(完整版)四年级奥数三角形
小学四年级奥数题三角形的等积变形及答案【三篇】
小学四年级奥数题三角形的等积变形及答案【三篇】【第一篇】1. 三角形把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.分析分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成一半,得到如下左图所示的图形.分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右图所示的符合条件的图形.2.比较比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解: A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.【第二篇】如图,四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积为6平方厘米,求三角形CDH的面积.三角形面积答案:通常求三角形的面积,都是先求它的底和高.题目中没有一条线段的长度是已知的,所以我们只能通过创造等积的方法来求.直接找三角形HDC 与三角形AFH 的关系还很难,而且也没有利用"四边形ABCD和四边形DEFG 是正方形"这一条件.我们不妨将它们都补上梯形DEFH 这一块.寻找新得到大三角形CEF 和大直角梯形DEFA 之间的关系.经过验算,可以知道它们的面积是相等的.从而得到三角形 HDC与三角形AFH面积相等,也是6平方厘米.【第三篇】如下图,BE=2AB,BC=CD。
小学四年级奥数竞赛班作业第17讲:三角形的边角关系
|
1
7. 如图,在直角 AOB 内有两条射线 OC , OD .已知 1 比 2 小10 , 3 比 2 大10 ,
则 3 C B
8. 如 图 , 在 三 角 形 ABC 中 , 点 D 在 BC 上 , 且 ABC AC B, ADC DAC , DAB 21 °,求 ABC 的度数.
5、 根据题目说明 B A 10 , C A 20 , D A 30 ,所以 A (360 10 20 30 ) 4 75 、 C 75 20 95 .
6、 这个多边形的内角和是: (6 2) 180 720 ,所以 x 40 .
代入得 6x 3x 2x 165 ,即11x 165 .解得 x 15 ,所以 1 90 , 3 30 .
10、由 E 20 ,得到 EFG EGF 180 20 160 ,所以 AFB CGD 160 ,所以
A B C D 180 AFB 180 CGD
L A
1
D
O
2
C
3
B
14. (第二届小学“希望杯”全国数学邀请赛四年级第 1 试) 如图, 1 2 , 3 4 , 5 130 ,那么 A _______度.
A
1
B
2
5
3
4
C
|
3
答案: 1、 第三条边最小也要大于 7-4=3cm,最大也要小于 7+4=11 厘米。
所以 L 的范围是:14cm<L<22cm
7、 2 90 3 30 , 3 2 10˚ 40˚ .
四年级奥数讲义:三角形的等积变形
四年级奥数讲义:三角形的等积变形我们已经掌握了三角形面积的计算公式:三角形面积=底×高÷2这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的高不变,底越大(小),三角形面积也就越大(小).这说明;当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.本讲即研究面积相同的三角形的各种形状以及它们之间的关系.为便于实际问题的研究,我们还会常常用到以下结论:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.,它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相等.同时也可以知道△ABC的面积是△ABD或△AEC面积的3倍.例如在右图中,△ABC与△DBC的底相同(它们的底都是BC),它所对的两个顶点A、D 在与底BC平行的直线上,(也就是它们的高相等),那么这两个三角形的面积相等.例如右图中,△ABC与△DBC的底相同(它们的底都是BC),△ABC的高是△DBC高的2倍(D是AB中点,AB=2BD,有AH=2DE),则△ABC的面积是△DBC面积的2倍.上述结论,是我们研究三角形等积变形的重要依据.例1 用四种不同的方法,把任意一个三角形分成四个面积相等的三角形.方法2:如右图,先将BC二等分,分点D、连结AD,得到两个等积三角形,即△ABD与△ADC 等积.然后取AC、AB中点E、F,并连结DE、DF.以而得到四个等积三角形,即△ADF、△BDF、△DCE、△ADE等积.例2 用三种不同的方法将任意一个三角形分成三个小三角形,使它们的面积比为及1∶3∶4.方法1:如下左图,将BC边八等分,取1∶3∶4的分点D、E,连结AD、AE,从而得到△ABD、△ADE、△AEC的面积比为1∶3∶4.DE,从而得到三个三角形:△ADE、△BDE、△ACD.其面积比为1∶3∶4.当然本题还有许多种其他分法,同学们可以自己寻找解决.例3 如右图,在梯形ABCD中,AC与BD是对角线,其交点O,求证:△AOB与△COD面积相等.证明:∵△ABC与△DBC等底等高,∴S△ABC=S△DBC又∵S△AOB=S△ABC—S△BOCS△DOC=S△DBC—S△BOC∴S△AOB=S△COD.例4 如右图,把四边形ABCD改成一个等积的三角形.分析本题有两点要求,一是把四边形改成一个三角形,二是改成的三角形与原四边形面积相等.我们可以利用三角形等积变形的方法,如右图,把顶点A移到CB的延长线上的A′处,△A′BD与△ABD面积相等,从而△A′DC面积与原四边形ABCD面积也相等.这样就把四边形ABCD等积地改成了三角形△A′DC.问题是A′位置的选择是依据三角形等积变形原则.过A作一条和DB平行的直线与CB的延长线交于A′点.解:①连结BD;②过A作BD的平行线,与CB的延长线交于A′.③连结A′D,则△A′CD与四边形ABCD等积.例5 如右图,已知在△ABC中,BE=3AE,CD=2AD.若△ADE的面积为1平方厘米.求三角形ABC的面积.解法1:连结BD,在△ABD中∵BE=3AE,∴S△ABD=4S△ADE=4(平方厘米).在△ABC中,∵CD=2AD,∴S△ABC=3S△ABD=3×4=12(平方厘米).解法2:连结CE,如右图所示,在△ACE中,∵CD=2AD,∴S△ACE=3S△ADE=3(平方厘米).在△ABC中,∵BE=3AE∴S△ABC=4S△ACE=4×3=12(平方厘米).例6 如下页图,在△ABC中,BD=2AD,AG=2CG,BE=EF=FC=解:连结BG,在△ABG中,∴S△ADG+S△BDE+S△CFG例7如右图,ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米.求三角形CDF的面积.解:连结AF、CE,∴S△ADE=S△ACE;S△CDF=S△ACF;又∵AC与EF平行,∴S△ACE=S △ACF;∴S△ADE=S△CDF=4(平方厘米).例8 如右图,四边形ABCD面积为1,且AB=AE,BC=BF,DC=CG,AD=DH.求四边形EFGH的面积.解:连结BD,将四边形ABCD分成两个部分S1与S2.连结FD,有S△FBD=S△DBC=S1 所以S△CGF=S△DFC=2S1.同理S△AEH=2S2,因此S△AEH+S△CGF=2S1+2S2=2(S1+S2)=2×1=2.同理,连结AC之后,可求出S△HGD+S△EBF=2所以四边形EFGH的面积为2+2+1=5(平方单位).例9 如右图,在平行四边形ABCD中,直线CF交AB于E,交DA延长线于F,若S△ADE=1,求△BEF的面积.解:连结AC,∵AB//CD,∴S△ADE=S△ACE又∵AD//BC,∴S△ACF=S△ABF而S△ACF=S△ACE+S△AEF∶S△ABF=S△BEF+S△AEF∴S△ACE=S△BEF ∴S△BEF=S△ADE=1.习题十三一、选择题(有且只有一个正确答案):1.如下左图,在△ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与△ABE 等积的三角形一共有______个.(A)0个(B)1个(C)2个(D)3个2.如上右图,在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有______个.(A)0个(B)1个(C)2个(D)3个3.如下左图,在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有______对.(A)0对(B)1对(C)2对(D)3对4.如上右图,是一个长方形花坛,阴影部分是草地,空地是四块同样的菱形,那么草地与空地面积之比是______.(A)1∶1 (B)1∶1.1(C)1∶1.2 (D)1∶1.45.如右图,长方形AEGK四周上共有12个点,相邻两点的距离都是1厘米,以这些点为顶点构成的三角形面积是3平方厘米的共有______个.(A)24个(B)25个(C)26个(D)27个二、填空题:1.如下左图,A、B两点是长方形长和宽的中点,那么阴影部分面积占长方形面积的______.2.如上右图,平行四边形ABCD的面积是40平方厘米,图中阴影部分的面积是______.3.如下左图,正方形ABCD的面积为1平方厘米,S△BEG∶S△CEG=2∶1,S△CFG∶S△DFG=1∶1,那么这四个小三角形面积之和______.4.如上右图,在△ABC中,EF平行BC,AB=3AE,那么三角形甲、乙、丙面积的连比是______.三、解答题:1.如下左图,D、E、F分别是BC、AD、BE的三等分点,已知S△ABC=27平方厘米,求S△DEF.2.如下左图,在平行四边形ABCD中,E、F分别是AC、BC的三等分点,且SABCD=54平方厘米,求S△BEF.3.如上页右图,将四边形ABCD各边都延长一倍至A'、B'、C'、D'.连接这些点得到一个新的四边形A' B' C' D'.如果四边形ABCD的面积是1,求四边形A'B'C'D'的面积.4.如右图,在四边形ABCD中,对角线AC、BD交于E,且AF=CE,BG=DE,如果四边形ABCD的面积是1,求△EFG的面积?。
四年级奥数三角形面积应用题
四年级奥数三角形面积应用题
一、知识点回顾
1. 三角形面积公式:公式,其中公式表示三角形的面积,公式表示三角形的底,公式表示这条底边对应的高。
2. 在解决三角形面积应用题时,关键是要准确找出底和对应的高。
二、例题及解析
例1:
一个三角形的底是8厘米,高是5厘米,这个三角形的面积是多少平方厘米?
解析:
已知三角形的底公式厘米,高公式厘米。
根据三角形面积公式公式,可得:
公式
公式
公式(平方厘米)
例2:
三角形花坛的底是12米,高是8米。
如果每平方米种3株花,这个花坛一共可以种多少株花?
解析:
首先求三角形花坛的面积。
已知底公式米,高公式米。
根据面积公式公式,可得:
公式
公式
公式(平方米)
因为每平方米种3株花,那么这个花坛一共可以种花的数量为:公式
(株)
例3:
有一个三角形的面积是36平方厘米,底是9厘米,求这个三角形的高是多少厘米?
解析:
已知三角形面积公式平方厘米,底公式厘米。
根据三角形面积公式公式,可推导出高公式。
则公式
公式
公式(厘米)
例4:
一块三角形地,底边长25米,高16米。
如果每平方米收小麦0.8千克,这块地一共可以收小麦多少千克?
解析:
先求三角形地的面积。
底公式米,高公式米。
根据面积公式公式,可得:
公式
公式
公式
公式
公式(平方米)
每平方米收小麦0.8千克,则这块地一共收小麦:公式(千克)。
四年级奥数-三角形
【三角形基础知识】
三角形的分类: 按边分类: 等腰三角形 等边三角形 等腰直角三角形
【三角形基础知识】
1
三角形的分类: 按边分类:
两边之和大于第三边 两边之差小于第三边
【三角形基础知识】
Байду номын сангаас
【例1】(★★) 计算下面各题。 ⑴已知∠1=30°,∠3=40°,那么∠2=_____。
⑵从长度分别为10cm,20cm,30cm,40cm的四根木条 中,任取三根可组成三角形的个数是____。
【例2】(★★) 9个同样的直角三角形卡片拼成了如图所示的平面图形,则这种三角 形卡片的3个角中最小的角是多少度?
【例3】(★★) 如图所示,求∠A+ ∠B+ ∠C+ ∠D+ ∠E+ ∠F=______。
2
【例4】(★★) 如图所示,八边形的8个内角都是135°,已知AB=EF,BC=20,DE =10,FG=30,求AH的长度。
3
三角形面积 面积=底×高÷2
【三角形基础知识】
【例5】(★★) 下面两幅图都是由边长为8和6的两个正方形拼成,请根据图中所示的 线段长度,求出阴影三角形的面积。
【例6】(★★★★) 如图,ABCD是一个长方形,E点在CD延长线上。已知AB=5,BC= 12,且三角形AFE的面积等于20,那么三角形CFE的面积等于多少?
三角形
什么是三角形? 由不在同一直线上的 三条线段首尾顺次连 接所组成的封 闭图形叫做三角形。
【三角形基础知识】
三角形的分类: 按角分类: 锐角三角形 直角三角形 钝角三角形
【三角形基础知识】
三角形的分类: 按角分类:
三角形内角和:180° 三角形外角和:360° N边形内角和:180°×(n-2) N边形外角和:360°
四年级三角形内角和奥数练习题
四年级三角形内角和奥数练习题[问题一] 一个三角形的两个内角和是85,你知道这是一个什么三角形吗?想:根据两个内角和是85和三角形的内角和是180,可知第三个内角是180-85=95,所以这是一个钝角三角形。
解:180-85=95答:这是一个钝角什么三角形。
[试一试]1、一个三角形的两个内角和是110,你知道这是一个什么三角形吗?000000000002、在△ABC中,已知∠A是∠B的3倍,且∠A比∠B 大60,这个三角形各个角是多少度?你知道这是一个什么三角形?3、一个等腰三角形的顶角是一个底角的2倍,这个三角形各个角是多少度?[问题二]在一个三角形中,已知∠1是∠2的2倍,∠2是∠3的这是一个什么三角形?想:根据∠2是∠3的001。
这个三角形各个角是多少度?31,可知∠3是∠2的3倍,而且∠1是∠2的2倍,因为三角形的内300000角和是180,所以∠2=180÷=30,∠1=30×2=60,∠3=30×3=90。
解:∠2=180÷=30 ∠1=30×2=60 ∠3=30×3=90答:这个三角形各个角分别是30、60和90,这是一个直角三角形。
[试一试]1、一个三角形的最大角是最小角的5倍,另一个角是最小角的3倍,这是一个什么三角形?2、在一个三角形中,已知∠1的度数是∠2的2倍,∠2的度数是∠3的3倍。
这个三角形各个000000000 角是多少度?这是一个什么三角形?3、已知一个三角形的一个内角是72,是另外一个内角的4倍,这个三角形是什么三角形?[问题三]同学们知道三角形的内角和是180,你能运用这个知识分别求出四边形、五边形、六边形的内角和吗?想:如图,把四边形、五边形、六边形分成若干个三角形,因为一个三角形的内角和是180,所以四边形、五边形、六边形分别是180×2、180×3、180×4。
解:四边形的内角和:180×2=360五边形的内角和:180×3=540六边形的内角和:180×4=720答:四边形、五边形、六边形的内角和分别是360、540、720。
(完整版)四年级奥数三角形
三角形知识小屋:1、三角形由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
三角形有三个顶点,三个角和三条边。
从三角形的一条顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
2、画三角形步骤:○1先画一条线段,即一条边;再让量角器的中心和线段的端点重合,0刻度线和射线重合。
②在所需的刻度线的地方点一个点(内外刻度要分清),画出一个已知角。
及另一条边③根据要求确定其它边的长度和角的大小。
3、按角分,三角形可分为( )、( )、( )三类。
按边分,三角形可分为( )、( )、( )三类。
4、锐角三角形有()个锐角、()个直角、()个钝角。
直角三角形有()个锐角、()个直角、()个钝角。
钝角三角形有()个锐角、()个直角、()个钝角。
5、任何三角形的内角和都是()。
任何三角形至少有()个锐角,最多有()个钝角。
6、任何三角形的两边之和都()第三边。
(用﹥、﹤、﹦填空)7、等腰三角形不一定是等边三角形,但是等边三角形一定是等腰三角形。
例1 已知∠1、∠2、∠3是三角形中的三个内角,∠2=90°∠1=60°,求∠3是多少度?这个三角形是什么三角形?∠2是∠3的几倍?例2 已知∠1、∠2、∠3是三角形中的三个内角,∠2+∠1=∠3,求∠3是多少度?如果∠3是∠1的2倍,则∠1,∠2分别是多少度?这个三角形是什么三角形?例3 已知等腰三角形的一个角是38°,它的另一个底角是多少度?例4 如右图,已知∠1=60°,∠4=25°,求∠3的度数例5 如图,∠1=70°,∠2=45°,∠3=28°,则∠4=()∠5=()例6 如图,两个三角形都是等腰三角形,∠3是多少度?探索练习:1.在一个等腰三角形中,已知一个角为68°,求另两个角?如果是在直角三角形中呢?2.在下图中,已知∠1=130°,∠4=110°,求∠2的度数?3.已知:如图∠2=58°,∠3=37°,∠4=55°,求∠1的度数?4.在三角形ABC中,已知∠A=2∠C,∠B=2∠C,求∠A、∠B、∠C?[试一试]1、如图:在等边三角形ABC中,∠1=∠2=∠3=∠4,求∠5的度数。
四年级下册数学奥数试题-培优拓展训练--第3讲:三角形(学生版)
第三讲三角形(1).三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形(2).三角形有三个顶点,三条边和三个角。
从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
为了表达方便,用字母A,B,C分别表示三角形的三个顶点,这个三角形可以表示成三角形ABC。
(3).三角形具有稳定的特性,这一特性在生活中有着广泛的应用(4).三角形边的关系:三角形任意两边的和大于第三边,如果用a,b,c表示三角形三条边的长度,则有:a+b>c;a+c>b;b+c>a。
(5).认识几种三角形锐角三角形:三个角都是锐角的三角形直角三角形:有一个角是直角的三角形钝角三角形:有一个角是钝角的三角形(6).三角形的分类:(1)按角分有:锐角三角形,直角三角形和钝角三角形。
(2)按边分有:不等边三角形和等腰三角形,其中等腰三角形中还包括三条边都相等的等边三角形。
(7).等腰三角形各部分的名称;在等腰三角形里,相等的两条边叫做腰;另一条边叫做底;两腰的夹角叫做顶角;底边上的两个角叫做底角。
等腰三角形的两个底角相等。
(8).三角形的内角和:任何三角形三个内角的和都是180度。
一个三角形,已知两个角的度数,可以根据“三角形的内角和是180度”求出第三个角的度数。
(9).用三角形拼四边形两个完全相同的三角形可以拼成一个平行四边形;两个完全相同的直角三角形可以拼成一个长方形;两个完全相同的等腰直角三角形可以拼成一个正方形;三个完全相同的三角形可以拼成一个梯形。
一:三角形内角和定理的应用。
二:三角形三边关系的应用,及画钝角三角形高。
1.两个椭圆圈重合的部分应是什么三角形?2.在能组成的三角形的三个角后面画“√”。
1. 900 500 400 ( )2. 500 500 500 ( )3. 1200 300 300 ( )4. 1000 320 190 ( )5. 600 600 600 ( )3.在能组成三角形的三条线段后面画“√”。
第4讲 三角形(三角形的内角和)-四年级奥数下册同步精讲精练(西师大版)
157第四讲 三角形(三角形的内角和)ʌ知识概述ɔ三角形的内角和是180ʎ,在等边三角形,每个内角都是60ʎ,在等腰三角形中,顶角的度数=180ʎ-底角的度数ˑ2,底角的度数=(180ʎ-顶角的度数)ː2,在直角三角形中,一个锐角=90ʎ-另一个锐角㊂此外,三角形三个内角的外面还有外角,如图所示,ø1㊁ø2㊁ø3是三角形的内角,ø4㊁ø5㊁ø6是这个三角形的外角,因为ø1+ø2+ø3=180ʎ,ø4+ø3=180ʎ,所以ø1+ø2=ø4,同理,ø2+ø3=ø5,ø1+ø3=ø6㊂同学们可以想一想三角的外角和是多少度?利用这些规律,可以解答关于三角形内角和的问题㊂例题精学例1 计算图中ø1的度数㊂ʌ思路点拨ɔ 图中ø1+110ʎ+ø2=180ʎ,155ʎ+ø2=180ʎ,所以ø1+110ʎ=155ʎ,ø1=45ʎ㊂同步精练1.如图,三角形A B C 为直角三角形,求ø1㊁ø2的度数㊂1582.求图中ø1㊁ø2㊁ø3的度数,并算出这三个角的度数和㊂3.求图中ø1和ø2的度数㊂159例2 在等边三角形A B C 中,ø1=ø2,ø3=ø4,ø5=( )ʎ㊂ʌ思路点拨ɔ 在等边三角形A B C 中,øA B C 和øA C B 都等于60ʎ,ø1=ø2=30ʎ,ø3=ø4=30ʎ,所以ø5=180ʎ-ø2-ø4=180ʎ-30ʎ-30ʎ=120ʎ㊂同步精练1.如图所示,ø1=ø2,ø3=ø4,求ø5㊂2.如图,在三角形中,ø2比ø1大20ʎ,ø3比ø2大20ʎ,那么ø1㊁ø2㊁ø3各是多少度?3.如图,在三角形A B C 中,ø1=ø2,ø3=ø4,ø5=130ʎ,øA 等于多少度?160例3 如图,øA 和øB 分别是多少度?ʌ思路点拨ɔ 在直角三角形B D C 中,øB =90ʎ-40ʎ=50ʎ,在直角三角形A B C 中,øA =90ʎ-øB =90ʎ-50ʎ=40ʎ,还可以这样想:在直角三角形A B C 中,øA C D =90ʎ-40ʎ=50ʎ,在直角三角形A C D 中,øA =90ʎ-øA C D =90ʎ-50ʎ=40ʎ㊂同步精练1.如图,ø1=25ʎ,ø2=80ʎ,求øC A D 的大小㊂2.已知ø1=40ʎ,ø2=50ʎ,ø3=60ʎ,ø4等于多少度?3.如图,正方形中有四个三角形,求ø1㊁ø2㊁ø3的度数㊂161例4 如图,ø1+ø2+ø3+ø4+ø5=( )ʎ㊂ʌ思路点拨ɔ 为了便于说明,给这个图形标上字母,如图在三角形F E C 中,ø3+ø5=øA F G ,在三角形B G D 中,ø2+ø4=øA G F ,所以ø1+ø2+ø3+ø4+ø5=ø1+øA F G +øA G F =180ʎ㊂同步精练1.如图,øA +øB +øC +øD +øE +øF =( )ʎ㊂2.两个三角板如图放置,øB F E 是øC A F 的几倍?3.如图,在五角星中,ø1+ø2=( )ʎ㊂162练习卷1.如图,三角形A B C 中,øA =20ʎ,D E ㊁F C 和E F 相连,A D =D E =E F =F C =B C ,那么图中øA B C 是多少度?2.求出下列图中ø1的度数㊂(1)ø1=( )ʎ (2)ø1=( )ʎ3.下面是一个直角三角形,计算ø1㊁ø2和ø3的度数㊂1634.求图中ø1㊁ø2和ø3的度数㊂5.如图,已知ø1=75ʎ,ø2=20ʎ,ø3=46ʎ,求ø5的度数㊂6.已知ø1=30ʎ,ø2=60ʎ,ø3=40ʎ,求ø4㊁ø5和ø6的度数㊂1647.如图,已知øB =38ʎ,øC =55ʎ,øD E C =23ʎ,求øF 的度数㊂8.如图,已知ø2=35ʎ,求ø1㊁ø3的度数㊂(2)6.(1)A(1,6)O(2,3)B(2,6)(2)第四讲三角形(三角形的内角和)例1因为ø1+110ʎ+ø2=180ʎ,155ʎ+ø2=180ʎ,所以ø1+110ʎ= 155ʎ,ø1=45ʎ㊂[同步精练]1.ø2+48ʎ=70ʎ,ø2=22ʎ,ø1+ø2=90ʎ-48ʎ,ø1+22ʎ=42ʎ,ø1=20ʎ2.ø1=180ʎ-88ʎ=92ʎ,ø2=180ʎ-50ʎ=130ʎ,ø3=88ʎ+50ʎ= 138ʎ,ø1+ø2+ø3=92ʎ+130ʎ+138ʎ=360ʎ3.ø1=180ʎ-40ʎ-60ʎ=80ʎ,ø2=40ʎ+60ʎ=100ʎ例2ø1+ø2=60ʎ,ø1=ø2=30ʎ,ø3+ø4=60ʎ,ø3=ø4=30ʎ,ø5=180ʎ-ø2-ø4=180ʎ-30ʎ-30ʎ=120ʎ307[同步精练]1.ø1+ø2+ø3+ø4=180ʎ-70ʎ=110ʎ,2ø2+2ø4=110ʎ,ø2 +ø4=55ʎ,ø5=180ʎ-55ʎ=125ʎ2.ø2=ø1+20ʎ,ø3=ø2+20ʎ=ø1+40ʎø1+ø2+ø3=ø1+(ø1+20ʎ)+(ø1+40ʎ)=180ʎ3ø1+60ʎ=180ʎø1=40ʎ,ø2=60ʎ,ø3=80ʎ3.ø2+ø4=180ʎ-ø5=180ʎ-130ʎ=50ʎø1+ø2+ø3+ø4=2ø2+2ø4=100ʎ,øA=180ʎ-100ʎ=80ʎ例3 øB=90ʎ-40ʎ=50ʎ,øA=90ʎ-50ʎ=40ʎ[同步精练]1.øC=180ʎ-ø1-ø2=180ʎ-25ʎ-80ʎ=75ʎøC A D=180ʎ-90ʎ-75ʎ=15ʎ2.ø1+ø2=ø3+ø4,ø4=40ʎ+50ʎ-60ʎ=30ʎ3.ø1=60ʎ,ø2=90ʎ-60ʎ=30ʎ,ø3=(180ʎ-ø2)ː2=(180ʎ-30ʎ)ː2=75ʎ例4 ø3+ø5=øA F G,ø2+ø4=øA G Fø1+ø2+ø3+ø4+ø5=ø1+øA F G+øA G F=180ʎ[同步精练]1.如图,øA+øB=180ʎ-ø3308øC+øD=180ʎ-ø2øE+øF=180ʎ-ø1øA+øB+øC+øD+øE+øF=180ʎ-ø3+180ʎ-ø2+180ʎ-ø1=540ʎ-(ø1+ø2+ø3)=540ʎ-180ʎ=360ʎ2.øB F E=360ʎ-90ʎ-90ʎ-45ʎ=135ʎøC A F=60ʎ-45ʎ=15ʎøB F EːøC A F=135ʎː15ʎ=93.如图,ø1=ø2=2øAø1+ø2+øA=180ʎ5øA=180ʎøA=36ʎ,ø1+ø2=180ʎ-36ʎ=144ʎ练习卷1.A D=D E,øA=øD E A=20ʎ,øA D E=180ʎ-20ʎ-20ʎ=140ʎ,D E=E F,øE D F=øDF E=180ʎ-øA D E=180ʎ-140ʎ=40ʎ,øD E F =100ʎ,E F=F C,øF E C=øF C E=180ʎ-øA E D-øD E F=180ʎ-30920ʎ-100ʎ=60ʎ,F C=B C,øC F B=øF B C=180ʎ-øE F D-øE F C= 180ʎ-40ʎ-60ʎ=80ʎ,即øA B C=80ʎ2.(1)30ʎ(2)77ʎ3.ø3=180ʎ-50ʎ=130ʎ,ø1=90ʎ-(180ʎ-60ʎ-50ʎ)=20ʎ,ø2= 90ʎ-60ʎ=30ʎ4.ø1=180ʎ-50ʎ-60ʎ-40ʎ=30ʎø3=180ʎ-50ʎ-60ʎ=70ʎø2=180ʎ-70ʎ=110ʎ5.ø4=ø2+ø3=20ʎ+46ʎ=66ʎø5=180ʎ-ø1-ø4=180ʎ-75ʎ-66ʎ=39ʎ6.ø4=180ʎ-ø1-ø3=180ʎ-30ʎ-40ʎ=110ʎø5=180ʎ-ø4=180ʎ-110ʎ=70ʎø6=180ʎ-ø2-ø5=180ʎ-60ʎ-70ʎ=50ʎ7.øF A E=øB+øC=38ʎ+55ʎ=93ʎøD E C=øF E A=23ʎøF=180ʎ-øF E A-øF A E=180ʎ-93ʎ-23ʎ=64ʎ8.ø1=90ʎ-ø2=90ʎ-35ʎ=55ʎø3=90ʎ-ø2=90ʎ-35ʎ=55ʎ第五讲小数例15.845>5.84>5.8399>5.839>5.79[同步精练]1.整数部分都是7,就比十分位㊂十分位上8最大,是7的几个数再比百分位或千分位上的数㊂7<7.007<7.07<7.7<7.707<7.708<7.8㊂310。
四年级下册数学试题-奥数专题讲练:第2讲 三角形等各类变形 精英篇(解析版)全国通用
第二讲 三角形的等积变形内容概述我们已经知道三角形面积的计算公式:三角形面积=底×高÷2从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1/3,则三角形面积与原来的一样。
这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论:① 等底等高的两个三角形面积相等.②若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.③夹在一组平行线之间的等积变形,如下图,ACD ∆和BCD ∆夹在一组平行线之间,且有公共底边CD 那么BCD ACD S S ∆∆=;反之,如果BCD ACD S S ∆∆=,则可知直线AB 平行于CD 。
例题精讲【例1】 如右图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线长。
① 求三角形ABC 的面积是三角形ABD 面积的多少倍?② 求三角形ABD 的面积是三角形ADC 面积的多少倍?分析:因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等。
于是: 三角形ABD 的面积=12×高÷2=6×高三角形ABC 的面积=(12+4)×高÷2=8×高三角形ADC 的面积=4×高÷2=2×高所以,三角形ABC 的面积是三角形ABD 面积的4/3倍;三角形ABD 的面积是三角形ADC 面积的3倍。
四年级数学三角形及其他奥数题
(一)、填空1.等腰三角形的两条边( ),它是( )图形,有( )条对称轴;等边三角形的( )相等,每个角都是( )度,它是( )图形,有( )条对称轴。
2.两条边相等的三角形叫( )三角形,已知它的底角为75°,那么顶角是( )度。
3.一个等腰三角形的一个底角是45°,顶角是( )度,它又叫( )三角形。
4.任何一个三角形三个内角的和是( )度。
5.三角形的一个内角为45°,另一个内角是它的2倍,第三个内角是( )度,这个三角形叫( )三角形。
(二)、判断,对的打“√”,错的打“×”6.∠1=75°,∠2=20°,∠3=85°,能组成三角形。
( )7.∠1=65°,∠2=76°,∠3=40°,不能组成三角形。
( )8.三条边分别为15厘米、7厘米、8厘米。
能组成三角形。
( )9.三条边分别为2.5厘米、4.5厘米、8厘米。
不能组成三角形。
( )10.一个三角形三条边的长度分别是6厘米、5厘米、6厘米,这个三角形是等腰三角形。
( )11.等腰三角形不可能是钝角三角形。
( )12.有两个角是锐角的三角形一定是锐角三角形。
( )13.等边三角形是等腰三角形,等腰三角形也是等边三角形。
( )(三)、等腰三角形的一个底角是75°,顶角是多少度?(四)、画出下面三角形底边上的高。
2.在一个等腰三角形中,底角的度数是顶角的2倍,求顶角和底角的度数。
3.计算9999×2222+3333×3334(用简便计算)4、父亲45岁,儿子23岁。
问几年前父亲年龄是儿子的2倍?5.求1至100内所有不能被5或9整除的整数和。
6.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.23, 26, 30, 33A、B、C、D 4个数的平均数是多少?7.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?。
小学四年级奥数题库:三角形面积(高等难度)_题型归纳
小学四年级奥数题库:三角形面积(高等难度)_题型归纳
小学四年级奥数题库:三角形面积(高等难度)
如图,四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积为6平方厘米,求三角形CDH的面积.
三角形面积答案:
通常求三角形的面积,都是先求它的底和高.题目中没有一条线段的长度是已知的,所以我们只能通过创造等积的方法来求.直接找三角形HDC 与三角形AFH 的关系还很难,而且也没有利用"四边形ABCD和四边形DEFG 是正方形"这一条件.我们不妨将它们都补上梯形DEFH 这一块.寻找新得到大三角形CEF 和大直角梯形DEFA 之间的关系.经过验算,可以知道它们的面积是相等的.从而得到三角形HDC与三角形AFH面积相等,也是6平方厘米.。
小学四年级奥数讲义专题一 等边三角形
小学四年级奥数讲义专题一等边三角形一、定义等边三角形是指三条边长度相等的三角形。
下图是一个等边三角形的示例:A/ \/ \B-----C二、性质1. 三条边相等:等边三角形的三条边长度都相等。
2. 三个内角均为60度:等边三角形的三个内角都是60度。
3. 三条高、三条角平分线重合:等边三角形的三条高线、三条角平分线都重合于一个点,称为垂心或重心。
三、判断方法判断一个三角形是否为等边三角形,可以使用以下方法:1. 测量三条边的长度,如果它们相等,则是等边三角形。
2. 观察三个内角,如果它们都是60度,则是等边三角形。
3. 可以通过分析等边三角形的性质,比如三个内角为60度、三条边相等,来判断是否为等边三角形。
四、例题例题1判断下列三角形是否为等边三角形:A/|\/ | \B---C---D解答:由图可见,三角形ABC的三边长度相等,故为等边三角形。
例题2若一个三角形的三个内角都是60度,是否一定为等边三角形?解答:不一定。
虽然等边三角形的三个内角都是60度,但其他三角形的三个内角都是60度时,不一定是等边三角形。
例如,下图所示的三角形就不是等边三角形:A/|\/ | \B-----C五、总结等边三角形是三角形中特殊的一种,它的三条边长度相等,三个内角都是60度。
判断一个三角形是否为等边三角形,可以通过测量边长、观察内角、分析性质等方法进行。
同时要注意,一个三角形的三个内角都是60度并不一定是等边三角形,还需要同时满足边长相等的条件。
四年级奥数复习三(学生版)
蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规 则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例 关系.
梯形模型的应用
梯形中比例关系(“梯形蝴蝶定理”):
Aa D S1
S2 O S4
S3
B
C
b
① S1 : S3 = a2 : b2 ② S1 : S3 : S2 : S4 = a2 : b2 : ab : ab ;
A
D
O
B
C
13、如图,梯形 ABCD 中, ∆AOB 、 ∆COD 的面积分别为1.2 和 2.7 ,求梯形 ABCD 的面积.
A
B
O
D
C
四年级奥数复习三 第 6 页 共 9 页
智源奥数工作室
联系手机:18964065566
14、如下图,一个长方形被一些直线分成了若干个小块,已知三角形 ADG 的面积是11,三角形 BCH 的面积是 23 ,求四边形 EGFH 的面积.
之比
鸟头模型
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在 △ABC 中, D, E 分别是 AB, AC 上的点如图 ⑴(或 D 在 BA 的延长线上, E 在 AC 上), 则 S△ABC : S△ ADE = ( AB × AC) : ( AD × AE)
D
C
F G
A
E
B
19、如图,正方形 ABCD 的面积是 120 平方厘米, E 是 AB 的中点, F 是 BC 的中点,四边形 BGHF 的面积是_____平方厘米.
小学四年级的数学三角形与其他奥数题.doc
(一)、填空1. 等腰三角形的两条边 ( ),它是()图形,有()条对称轴;等边三角形的 ( )相等,每个角都是()度,它是()图形,有( )条对称轴。
2.两条边相等的三角形叫 ( ) 三角形,已知它的底角为 75°,那么顶角是 ( ) 度。
3.一个等腰三角形的一个底角是 45°,顶角是 ( ) 度,它又叫 ( )三角形。
4.任何一个三角形三个内角的和是 ( ) 度。
5.三角形的一个内角为45°,另一个内角是它的 2 倍,第三个内角是()度,这个三角形叫 ()三角形。
(二)、判断,对的打“√” ,错的打“×”6. ∠1=75°,∠ 2=20°,∠ 3=85°,能组成三角形。
( )7. ∠1=65°,∠ 2=76°,∠ 3=40°,不能组成三角形。
( )8. 三条边分别为 15 厘米、 7 厘米、 8 厘米。
能组成三角形。
( )9.三条边分别为 2.5 厘米、4.5 厘米、8 厘米。
不能组成三角形。
( )10. 一个三角形三条边的长度分别是 6 厘米、5 厘米、6 厘米,这个三角形是等腰三角形。
( )11.等腰三角形不可能是钝角三角形。
( )12.有两个角是锐角的三角形一定是锐角三角形。
( )13.等边三角形是等腰三角形,等腰三角形也是等边三角形。
()(三)、等腰三角形的一个底角是75°,顶角是多少度 ?( 四) 、画出下面三角形底边上的高。
2.在一个等腰三角形中,底角的度数是顶角的 2 倍,求顶角和底角的度数。
3.计算9999 ×2222+3333 ×3334 (用简便计算)4、父亲 45 岁,儿子23 岁。
问几年前父亲年龄是儿子的 2 倍5.求 1 至 100 内所有不能被 5 或 9 整除的整数和。
,这样计算了 4 次 ,得到下6.A 、B 、C 、D 四个数 ,每次去掉一个数, 将其余下的三个数求平均数面 4 个数 .23, 26, 30, 33A、 B、 C、 D 4 个数的平均数是多少7.甲、乙两桶油共重 30 千克,如果把甲桶中 6 千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油。
小学四年级奥数题添加一条直线划分两个三角形
小学四年级奥数题添加一条直线划分两个三角
形
work Information Technology Company.2020YEAR
小学四年级奥数题添加一条直线划分两个三角形
问题:
一道小学奥数题画一条直线,把图形分成两个三角形
解答:
不规则的五边形都可以,
1 先画个圆
2 在画出这个圆的一对成直角的直径(说白了就是用直线通过顶点把这个圆分成4等份,懂了不)
3 一个直径等于两个半径,随便选你画的直径上你任何一个半径,找到它的中点
4 用圆规以这个你找的中点为一点,量出与你找中点所在半径所垂直的半径与圆的边的交点的长度
5 保持这个长度
6 以你所找的中点为圆心,以你找的长度画圆
7 我们就可以看见中点所在的直径上有有了一个点
8 找到新的点,还是用圆规量出与你点所在半径垂直的半径与圆边的交点的距离
9 好了,就快大功高成了,保持这个距离
10 不要管以前画的什么直径啊,半径什么,用这个距离,在圆的边上找一点,画个圆,你可以得到3个点,在分别用其他两个点画园,又可以得到两个点
11 连接5个点
12 完成
虽然这个方法不如上面的简单,但是如果是考试要你画正5边形的画,这个就是标准答案,上面的很简单,但是在没有量角器的情况下呢
一般这种题目会表明用圆规,或者说不许用量角器
用一条足够粗的线,将五边形相邻的三边用这条粗线划过,那么这剩余的两边和那一条粗线所组成的便就是一个三角形了,也就是题目中说的:“只画一条线,就能使一个五边形变成一个三角形”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形
知识小屋:
1、三角形
由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
三角形有三个顶点,三个角和三条边。
从三角形的一条顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
2、画三角形
步骤:○1先画一条线段,即一条边;再让量角器的中心和线段的端点重合,0刻度线和射线重合。
②在所需的刻度线的地方点一个点(内外刻度要分清),画出一个已知角。
及另一条边
③根据要求确定其它边的长度和角的大小。
3、按角分,三角形可分为( )、( )、( )三类。
按边分,三角形可分为( )、( )、( )三类。
4、锐角三角形有()个锐角、()个直角、()个钝角。
直角三角形有()个锐角、()个直角、()个钝角。
钝角三角形有()个锐角、()个直角、()个钝角。
5、任何三角形的内角和都是()。
任何三角形至少有()个锐角,最多有()个钝角。
6、任何三角形的两边之和都()第三边。
(用﹥、﹤、﹦填空)
7、等腰三角形不一定是等边三角形,但是等边三角形一定是等腰三角形。
例1 已知∠1、∠2、∠3是三角形中的三个内角,∠2=90°∠1=60°,求∠3是多少度?这个三角形是什么三角形?∠2是∠3的几倍?
例2 已知∠1、∠2、∠3是三角形中的三个内角,∠2+∠1=∠3,求∠3是多少度?如果∠3是∠1的2倍,则∠1,∠2分别是多少度?这个三角形是什么三角形?
例3 已知等腰三角形的一个角是38°,它的另一个底角是多少度?
例4 如右图,已知∠1=60°,∠4=25°,求∠3的度数
例5 如图,∠1=70°,∠2=45°,∠3=28°,则∠4=()∠5=()
例6 如图,两个三角形都是等腰三角形,∠3是多少度?
探索练习:
1.在一个等腰三角形中,已知一个角为68°,求另两个角?如果是在直角三角形中呢?
2.在下图中,已知∠1=130°,∠4=110°,求∠2的度数?
3.已知:如图∠2=58°,∠3=37°,∠4=55°,求∠1的度数?
4.在三角形ABC中,已知∠A=2∠C,∠B=2∠C,求∠A、∠B、∠C?
[试一试]
1、如图:在等边三角形ABC中,∠1=∠2=∠3=∠4,求∠5的度数。
2、如下图,在等腰直角三角形ABC中,AD是底边上的高,那么∠1是多少度?
3、如图,直角三角形ABC中有一个正方形BDEF,那么∠1和∠2的大小有什么关系?∠3和∠4的大小有什么关系?为什么?
4、在一个三角形中,已知∠1的度数是∠2的3倍,∠2的度数是∠3的2倍。
这个三角形
各个角是多少度?这是一个什么三角形?
5、一个三角形中,如果其中最小的角是460,那么这个三角形是什么三角形?为什么?
[挑战题]
6、如图:已知∠1=600,∠2=250,∠3=200,求∠4的度数。