0)=0,则x =x 0不一定函数f (x )的极值点,若f (x )在x =x 0处附近导数同号,就不是极值点,故②正确;对于③,可将三棱锥补为以互相垂直的三条侧棱为边的长方体,可得长方体的对角线为外接球的直径,可得该三棱锥外接球的半径为R ,故③错误.故答案为:①③.17.(1)见解析; (2)见解析. 【分析】(1)利用分析法来证明,将要证明的不等式通过平方,化简后得到一个显然成立的的式子,由此证得不等式成立.(2)利用分析法来证明,将要证明的不等式去分母,化简后得到一个显然成立的式子,由此证得不等式成立. 【详解】>只需要证明22>,即97511++>++>即6355>,这显然成立.>⑵要证(0,0)n a nm n a m a m+>>>>+, 需证明()()(0,0)n a m n m a m n a +>+>>>, 即(0,0)nm ma nm an m n a +>+>>> 从而只需证明ma na >, 又0,0m n a >>>,∴ma na >, ∴(0,0)n a nm n a m a m+>>>>+成立. 【点睛】本小题主要考查利用分析法来证明不等式成立.利用分析法来证明不等式,是从结论出发,化简后得到一个显然成立的条件,由此证得不等式成立.属于基础题. 18.(1)证明见解析;(2)充分非必要条件,证明见解析. 【分析】(1)利用反证法即可证明.(2)利用充分条件、必要条件的定义即可得出结果. 【详解】(1)证明:假设13a ≥,13b ≥,13c ≥,则1a b c ++≥,这与1a b c ++<矛盾, 所以a ,b ,c 中至少有一个小于13. (2)由(1)可得1a b c ++<⇒a ,b ,c 中至少有一个小于13, 反之不一定成立,例如:0a =,12b =,2c =,则1a b c ++>, 所以“1a b c ++<”是“a ,b ,c 中至少有一个小于13” 的充分非必要条件.【点睛】本题考查了反证法证明不等式、充分条件、必要条件的定义,属于基础题. 19.(1)2112a =,3120a =,4130a =,(2)1(1)(2)n a n n =++,证明见解析.【分析】 (1)根据116a =,()12n n n n S a +=计算可得答案; (2)根据2a ,3a ,4a ,猜想可得1(1)(2)n a n n =++,再根据数学归纳法的步骤进行证明即可得解. 【详解】(1)由222(21)2S a +=得1223a a a +=,所以2111212a a ==, 由333(31)2S a +=,得12336a a a a ++=,所以3120a =,由444(41)2S a +=,得1234410a a a a a +++=,所以4130a =,(2)由(1)知,111623a ==⨯,2111234a ==⨯,3112045a ==⨯,4113056a ==⨯, 所以猜想:1(1)(2)n a n n =++,证明:1°当1n =时,1123a =⨯成立, 2°假设n k =时,等式成立,即1(1)(2)k a k k =++,那么当1n k =+时,11k k k a S S ++=-=1(1)(2)2k k k a +++(1)2k k k a +-,所以113k k k a a k ++=+1113(1)(2)(2)(3)k k k k k k +=⨯=+++++, 即1n k =+时,等式也成立, 所以1(1)(2)n a n n =++.【点睛】本题考查了不完全归纳法,考查了利用数学归纳法证明等式,属于基础题. 20.(1)237a =,338a =,439a =,*3()5n a n N n =∈+;(2)证明见解析.【分析】(1)利用已知条件求出递推公式,然后再逐步求解数列的前几项,猜想数列的通项公式; (2)利用数学归纳法的证明步骤,逐步证明即可. 【详解】(1)由93()333x f x x x -=+=++,得13()3n n nn a a f a a +==+, 因为11326a ==,所以237a =,338a =,439a =,猜想*3()5n a n N n =∈+. (2)证明:用数学归纳法证明如下: ①当1n =时,131152a ==+猜想成立;②假设当(*)n k k N =∈时猜想成立,即35k a k =+, 则当1n k =+时,()133335331535k k k a k a a k k +⋅+===+++++所以当1n k =+时猜想也成立. 由①②知,对*n N ∈,35n a n =+都成立. 【点睛】本题考查数学归纳法的证明与应用,考查推理分析与运算、证明能力,属于中档题. 21.(1)114S =,227S =,3310S =,4413S =;(2)31n nS n =+,证明见解析. 【分析】(1)由题意得11S a =,由212S a a =+求得2S ,同理求得3S ,4S . (2)由(1)猜想,*31n nS n N n =∈+;用数学归纳法证明,检验1n =时,猜想成立;假设31k kS k =+,则当1n k =+时,由条件可得当1n k =+时,也成立,从而证明猜想成立. 【详解】(1)111144S ==⨯,21124477S =+=⨯,3213771010S =+=⨯,43141010313S =+=⨯(2)猜想31n nS n =+证明:①当1n =时,左边114S ==,右边14=,猜想成立②假设当()*n k k N=∈时猜想成立即11111447710(32)(31)31k k k k ++++=⨯⨯⨯-++那么当1n k =+时111111447710(32)(31)[3(1)2][3(1)1]k k k k +++++⨯⨯⨯-++-++1131(31)(34)3(1)1k k k k k k +=+=+++++ 因此对1n k =+也成立; 根据①②对于*n N ∈猜想成立. 【点睛】本题主要考查数学归纳法的应用,用归纳法证明数学命题时的基本步骤:①检验1n =成立;②假设n k =时成立,由n k =成立推导1n k =+成立,要注意由归纳假设到检验1n k =+的递推.22.(1)见解析;(2)()23,*.f n n n N =∈ 【分析】(1)根据题意可直接写出结果;(2)分别计算出()()21f f -,()()32f f -,()()43f f -,()()54f f -,归纳出()()1f n f n +-,再由累加法即可求出()f n 的表达式.【详解】(1)由题意可得:()212f =,()327f =,()448f =,()575f =; (2)因为()()219f f -=; ()()3215f f -=; ()()4321f f -=;()()5427f f -=;观察猜想:()()1f n f n +-是一个首项为9公差为6的等差数列, 即()()()191663f n f n n n +-=+-⨯=+.因为()()219f f -=;()()3215f f -=;()()4321f f -=;()()5427f f -=;()()163f n f n n --=-;把上述式子累加可得到:()()()()296311332n n f n f n +---==-;又因为()13f =,所以()23f n n =.【点睛】本题主要考查归纳推理以及累加法求数列的通项公式,属于常考题型.。

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试卷(答案解析)

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试卷(答案解析)

一、选择题1.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,,则此数列的前55项和为( )A .4072B .2026C .4096D .20482.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥3.我国南宋数学家杨家辉所著的《详解九章算法》一书中记录了一个由正整数构成的三角形数表,我们通常称之为杨辉三角.以下数表的构造思路就来源于杨辉三角.( )从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数a ,则a 的值为( )A .100820182⨯B .100920182⨯C .100820202⨯D .100920202⨯4.甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人分别采访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是( ) A .甲 B .乙 C .丙 D .丁5.体育课上,小红、小方、小强、小军四位同学都在进行足球、篮球、羽毛球、乒乓球等四项体自运动中的某一种,四人的运动项目各不相同,下面是关于他们各自的运动项目的一些判断:①小红没有踢足球,也没有打篮球; ②小方没有打篮球,也没有打羽毛球;③如果小红没有打羽毛球,那么小军也没有踢足球; ④小强没有踢足球,也没有打篮球.已知这些判断都是正确的,依据以上判断,请问小方同学的运动情况是( ) A .踢足球 B .打篮球 C .打羽毛球 D .打乒乓球6.在等差数列{}n a 中,如果,,,m n p r N *∈,且3m n p r ++=,那么必有3m n p r a a a a ++=,类比该结论,在等比数列{}n b 中, 如果,,,m n p r N *∈,且3m n p r ++=,那么必有( )A .3++=m n p r b b b bB .3++=m n p r b b b b C .3=m n p r b b b bD .3m n p r b b b b =7.我们把平面几何里相似的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就称它们是相似体,给出下面的几何体:①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥,则一定是相似体的个数是( ) A .4B .2C .3D .18.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,它体现了一种无限与有限的转化过程.比如在表达式11111+++中“…”即代表无限次重复,但原式却是个定值,它可以通过方程11x x +=求得12x +==( )A .12B .3C .6D .9.数列0,75-,135,6317-,…的一个通项公式是( ) A .()312111n n n +--+ B .()32111nn n --+C .()312111n n n ---- D .()32111nn n ---10.“因为e 2.71828=是无限不循环小数,所以e 是无理数”,以上推理的大前提是( )A .实数分为有理数和无理数B .e 不是有理数C .无限不循环小数都是无理数D .无理数都是无限不循环小数11.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A .aB .bC .cD .d12.用数学归纳法证明“1112n n ++++…111()24n N n n +≥∈+”时,由n k =到1n k =+时,不等试左边应添加的项是( ) A .12(1)k +B .112122k k +++ C .11121221k k k +-+++ D .1111212212k k k k +--++++ 二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.甲、乙、丙三位同学被问到是否去过,,A B C 三个城市时,甲说:我没去过C 城市;乙说:我去过的城市比甲多,但没去过B 城市;丙说:我们三人去过同一城市,由此可判断甲去过的城市为__________.15.甲、乙、丙三人中只有一人做了好事,他们各自都说了一句话,而且其中只有一句真话.甲说:是乙做的.乙说:不是我做的.丙说:不是我做的.则做好事的是__________.(填甲、乙、丙中的一个)16.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》中提出了一个“茭草形段”问题:“今有茭草六百八十束,欲令‘落一形’埵(同垛)之,问底子几何?”他在这一问题中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上一束,下一层3束,再下一层6束,……,)成三角锥的堆垛,故也称三角垛,如图,表示从上往下第二层开始的每层茭草束数,则本问题中的三角垛倒数第二层茭草总束数为______.17.观察下列不等式: (1)221sin cos 1αα≤≤+ (2)441sin cos 12αα≤≤+ (3)661sin cos 14αα≤≤+ …… …… …… …… …… ……由此规律推测,第n 个不等式为:__________. 18.观察下列等式:……据此规律,第个等式可为____________________________________. 19.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.20.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn=nm”类比得到“•=•”;②“(m+n )t=mt+nt”类比得到“(+)•=•+•”; ③“t≠0,mt=nt ⇒m=n”类比得到“≠0,•=•⇒=”; ④“|m•n|=|m|•|n|”类比得到“|•|=||•||”.以上类比得到的正确结论的序号是 _________ (写出所有正确结论的序号).三、解答题21.汉诺塔问题是源于印度一个古老传说的益智游戏.这个游戏的目的是将图(1)中按照直径从小到大依次摆放在①号塔座上的盘子,移动到③号塔座上,在移动的过程中要求:每次只可以移动一个盘子,并且保证任何一个盘子都不可以放在比自己小的盘子上.记将n 个直径不同的盘子从①号塔座移动到③号塔座所需要的最少次数为a n .(1)试写出a 1,a 2,a 3,a 4值,并猜想出a n ;(无需给出证明)(2)著名的毕达哥拉斯学派提出了形数的概念.他们利用小石子摆放出了图(2)的形状,此时小石子的数目分别为1,4,9,16,由于小石子围成的图形类似正方形,于是称b n =n 2这样的数为正方形数.当n ≥2时,试比较a n 与b n 的大小,并用数学归纳法加以证明. 22.对任意正整数n ,设n a 表示n 的所有正因数中最大奇数与最小奇数的等差中项,n S 表示数列{}n a 的前n 项和.(1)求1a ,2a ,3a ,4a ,5a 的值; (2)是否存在常数s ,t ,使得()()212246mmm s t S-+⋅+=对一切m 1≥且*m N ∈恒成立?若存在,求出s ,t 的值,并用数学归纳法证明;若不存在,请说明理由. 23.用数学归纳法证明:()()22222222212311321n n n ++++-++-++++()21213n n =+.24.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈.25.正项数列{}n a 的前n 项和n S 满足1n a n =-. (Ⅰ)求1a ,2a ,3a ;(Ⅱ)猜想{}n a 的通项公式,并用数学归纳法证明. 26.求证:()()2333*1212L n L n n N +++=+++∈.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用n 次二项式系数对应杨辉三角形的第n +1行,然后令x =1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可. 【详解】解:由题意可知:每一行数字和为首项为1,公比为2的等比数列,则杨辉三角形的前n 项和为S n 1212n-==-2n ﹣1,若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,……,可以看成构成一个首项为1,公差为1的等差数列,则T n ()12n n +=,可得当n =10,所有项的个数和为55, 则杨辉三角形的前12项的和为S 12=212﹣1, 则此数列前55项的和为S 12﹣23=4072, 故选A . 【点睛】本题主要考查归纳推理的应用,结合杨辉三角形的系数与二项式系数的关系以及等比数列等差数列的求和公式是解决本题的关键,综合性较强,难度较大.2.B解析:B 【分析】由线面垂直与线面平行的判定,结合反证法,即可得出结果. 【详解】当正四面体过点D 的高与平面α垂直时,平面ABC 平面α,所以BC 平面α; 若BC ⊥平面α,因为正四面体中BC AD ⊥,所以AD ⊂平面α,或AD 平面α,此时AD 与平面α所成角为0,与条件矛盾,所以BC 不可能垂直平面α;故选B 【点睛】本题主要考查直线与平面平行与垂直的判定,在验证BC 与平面α是否垂直时,可借助反证的思想来解决,属于中档试题.3.C解析:C 【解析】 【分析】根据每一行的第一个数的变化规律即可得到结果. 【详解】解:第一行第一个数为:0112=⨯; 第二行第一个数为:1422=⨯; 第三行第一个数为:21232=⨯; 第四行第一个数为:33242=⨯;,第n 行第一个数为:1n 2n n a -=⨯;一共有1010行,∴第1010行仅有一个数:10091008a 1010220202=⨯=⨯; 故选C . 【点睛】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.4.A解析:A【解析】分析:因为四位歌手中只有一个人说的是真话,假设某一个人说的是真话,如果与条件不符,说明假设不成立,如果与条件相符,说明假设成立. 详解:若乙是获奖的歌手,则甲、乙、丁都说的真话,不符合题意; 若丙是获奖的歌手,则甲、丁都说的真话,不符合题意; 若丁是获奖的歌手,则乙、丙都说的真话,不符合题意;若甲是获奖的歌手,则甲、乙、丙都说的假话,丁说的真话,符合题意; 故选A.点睛:本题考查合情推理,属基础题.5.A解析:A【解析】分析:由题意结合所给的逻辑关系进行推理论证即可. 详解:由题意可知:小红、小方、小强都没有打篮球,故小军打篮球; 则小军没有踢足球,且已知小红、小强都没有踢足球,故小方踢足球. 本题选择A 选项.点睛:本题主要考查学生的推理能力,意在考查学生的转化能力和计算求解能力.6.D解析:D 【详解】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论.详解:由题意,类比上述性质:在等比数列{}n b 中,则由“如果,,,m n p r N *∈,且3m n p r ++=”,则必有“3m n p r b b b b =”成立,故选D.点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:①找出等差数列与等比数列之间的相似性或一致性;②用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想).7.B解析:B 【解析】分析:根据题意,结合题中所给的新定义,根据形状相同,大小不一定相同的几何体被视为相似体,逐一判断,可得结论.详解:两个长方体的长宽高的比值不能确定,两个正三棱柱的高与底面边长的比不能确定,两个正四棱锥的高与底面边长不能确定,所以②④⑤不能确定是正确的, 只有所有的球体和所有的正四面体都是相似体,所以有两个是正确的,故选B.点睛:该题属于新定义的问题,属于现学现用型,这就要求我们必须把握好题中的条件,然后对选项中的几何体逐一判断,最后求得结果.8.A解析:A 【解析】由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的()0m m =>,则两边平方得,得23m =,即23m m +=,解得m m ==舍去,故选A. 9.A解析:A 【解析】在四个选项中代n=2,选项B,D 是正数,不符,A 选项值为75-,符合,C 选项值为73-,不符.所以选A. 【点睛】对于选择题的选项是关于n 的关系式,可以考虑通过赋特殊值检验法,来减少运算,或排除选项.10.C解析:C 【解析】由题意得: 大前提是无限不循环小数都是无理数,选C.11.A解析:A 【解析】由题意得,甲同学说:1号门里是b ,3号门里是c ,乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是cc ,若他们每人猜对了一半,则可判断甲同学中1号门中是b 是正确的;乙同学说的2号门中有d 是正确的;并同学说的3号门中有c 是正确的;丁同学说的4号门中有a 是正确的,则可判断在1,2,3,4四扇门中,分别存有,,,b d c a ,所以4号门里是a ,故选A. 点睛:本题主要考查了归纳推理问题,通过具体事例,根据各位同学的说法给出判断,其中正确理解题意,合理作出推理是解答此类问题的关键,同时注意仔细审题,认真梳理.12.C解析:C 【分析】分别代入,1n k n k ==+,两式作差可得左边应添加项. 【详解】 由n=k 时,左边为11112k k k k+++++,当n=k+1时,左边为11111231(1)(1)k k k k k k k k +++++++++++++ 所以增加项为两式作差得:11121221k k k +-+++,选C. 【点睛】运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n 取第一个值n 0(n 0∈N *)时命题成立,第二步是归纳递推(或归纳假设)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立,只要完成这两步,就可以断定命题对从n 0开始的所有的正整数都成立,两步缺一不可.二、填空题13.【解析】分析:由题意结合所给等式的规律归纳出第个等式即可详解:首先观察等式左侧的特点:第1个等式开头为1第2个等式开头为2第3个等式开头为3第4个等式开头为4则第n 个等式开头为n 第1个等式左侧有1个解析:2(1)(32)(21)n n n n ++++-=-.【解析】分析:由题意结合所给等式的规律归纳出第n 个等式即可. 详解:首先观察等式左侧的特点: 第1个等式开头为1,第2个等式开头为2, 第3个等式开头为3,第4个等式开头为4, 则第n 个等式开头为n ,第1个等式左侧有1个数,第2个等式左侧有3个数, 第3个等式左侧有5个数,第4个等式左侧有7个数, 则第n 个等式左侧有2n -1个数, 据此可知第n 个等式左侧为:()()132n n n ++++-,第1个等式右侧为1,第2个等式右侧为9, 第3个等式右侧为25,第4个等式右侧为49, 则第n 个等式右侧为()221n -, 据此可得第n 个等式为()()()213221n n n n ++++-=-.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.14.A 【解析】分析:一般利用假设分析法找到甲去过的城市详解:假设甲去过的城市为A 则乙去过的城市为AC 丙去过A 城市假设甲去过的城市为B 时则乙说的不正确所以甲去过城市不能为B 故答案为A 点睛:(1)本题主要考解析:A【解析】分析:一般利用假设分析法,找到甲去过的城市.详解:假设甲去过的城市为A,则乙去过的城市为A,C,丙去过A城市.假设甲去过的城市为B时,则乙说的不正确,所以甲去过城市不能为B.故答案为A.点睛:(1)本题主要考查推理证明,意在考查学生对该知识的掌握水平和推理能力.(2)类似本题的题目,一般都是利用假设分析推理法找到答案.15.丙【解析】假如甲说的是对的则乙说了假话丙说的是真话与条件不符;假如乙说的是真话则甲说的是假话丙说的也是假话符合条件;假如丙说的是真话则甲乙二人中必有一人说的是真话与条件不符所以乙说的是真话是丙做的好解析:丙.【解析】假如甲说的是对的,则乙说了假话,丙说的是真话,与条件不符;假如乙说的是真话,则甲说的是假话,丙说的也是假话,符合条件;假如丙说的是真话,则甲乙二人中必有一人说的是真话,与条件不符,所以乙说的是真话,是丙做的好事.故答案为丙.16.120【解析】试题分析:由题意第n层茭草束数为1+2+…+n=利用1+3+6+…+=680求出n即可得出结论解:由题意第n层茭草束数为1+2+…+n=∴1+3+6+…+=680即为n(n+1)(2n解析:120【解析】试题分析:由题意,第n层茭草束数为1+2+…+n=,利用1+3+6+…+=680,求出n,即可得出结论.解:由题意,第n层茭草束数为1+2+…+n=,∴1+3+6+…+=680,即为[n(n+1)(2n+1)+n(n+1)]=n(n+1)(n+2)=680,即有n(n+1)(n+2)=15×16×17,∴n=15,∴=120.故答案为120考点:归纳推理.17.【解析】观察已知的三个不等式:第1个不等式:;第2个不等式;第3个不等式:由此规律推测第个不等式为故答案为点睛:本题考查了合情推理的归纳推理;关键是发现已知等式与序号之间的关系总结归纳规律;归纳推理解析:2211sin cos 12n n n αα-≤+≤ 【解析】观察已知的三个不等式:第1个不等式:1121211sin cos 12αα-⨯⨯⎛⎫≤+≤ ⎪⎝⎭;第2个不等式2122221sin cos 12αα-⨯⨯⎛⎫≤+≤ ⎪⎝⎭;第3个不等式:3132321sin cos 12αα-⨯⨯⎛⎫≤+≤ ⎪⎝⎭,由此规律推测,第n 个不等式为2211sin cos 12n nn αα-≤+≤,故答案为2211sin cos 12n nn αα-≤+≤. 点睛:本题考查了合情推理的归纳推理;关键是发现已知等式与序号之间的关系,总结归纳规律;归纳推理一般步骤:(1)对有限的资料进行观察、分析、归纳、整理;(2)提出带有规律性的结论,即猜想;(3)检验猜想.18.【解析】试题分析:根据归纳推理观察所得等号左边第行有个数字加减等号有边第行有个数字相加并且是后个所以猜想第个等式是考点:归纳推理 解析:【解析】试题分析:根据归纳推理,观察所得,等号左边,第行有个数字加减,等号有边,第行有个数字相加,并且是后个,所以,猜想第个等式是.考点:归纳推理19.【详解】试题分析:由已知等式观察知:第一个式子左边一项下标为上标为右边为;第二个式子左边两项下标为上标依次为右边为;第三个式子左边三项下标为上标依次为右边为;第四个式子左边四项下标为上标依次为右边为 解析:14n -【详解】试题分析: 由已知等式观察知:第一个式子,左边一项,下标为1,上标为0,右边为04;第二个式子,左边两项,下标为3,上标依次为0,1,右边为14;第三个式子,左边三项,下标为5,上标依次为0,1,2,右边为24;第四个式子,左边四项,下标为7,上标依次为0,1,2,3,右边为34;……照此规律,当n N ∈时,01211212121214n n n n n n C C C C ------+++⋅⋅⋅+=, 综上所述,答案为:14n -. 考点:归纳推理的应用.20.①②【解析】试题分析:由向量的数量积运算的交换律和分配律可知①②正确∵故③错误;∵|故④错误故应填入①②考点:1向量数量积运算性质;2类比推理解析:①②. 【解析】试题分析:由向量的数量积运算的交换律和分配律可知①②正确∵,故③错误;∵|,故④错误.故应填入①②.考点:1.向量数量积运算性质;2.类比推理.三、解答题21.(1)11a =,23a =,37a =,415a =,21nn a =-;(2)当25n ≤<时,n n a b <:当5n ≥时,n n a b >,证明见解析.【分析】(1)直接由题意求得1234,,,a a a a 的值,并猜想出n a ;(2)求出12345,,,,a a a a a 的值,12345,,,,b b b b b 的值,可得当25n ≤<时,n n a b <,猜想:当5n ≥时,n n a b >,即221n n ->,然后利用数学归纳法证明即可. 【详解】(1)由题意得,11a =,23a =,37a ==,415a =, 猜想:21nn a =-.(2)11a =,23a =,37a =,415a =,531a =,11b =,24b =,39b =,416b =,525b =,则当25n ≤<时,n n a b <,猜想:当5n ≥时,n n a b >,即221n n ->, 下面利用数学归纳法证明:①当5n =时,531a =,525b =,55a b >,结论成立; ②假设(5,Z)n k k k =≥∈时结论成立,即221k k ->, 那么当1n k =+时,12221212(21)1211k k k a k k k +++=-=-+>+=++,而5k ≥时,(2)0k k ->,即22k k >, 所以12221212(21)1211k k k a k k k ++=-=-+>+=++22121(1)k k k k b +>++=+=,所以当1n k =+时,结论也成立. 由①②可知,当5n ≥时,结论成立.综上,当25n ≤<时,n n a b <,当5n ≥时,n n a b >,即221n n ->. 【点睛】本题考查了不完全归纳法,考查了利用数学归纳法证明不等式,属于中档题.22.(1)11a =,21a =,32a =,41a =,53a =;(2)11s t =-⎧⎨=⎩,见解析.【分析】(1)根据定义计算即可;(2)先由11211S S -==,23214S S -==,372114S S -==确定出s ,t 的值,再利用数学归纳法证明. 【详解】(1)1的最大正奇因数为1,最小正奇因数为1,所以11a =, 2的最大正奇因数为1,最小正奇因数为1,所以21a =, 3的最大正奇因数为3,最小正奇因数为1,所以32a =, 4的最大正奇因数为1,最小正奇因数为1,所以41a =, 5的最大正奇因数为5,最小正奇因数为1,所以53a =.(2)由(1)知,11211S S -==,23214S S -==,372114S S -==,所以()()()()()()2241644446884146s t s t s t ⎧++=⎪⎪⎪++=⎨⎪⎪++=⎪⎩,解得11s t =-⎧⎨=⎩. 下面用数学归纳法证明: ①当1m =时,()()121212416S--+==,成立;②假设当m k =(1k ,*k N ∈)时,结论成立,即()()2121246kkk S --+=,那么当1m k =+时,易知当n 为奇数时,12n n a +=;当n 为偶数时,2nn a a =. 所以()()111112132421212122k k k k S a a a a a a a a a ++++----=+++=+++++++()()1221122k k a a a -=+++++++()21122k k S -=++++()212122k k k S -+=+()()()321221246k k k k ⨯++-+=()21123246k k +++⨯-=()()1121246k k ++-+=.所以当1m k =+时,结论成立.综合①②可知,()()2121246mmm S --+=对一切m 1≥且*m N ∈恒成立.【点睛】本题考查数列中的新定义问题,利用数学归纳法证明等式,考查学生的逻辑推理能力,是一道有一定难度的题. 23.证明见解析 【分析】用数学归纳法证明:(1)当1n =时,证明等式成立;(2)假设当n k =时,等时成立,用归纳假设证明当1n k =+时,等式也成立即可. 【详解】(1)当1n =,左边=1,右边1313⨯==,此时等式成立. (2)假设当,n k k N *=∈时,()()()222222222212311132121,3k k k k k k N *+++⋯-++-+⋯+++=+∈成立.当1n k =+时,左边22222222123(1)21k k k =+++⋯+++++⋯++()222121(1)3k k k k =++++ 21(1)2(1)13k k ⎡⎤=+++⎣⎦= 右边, 即当1n k =+时等式成立.根据(1)(2),可知对n *∈N 等式成立. 【点睛】本题主要考查的是数学归纳法的应用,解题的关键是熟练掌握数学归纳法解题的一般步骤,是基础题. 24.见解析. 【解析】分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证1n =时不等式成立;(2)假设当()*,1n k k N k =∈≥时成立,利用放缩法证明1n k =+时,不等式也成立.详解:证明:①当1n =时,左边111224=>,不等式成立. ②假设当()*,1n k k N k =∈≥时,不等式成立,即11111112324k k k k k +++⋅⋅⋅+>++++, 则当1n k =+时,111112322122k k k k k ++⋅⋅⋅+++++++ 11111232k k k k =+++⋅⋅⋅++++ 11121221k k k ++-+++ 111112421221k k k >++-+++, ∵11121221k k k +-+++ ()()()()()21212212121k k k k k +++-+=++()()102121k k =>++,∴11111232k k k k +++⋅⋅⋅++++ 11121221k k k ++-+++ 1111111242122124k k k >++->+++, ∴当1n k =+时,不等式成立.由①②知对于任意正整数n ,不等式成立.点睛:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.25.(Ⅰ)123135a a a ===,,(Ⅱ)猜想21n a n ,=-证明见解析【解析】分析:(1)直接给n 取值求出1a ,2a ,3a .(2)猜想{}n a 的通项公式,并用数学归纳法证明.详解:(Ⅰ)令1n =,则10a =,又11S a =,解得11a =;令2n =,则2211a a =⇒=,解得23a =;令3n =,则3322a a =⇒=,解得35a =. (Ⅱ)由(Ⅰ)猜想21n a n =-; 下面用数学归纳法证明21n a n =-. 由(Ⅰ)可知当1n =时,21n a n =-成立;假设当()*n k k N =∈时,21k a k =-,则21k k a k S k =-⇒=.那么当1n k =+时,()2111k k k a k S a k +++=⇒=-,由()22111k k k k a S S a k k +++=-=-- 2112k k a ka ++=-,所以()21121k k k a a +++=,又0n a >,所以121k a k +=+,所以当1n k =+时,()121211k a k k +=+=+-. 综上,21n a n =-.点睛:(1)本题主要考查数学归纳法,意在考查学生对该基础知识的掌握水平和基本计算能力.(2) 数学归纳法的步骤:①证明当n=1时,命题成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推理与证明过关检测试题1.考察下列一组不等式: ,5252522233⋅+⋅>+ ,5252523344⋅+⋅>+,525252322355⋅+⋅>+.将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是 . 2.已知数列{}n a 满足12a =,111nn na a a ++=-(*n ∈N ),则3a 的值为 , 1232007a a a a ⋅⋅⋅⋅的值为 .3. 已知2()(1),(1)1()2f x f x f f x +==+*x N ∈(),猜想(f x )的表达式为( ) A.4()22x f x =+; B.2()1f x x =+; C.1()1f x x =+; D.2()21f x x =+.4. 某纺织厂的一个车间有技术工人m 名(m N *∈),编号分别为1、2、3、……、m ,有n 台(n N *∈)织布机,编号分别为1、2、3、……、n ,定义记号i j a :若第i 名工人操作了第j 号织布机,规定1i j a =,否则0i j a =,则等式41424343n a a a a ++++=的实际意义是( )A 、第4名工人操作了3台织布机;B 、第4名工人操作了n 台织布机;C 、第3名工人操作了4台织布机;D 、第3名工人操作了n 台织布机.5. 已知*111()1()23f n n N n=++++∈,计算得3(2)2f =,(4)2f >,5(8)2f >,(16)3f >,7(32)2f >,由此推测:当2n ≥时,有6. 观察下图中各正方形图案,每条边上有(2)n n ≥个圆圈,每个图案中圆圈的总数是n S ,按此规律推出:当2n ≥时,n S 与n 的关系式24n S == 38n S == 412n S ==7.观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,则可得出一般结论: . 8.函数()f x 由下表定义:若05a =,1()n n a f a +=,0,1,2,n =,则2007a = .9.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰是由6颗珠宝构成如图1所示的正六边形, 第三件首饰是由15颗珠宝构成如图2所示的正六边形, 第四件首饰是由28颗珠宝构成如图3所示的正六边形, 第五件首饰是由45颗珠宝构成如图4所示的正六边形, 以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上应有_______颗珠宝;则前n 件首饰所用珠宝总数为_ 颗.(结果用n 表示)……10.那么2003应该在第 行,第 列。

11.如右上图,一个小朋友按如图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,...,一直数到2008时,对应的指头是 (填指头的名称). 12.在数列1,2,2,3,3,3,4,4,4,4,……中,第25项为_____.13.观察下列的图形中小正方形的个数,则第n 个图中有 个小正方形. 14.同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n 个图案中需用黑色瓷砖___________块.(用含n 的代数式表示)15.如图所示,面积为S 的平面凸四边形的第i 条边的边长记为()1,2,3,4i a i =,此四边形内任一点P 到第i 条边的距离记为()1,2,3,4i h i =,若31241234a a a a k ====,则.()412i i Sih k==∑类比以上性质,体积为V 的三棱锥的第i 个面的面积记为()1,2,3,4i S i =, 此三棱锥内任一点Q 到第i 个面的距离记为()1,2,3,4i H i =,若31241234S S S S K ====, 则()41i i iH ==∑ ( B ) A.4V K B. 3V K C. 2V K D. VK16.设O 是ABC 内一点,ABC 三边上的高分别为,,A B C h h h ,O 到三边的距离依次为,,a b c l l l,则图1 图2图3a b cA B Cl l l h h h ++=__ _______,类比到空间,O 是四面体ABCD 内一点,四顶点到对面的距离分别为,,,A B C D h h h h ,O 到这四个面的距离依次为,,,a b c d l l l l ,则有_ __17.在Rt ABC ∆中,两直角边分别为a 、b ,设h 为斜边上的高,则222111h a b=+,由此类比:三棱锥S ABC -中的三条侧棱SA 、SB 、SC 两两垂直,且长度分别为a 、b 、c ,设棱锥底面ABC 上的高为h ,则 .18、若数列{}n a 是等差数列,对于)(121n n a a a nb +++=,则数列{}n b 也是等差数列。

类比上述性质,若数列{}n c 是各项都为正数的等比数列,对于0>n d ,则n d = 时,数列{}n d 也是等比数列。

19.已知△ABC 三边a ,b ,c 的长都是整数,且a b c ≤≤,如果b =m (m ∈N*),则这样的三角形共有 个(用m 表示).20.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n (n ≥2)行首尾两数均为n ,其余的数都等于它肩上的两个数相加.则第n 行(n ≥2)中第2个数是________(用n 表示).122343477451114115616252516621.在△ABC 中,CB CB A cos cos sin sin sin ++=,判断△ABC 的形状并证明.22.已知a 、b 、c 是互不相等的非零实数.若用反证法证明三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根.应假设23.ABC ∆中,已知B a b sin 323=,且C A cos cos =,求证:ABC ∆为等边三角形。

24.如图,),(111y x P 、),(222y x P 、…、),(n n n y x P )0(21ny y y <<<< 是曲线C :)0(32≥=y x y 上的n 个点,点)0,(i i a A (n i 3,2,1=)在x 轴的正半轴上,且i i i P A A 1-∆是正三角形(0A 是坐标原点). (1)写出1a 、2a 、3a ;(2)求出点)0,(n n a A (n *∈N )的横坐标n a 关于n 的表达式并证明.推理与证明章节测试题答案1. *(,0,,,,)n n m k k m a b a b a b a b m k n m n k N +>+>+=∈3.1,32- 3. B. 4. A 5.*21(2)()2nn f n N +>∈ 6. 22(2)n n -- 7.2*(1)(32)(21),n n n n n N +-++-=-∈ 8.49.*(1)(41)6n n n n N +-∈ 10.251,3 11、食指12.在数列1,2,2,3,3,3,4,4,4,4,……中,第25项为__7____.13.2322n n -+ 14. 48n +15、B 提示:平面面积法类比到空间体积法16. 1. 提示:平面面积法类比到空间体积法 17..22221111h a b c=++18*n N ∈提示:等差数列类比到等比数列,算术平均数)(121n n a a a nb +++= 类比到几何平均数*n d n N =∈19.(1)2m m + 20.222n n -+21.解:π=++++=C B A CB CB A ,cos cos sin sin sin)sin()sin(cos sin cos sin C B C A C A B A +++=+∴ 0cos )sin (sin cos sin cos sin =+=+∴A B C A B A C 20cos ,0sin sin π=⇒=∴≠+A A B C所以三角形ABC 是直角三角形22. 三个方程中都没有两个相异实根证明:假设三个方程中都没有两个相异实根,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0.相加有a 2-2ab +b 2+b 2-2bc +c 2+c 2-2ac +a 2≤0,(a -b )2+(b -c )2+(c -a )2≤0. ①由题意a 、b 、c 互不相等,∴①式不能成立.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.方法总结:反证法步骤—假设结论不成立→推出矛盾→假设不成立. 凡是“至少”、“唯一”或含有否定词的命题适宜用反证法. 23.解: 分析:由32,323sin sin sin 32sin 3sin 323ππ=⇒=⇒=⇒=A A B A B B a b由C A C A =⇒=cos cos B C A ===∴3π所以ABC ∆为等边三角形24.如图,),(111y x P 、),(222y x P 、…、),(n n n y x P )0(21n y y y <<<< 是曲线C :)0(32≥=y x y 上的n 个点,点)0,(i i a A (n i 3,2,1=)在x 轴的正半轴上,且i i i P A A 1-∆是正三角形(0A 是坐标原点). (1)写出1a 、2a 、3a ;(2)求出点)0,(n n a A (n *∈N )的 横坐标n a 关于n 的表达式并证明.解:(Ⅰ);12,6,2321===a a a ……………….6分 (2)依题意,得23,211---⋅=+=n n n n n n a a y a a x ,由此及n n x y ⋅=32得 )(23)23(121--+=-⋅n n n n a a a a , 即)(2)(121n n n n a a a a +=---. 由(Ⅰ)可猜想:)(),1(*∈+=N n n n a n .下面用数学归纳法予以证明: (1)当1n =时,命题显然成立;(2)假定当n k =时命题成立,即有(1)n a k k =+,则当1n k =+时,由归纳假设及211()2()k k k k a a a a ++-=+得211[(1)]2[(1)]k k a k k k k a ++-+=++,即2211()2(1)[(1)][(1)(2)]0k k a k k a k k k k ++-+++-⋅++=,解之得1(1)(2)k a k k +=++(1(1)k k a k k a +=-<不合题意,舍去), 即当1n k =+时,命题成立.由(1)、(2)知:命题成立.……………….10分。

相关文档
最新文档