2018-2019金太阳湖南省2月高三联考理科数学试卷

合集下载

推荐-全国大联考2018届高三第二次联考·数学(理)试卷-人教版[特约][整理] 精品

推荐-全国大联考2018届高三第二次联考·数学(理)试卷-人教版[特约][整理] 精品

全国大联考(湖南专用)2018届高三第二次联考·数学试卷(理)命题:湖南师大附中、长沙市雅礼中学等校:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 2. 答题前,考生务必将密封线内的项目填写清楚.3. 请将第Ⅰ卷答案填在第Ⅱ卷前的答题卡上,第Ⅱ用蓝黑钢笔或圆珠笔答题. 4. 本试卷主要考试内容:函数、集合、映射、简易逻辑.第Ⅰ卷 (选择题 共50分)一、选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列函数中是同一函数的是A .y =1与y =x 0B .y =x 与y =log a xaC .y =2lg x 与y =lg x 2D . y =2x +1-2x 与y =2x2.若集合M ={y |y =x 2,x ∈Z},N ={x ||x -3|≥6,x ∈R},全集U =R ,则M ∩ðU N 的真子集个数是A .15B .7C .16D .8 3.已知a ,b 为实数,集合M ={ba ,1},N ={a ,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于 A .-1 B .0C .1D .±14.已知f (x )=-4-x 2在区间M 上的反函数是其本身,则M 可以是 A .[-2,2] B .[-2,0] C .[0,2] D .(-2,2) 5.已知f (x )是R 上的增函数,令F (x )=f (1-x )-f (3+x ),则F (x )在R 上是A .增函数B .减函数C .先增后减D .先减后增6.已知p :关于x 的方程x 2-ax +4=0有实根,q :二次函数y =2x 2+ax +4在[3,+∞)上是增函数,若“p 或q ”是真命题,而“p 且q 是假命题”,则a 的取值范围是 A.(-12,-4]∪[4,+∞) B.[-12,-4]∪[4,+∞) C .(-∞,-12)∪(-4,4) D .[-12,+∞) 7.设a >1,实数x ,y 满足|x |-log a 1y=0,则y 关于x 的函数的图象形状大致是8.点P 是曲线y =2-ln2x 上任意一点,则点P 到直线y =-x 的最小距离为A .54 2B .34 2 C .3-2ln2 2 D .3-ln2 29.设f (x )=|2-x 2|,若0<a <b ,且f (a )=f (b ),则ab 的取值范围是A .(0,2)B .(0,2]C .(0,4]D .(0,2)10.设定义域为R 的函数f (x )=⎩⎪⎨⎪⎧1|x -1|,x ≠11,x =1,若关于x 的方程f 2(x )+bf (x )+c =0有3个不同的实数解x 1、x 2、x 3,则222123x x x ++等于 A .5 B .2b 2+2b2C .13D .3c 2+2c 2第Ⅱ卷 ( 非选择题 共100 分)二、填空题: 本大题共5小题,每小题4分,共20分.把答案填在题中的横线上. 11.函数y =(49)x +(23)x -109的定义域为 . 12.已知函数f (x )=bx2-3x,若方程f (x )=-2x 有两个相等的实根,则函数解析式为 . 13.某种汽车安全行驶的稳定性系数μ随使用年数t 的变化规律是μ=μ0e -λt ,其中μ0、λ是正常数.经检测,当t =2时,μ=0.18μ0,则当稳定系数降为0.50μ0时,该种汽车的使用年数为 (结果精确到1,参考数据:lg2=0.3010,lg3=0.4771). 14.已知实数a ,b 满足等式log 2a =log 3b ,给出下列五个等式:①a >b >1;②b >a >1;③a <b <1;④b <a <1;⑤a =b . 其中可能成立的关系式是 (填序号). 15.已知n 元集合M ={1,2,…,n },设M 所有的3元子集的元素之和为S n ,则l imn →∞S nn 2= 三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程及演算步骤. 16.(本小题满分12分)已知集合A ={x |log 13(x -a 2)<0},B ={x ||x -3|<a },若A ∪B =A ,求实数a 的取值范围.已知函数f (x )=a ·2x -12x +1为R 上的奇函数.⑴求f (x )及f -1(x )的解析式;⑵若当x ∈(-1,1)时,不等式f -1(x )≥log 21+x m 恒成立,试求m 的取值范围.18.(本小题满分14分)已知f (x )=xx -a(x ≠a )⑴若a =-2,试证f (x )在(-∞,-2)内单调递增;⑵若a >0且f (x )在(1,+∞)内单调增减,求a 的取值范围.某水库进入汛期的水位升高量h n (标高)与进入汛期的天数n 的关系是h n =205n 2+6n ,汛期共计约40天,当前水库水位为220(标高),而水库警戒水位是400(标高),水库共有水闸15个,每开启一个泄洪,一天可使水位下降4(标高).⑴若不开启水闸泄洪,这个汛期水库是否有危险?若有危险,将发生在第几天? ⑵若要保证水库安全,则在进入汛期的第一天起每天至少应开启多少个水闸泄洪? (参考数据:2.272=5.1529,2.312=5.3361)20. (本小题满分14分)设f (x )=|x +1|+|ax +1|.⑴若f (-1)=f (1),f (-1a )=f (1a )(a ∈R 且a ≠0),试求a 的值;⑵设a >0,求f (x )的最小值g (a )关于a 的表达式.定义函数f n(x)=(1+x)n-1,x>-2,n∈N+,其导函数记为f n′(x).⑴求证:f n(x)≥nx;⑵设f′n (x0)f′n+1 (x0)=f n(1)f n+1(1),求证:0<x0<1;⑶是否在在区间[a,b] (-∞,0],使函数h(x)=f3(x)-f2(x)在区间[a,b]上的值域为[ka,kb]?若存在,求出最小的k值及相应的区间[a,b].2018届高三第二次联考·数学试卷(理)参考答案(湖南专用)11.(-∞,1] 12.f (x )=4x 3x -213.13 14.②④⑤ 15.12提示:1.D A 、B 、C 定义域不同,选D . 2.BM ={0,1,4,9,…},ðU N ={-3,9},∴M ∩ðU N ={0,1,4},∴M ∩ðU N 的真子集个数为23-1=7.3.C 由已知可得M =N ,故⎩⎪⎨⎪⎧a =1,b a =0,解得⎩⎨⎧a =1,b =0,∴a +b =1.4.B定义域和值域相等,图象本身关于直线y =x 对称,故原函数图象为圆x 2+y 2=4在第三象限的14圆.5.B 由f (x )的任意性,可用特例,令f (x )=x ,则F (x )=1-x -(3+x )=-2-2x , ∴F (x )是减函数.6.C p :△=a 2-16≥0,a ∈(-∞,-4]∪[4,∞). q :-a4≤3,a ≥-12,a ∈[-12,+∞).p 真q 假:(-∞,-12),p 假q 真:a ∈(-4,4), 故a 的取值范围是(-∞,-12)∪(-4,4)7.By =(1a )|x |=⎩⎪⎨⎪⎧(1a )x ,x ≥0,a x,x <0。

金太阳高三数学试卷(理科)答案

金太阳高三数学试卷(理科)答案

,
! #
,3-!L@%
! #
,3,
" #
!
!!!+!1F];45^_`J"a;#b'FGc $%4"-de "$.fO 4"-4"*

4-*"-*#"$*.!Eghi'jk"5/4"- ghl'jk6*#&槡&75#*6#-##
*!&1#$ghi'mOK7*.5#*1.&!
!#!/!8#*#.%####-!-##-##-!-#*##%#%!#-#
))*槡#&#-%
2!/!!"345#&*345.6#345.'*!!"#345."*345!1#"78922:#7892":*#-槡&###345#&# $ B C ' 0 78922:BD'0345!1#"!
'!)!EFGH"$-%"!$!-! 'I".!"FGH'JK"槡&#$槡.&0##.*槡&L@.*!#$ ""! M
NO
"$-
#PQ'RST" . ""!
*
! &
!
6!/!E"+*/*"+*--$+*0!""+*-*"+*1-1+*-"+*/*
! #
"+*--"+*$*

2018—2019学年湖南省名校高三联考考试试题(二)数学(理)试题 含答案

2018—2019学年湖南省名校高三联考考试试题(二)数学(理)试题 含答案

2018—2019学年湖南省名校高三联考考试试题(二)数学(理科)全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试卷和草稿纸上无效。

3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试卷和草稿纸上无效。

考生必须保持答题卡的整洁。

考试结束后,只需上交答题卡。

第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,每小题只有一个正确答案) 在每小题给出的四个选项中,只有一项是最符合题目要求的,选出正确的选项并将该选项在答题卡上涂黑。

1.函数lg(4)()2x f x x -=-的定义域是( )A .(-∞,4)B .(2,4)C .(0,2)∪(2,4)D .(-∞,2) ∪(2,4)2.设命题:P x ∀∈R ,使得20x ≥,则P ⌝为( )A.x R ∃∈,使得20x <B.x R ∃∈,使得20x ≤ C.x R ∀∈,使得20x < D.x R ∀∈,使得20x ≤ 3.已知函数若()()()()23,6log ,6f x x f x x x +<⎧⎪=⎨≥⎪⎩,则()1f -的值为( ) A .4 B .3C .2D .14.若数列{a n }满足:a 1=2,a n +1=nn a a 1-,则a 7等于( )A .2B .21C .﹣1D .20185.设1a b c <<<下列各式成立的是 ( )A .a a c b <B .c ba a < C .log log c c ab < D .log logc c b a <6.把sin 2y x =的图像向左平移π3个单位,再把所得图像上的所有点的横坐标伸长到原来的2倍,而纵坐标保持不变,所得的图像的解析式为( )A.πsin 3y x ⎛⎫=+⎪⎝⎭ B.2πsin 3y x ⎛⎫=+ ⎪⎝⎭ C.πsin 43y x ⎛⎫=+ ⎪⎝⎭ D.2πsin 43y x ⎛⎫=+ ⎪⎝⎭7.函数2()2(1)f x x a x =-+-与1()1a g x x -=+这两个函数在区间[1,2]上都是减函数的一个充分不必要条件是实数a ∈( ) A. (2,1)(1,2)-- B .(1,0)(0,2)- C .(1,2) D .(1,2]8. 两座灯塔A 和B 与海洋观测站C 的距离分别是akm 和2akm ,灯塔A 在观测站C 的北偏东20°,灯塔B 在观测站C 的南偏东40°,则灯塔A 与灯塔B 之间的距离为( )A.akm B .2akm C.akm D.akm9.若定义在R 上的偶函数()f x ,满足(+1)()f x f x =-且[0,1]x ∈时,()f x x =,则方程3()log f x x=的实根个数是( )A. 2个B. 3个C. 4个D.6个 10.函数y =错误!未找到引用源。

2018-2019年湖南高中理科数学高考精品试卷含答案

2018-2019年湖南高中理科数学高考精品试卷含答案

2018-2019年湖南高中理科数学高考精品试卷含答案解析(时间:60分钟 满分100分)班级__________ ___________ 学号___________注意事项:本试卷分选择题和非选择题,满分120分,考试时间120分钟。

一、选择题(每小题5分,共50分)1.设x ,y 是两个实数,则“x ,y 中至少有一个数大于1”是“x 2+y 2>2”成立的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件【答案解析】D【详解】若x ,y 中至少有一个数大于1(如x=1.1,y=0.1),则x 2+y 2>2不成立 若x 2+y 2>2(如x=-2,y=-2)则x ,y 中至少有一个数大于1不成立所以“x ,y 中至少有一个数大于1”是“x 2+y 2>2”成立的既非充分又非必要条件 2.函数的图像大致是A B C D【答案解析】A3.设等差数列的前项和为,且满足,,对任意正整数,都有,则的值为( )A .1006B .1007C .1008D .1009【答案解析】C4.计算的结果为( )A.B. C. D.【答案解析】B5.已知非零向量,,满足,,若对每个确定的,的最大值和最小值分别为,,则的值()A.随增大而大 B.随增大小而变小C.等于2 D.等于4【答案解析】D6.已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.-B.C.D.【答案解析】B【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========7.曲线x=|y﹣1|与y=2x﹣5围成封闭区域(含边界)为Ω,直线y=3x+b与区域Ω有公共点,则b的最小值为()A.1 B.﹣1 C.﹣7 D.﹣11【答案解析】D【分析】由约束条件画出平面区域,由y=3x+b得y=3x+B,然后平移直线,利用z的几何意义确定目标函数的最小值即可.【解答】解:x=|y﹣1|与y=2x﹣5围成的平面区域如图,由,解得A(6,7)由y=3x+b,平移直线y=3x+b,则由图象可知当直线经过点A时,直线y=3x+b的截距最小,此时b最小.∴b=﹣3x+y的最小值为﹣18+7=﹣11.故选:D.8.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A.90°B.60°C.45°D.30°【答案解析】C如图,当平面BAC⊥平面DAC时,三棱锥体积最大取AC的中点E,则BE⊥平面DAC,故直线BD和平面ABC所成的角为∠DBE,∴∠DBE=.故选C.9.用秦九韶算法求多项式f(x)=208+9x2+6x4+x6,在x=﹣4时,v2的值为()A.﹣4 B.1 C.17 D.22【答案解析】D【考点】秦九韶算法.【分析】先将多项式改写成如下形式:f(x)=(((((x)x+6)x)x+9)x)x+208,将x=﹣4代入并依次计算v0,v1,v2的值,即可得到答案.【解答】解:∵f(x)=208+9x2+6x4+x6=(((((x)x+6)x)x+9)x)x+208,当x=﹣4时,v0=1,v1=1×(﹣4)=﹣4,v2=﹣4×(﹣4)+6=2210.过点A(1,2)且与原点距离最大的直线方程为()A.2x+y﹣4=0 B.x+2y﹣5=0 C.x+3y﹣7=0 D.3x+y﹣5=0【答案解析】B【分析】过点A(1,2)且与原点距离最大的直线与OA垂直,再用点斜式方程求解.【解答】解:根据题意得,当与直线OA垂直时距离最大,因直线OA的斜率为2,所以所求直线斜率为﹣,所以由点斜式方程得:y﹣2=﹣(x﹣1),化简得:x+2y﹣5=0,故选:B二.填空题:(每小题5分,共25分)1.已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为.【答案解析】﹣=1【考点】圆锥曲线的轨迹问题.【分析】利用点差法求出直线AB的斜率,再根据F(3,0)是E的焦点,过F的直线l 与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),可建立方程组,从而可求双曲线的方程.【解答】解:由题意,不妨设双曲线的方程为∵F(3,0)是E的焦点,∴c=3,∴a2+b2=9.设A(x1,y1),B(x2,y2)则有:①;②由①﹣②得:=∵AB的中点为N(﹣12,﹣15),∴又AB的斜率是∴,即4b2=5a2将4b2=5a2代入a2+b2=9,可得a2=4,b2=5∴双曲线标准方程是故答案为:2.一物体在力F(x)=,(单位:N)的作用下沿与力F相同的方向,从x=0处运动到x=4(单位:m)处,则力F(x)做的功为焦.【分析】本题是一个求变力做功的问题,可以利用积分求解,由题意,其积分区间是[0,1],被积函数是力的函数表达式,由积分公式进行计算即可得到答案【解答】解:W===36.故答案为:363.若x10-x5=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10,则a5=.【答案解析】251【分析】根据x10﹣x5=[(x﹣1)+1]10﹣[(x﹣1)+1]5,利用二项式展开式的通项公式,求得a5的值.【解答】解:∵x10﹣x5=[(x﹣1)+1]10﹣[(x﹣1)+1]5,﹣=251,∴a5=故答案为:2514.取一根长度为3米的绳子,拉直后在任意位置剪断,则剪出的两段的长都不小于1米(记为事件A)的概率为【答案解析】试题分析:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1m,所以事件A发生的概率 P(A)=5.如图1是某高三学生进入高中﹣二年来的数学考试成绩茎叶图,第1次到第 14次.考试成绩依次记为A1,A2,…,A14.如图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是.【分析】该程序的作用是累加12次考试成绩超过90分的人数,由此利用茎叶图能求出结果.【解答】解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知:该程序的作用是累加12次考试成绩超过90分的人数; 根据茎叶图的含义可得超过90分的人数为10个. 故答案为:10三、解答题(共25分)1.已知四棱锥P ﹣ABCD 的底面ABCD 为直角梯形,AB ∥CD ,∠DAB=90°,PA ⊥底面ABCD ,且PA=AD=DC=AB=1,M 是PB 的中点.(1)求异面直线AC 与PB 所成的角的余弦值; (2)求直线BC 与平面ACM 所成角的正弦值.【答案解析】【分析】(1)建立空间直角坐标系,利用空间向量的数量积,求AC 与PB 所成的角的余弦值,(2)设=(x ,y ,z )为平面的ACM 的一个法向量,求出法向量,利用空间向量的数量积,直线BC 与平面ACM 所成角的正弦值.【解答】解:(1)以A 为坐标原点,分别以AD 、AB 、AP 为x 、y 、z 轴,建立空间直角坐标系,则A (0,0,0),P (0,0,1),C (1,1,0),B (0,2,0),M (0,1,), 所以=(1,1,0),=(0,2,﹣1),||=,||=,=2,cos(,)==,(2)=(1,﹣1,0),=(1,1,0),=(0,1,),设=(x,y,z)为平面的ACM的一个法向量,则,即,令x=1,则y=﹣1,z=2,所以=(1,﹣1,2),则cos<,>===,设直线BC与平面ACM所成的角为α,则sinα=sin[﹣<,>]=cos<,>=2.(1)已知圆(x+2)2+y2=1过椭圆C的一个顶点和焦点,求椭圆C标准方程.(2)已知椭圆的离心率为,求k的值.【答案解析】解:(1)圆(x+2)2+y2=1与x轴的交点为(﹣1,0),(﹣3,0),由题意可得椭圆的一个焦点为(﹣1,0),一个顶点为(﹣3,0),设椭圆方程为+=1(a>b>0),可得a=3,c=1,b==2,即有椭圆的方程为+=1;(2)当焦点在x轴上时,椭圆+=1的a2=8+k,b2=9,c2=k﹣1,e2===,解得k=4;当焦点在y轴上时,椭圆+=1的b2=8+k,a2=9,c2=1﹣k,e2===,解得k=﹣.综上可得k=4或﹣.考点:椭圆的简单性质.专题:计算题;方程思想;分类法;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)求出圆与x轴的交点,可得椭圆的一个焦点和一个顶点,再由a,b,c的关系可得椭圆方程;(2)讨论焦点在x,y轴上,求得a,b,c,e,解方程可得k的值.解答:解:(1)圆(x+2)2+y2=1与x轴的交点为(﹣1,0),(﹣3,0),由题意可得椭圆的一个焦点为(﹣1,0),一个顶点为(﹣3,0),设椭圆方程为+=1(a>b>0),可得a=3,c=1,b==2,即有椭圆的方程为+=1;(2)当焦点在x轴上时,椭圆+=1的a2=8+k,b2=9,c2=k﹣1,e2===,解得k=4;当焦点在y轴上时,椭圆+=1的b2=8+k,a2=9,c2=1﹣k,e2===,解得k=﹣.综上可得k=4或﹣.。

高三数学-2018届高三第二次联考数学试卷(湖南专用) 精品

高三数学-2018届高三第二次联考数学试卷(湖南专用) 精品

全国大联考(湖南专用)2018届高三第二次联考数学试卷编审:江西金太阳教育研究所数学研究室考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟·2.答题前,考生务必将密封线内的项目填写清楚. 3.请将第Ⅰ卷答案填在第Ⅱ卷前的答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答题. 4.本试卷主要考试内容:①第一次联考内容占30%;②函数内容占70%.第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={y| y=x+1},N={(x ,y)|x 2 +y 2 =1},则M N 中元素的个数是 A .0 B .1 C .2 D .多个 2.已知复数1z =a+i ,z 2=1+a 2 i ,若12z z 是实数,则实数a 的值等于 A .1 B .-1 C .-2 D .2 3.函数()x log a x f a x +=在区间[1,2]上的最大值与最小值之和为41-,最大值与最小值之积为83-,则a 等于 A .2 B .21 C .2或21 D .324.若函数f (x)= e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为A .2πB .0C .钝角D .锐角 5.已知实数a 、b 满足等式b log a log 32=,下列五个关系式:① 0<a<b<1;② 0<b<a<1; ③ a=b ;④ 1<a<b ;⑤ l<b<a . 其中不可能成立的关系式有A .1个B .2个C .3个D .4个 6.函数f (x)为奇函数且f (3x+1)的周期为3,f (1)=-1,则f (2018)等于 A .0 B .1 C .一1 D .2 7.设f (x)的定义域为R 且存在反函数,若f (2x -1)与()1x f 1+-互为反函数,且已知()x flim 1x -+∞→存在,则()x f lim 1x -+∞→)等于A .1B .21 C .2 D .23 8.函数()2ax x log y 2a +-=在[2,+∞]上恒为正数,则实数a 的取值范围是A .0<a<1B .1<a<2C .1<a<25D . 2<a<3 9.连掷两次骰子分别得到点数m 、n ,则向量(m ,n)与向量(-1,1)的夹角90>θ 的概率是 A .21 B .31 C . 127 D . 12510.已知函数f (x)是定义在(-3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,则不等式f (x) cosx<0的解集是A .(-3,-2π) (0,1) (2π,3) B .(-2π,一1) (0,1) (2π,3) C .(-3,-1) (0,1) (1,3) D .(-3,-π) (0,1) (1,3)第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中的横线上 11.在平面直角坐标系中,x 轴的正半轴上有4个点,y 轴的正半轴上有5个点,这9个点任意两点连线,则所有连线段的交点落入第一象限的最多有______个. 12.已知函数()()()()⎩⎨⎧≥<-+-=1x a1x 2a 7x 1a 2x f x 在(-∞,+∞)上单调递减,则实数a 的取值范围是_________________.13.若()()()()()11112210921x a 1x a 1x a a 2x 1x -++-+-+=-+ ,则()()=+++-+++2104221131a 10a 4a 2a 11a 3a ______(用数字作答).14.如图正六边形ABCDEF 中,AC ∥y 轴.从六个顶点中任取三点,使这三点能 确定一条形如y=ax 2+bx+c (a ≠0)的抛物线的概率是_______________. 15.购买手机的“全球通”卡,使用时须付“基本月租费”(每月须交的固定月租费)50元,在市区通话时每分钟另收 话费0.4元;购买“神州行”卡,使用时不收“基本月租费”, 但市区内通话时每分钟另收话费0.6元.若某用户每月手机 费预算为120元,则在这两种手机卡中,购买__________卡 较合算.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程及演算步骤.16.(本小题满分12分)二次函数f (x)满足f (x+1)-f (x)=2x,且f (0) =1.(1) 求f (x)的解析式;(2) 在区间[-1,1]上,y=f (x)的图象恒在y=2x十m的图象上方,试确定实数m 的取值范围.17.(本小题满分12分)小张有一只放有a个红球,b个黄球,c个白球的箱子,且a+b+c =6 (a,b,c∈N),小刘有一只放有3个红球,2个黄球,1个白球的箱子,两人各自从自己的箱子中任取一球,规定:当两球同色时小张胜,异色时小刘胜.(1) 用a、b、c表示小张胜的概率;(2) 若又规定当小张取红、黄、白球而胜的得分分别为1分、2分、3分,否则得0分,求小张得分的期望的最大值及此时a、b、c的值.18.(本小题满分14分)已知函数f (x) = (x-a)(x-b)(x-c).(1) 求证:()x'f= (x-a)(x-b)+(x-a)(x-c)+(x-b)(x—c);(2) 若f (x)是R上的增函数,是否存在点P,使f (x)的图象关于点P中心对称?如果存在,请求出点P坐标,并给出证明,如果不存在,请说明理由.19.(本小题满分14分)某公司生产的A 型商品通过租赁柜台进入某商场销售.第一年,商场为吸引厂家,决定免收该年管理费,因此,该年A 型商品定价为每件70元,年销售量为11.8万件.第二年,商场开始对该商品征收比率为p %的管理费(即销售100元要征收p 元),于是该商品的定价上升为每件100p 170元,预计年销售量将减少p 万件. (1) 将第二年商场对该商品征收的管理费y(万元)表示成p 的函数,并指出这个函数的定义域;(2) 要使第二年商场在此项经营中收取的管理费不少于14万元,则商场对该商品征收管理费的比率p %的范围是多少?(3) 第二年,商场在所收管理费不少于14万元的前提下,要让厂家获得最大销售金额,则p 应为多少?20.(本小题满分14分)已知函数y= f (x)对于任意实数x ,y 都有f (x+y) =f (x)+f (y)+2xy . (1) 求f (0)的值;(2) 若f (1)=1,求f (2),f (3),f (4)的值,猜想f(n)的表达式并用数学归纳法证明你的结论(n ∈N*); (3) 若f (1)≥1,求证:021f n >⎪⎭⎫⎝⎛ (n ∈N*).21.(本小题满分14分)定义在(-1,1)上的函数f (x)满足:对任意x ,y ∈(-1,1)都有 ()()⎪⎪⎭⎫⎝⎛++=+xy 1y x f y f x f (1) 求证:函数f (x)是奇函数;(2) 若当x ∈(-1,0)时,有f (x)>0,求证:f (x)在(-1,1)上是减函数; (3) 在(2)的条件下解不等式:0x 11f 21x f >⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+.参考答案(湖南专用理科)一、选择题1.A 2.B 3.B 4.C 5.B 6.B 7.A 8.C 9.D 10.B 二、填空题11.60 12.⎪⎭⎫⎢⎣⎡21,83 13.0 14.53 15.神州行提示:1.A 集合M 是函数y=x+l 的函数值的集合,集合N 是圆上的点集.2.B ()()1a i 1a a a z z 23212+++-=,故a 3+1=0,得a =-1. 3.B . 函数f(x)在区间[1,2]上是单调的,故有f(1)+f(2)=-41,f(1)f(2)=-83,所以可解得21a =. 4.C ()044sin e 24'f 4<⎪⎭⎫ ⎝⎛+=π.5.B 根据图象知:只有②、③、④有可能成立.6.B 由已知f (3x+1)=f[3(x+3)+1]=f(3x+1+9),所以f(x)的周期为9,f(2018)= f(2018-1)=f(-1)=-f(1)=1. 7.A 由已知得()[]()1x f 1x f 21y 11+=+=--,两边取极限可得. 8.C 4-2A+2>0,得a<3.令g(x)=x 2-ax+2,则g(x)最小为g(2)=6-2a . 当a>l 时,6-2a>1,得1<a<25 当0<a<l 时, g(x)在[2,+∞)上无最大值,这时符合题意的a 值不存在. 9.D 若使夹角90>θ,则有-m+n<0即m>n ,其概率为1253615=. 10.B 根据题意结合右边图象可得.11.60 构造凸四边形,凸四边形对角线的交点在凸四边形内.最多其有C C 2524⋅=60.12. ⎪⎭⎫⎢⎣⎡21,83 根据题意:⎪⎩⎪⎨⎧≥-+-<<<-a2a 71a 21a 001a 2.13. 0 两边求导,再分别把x 赋值x=2,x=0,最后把所得两式相乘即得.14.53由二次函数的性质知三点可确定一条抛物线,但两点连线不能与纵轴平行, 故其概率为5342C C 3636=⨯-. 15.神州行 “全球通”卡的话费为120元时的通话时间为175分钟,“神州行”卡的话费120元时通话时间为200分钟,则“神州行”卡较合算.三、解答题16.解:(1)令z=0,则f(1)-f(0)=0,∴f(1)=f(0)=1, ∴二次函数图象的对称轴为x=21, ∴可令二次函数的解析式为y= a (x 一21)2+h ………………………2分 由f(0)=0,又可知f(-1)=3得a=1,h=43∴二次函数的解析式为y=f(x)=(x 一21)2+43=x 2-x+1 ……………6分(2)∵ x 2-x+1 >2x+m 在[-1,l 上恒成立,∴ x 2-3x+1>m 在[-l ,1]上恒成立. ………………………………8分 令g(x)= x 2-3x+1,∴g(x)在[一1,1]上单调递减,……………………10分 ∴ g(x)min =g(1)=-l ,∴m<-1. …………………………………………12分17.解:(1)P(小张胜)=P(两人均取红球)+P(两人均取黄球)+P(两人均取白球) =636a ⨯ + 626b ⨯+ 616c ⨯=36c b 2a 3++ ……………………………5分 (2) 设小张的得分为随机变量ξ,则P(ξ=3)=616c ⨯,P(ξ=2)= 626b ⨯,P(ξ=1)= 636a ⨯, P(ξ=0)=1一P(小张胜)=1一36cb 2a 3++,……………………………9分∴E ξ=3×616c ⨯+2×626b ⨯+1×636a ⨯+0×(1一36cb 2a 3++)= ()36b2136b c b a 336c 3b 4a 3+=+++=++∵ a ,b ,c ∈N ,a+b+c=6,∴b 一=6,此时a=c=0,∴当b=6时,E‘=虿1+袅=了2,此时a=c=0,b=6…………………12分18.解:(1) ∵f (x)= (x -a)(x -b)(x -c)=x 3-(a+b+c)x 2+(ab+bc+ac)x —abc …3分∴ ()x 'f =3x 2-2(a+b+c)x+(ab+bc+ac)=[x 2-(a+b)x+ab]+[x 2-(a+c) x+ac]+[x 2-(b+c)x+bc]=(x -a)(x -b)+(x -a)(x —c)+(x -b)(x -c) …………………7分 (2) ∵f(x)是R 上的单调递增函数,∴()x 'f ≥0对x ∈R 恒成立, 即3x 2-2(a+b+c)x+(ab+bc+a c)≥0对x ∈R 恒成立 ∴ △≤0, 4(a+b+c)2- 12(ab+bc+ca )≤0,∴ (a -b)2+(a 一c)2+(b 一c)2≤0, ∴a=b=c .∴ f (x)= (x —a)3, f(x)关于点(a ,0)对称 ………10分 证明如下:设点P(x ,y)是f (x)= (x —a)3图象上的任意一点,y = (x —a)3, 点P 关于点(a ,0)对标的点P’(2a -x ,-y),∴ (2a -x 一a)3=(a -x)3=-(x 一a)3=-y ,∴点P’在函数f (x)= (x —a)3的图象上,即函数f (x)= (x —a)3的图象关于点(a ,0)对称 ………………………………………………………14分19.解:(1)依题意,第二年该商品年销售量为(11.8-p)万件,年销售收入为100p 170- (11.8一户)万元, 则商场该年对该商品征收的总管理费为100p 170- (11·8一p)p %(万元)故所求函数为 y=()p p 8.11p1007-- 由11.8-p>0及p>0得定义域为0<p<11.8 ……………………………6分 (2) 由y≥14得()p p 8.11p1007--≥14化简得p 2-12p+20≤0,即(p -2)(p -10)≤0,解得2≤p≤l 0故当比率为[2%,10%]内时,商场收取的管理费将不少于14万元.…10分 (3) 第二年,当商场收取的管理费不少于14万元时,厂家的销售收入为g(p)=()p 8.11p100700-- (2≤p ≤10)∵ g(p)=()p 8.11p 100700-- =700(10+100p 882-)为减函数, ∴ g(p)max =g(2)=700(万元)故当比率为2%时,厂家销售金额最大,且商场所收管理费又不少于14万元 ………………………14分 20.(1) 解:令x=y=0,则f(0)=2f(0),∴f(0)=0 …………………2分 (2) 解:∵f (1)=l ,∴f(2)=2f(1)+2=4, f(3)=f(2)+f(1)+4=9, f(4)=f(3)+f(1)+6=16,猜想:f (n)= n 2 (n ∈N*),下面用数学归纳法证明:……………………4分 当n=1时,显然成立·假设n=k (k ∈N*)时成立,则有f (k)= k 2 当n=k+1时,f (k+1)=f(k)+f(1)+2k= k 2+1+2k= (k+1)2,结论也成立.故f (n)= n 2 (n ∈N*)成立 ……………………………………………8分 (3) 证明:∵f (1)≥1,∴f(1)=2f(21)+21≥ l , ∴ f (21)≥22141=>0 ……………………………………………10分 可以证明02121f n2n >≥⎪⎭⎫⎝⎛. 假设n=k (k ∈N*)时结论成立.即02121f k2k >≥⎪⎭⎫ ⎝⎛,则 ∴k 21k 1k 1k k 212121221f 221f ≥⨯⨯+⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+++∴()021)2221(2121f 1k 22k 2k 21k >=-≥⎪⎭⎫ ⎝⎛+++即n=k+1时也成立, ∴ 02121f n2n >≥⎪⎭⎫⎝⎛ (n ∈N*) …………………………………………14分 21.(1) 证明:令x=y=0,则f(0)+f(0)=f(0),故f(0)=0 令x+y=0,则f(x)+f(-x)=f(0)=0,即f(-x)=-f (x),∴函数f (x)是奇函数 ………………………………………………4分 (2) 证明:设1x ,2x ∈(-1,1),且1x <2x ,则 ()()()()⎪⎪⎭⎫⎝⎛--=-+=-21212121x x 1x x f x f x f x f x f ∵ 1x ,2x ∈(-1,1),且1x <2x ,∴ 1x -2x <0,-1<1x 2x <1 ,(1x +1)(2x -1)<0 ∴ 0x x 1x x 12121<--<-,0x x 1x x f 2121>⎪⎪⎭⎫ ⎝⎛--,即f(1x )>f(2x ) ∴ 函数f(x)在(-1,1)上是减函数.………………………………………9分 (3)解:∵ ⎪⎭⎫ ⎝⎛->⎪⎭⎫ ⎝⎛+1x 1f 21x f 函数f(x)在(-1,1)上是减函数,∴ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<-<+<--<+11x 11121x 11x 121x∴ 1x 23-<<-∴原不等式的解集为{x|1x 23-<<-}…………………………………14分。

湖南省衡阳市2018届高三第二次联考(二模)理科数学试题(解析版)

湖南省衡阳市2018届高三第二次联考(二模)理科数学试题(解析版)

2018届高中毕业班联考(二)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数的实部与虚部之和为1,则实数的值为( )A. 2B. 1C. 4D. 3【答案】A【解析】由题意可得,,因为实部与虚部之和为,,实数的值为,故选A.2. 下列说法错误的是( )A. “若,则”的逆否命题是“若,则”B. “”是“”的充分不必要条件C. “”的否定是“”D. 命题:“在锐角中,”为真命题【答案】D【解析】依题意,根据逆否命题的定义可知选项正确;由得或“”是“”的充分不必要条件,故正确;因为全称命题命题的否是特称命题,所以正确;锐角中,,,错误,故选D.3. “今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思是:有一个正方形的池塘,池塘的边长为一丈,有一颗芦苇生长在池塘的正中央.露出水面一尺,若把它引向岸边,正好与岸边齐(如图所示),问水有多深,芦苇有多长?其中一丈为十尺.若从该芦苇上随机取一点,则该点取自水上的概率为( )A. B. C. D.【答案】B【解析】设水深为尺,根据勾股定理可得,解得,可得水深尺,芦苇长尺,根据几何概型概率公式可得,从该芦苇上随机取一点,该点取自水上的概率为,故选B.4. 如图,网格纸上的小正方形边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A. B. C. D.【答案】A【解析】三视图还原为三棱锥,如图所示,由三视图可知:,,平面平面平面,则三棱锥的体积为,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.5. 已知双曲线的两个焦点为是此双曲线上的一点,且满足,则该双曲线的焦点到它的一条渐近线的距离为( )A. 3B.C.D. 1【答案】D【解析】,,,又,其渐近线方程为焦点到它的一条渐近线的距离为,故选D.6. 已知函数,把函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得到的曲线向左平移各单位长度,得到函数的图象,则函数的对称中心是( )A. B.C. D.【答案】C【解析】,图象的横坐标伸长到原来的倍,可得的图象,可得的图象向左平移各单位长度,的图象,,函数的对称中心为,故选C.7. 泰九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输人的值分別为4,5,则输出的值为( )A. 211B. 100C. 1048D. 1055【答案】D【解析】执行程序框图,输入,则,进入循环,得;,故进入循环,得;,故进入循环,得,,故进入循环,得,此时,不满足,故结束循环,输出,故选D.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8. 在中,,点是的重心,则的最小值是( )A. B. C. D.【答案】B【解析】设的中点为,因为点是的重心,所以,再令,则,,,当且仅当时取等号,故选B.9. 已知函数的图象如图所示,则下列说法与图象符合的是( )A. B.C. D.【答案】B【解析】由图象可知,且,,可知的两根为,由韦达定理得,异号,同号,又,异号,只有选项符合题意,故选B. 10. 在中,已知为的面积),若,则的取值范围是( )A. B. C. D.【答案】C【解析】,,,,又,,,,故选C.11. 当为正整数时,定义函数表示的最大奇因数.如,则( )A. 342B. 345C. 341D. 346【答案】A【解析】,而,,,,又,,故选A.12. 已知为自然对数的底数,设函数存在极大值点,且对于的任意可能取值,恒有极大值,则下列结论中正确的是( )A. 存在 ,使得B. 存在,使得C. 的最大值为D. 的最大值为【答案】C【解析】依题,,,当时,,递增,不可能有极大值点(若有极值也是极小值),,此时有解,即有两个不等的正根,得:,由,,,,分析得的极大值点为,,在递增,在递减,当取得极大值,又,,即,令,原命题转化为恒成立,,在上递增,,,所以的最大值为,对、错,又,即不存在极大值点,排除,故选C.【方法点睛】本题主要考查利用导数判断函数的单调性以及函数的极值,属于难题.求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数分别是定义在上的偶函数和奇函数,且,则__________.【答案】【解析】由,由函数分别是定义在上的偶函数和奇函数,得:,联立方程消元即得:,故答案为.14. 设,在约束条件下,目标函数的最小值为-5,则的值为__________.【答案】【解析】画出不等式组表示的可行域,如图所示,由,可得,由,得在轴上的截距越大,就越小,平移直线,由图知,当直线过点时,取得最小值,的最小值为,故答案为.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 已知抛物线的焦点为,过点的直线与抛物线交于两点,且直线与圆交于两点,若,则直线的斜率为__________.【答案】【解析】由题意得,,由,配方为,可得,所以直线过圆心,可设直线的方程为,联立,化为,,,由,可得,故答案为.16. 在四棱锥中,底面是边长为4的正方形,侧面是以为斜边的等腰直角三角形,若,则四棱锥的体积取值范围为__________.【答案】【解析】由题意可得,,又平面,平面平面,平面平面平面,又平面平面过作于,则平面,故,在中,,设,则有中,,又在中,,在中,,又,则,,,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 等差数列中,,为等比数列的前项和,且,若成等差数列.(1)求数列,的通项公式;(2)设,求数列的前项和.【答案】(1),;(2).【解析】试题分析:(1)在等差数列中,设公差为,由,从而可得;设等⽐比数列列的公⽐比为,由从而可得的通项公式;(2)结合(1)可得.当,当时,利用“错位相减法”,结合等比数列的求和公式即可求得数列的前项和.试题解析:(1)在等差数列中,设公差为,,.设等⽐比数列列的公⽐比为,依题有:.(2).当.当时,,①②--②..18. 如图,平面平面,是等边三角形,是的中点.(1)证明:;(2)若直线与平面所成角的余弦值为,求二面角的正弦值.【答案】(1)证明见解析;(2).【解析】试题分析:(1)由是等边三⻆角形,是的中点,可得,利用直线与平面垂直的判定定理得出直线与平面垂直,再利用直线与平面垂直的性质定理证明线线垂直;(2)以点为坐标原点,所在直线为轴,所在直线为轴,过且与直线平行的直线为轴,建⽴立空间直⻆角坐标系,根据直线与平面所成的角的余弦值为.可得,不妨设,利用向量垂直数量积为零,分别求出平面与平面的法向量,利用空间向量夹角余弦公式可得二面角的余弦值,进而可得正弦值.试题解析:(1)因为是等边三⻆角形,是的中点,所以,因为平面平面,所以,因为,所以平面,因为平面,所以.(2)解法1: 以点为坐标原点,所在直线为轴,所在直线为轴,过且与直线平行的直线为轴,建⽴立如图所示的空间直⻆角坐标系.因为平面,所以为直线与平面所成的角.由题意得,,即,从而.不妨设,又,则.故.于是,设平面与平面的法向量分别为,由令,得由令,得...故二面角的正弦值为1.(2)解法2:平面为直线与平面所成的角.由题意得,即,从而.不妨设,又,则,.由于平面,平面,则.取的中点,连接,则.在中,,在中,,在中,,取的中点,连接,则.所以为二面角的平面角.在中,,在中,,在中,,.故二面角的正弦值为1.【方法点晴】本题主要考查线面垂直的判定与性质,以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19. 某钢管生产车间生产一批钢管,质检员从中抽出若干根对其直径(单位:)进行测量,得出这批钢管的直径服从正态分布.(1)当质检员随机抽检时,测得一根钢管的直径为,他立即要求停止生产,检查设备,请你根据所学知识,判断该质检员的决定是否有道理,并说明判断的依据;(2)如果钢管的直径满足为合格品(合格品的概率精确到0.01),现要从60根该种钢管中任意挑选3根,求次品数的分布列和数学期望.(参考数据:若,则;. 【答案】(1)有道理;(2)分布列见解析,.【解析】试题分析:(1)因为,.此事件为小概率事件,该质检员的决定有道理;(2)次品数的可能取值为,根据根据排列组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.试题解析:(1),.此事件为小概率事件,该质检员的决定有道理.(2),由题意可知钢管直径满足:为合格品,故该批钢管为合格品的概率约为0.9560根钢管中,合格品 57根,次品3根,任意挑选3根,则次品数的可能取值为:0,1,2,3..则次品数的分布列列为:得:.20. 已知椭圆的离心率为,倾斜角为的直线经过椭圆的右焦点且与圆相切.(1)求椭圆的方程;(2)若直线与圆相切于点,且交椭圆于两点,射线于椭圆交于点,设的面积于的面积分别为.①求的最大值;②当取得最大值时,求的值.【答案】(1);(2).【解析】试题分析:(1)根据离心率为、圆心到直线距离等于半径,结合性质,列出关于、、的方程组,求出、、,即可得椭圆的方程;(2) 直线与圆相切得:,将直线代入椭圆的方程得:①根据点到直线距离公式、弦长公式结合韦达定理及三角形面积公式可得,利用基本不等式可得结果;②当取得最大值时,,.试题解析:(1)依题直线的斜率.设直线的方程为,依题有:(2)由直线与圆相切得:.设.将直线代入椭圆的方程得:,且.设点到直线的距离为,故的面积为:,当.等号成立.故的最大值为1.设,由直线与圆相切于点,可得,..,【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形面积最值的.21. 已知函数 .(1)当时,证明:;(2)当时,函数单调递增,求的取值范围.【答案】(1)证明见解析;(2).【解析】试题分析:(1)时,即证,只需证明,利用导数研究函数的单调性,根据单调性可得,从而可得原不等式成立;(2) 依题在上恒成立,讨论三种情况:①当时,单调递增;,符合题意;②当时,,不符合题意,舍去;③当存在部分不合题意,综合三种情况可得结果.试题解析:证明:(1)当时,即证:,,令,则,当时,有.当时,单调递增;当时,有.当时,单调递减,.取等号条件不不⼀致,(此问可以参考如图理解)..(2)依题在上恒成立,令,又令,所以当时,在上单调递增,,因此,,讨论:①当时,单调递增;,符合题意②当时,,不符合题意,舍去.③当.,当时,在时单调递减,当时,在单调递减,,不符合题意舍去.综上:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22. 已知直线的参数方程为(其中为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(其中).(1)若点的直角坐标为,且点在曲线内,求实数的取值范围;(2)若,当变化时,求直线被曲线截得的弦长的取值范围.【答案】(1);(2).【解析】试题分析:(1)化曲线的参数方程为直⻆角坐标方程是:由点在曲线的内部,可得,解不等式可得实数的取值范围;(2)根据极径的几何意义可得直线截得曲线的弦长为:,根据三角函数的有界性可得结果.试题解析:(1)由得曲线对应的直⻆角坐标⽅方程为:由点在曲线的内部,,求得实数m的取值范围为.(2)直线的极坐标⽅方程为,代入曲线的极坐标⽅方程整理理得设直线与曲线的两个交点对应的极径分别为,则直线截得曲线的弦长为:.即直线与曲线截得的弦长的取值范围是.选修4-5:不等式选讲23. 已知.若函数的最小值为4.(1)求的值;(2)求的最小值.【答案】(1);(2).【解析】试题分析:(1)由,结合函数的最小值为,即可得结果;(2)利用(1)的结论可得,再根据基本不等式即可求得的最小值.试题解析:(1),当且仅当时,等号成立,的最小值为.(2)法一(基本不不等式处理理):.当.等号成立.法二(柯⻄西不不等式处理理):。

2018-2019年最新高考总复习数学(理)第二次联考模拟试题及答案解析

2018-2019年最新高考总复习数学(理)第二次联考模拟试题及答案解析

2018届高三下学期重点中学第二次联考试题数学一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{}0,1,2,3A =,{}2,3,4,5B =,则A B 中元素的个数为 ▲ .6 2.设复数z 满足i i z 510)2(-=+,(i 为虚数单位),则复数z 的实部为▲ .33. 已知样本7,8,9,x ,y 的平均数是8,且xy = 60,则此样本的方差是 ▲ .24. 运行如图所示的伪代码,其输出的结果S 为▲ .135.从1、2、3、4这4个数中一次性随机地取两个数,则所取两个数的和为4或5的概率为 ▲ .126.已知3(0,),sin()45αππα∈+=-,则tan α= ▲ .17-7.已知正三棱锥的体积为93cm 3,高为3cm .则它的侧面积为 ▲ cm 2.1838. 已知双曲线22221x y a b-= (0a >,0b >)的左顶点为M,右焦点为F ,过F 作垂直于x 轴的直线l 与双曲线交于A ,B 两点,且满足M A M B ⊥,则该双曲线的离心率是 ▲ .2 9. 设等比数列{}n a 的前n 项积为n P ,若12732P P =,则10a 的值是 .2 10.已知2231,0()2,0x x x f x x x x ⎧++≥=⎨-++<⎩,则不等式2(2)5f x x -≤的解集为▲ . [1,1]-11. 如图,已知AC 是圆的直径,,B D 在圆上且35AB AD ==,,则AC BD ⋅= ▲ .2 12.已知圆2224250x y x y a +-++-=与圆222(210)2210160x y b x by b b +---+-+= 相交于()()1122,,,A x y B x y 两点,且满足22221122x y x y +=+ ,则b = .5313. 若函数2()2(ln )f x m x x x =+-有唯一零点,则m 的取值范围是 ▲ .102m m <=或14.已知函数2()(,)f x x ax b a b R =++∈,若存在非零实数t ,使得1()()2f t f t+=-,则224a b +的最小值为 ▲ .165二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤.15.在ABC ∆中,角,,A B C 的对边分别为c b a ,,,且满足I ←0While I <9 S ←2I + 1 I ←I +3End While Print S 第4题图ACBD2sin()6b C ac π+=+.(1)求角B 的大小;(2)若点M 为BC 中点,且AM AC =,求sin BAC ∠. (Ⅰ)312sin (sin cos )sin sin 22B C C A C ⋅+⋅=+, 即3sin sin sin cos sin sin sin cos cos sin sin B C B C A C B C B C C +=+=++,3sin sin cos sin sin B C B C C ∴=+,3sin cos 1B B ∴=+,所以2sin()16B π-=,由(0,)B π∈ ,5(,)666B πππ-∈- 解得3B π=. ………………… 7分(范围不说明扣1分)(Ⅱ)解法一:取CM 中点D ,连AD ,则AD CM ⊥,则CD x =,则3BD x =, 由(Ⅰ)知3B π=,33,27AD x AC x ∴=∴=,由正弦定理知,427sin sin 60x xBAC =∠o,得21sin 7BAC ∠=. …………………14分解法二:由(Ⅰ)知3B π=,又M 为BC 中点,2a BM MC ∴==,在ABM ABC ∆∆与中,由余弦定理分别得:22222()2cos ,2242a a a ac AM c c B c =+-⋅⋅⋅=+- 222222cos ,AC a c ac B a c ac =+-⋅=+-又AM AC =,2242a ac c ∴+-=22,a c ac +-37,22a cb a ∴=∴=,由正弦定理知,72sin sin 60aa BAC =∠o,得21sin 7BAC ∠=. …………………14分16. 如图,在三棱锥P ABC -中,已知平面PBC ⊥平面ABC .(1)若AB BC ⊥,CP PB ⊥,求证:CP PA ⊥; (2)若过点A 作直线l ⊥平面ABC ,求证:l ∥平面PBC .16.(1)因为平面PBC ⊥平面ABC ,平面PBC平面ABCBC =,AB ⊂平面ABC ,AB ⊥BC ,所以AB ⊥平面PBC. …………3分因为CP ⊂平面PBC ,所以CP ⊥AB 又因为CP ⊥PB ,且PB AB B =,,AB PB ⊂平面PAB ,所以CP ⊥平面PAB ,又因为PA ⊂平面PAB ,所以CP ⊥PA . …………7分 (2)在平面PBC 内过点P 作PD ⊥BC ,垂足为D . 因为平面PBC ⊥平面ABC ,又平面PBC ∩平面ABC =BC ,PD ⊂平面PBC,所以PD ⊥平面ABC .…………10分又l ⊥平面ABC ,所以l //PD .ACBP又l ⊄平面PBC ,PD ⊂平面PBC ,l //平面PBC . …………14分17.某生物探测器在水中逆流行进时,所消耗的能量为nE cv T =,其中v 为行进时相对于水的速度,T 为行进时的时间(单位:小时),c 为常数,n 为能量次级数.如果水的速度为4 km/h , 该生物探测器在水中逆流行进200 km . (1)求T 关于v 的函数关系式;(2)(i)当能量次级数为2时,求该探测器消耗的最少能量;(ii)当能量次级数为3时,试确定v 的大小,使该探测器消耗的能量最少.解:(1)由题意得,该探测器相对于河岸的速度为200T, 又该探测器相对于河岸的速度比相对于水的速度小4 km/h ,即4v -,所以200T =4v -,即2004T v =-,4v >; ……………………4分 (2)(ⅰ) 当能量次级数为2时,由(1)知22004v E c v =⋅-,4v >,[]2(4)42004v c v -+=⋅-16200(4)84c v v ⎡⎤=⋅-++⎢⎥-⎣⎦ 162002(4)84c v v ⎡⎤⋅-⋅+⎢⎥-⎣⎦≥3200c =(当且仅当1644v v -=-即8v =km/h 时,取等号)……………9分(ⅱ) 当能量次级数为3时,由(1)知32004v E c v =⋅-,4v >,所以222(6)2000(4)v v E c v -'=⋅=-得6v =, 当6v <时,0E '<;当6v >时,0E '>, 所以当6v =时,min E 21600c =. 答:(ⅰ) 该探测器消耗的最少能量为3200c ;(ⅱ) 6v =km/h 时,该探测器消耗的能量最少. ……………14分 )0(12222>>=+b a by a x 的18.如图,已知椭圆C :32.上顶点为(0,1)A ,离心率为 (Ⅰ)求椭圆C 的方程; (Ⅱ)若过点A 作圆()2221:r y x M =++()10<<r 的两条切线分别与椭圆C 相交于点,B D (不同于点A ).当r 变化时,试问直线BD 是xyBAMO否过某个定点?若是,求出该定点;若不是,请说明理由.解:(Ⅰ) 由已知可得,2221,3,2,12,b c a b a a b c =⎧⎪⎪=⇒==⎨⎪⎪=+⎩, 所求椭圆的方程为2214x y += (5)分(Ⅱ)设切线方程为1y kx =+,则2|1|1k r k-=+,即222(1)210r k k r --+-=, 设两切线,AB AD 的斜率为1212,()k k k k ≠,则12,k k 是上述方程的两根,所以121k k ⋅=; …………………8分由22114y kx x y =+⎧⎪⎨+=⎪⎩得:22(14)80k x kx ++=, 所以211112211814,1414k k x y k k --==++,同理可得:222121222222212188144,144144k k k k x y k k k k ----====++++, …………………12分所以221122211111122114144141883414BDk k k k k k k k k k k ---+++==----++, 于是直线BD 方程为22111221111418()14314k k k y x k k k -+--=--++, 令0x =,得2221111222111114185205143143(14)3k k k k y k k k k -+---=+⨯==-+++, 故直线BD 过定点5(0,)3-. …………………16分19. 定义:从一个数列{a n }中抽取若干项(不少于三项)按其在{a n }中的次序排列的一列数叫做{a n }的 子数列,成等差(比)的子数列叫做{a n }的等差(比)子列. (1)求数列1,12,13,14,15的等比子列;(2)设数列{a n }是各项均为实数的等比数列,且公比q ≠1.(i )试给出一个{a n },使其存在无穷项的等差子列(不必写出过程); (ii )若{a n }存在无穷项的等差子列,求q 的所有可能值.解:(1)设所求等比子数列含原数列中的连续项的个数为k (1≤k ≤3,k ∈N *), 当k =2时,①设1n ,1n +1,1m 成等比数列,则1(n +1)2=1n ×1m ,即m =n +1n +2,当且仅当n =1时,m ∈N *,此时m =4,所求等比子数列为1,12,14;②设1m ,1n ,1n +1成等比数列,则1n 2=1n +1×1m ,即m =n +1+1n +1-2N *;………3分当k =3时,数列1,12,13;12,13,14;13,14,15均不成等比,当k =1时,显然数列1,13,15不成等比;综上,所求等比子数列为1,12,14. ……………………5分(2)(i )形如:a 1,-a 1,a 1,-a 1,a 1,-a 1,…(a 1≠0,q =-1)均存在无穷项 等差子数列: a 1,a 1,a 1,… 或-a 1,-a 1,-a 1, ……………………7分 (ii )设{a n k }(k ∈N *,n k ∈N *)为{a n }的等差子数列,公差为d ,当|q|>1时,|q|n>1,取n k >1+log |q||d||a 1|(|q|-1),从而|q|n k -1>|d||a 1|(|q|-1),故|a n k +1-a n k |=|a 1q n k +1-1-a 1q n k -1|=|a 1||q|n k -1·|q n k +1-n k -1|≥|a 1||q|n k -1(|q|-1)>|d|,这与|a n k +1-a n k |=|d|矛盾,故舍去; ……………………12分 当|q|<1时,|q|n<1,取n k >1+log |q||d|2|a 1|,从而|q|n k -1<|d|2|a 1|, 故|a n k +1-a n k |=|a 1||q|n k -1|q n k +1-n k -1|≤|a 1||q|n k -1||q|n k +1-n k +1|<2|a 1||q|n k -1<|d|,这与|a n k +1-a n k |=|d|矛盾,故舍去; 又q ≠1,故只可能q =-1,结合(i)知,q 的所有可能值为-1. (16)分20.设函数()()ln ,f x x a x x a a R =--+∈.(1)若0a =,求函数()f x 的单调区间;(2)若0a <,试判断函数()f x 在区间22(,)e e -内的极值点的个数,并说明理由; (3)求证:对任意的正数a ,都存在实数t ,满足:对任意的(,)x t t a ∈+,()1f x a <-. 解:(1)当a =0时,f(x)=xlnx -x ,f ’(x)=lnx , 令f ’(x)=0,x =1,列表分析x (0,1) 1 (1,+∞)f ’(x) - 0 + f(x)单调递减单调递增故f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞). ……………………3分 (2)方法一、f(x)=(x -a)lnx -x +a ,f ’(x)=lnx -ax,其中x >0,令g(x)=xlnx -a ,分析g(x)的零点情况.g ’(x)=lnx +1,令g ’(x)=0,x =1e,列表分析x (0,1e )1e (1e,+∞) g ’(x) - 0 + g(x)单调递减单调递增g(x)min =g(1e )=-1e-a ,……………………5分而f ’(1e )=ln 1e -ae =-1-ae ,f ’(e -2)=-2-ae 2=-(2+ae 2),f ’(e 2)=2-a e 2=1e2(2e 2-a),①若a ≤-1e ,则f ’(x)=lnx -ax≥0,故f(x)在(e -2,e 2)内没有极值点;②若-1e <a <-2e 2,则f ’(1e )=ln 1e -ae <0,f ’(e -2)=-(2+ae 2)>0,f ’(e 2)=1e2(2e 2-a)>0, 因此f ’(x)在(e -2,e 2)有两个零点,f(x)在(e -2,e 2)内有两个极值点;③若-2e 2≤a <0,则f ’(1e )=ln 1e -ae <0,f ’(e -2)=-(2+ae 2)≤0,f ’(e 2)=1e2(2e 2-a)>0,因此f ’(x)在(e -2,e 2)有一个零点,f(x)在(e -2,e 2)内有一个极值点; 综上所述,当a ∈(-∞,-1e]时,f(x)在(e -2,e 2)内没有极值点;当a ∈(-1e ,-2e2)时,f(x)在(e -2,e 2)内有两个极值点;当a ∈[-2e2,0)时,f(x)在(e -2,e 2)内有一个极值点.. ……………………10分方法二、f(x)=(x -a)lnx -x +a ,f ’(x)=lnx -ax ,令()ln g x x x(不用零点存在定理说明扣3分)(3)猜想:x ∈(1,1+a),f(x)<a -1恒成立. ……………………11分证明如下:由(2)得g(x)在(1e ,+∞)上单调递增,且g(1)=-a <0,g(1+a)=(1+a)ln(1+a)-a .因为当x >1时,lnx >1-1x (*),所以g(1+a)>(1+a)(1-1a +1)-a =0.故g(x)在(1,1+a)上存在唯一的零点,设为x 0.由x (1,x 0) x 0 (x 0,1+a)f ’(x) - 0 + f(x)单调递减单调递增知,x ∈(1,1+a),f(x)<max{f(1),f(1+a)}. ……………………13分 又f(1+a)=ln(1+a)-1,而x >1时,lnx <x -1(**), 所以f(1+a)<(a +1)-1-1=a -1=f(1). 即x ∈(1,1+a),f(x)<a -1.所以对任意的正数a ,都存在实数t =1,使对任意的x ∈(t ,t +a),使 f(x)<a -1.……………………15分补充证明(*):令F(x)=lnx +1x -1,x ≥1.F ’(x)=1x -1x 2=x -1x 2≥0,所以F(x)在[1,+∞)上单调递增.所以x >1时,F(x)>F(1)=0,即lnx >1-1x .补充证明(**)令G(x)=lnx -x +1,x ≥1.G ’(x)=1x -1≤0,所以G(x)在[1,+∞)上单调递减.所以x >1时,G(x)<G(1)=0,即lnx <x -1. ……………………16分数学附加题21.【选做题】在A 、B 、C 、D 四小题中只要选做2题,每小题10分,共计20分.请在答题纸指....定区域内....作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲在圆O 中,AB ,CD 是互相平行的两条弦,直线AE 与圆O 相切于点A ,且与CD 的延长线交于点E ,求证:AD 2=AB ·ED .证明:连接BD ,因为直线AE 与圆O 相切,所以∠EAD =∠ABD . ……………………4分又因为AB ∥CD , 所以∠BAD =∠ADE ,所以△EAD ∽△DBA . ........................8分 从而ED DA =AD BA ,所以AD 2=AB .ED . (10)分A BCDEO ·(第21题(A )图)B .选修4-2:矩阵与变换已知,点A 在变换T :2x x x y y y y '+⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦作用后,再绕原点逆时针旋转90,得到点B .若点B 的坐标为(3,4)-,求点A 的坐标. 解:011201100112--⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. ……………………………………………………4分设(,)A a b ,则由013124a b --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得324b a b -=-⎧⎨+=⎩.……………………………………8分所以23a b =-⎧⎨=⎩,即(2,3)A -. (10)分C .选修4-4:坐标系与参数方程若以直角坐标系xOy 的O 为极点,Ox 为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程是θθρ2sin cos 6=.(1)将曲线C 的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l 的参数方程为323x ty t ⎧=+⎪⎨⎪=⎩(t 为参数),当直线l 与曲线C 相交于,A B 两点,求AB .解:(1)由θθρ2sin cos 6=,得θρθρcos 6sin 2=,26y x =. ……………………4分所以曲线C 表示顶点在原点,焦点在x 轴上的抛物线. ……………………5分(2)将323x t y t ⎧=+⎪⎨⎪=⎩代入26y x =得2230t t --=,123,1t t ==- ……………………8分222121()()AB x x y y =-+-22212121()[3()]28t t t t t t =-+-=-= (10)分解法二:代入26y x =得2230t t --=, 12122,3t t t t +==- ……………………8分222121()()AB x x y y =-+-22221212112()[3()]2()48t t t t t t t t =-+-=+-= ……………………10分D .选修4-5:不等式选讲设函数()23()f x x x x m m R =-+---∈. (Ⅰ)当4m =-时,求函数()f x 的最大值; (Ⅱ)若存在0x R ∈,使得01()4f x m≥-,求实数m 的取值范围. 解:(Ⅰ)当4m =-时,33,2,()2341,23,5,3x x f x x x x x x x x +<-⎧⎪=-+--+=--≤≤⎨⎪-+>⎩ (2)分∴函数()f x 在(,3]-∞上是增函数,在(3,)+∞上是减函数,所以max ()(3)2f x f ==. ……………………4分(Ⅱ)01()4f x m ≥-,即0001234x x x m m-+--+≥+, 令()234g x x x x =-+--+,则存在0x R ∈,使得01()g x m m≥+成立, ∴max 1()2,m g x m +≤=即12,m m+≤ ……………………7分∴当0m >时,原不等式为2(1)0m -≤,解得1m =, 当0m <时,原不等式为2(1)0m -≥,解得0m <,综上所述,实数m 的取值范围是{}(,0)1-∞U . ……………………10分22.设集合{}5,4,3,2,1=S ,从S 的所有非空子集中,等可能地取出一个. (1)设S A ⊆,若A x ∈,则A x ∈-6,就称子集A 满足性质p ,求所取出的非空子集满足性质p 的概率; (2)所取出的非空子集的最大元素为ξ,求ξ的分布列和数学期望()ξE . 解:可列举出集合S 的非空子集的个数为:31125=-个.(I )满足性质p 的非空子集为:{}3,{}5,1,{}4,2,{}5,3,1,{}4,3,2,{}5,4,2,1,{}5,4,3,2,1共7个,所以所取出的非空子集满足性质p 的概率为:317=p . …………………4分(2)x 的可能值为1,2,3,4,5x12 3 4 5P131 231 431 831 1631()124816129=1+2+3+4+5=313131313131E x 创创? (10)分23. 设集合{1,0,1}M =-,集合123{(,,)|,1,2,,}n n i A x x x x x M i n =∈=,,,集合n A 中满足条件“121||||||n x x x m ≤+++≤”的元素个数记为n m S .⑴求22S 和42S 的值;⑵当m n <时,求证:nmS 111322n m n +++<+-. 23.解⑴228S =,4232S =; ……………………3分 ⑵设集合{0}P =,{1,1}Q =-.若12||||||1n x x x +++=,即123,,n x x x x ,,中有1n -个取自集合P ,1个取自集合Q ,故共有112n n C -种可能,即为112n C ,同理,12||||||2n x x x +++=,即123,,n x x x x ,,中有2n -个取自集合P ,2个取自集合Q ,故共有222n n C -种可能,即为222n C ,……5分若12||||||n x x x m +++=,即123,,n x x x x ,,中有n m -个取自集合P ,m 个取自集合Q ,故共有2n m m n C -种可能,美好的未来不是等待,而是孜孜不倦的攀登。

2018-2019金太阳湖南高二上学期期末联考理科数学答案

2018-2019金太阳湖南高二上学期期末联考理科数学答案


#!&!&$!$&./.-*#/&%&$%$&%567,//.0&./.--*槡0%8+%%槡%*槡04!mnopT7 .-
8/0 (qk+rsZ#槡04!
!/!1!2567%%$567%&*!$7,9%%$#!$7,9%&$*7,9%&$7,9%%&

37,9%&$7,9%%*7,9-#7,9-$7,9%$&D^stuPF1%$)%*2%$)2&
槡)%$")& %
)+ 槡)%%$")$z34#$$2/&3#$${|}Ð! -/

%567&*)%+%2)%2$1%*
! %
&&*
0
!



2)+%2*")% 槡%)2&3)2(%&BEvB)*%2*%C&Kwqi!
G0%&-
+px+XYZ#
! %
8%7,9
0
*槡%0!
!!!.!D#$+!$34#$$:9#$+!$+3#$$1/#$)/$F34#$$:9#$+!$+3#$$$!+!*.3#$$:9#$+!$4/1/#$)/$!
c7%& +:#8#$/&'/$&
%$/*0+7$!$%0+7+!*#+%7$!&'/*0+7+$!%+0+7++!*#+07%+$%!!

2018-2019下学期高三理科数学好教育2月特供卷(三)附解析

2018-2019下学期高三理科数学好教育2月特供卷(三)附解析

2018-2019下学期高三理科数学好教育2月特供卷(三)附解析第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集{}0,1,2,3,4U =,集合{}0,1,2A =,集合{}2,3B =,则()UA B =ð( )A .∅B .{}1,2,3,4C .{}2,3,4D .{}0,1,2,3,42.在区间[]2,2-上任意取一个数x ,使不等式20x x -<成立的概率为( )A .16B .12C .13D .143.已知各项为正数的等比数列{}n a满足11a =,2416a a =,则6a =( )A .64B .32C .16D .44.欧拉公式i cos is n e i xx x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,πii 4πe e 表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知M 、N 是不等式组11106x y x y x y ≥≥-+≥+≤⎧⎪⎪⎨⎪⎪⎩,所表示的平面区域内的两个不同的点,则MN的最大值是( )AB.C.D .1726.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( ) A .log 3log 3a b >B .336a b +>C .133ab a b++> D .b a a b >7.一个几何体的三视图如图所示,则该几何体的体积为( )A .8+B .8+C .283 D .108.如图,边长为1正方形ABCD ,射线BP 从BA 出发,绕着点B 顺时针方向旋转至BC ,在旋转的过程中,记0,2πABP x x ∠⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭,BP 所经过的在正方形ABCD 内的区域(阴影部分)的面积为()y f x =,则函数()f x的图像是( )A .B .C .D .9.下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a 、b 、i 的值分别为6、8、0,则输出a 和i 的值分别为( )A .0,3B .0,4C .2,3D .2,410.已知函数()()()sin ,0cos ,0x a x f x x b x ⎧+≤⎪=⎨+>⎪⎩,的图像关于y 轴对称,则sin y x =的图像向左平移( )个单位,可以得到()cos y x a b =++的图像A .π4B .π3C .π2 D .π11.已知一条抛物线恰好经过等腰梯形ABCD 的四个顶点,其中4AB =,2BC CD AD ===, 则该抛物线的焦点到其准线的距离是( )A. B. CD.12.已知正方体1111ABCD A B C D -的棱长为2,M 为1CC 的中点.若AM ⊥平面α,且B ∈平面α,则平面α截正方体所得截面的周长为( ) A..4+ C.. 第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.已知双曲线2222:1x y C a b -=,点()2,1P 在C 的渐近线上,则C 的离心率为 . 14.62x ⎛⎝的展开式中的常数项的值是__________.(用数学作答) 15.设ABC △的外心P 满足()13AP AB AC =+,则cos BAC ∠=__________.16.数列{}n a的首项为1,其余各项为1或2,且在第k 个1和第1k +个1之间有21k -个2,即数列{}n a 为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列{}n a 的前n 项和为n S ,则2019S =__________. (用数字作答)三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在ABC △中,角A 、B 、C 的对边分别是a 、b 、c ,已知1cos23A =-,c ,sin A C =.(1)求a 的值;(2)若角A 为锐角,求b 的值及ABC △的面积.18.(12分)如图(1),等腰梯形ABCD ,2AB =,6CD =,AD =,E 、F 分别是CD 的两个三等分点.若把等腰梯形沿虚线AF 、BE 折起,使得点C 和点D 重合,记为点P ,如图(2).(1)求证:平面PEF ⊥平面ABEF ;(2)求平面PAF 与平面PAB 所成锐二面角的余弦值.19.(12分)已知1F ,2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点()01,P y 在椭圆上,且2PF x ⊥轴,12PF F △的周长为6.(1)求椭圆的标准方程; (2)过点()0,1T 的直线与椭圆C 交于A ,B 两点,设O 为坐标原点,是否存在常数λ,使得7OA OB TA TB λ⋅+⋅=-恒成立?请说明理由.20.(12分)某地区进行疾病普查,为此要检验每一人的血液,如果当地有N 人,若逐个检验就需要检验N 次,为了减少检验的工作量,我们把受检验者分组,假设每组有k 个人,把这个k 个人的血液混合在一起检验,若检验结果为阴性,这k 个人的血液全为阴性,因而这k 个人只要检验一次就够了,如果为阳性,为了明确这个k 个人中究竟是哪几个人为阳性,就要对这k 个人再逐个进行检验,这时k 个人的检验次数为1k +次.假设在接受检验的人群中,每个人的检验结果是阳性还是阴性是独立的,且每个人是阳性结果的概率为p .(1)为熟悉检验流程,先对3个人进行逐个检验,若0.1p =,求3人中恰好有1人检测结果为阳性的概率;(2)设ξ为k 个人一组混合检验时每个人的血需要检验的次数. ①当5k =,0.1p =时,求ξ的分布列;②是运用统计概率的相关知识,求当k 和p 满足什么关系时,用分组的办法能减少检验次数.21.(12分)已知函数()()244ln 2f x x x m x =-+,其中m 为大于零的常数,(1)讨论()y f x =的单调区间;(2)若()y f x =存在两个极值点1x ,()212x x x <,且不等式()12f x ax ≥恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,直线l 的参数方程为1x t y t =-=⎧⎨⎩(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,曲线1C 与曲线2C 的极坐标方程分别为ρθ=,3sin ρθ=. (1)求直线l 的极坐标方程;(2)设曲线1C 与曲线2C 的一个交点为点A (A 不为极点),直线l 与OA 的交点为B ,求AB.23.(10分)【选修4-5:不等式选讲】 已知函数()12f x x a x =-+-(a 为实数) (1)当1a =时,求函数()f x 的最小值; (2)若1a >,解不等式()f x a≤.2019届高三好教育云平台2月份内部特供卷理科数学(三)答 案一、选择题. 1.【答案】C 【解析】因为{}3,4U A =ð,所以(){}2,3,4U A B =ð,故选C .2.【答案】D【解析】由20x x -<,得01x <<,所以所求概率为()101224-=--,故选D .3.【答案】B【解析】由2416a a =,得24116a q =,416q =,q >,2q ∴=,5561232a a q ∴===,故选B . 4.【答案】B【解析】因为πii 4πcos πisin πcos isin 44e ππe+===+,所以对应点⎛ ⎝⎭,在第二象限,故选B .5.【答案】A【解析】作可行域,为图中四边形ABCD 及其内部,由图象得()1,1A ,()5,1B ,()2.5,3.5C ,()1,2D ,M ,N 是区域内的两个不同的点,∴当M ,N分别与BD 对角线的两个端点重合时,距离最远,所以MN的最大值为BD =A .6.【答案】B【解析】当9a =,3b =,时log 3log 3a b <;当4a =,13b =,时133ab a b++<;当4a =,2b =,时b aa b =,因为0a b >>,1ab >,所以336a b +>>,故选B .7.【答案】A【解析】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为311222832V =+⨯⨯=,故选A .8.【答案】D【解析】当4π0,x ⎡⎤∈⎢⎥⎣⎦时,()11tan 2y f x x==⨯⨯;当,42ππx ⎛⎤∈ ⎥⎝⎦时,()11112tan y f x x ==-⨯⨯,根据正切函数图象可知选D . 9.【答案】D【解析】执行循环,得1i =,2b =;2i =,4a =;3i =,2a =,结束循环,输出2a =,2b =,此时4i =,故选D . 10.【答案】D【解析】因为函数()()()sin ,0cos ,0x a x f x x b x ⎧+≤⎪=⎨+>⎪⎩的图像关于y 轴对称,所以sin cos 22ππa b ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,()()sin πcos πa b -+=+,即sin cos b a =,sin cos a b =, 因此()π2π2a b k k +=+∈Z ,从而()()cos sin sin πy x a b x x =++=-=+,故选D .11.【答案】B【解析】不妨设抛物线标准方程()220x py p =>,可设()1,C m ,(2,B m +,则(1242pmp m ⎧==⎪⎨⎪⎩,32∴=p ∴=,故选B .12.【答案】A【解析】显然在正方体中BD ⊥平面11ACC A ,所以BD AM ⊥, 取AC 中点E ,取AE 中点O ,则1tan tan AOAACM ∠=∠,1AO AM ∴⊥, 取11AC中点1E ,取11A E 中点1O ,过1O 作11PQ B D ∥,分别交11A B ,11A D 于P ,Q , 从而AM ⊥平面BDQP ,四边形BDQP 为等腰梯形,周长为2A .二、填空题.13【解析】根据双曲线的方程,可知焦点在x 轴上,结合()2,1P 在渐近线上,所以12b a =,即2a b =,所以c ,从而有其离心率c e a =.14.【答案】60【解析】因为()()()36662166C 2C 21rrrr r rr r T x x---+⎛==- ⎝,所以令3602r -=,得4r =,即常数项为()()64446C 2160--=. 15.【答案】12【解析】设BC 中点为M ,所以()1233AP AB AC AM =+=,因此P 为重心,而P 为ABC △的外心,所以ABC △为正三角形,1cos 2BAC ∠=.16.【答案】3993【解析】第1k +个1为数列{}n a 第()21135211k k k k ++++++-=++项,当44k =时,211981k k ++=;当45k =,时212071k k ++=;所以前2019项有45个1和()24420191981+-个2,因此()2201945244201919813993S ⎡⎤=+⨯+-=⎣⎦.三、解答题.17.【答案】(1);(2)5b =.【解析】(1)由2cos212sin A A =-,得22sin 3A =,因为()0,πA ∈,∴sin A =,由sin A C ,1sin 3C =,由正弦定理sin sin a cA C =,得a =.(2)角A 为锐角,则cos A =,由余弦定理得22150b b --=,即5b =,或3b =-(舍去),所以ABC △的面积1sin 2ABC S bc A ==△18.【答案】(1)见解析;(2)【解析】(1)E ,F 是CD 的两个三等分点,易知,ABEF 是正方形,故BE EF ⊥, 又BE PE ⊥,且PEEF E =,所以BE ⊥面PEF ,又BE ⊂面ABEF ,所以面PEF ABEF ⊥.(2)过P 作PO EF ⊥于O ,过O 作BE 的平行线交AB 于G ,则PO ⊥面ABEF , 又PO ,EF ,OG 所在直线两两垂直,以它们为轴建立空间直角坐标系,则()2,1,0A -,()2,1,0B ,()0,1,0F -,(P ,所以()2,0,0AF =-,(FP =,()0,2,0AB =,(2,1,PA =-,设平面PAF 的法向量为()1111,,x y z =n ,则1100AF FP ⋅=⋅⎧⎪⎨⎪⎩=n n,∴111200x y ⎧⎪⎨-=⎪⎩=,()10,=n , 设平面PAB 的法向量为()2222,,x y z =n ,则2200AB PA ⋅=⋅⎧⎪⎨⎪⎩=n n,∴22222020y x y =-=⎧⎪⎨⎪⎩,)22=n,1212cos θ⋅===⋅n n n n ,所以平面PAE 与平面PAB.19.【答案】(1)22143x y +=;(2)当2λ=时,7OA OB TA TB λ⋅+⋅=-.【解析】(1)由题意,()11,0F -,()21,0F ,1c =,∵12PF F △的周长为6,∴122226PF PF c a c ++=+=,∴2a =,b∴椭圆的标准方程为22143x y +=.(2)假设存在常数λ满足条件. ①当过点T 的直线AB的斜率不存在时,(A,(0,B ,∴)()311327OA OB TA TB λλλ⎡⎤⋅+⋅=-+=--=-⎣⎦,∴当2λ=时,7OA OB TA TB λ⋅+⋅=-;②当过点T 的直线AB 的斜率存在时,设直线AB 的方程为1y kx =+,设()11,A x y ,()22,B x y ,联立221431x y y kx +==+⎧⎪⎨⎪⎩,化简得()2234880k x kx ++-=,∴122843k x x k +=-+,122843x x k =-+.∴()()1212121211OA OB TA TB x x y y x x y y λλ⋅+⋅=+++--⎡⎤⎣⎦()()()21212111k x x k x x λ=+++++()()()()2222228118218117434343k k k k k k λλλ⎡⎤++-+++⎣⎦=--+=+=-+++,∴21143λλ++==,解得:2λ=,即2λ=时,7OA OB TA TB λ⋅+⋅=-.综上所述,当2λ=时,7OA OB TA TB λ⋅+⋅=-.20.【答案】(1)0.243;(2)①见解析,②当1P ->时,用分组的办法能减少检验次数.【解析】(1)对3人进行检验,且检验结果是独立的,设事件:A 3人中恰有1人检测结果为阳性,则其概率()123C 0.10.90.243P A =⋅⋅=.(2)①当5K =,0.1P =时,则5人一组混合检验结果为阴性的概率为50.9,每人所检验的次数为15次,若混合检验结果为阳性,则其概率为510.9-,则每人所检验的次数为65次,故ξ的分布列为()11k P P k ξ⎛⎫==- ⎪⎝⎭,()1111k P P k ξ⎛⎫=+=-- ⎪⎝⎭, ∴()()()111111111k k k E P P P k k k ξ⎛⎫⎡⎤=⋅-++--=--+⎪⎣⎦⎝⎭,不分组时,每人检验次数为1次,要使分组办法能减少检验次数,需()1111kP k --+<,即1P ->,所以当1P ->时,用分组的办法能减少检验次数.21.【答案】(1)见解析;(2)(],32ln2a ∈-∞--.【解析】(1)()()2840x x mf x x x '-+=>,①当12m ≥时,()0f x '≥,()f x 在()0,+∞在上单调递增; ②当102m <<时,设方程2840x x m -+=的两根为1x ,2x ,则1x =,2x =,∴1104x <<,21142x <<, ∴()f x 在()10,x ,()2,x +∞上单调递增,()12,x x 上单调递减.(2)由(1)可知,102m <<且1212x x +=,128mx x ⋅=,由()12f x ax ≥,∴()12f x a x ≤,因为()()()221111111144ln2211412ln2f x x x m x x x x x =-+=--+-,所以()()()1111121122128ln21122f x f x x x x x x x ==--+--,设12t x =,102t <<,令()()21214ln 012h t t t t t t ⎛⎫=--+<< ⎪-⎝⎭,()()21212ln 1h t t t ⎡⎤=-+'⎢⎥-⎢⎥⎣⎦, 当102t <<时,()2112ln 01t t -+<-,故()h t 在10,2⎛⎫ ⎪⎝⎭上单调递减,所以()132ln22h t h ⎛⎫>=-- ⎪⎝⎭,综上所述,(],32ln2a ∈-∞--时,()12f x ax ≥恒成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)sin cos 1ρθρθ+=;(2)52AB =【解析】(1)直线l 的参数方程为1x ty t =-=⎧⎨⎩(t 为参数),消参得10y x +-=,由cos x ρθ=,sin y ρθ=代入直角坐标方程可得sin cos 1ρθρθ+=.(2)法1:由3sin ρθρθ==⎧⎪⎨⎪⎩,得tan θ=,所以π6θ=, 点A 的极坐标3,26πA ⎛⎫ ⎪⎝⎭,又点B 在直线OA 上,所以设B 的极坐标为π,6B ρ⎛⎫ ⎪⎝⎭, 由sin cos 1ρθρθ+=,得1B ρ=,所以1,6πB ⎫⎪⎭,所以52A B AB ρρ=-=法2:曲线1C 与曲线2C的直角坐标为220x y +=,2230x y y +-=,由2222030x y x y y +=+-=⎧⎪⎨⎪⎩,得点A的坐标34A ⎫⎪⎪⎝⎭, 所以直线OA的方程为y =,由1x y y x +==⎧⎪⎨⎪⎩,得点B的坐标为B ⎝⎭,所以32OA =,1OB =,52AB =AB =∴52AB =23.【答案】(1)1;(2)3111a x x a ⎧+⎫≤≤⎨⎬+⎩⎭.【解析】(1)1a =时,()()()12121f x x x x x =-+-≥---=,所以()f x 的最小值为1.(2)①2x >时,()12f x x ax a a=-+-≤,311a x a +≤+,因为3112011a a a a +--=>++,所以此时解得3121a x a +<≤+; ②12x ≤≤时,()12f x x ax a a=--+≤,1x ≥,此时12x ≤≤;③1x <时,()12f x x ax a a=--+≤,1x ≥,此时无解,综上:不等式的解集为3111a x x a ⎧+⎫≤≤⎨⎬+⎩⎭.。

2019届高三下学期高三第二次模拟联考数学(理)试题—含答案

2019届高三下学期高三第二次模拟联考数学(理)试题—含答案

2019届高三下学期高三第二次模拟联考数学(理)试题—含答案2019学年度第二学期高三第二次模拟联考数学(理科)试卷年级班级姓名学号注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。

3.请将答案写在答题卡各题目的答题区域内,超出答题区域书写的答案无效。

4.作图题可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破弄皱,不准使用涂改液、修正带。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知,则()A.{1,2}B.{1,2,3}C.{0,1,2}D.{1,2,3,4,}2.设复数满足,则复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.如下图的茎叶图为某次10名学生100米跑步的成绩(s),由茎叶图可知这次成绩的平均数,中位数,众数分别为()A.51.95260B.525460C.51.95360D.5253624.已知随机变量服从正态分布,且,,等于()A.0.2B.C.D.5.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n等于()A.4B.2C.3D.56.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆被的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为()A.B.C.D.7.若函数y=a|x|(a>0,且a≠1)的值域为{y|y≥1},则函数y=loga|x|的图象大致是()ABCD8.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.设x,y满足约束条件,则的最大值为A.B.C.-3D.310.将函数的图象,向右平移个单位长度,再把纵坐标伸长到原来的2倍,得到函数,则下列说法正确的是()A.函数的最小正周期为B.是函数的一条对称轴C.函数在区间上单调递增D.函数在区间上的最小值为11.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线:,当其离心率时,对应双曲线的渐近线的夹角的取值范围为()A.B.C.D.12.已知定义在R上的函数f(x)满足f(x-1)=f(x+1),且当x∈[-1,1]时,,则()A.B.C.D.第Ⅱ卷二.填空题:本大题共4小题,每小题5分。

2019届高三数学二模试卷理科附答案

2019届高三数学二模试卷理科附答案

2019届高三数学二模试卷理科附答案理科数学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019•乐山调研]若与互为共轭复数,则的值为()A.B.C.D.2.[2019•济南外国语]已知集合,,则()A.B.C.D.3.[2019•九江一模] 的部分图像大致为()A.B.C.D.4.[2019•榆林一模]已知向量,满足,,,则()A.2 B.C.D.5.[2019•湘潭一模]以双曲线的焦点为顶点,且渐近线互相垂直的双曲线的标准方程为()A.B.C.D.6.[2019•武邑中学]在中,角,,的对边分别为,,,若,,,则角()A.B.C.或D.或7.[2019•新乡调研]某医院今年1月份至6月份中,每个月为感冒来就诊的人数如下表所示:()上图是统计该院这6个月因感冒来就诊人数总数的程序框图,则图中判断框、执行框依次应填()A.;B.;C.;D.;8.[2019•优创名校联考]袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为()A.B.C.D.9.[2019•成都一诊]在各棱长均相等的四面体中,已知是棱的中点,则异面直线与所成角的余弦值为()A.B.C.D.10.[2019•长沙一模]已知是函数图象的一个最高点,,是与相邻的两个最低点.设,若,则的图象对称中心可以是()A.B.C.D.11.[2019•湖北联考]已知偶函数满足,现给出下列命题:①函数是以2为周期的周期函数;②函数是以4为周期的周期函数;③函数为奇函数;④函数为偶函数,则其中真命题的个数是()A.1 B.2 C.3 D.412.[2019•宜昌调研]已知椭圆:上存在、两点恰好关于直线:对称,且直线与直线的交点的横坐标为2,则椭圆的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.[2019•泉州质检]若函数的图象在点处的切线过点,则______.14.[2019•湖北联考]设,满足约束条件,则的最大值为____.15.[2019•镇江期末]若,,则_______.16.[2019•遵义联考]已知三棱锥中,面,且,,,,则该三棱锥的外接球的表面积为__________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019•潍坊期末]已知数列的前项和为,且,,成等差数列.(1)求数列的通项公式;(2)数列满足,求数列的前项和.18.(12分)[2019•开封一模]大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程,这两年学习先修课程的学生都参加了高校的自主招生考试(满分100分),结果如下表所示:分数人数25 50 100 50 25参加自主招生获得通过的概率(1)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过的前提下认为学习先修课程与优等生有关系?优等生非优等生总计学习大学先修课程250没有学习大学先修课程总计150(2)已知今年全校有150名学生报名学习大学选项课程,并都参加了高校的自主招生考试,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.(i)在今年参与大学先修课程学习的学生中任取一人,求他获得高校自主招生通过的概率;(ii)某班有4名学生参加了大学先修课程的学习,设获得高校自主招生通过的人数为,求的分布列,试估计今年全校参加大学先修课程学习的学生获得高校自主招生通过的人数.参考数据:参考公式:,其中.19.(12分)[2019•湖北联考]如图,在四棱锥中,,,,且,.(1)证明:平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.20.(12分)[2019•河北联考]在直角坐标系中,直线与抛物线交于,两点,且.(1)求的方程;(2)试问:在轴的正半轴上是否存在一点,使得的外心在上?若存在,求的坐标;若不存在,请说明理由.21.(12分)[2019•泉州质检]已知函数.(1)讨论的单调性;(2)当时,,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】[2019•九江一模]在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(,),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为.(1)求,的极坐标方程;(2)设点的极坐标为,求面积的最小值.23.(10分)【选修4-5:不等式选讲】[2019•湘潭一模]设函数.(1)当时,求关于的不等式的解集;(2)若在上恒成立,求的取值范围.2019届高三第二次模拟考试卷理科数学(二)答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【解析】∵,,又与互为共轭复数,∴,,则.故选A.2.【答案】C【解析】∵集合,,∴,,∴.故选C.3.【答案】B【解析】,则函数是偶函数,图象关于轴对称,排除A,D,,排除C,故选B.4.【答案】A【解析】根据题意得,,又,∴,∴,∴.故选A.5.【答案】D【解析】由题可知,所求双曲线的顶点坐标为,又∵双曲线的渐近线互相垂直,∴,则该双曲线的方程为.故选D.6.【答案】A【解析】∵,,,∴由正弦定理可得,∵,由大边对大角可得,∴解得.故选A.7.【答案】C【解析】∵要计算1月份至6月份的6个月的因感冒来就诊的人数,∴该程序框图要算出所得到的和,①当时,,没有算出6个月的人数之和,需要继续计算,因此变成2,进入下一步;②当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成3,进入下一步;③当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成4,进入下一步;④当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成5,进入下一步;⑤当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成6,进入下一步;⑥当时,用前一个加上,得,刚好算出6个月的人数之和,因此结束循环体,并输出最后的值,由以上的分析,可得图中判断框应填“”,执行框应填“”.故选C.8.【答案】C【解析】∵随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有,,,共4个基本事件,根据古典概型概率公式可得,恰好第三次就停止的概率为,故选C.9.【答案】C【解析】设各棱长均相等的四面体中棱长为2,取中点,连结,,∴是棱的中点,∴,∴是异面直线与所成角(或所成角的补角),,,∴,∴异面直线与所成角的余弦值为,故选C.10.【答案】D【解析】结合题意,绘图又,,∴周期,解得,∴,,令,得到,∴,令,,得对称中心,令,得到对称中心坐标为,故选D.11.【答案】B【解析】偶函数满足,即有,即为,,可得的最小正周期为4,故①错误;②正确;由,可得,又,即有,故为奇函数,故③正确;由,若为偶函数,即有,可得,即,可得6为的周期,这与4为最小正周期矛盾,故④错误.故选B.12.【答案】C【解析】由题意可得直线与直线的交点,,设,,则,,∵、是椭圆上的点,∴①,②,①﹣②得:,∴,∴,∴,∴,故选C.二、填空题:本大题共4小题,每小题5分,共20分.13.【答案】1【解析】函数,可得,∴,又,∴切线方程为,切线经过,∴,解得.故答案为1.14.【答案】5【解析】作出,满足约束条件,所示的平面区域,如图:作直线,然后把直线向可行域平移,结合图形可知,平移到点时最大,由可得,此时.故答案为5.15.【答案】【解析】由得,即,又,解得,∴.16.【答案】【解析】取的中点,连结、,∵平面,平面,∴,可得中,中线,由,,,可知,又∵,、是平面内的相交直线,∴平面,可得,因此中,中线,∴是三棱锥的外接球心,∵中,,,∴,可得外接球半径,因此,外接球的表面积,故答案为.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1);(2).【解析】(1)∵,,成等差数列,∴,当时,,∴,当时,,,两式相减得,∴,∴数列是首项为,公比为的等比数列,∴.(2),∴,∴.18.【答案】(1)见解析;(2)见解析.【解析】(1)列联表如下:优等生非优等生总计学习大学先修课程50 200 250没有学习大学先修课程100 900 1000总计150 **** ****由列联表可得,因此在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系.(2)(i)由题意得所求概率为.(ii)设获得高校自主招生通过的人数为,则,,,1,2,3,4,∴的分布列为0 1 2 3 4估计今年全校参加大学先修课程的学生获得大学自主招生通过的人数为.19.【答案】(1)见证明;(2)见解析.【解析】(1)∵在底面中,,,且,∴,,∴,又∵,,平面,平面,∴平面,又∵平面,∴,∵,,∴,又∵,,平面,平面,∴平面.(2)方法一:在线段上取点,使,则,又由(1)得平面,∴平面,又∵平面,∴,作于,又∵,平面,平面,∴平面,又∵平面,∴,又∵,∴是二面角的一个平面角,设,则,,这样,二面角的大小为,即,即,∴满足要求的点存在,且.方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系,且由(1)知是平面的一个法向量,设,则,,∴,,设是平面的一个法向量,则,∴,令,则,它背向二面角,又∵平面的法向量,它指向二面角,这样,二面角的大小为,即,即,∴满足要求的点存在,且.20.【答案】(1);(2)在轴的正半轴上存在一点,使得的外心在上.【解析】(1)联立,得,则,,从而.∵,∴,即,解得,故的方程为.(2)设线段的中点为,由(1)知,,,则线段的中垂线方程为,即.联立,得,解得或,从而的外心的坐标为或.假设存在点,设的坐标为,∵,∴,则.∵,∴.若的坐标为,则,,则的坐标不可能为.故在轴的正半轴上存在一点,使得的外心在上.21.【答案】(1)见解析;(2).【解析】解法一:(1),①当时,↘极小值↗∴在上单调递减,在单调递增.②当时,的根为或.若,即,0 0↗极大值↘极小值↗∴在,上单调递增,在上单调递减.若,即,在上恒成立,∴在上单调递增,无减区间.若,即,0 0↗极大值↘极小值↗∴在,上单调递增,在上单调递减.综上:当时,在上单调递减,在单调递增;当时,在,上单调递增,在上单调递减;当时,在上单调递增,无减区间;当时,在,上单调递增,在上单调递减.(2)∵,∴.当时,恒成立.当时,.令,,设,∵在上恒成立,即在上单调递增.又∵,∴在上单调递减,在上单调递增,则,∴.综上,的取值范围为.解法二:(1)同解法一;(2)令,∴,当时,,则在上单调递增,∴,满足题意.当时,令,∵,即在上单调递增.又∵,,∴在上有唯一的解,记为,↘极小值↗,满足题意.当时,,不满足题意.综上,的取值范围为.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【答案】(1);;(2)2.【解析】(1)∵曲线的参数方程为(为参数),∴曲线的普通方程为,∴曲线的极坐标方程为,设点的极坐标为,点的极坐标为,则,,,,∵,∴,∴,,∴的极坐标方程为.(2)由题设知,,当时,取得最小值为2.23.【答案】(1);(2).【解析】(1)∵,∴的解集为.(2)∵,∴,即,则,∴.。

2018-2019学年高三下学期2月联考数学(理科)试题

2018-2019学年高三下学期2月联考数学(理科)试题

一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(为虚数单位)等于()A. B.C. D.【答案】B【解析】【分析】根据复数的四则运算,化简,即可求解。

【详解】由题意,根据复数的运算可得复数,故选B。

【点睛】本题主要考查了复数的四则运算,其中解答中熟记复数的四则运算法则,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题。

2.已知集合,则等于()A. B.C. D.【答案】A【解析】【分析】先通过解不等式求出集合,然后再求出即可.【详解】由题意得,∴,∴.故选A.【点睛】本题考查集合的运算,解题的关键是正确求出不等式的解集和熟记集合运算的定义,属于简单题.3.在区间内,任取个数,则满足的概率为()A. B. C. D.【答案】D【解析】【分析】由题意,满足,求得,再根据长度比的几何概型,即可求解。

【详解】由题意,满足,则,解得,所以在区间内,任取1个数时,概率为,故选D。

【点睛】本题主要考查了对数的运算,及几何概型的概率的计算,其中解答中根据对数的性质,正确求解,再利用长度比的几何概型求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题。

4.已知,则()A. B. C. D.【答案】D【解析】【分析】先由两角和的正切公式求出,然后将所求化为齐次式的形式,再运用同角关系式表示为的形式后求解.【详解】∵,∴.∴.故选D.【点睛】本题考查利用三角变换进行求值,解题时要注意对公式的灵活运用,容易出现的错误是忽视公式中的符号,解答“给值求值”问题的关键是对所给条件及所求值的式子进行合理的变形,注意整体代换在解题中的应用.5.椭圆的左、右焦点分别为,,上顶点为,若的面积为,且,则椭圆方程为()A. B.C. D.【答案】C【解析】【分析】在中,可得,得到,又面积为,得,求得,进而得到椭圆的标准方程。

【详解】在中,得,可得,所以,又面积为,即,解得,则,所以椭圆方程为.【点睛】本题主要考查了椭圆标准方程的求解,其中解答中熟记椭圆的标准方程及其简单的几何性质,合理应用是解答的关键,着重考查了推理与运算能力,属于基础题。

2018-2019 学年湖南省长沙市长郡中学高三(下)第六次月考理科数学试卷含答案

2018-2019 学年湖南省长沙市长郡中学高三(下)第六次月考理科数学试卷含答案

2018-2019学年湖南省长沙市长郡中学高三(下)第六次月考数学试卷(理科)(2月份)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={y|y=log2x,0<x≤4},集合B={x|e x>1},则A∩B等于()A.(0,2)B.(0,2]C.(﹣∞,2]D.R2.(5分)若i为虚数单位,复数z满足z(1+i)=|1﹣i|+i,则z的虚部为()A.B.C.D.3.(5分)设X~N(1,1),其正态分布密度曲线如图所示,那么向正方形ABCD中随机投掷10000个点,则落入阴影部分的点的个数的估计值是()(注:若X~N(μ,σ2),则P(μ﹣σ<X<μ+σ)=68.26%,P(μ﹣2σ<X<μ+2σ)=95.44%)A.7539B.6038C.7028D.65874.(5分)《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,现自上而下取第1,3,9节,则这3节的容积之和为()A.升B.升C.升D.升5.(5分)已知某几何体的外接球的半径为,其三视图如图所示,图中均为正方形,则该几何体的体积为()A.16B.C.D.86.(5分)某城市有连接8个小区A,B,C,D,E,F,G,H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短路径,由小区A前往小区H,则他经过市中心O的概率为()A.B.C.D.7.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C+c cos A,b=2,则△ABC面积的最大值是()A.1B.C.2D.48.(5分)执行如图所示的程序框图,输出S的值等于()A.B.C.D.9.(5分)已知非空集合A,B满足以下两个条件.(ⅰ)A∪B={1,2,3,4,5,6},A∩B=∅;(ⅱ)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(A,B)的个数为()A.10B.12C.14D.1610.(5分)设3x=2,y=ln2,,则()A.x<y<z B.y<z<x C.z<x<y D.z<y<x11.(5分)在三棱锥P﹣ABC中,P A⊥平面ABC,,AP=3,,Q是边BC上的一动点,且直线PQ与平面ABC所成角的最大值为,则三棱锥P﹣ABC的外接球的表面积为()A.45πB.57πC.63πD.84π12.(5分)已知f′(x)是函数f(x)的导函数,且对任意的实数x都有f′(x)=e x(2x+3)+f(x)(e是自然对数的底数),f(0)=1,若不等式f(x)﹣k<0的解集中恰有两个整数,则实数k的取值范围是()A.[﹣,0)B.[﹣,0]C.(﹣,0]D.(﹣,0)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知平面向量,满足=3,且||=1,||=2,则||等于.14.(5分)已知奇函数f(x)=A cos(ωx+φ)(A>0,ω>0,0<φ<π)的导函数的部分图象如图所示,E是最高点,且△MNE是边长为1的正三角形,那么f()=.15.(5分)已知实数x,y满足约束条件:,若z=x﹣ay只在点(4,3)处取得最小值,则a的取值范围是.16.(5分)已知F是抛物线y2=4x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=﹣4(其中O为坐标原点),则△ABO面积的最小值是.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17〜21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)设数列{a n}的前n项和为S n,且S n=n2﹣n+1,在正项等比数列{b n}中,b2=a2,b4=a5.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设c n=a n b n,求数列{c n}的前n项和.18.(12分)如图.四棱锥P﹣ABCD中.平而P AD⊥平而ABCD,底而ABCD为梯形.AB ∥CD,AB=2DC=2,AC∩BD=F,且△P AD与△ABD均为正三角形,G为△P AD的重心.(1)求证:GF∥平面PDC;(2)求平面AGC与平面P AB所成锐二面角的正切值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)如图,在平面直角坐标系中,已知点F(1,0),过直线l:x=2左侧的动点P 作PH⊥l于点H,∠HPF的角平分线交x轴于点M,且PH=MF,记动点P的轨迹为曲线P.(1)求曲线P的方程.(2)过点F作直线m交曲线P于A,B两点,点C在l上,且BC∥x轴,试问:直线AC是否恒过定点?请说明理由.21.(12分)设函数f(x)=e2x,g(x)=kx+1(k∈R).(Ⅰ)若直线y=g(x)和函数y=f(x)的图象相切,求k的值;(Ⅱ)当k>0时,若存在正实数m,使对任意x∈(0,m),都有|f(x)﹣g(x)|>2x 恒成立,求k的取值范围.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以原点为O极点,以x轴正半轴为极轴,圆C的极坐标方程为ρ=4.(1)将圆C的极坐标方程化为直角坐标方程;(2)过点P(2,0)作斜率为1直线l与圆C交于A,B两点,试求的值.[选修4-5:不等式选讲]23.已知定义在R上的函数f(x)=|x﹣2m|﹣|x|,m∈N,且f(x)<4恒成立.(1)求实数m的值;(2)若α∈(0,1),β∈(0,1),f(α)+f(β)=3,求证:+≥18.2018-2019学年湖南省长沙市长郡中学高三(下)第六次月考数学试卷(理科)(2月份)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={y|y=log2x,0<x≤4},集合B={x|e x>1},则A∩B等于()A.(0,2)B.(0,2]C.(﹣∞,2]D.R【分析】先求出集合A和集合B,由此能求出A∩B.【解答】解:∵集合A={y|y=log2x,0<x≤4}={y|y≤2},集合B={x|e x>1}={x|x>0},∴A∩B={x|0<x≤2}=(0,2].故选:B.【点评】本题考查交集的求法,考查交集定义等基础知识,考查推理能力与计算能力,考查函数与方程思想,是基础题.2.(5分)若i为虚数单位,复数z满足z(1+i)=|1﹣i|+i,则z的虚部为()A.B.C.D.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由z(1+i)=|1﹣i|+i=,得z=.∴z的虚部为.故选:D.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(5分)设X~N(1,1),其正态分布密度曲线如图所示,那么向正方形ABCD中随机投掷10000个点,则落入阴影部分的点的个数的估计值是()(注:若X~N(μ,σ2),则P(μ﹣σ<X<μ+σ)=68.26%,P(μ﹣2σ<X<μ+2σ)=95.44%)A.7539B.6038C.7028D.6587【分析】根据正态分布的定义,可以求出阴影部分的面积,利用几何概型即可计算.【解答】解:∵X~N(1,1),∴μ=1,σ=1.μ+σ=2∵P(μ﹣σ<X<μ+σ)=68.26%,∴则P(0<X<2)=68.26%,则P(1<X<2)=34.13%,∴阴影部分的面积为:0.6587.∴正方形ABCD中随机投掷10000个点,则落入阴影部分的点的个数的估计值是6587.故选:D.【点评】本题考查了正态分布、几何概型,属于中档题.4.(5分)《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,现自上而下取第1,3,9节,则这3节的容积之和为()A.升B.升C.升D.升【分析】设自上而下各节的容积分别为a1,a2,…,a9,公差为d,由上面4节的容积共3升,下面3节的容积共4升,利用等差数列通项公式列出方程组,求出a1=,d=,由此能求出自上而下取第1,3,9节,则这3节的容积之和.【解答】解:设自上而下各节的容积分别为a1,a2,…,a9,公差为d,∵上面4节的容积共3升,下面3节的容积共4升,∴,解得a1=,d=,∴自上而下取第1,3,9节,则这3节的容积之和为:a1+a3+a9=3a1+10d==(升).故选:B.【点评】本题考查等比数列中三项和的求法,考查等差数列的性质等基础知识,考查运用求解能力,考查函数与方程思想,是中档题.5.(5分)已知某几何体的外接球的半径为,其三视图如图所示,图中均为正方形,则该几何体的体积为()A.16B.C.D.8【分析】由已知中的三视图可得:该几何体是一个棱长为2的正方体,切去四个角所得的正四面体,其外接球等同于棱长为2的正方体的外接球,进而得到答案.【解答】解:由三视图可知几何体为正方体的面对角线组成的正四面体B1﹣ACD1,设正方体的棱长为a,则外接球半径为正方体体对角线的一半,即,∴a=2,∴几何体的体积V=a3﹣4•==.故选:C.【点评】本题考查了常见几何体的三视图,作出几何体的直观图是解题的关键,属于中档题.6.(5分)某城市有连接8个小区A,B,C,D,E,F,G,H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短路径,由小区A前往小区H,则他经过市中心O的概率为()A.B.C.D.【分析】此人从小区A前往H的所有最短路径共6条.记“此人经过市中心O”为事件M,则M包含的基本事件为共4个.由此能求出他经过市中心的概率.【解答】解:此人从小区A前往H的所有最短路径为:A→B→C→E→H,A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,A→D→F→G→H,共6条.记“此人经过市中心O”为事件M,则M包含的基本事件为:A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,共4条.∴P(M)==.即他经过市中心的概率为,故选:B.【点评】本题考查概率的应用,是基础题.解题时要认真审题,仔细解答,注意列举法的灵活运用.7.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C+c cos A,b=2,则△ABC面积的最大值是()A.1B.C.2D.4【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得2sin B cos B=sin B,结合sin B≠0,可求cos B的值,进而可求B的值,由余弦定理,基本不等式可得:ac≤4,进而利用三角形面积公式即可得解△ABC面积的最大值.【解答】解:(1)∵2b cos B=a cos C+c cos A,∴可得:2sin B cos B=sin A cos C+sin C cos A=sin B,∵sin B≠0,∴cos B=.B=60°由余弦定理可得ac=a2+c2﹣4,∴由基本不等式可得ac=a2+c2﹣4≥2ac﹣4,可得:ac≤4,当且仅当a=c时,“=”成立,∴从而△ABC面积S==,故△ABC面积的最大值为.故选:B.【点评】本题考查解三角形的相关知识,考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了转化思想,属于中档题.8.(5分)执行如图所示的程序框图,输出S的值等于()A.B.C.D.【分析】模拟执行程序框图知该程序的功能是计算并输出S=tan•tan+tan•tan+…+tan•tan的值,由两角差的正切值公式计算S的值即可.【解答】解:模拟执行如图所示的程序框图知,该程序的功能是计算并输出S=tan•tan+tan•tan+…+tan•tan的值,则S=(1+tan tan)+(1+tan tan)+…+(1+tan tan)﹣21=++…+﹣21=﹣21=﹣21=﹣21.故选:A.【点评】本题考查了程序框图与两角差的正切公式应用问题,是综合题.9.(5分)已知非空集合A,B满足以下两个条件.(ⅰ)A∪B={1,2,3,4,5,6},A∩B=∅;(ⅱ)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(A,B)的个数为()A.10B.12C.14D.16【分析】分别讨论集合A,B元素个数,即可得到结论.【解答】解:若集合A中只有1个元素,则集合B中只有5个元素,则1∉A,5∉B,即5∈A,1∈B,此时有C40=1,若集合A中只有2个元素,则集合B中只有4个元素,则2∉A,4∉B,即4∈A,2∈B,此时有C41=4,若集合A中只有3个元素,则集合B中只有3个元素,则3∉A,3∉B,不满足题意,若集合A中只有4个元素,则集合B中只有2个元素,则4∉A,2∉B,即2∈A,4∈B,此时有C43=4,若集合A中只有5个元素,则集合B中只有1个元素,则5∉A,1∉B,即1∈A,5∈B,此时有C44=1,故有序集合对(A,B)的个数是1+4+4+1=10,故选:A.【点评】本题主要考查排列组合的应用,根据元素关系分别进行讨论是解决本题的关键.10.(5分)设3x=2,y=ln2,,则()A.x<y<z B.y<z<x C.z<x<y D.z<y<x【分析】利用指数函数、对数函数的单调性直接求解.【解答】解:∵3x=2,0=log31<x=log32<log33=1,x=log32<y=ln2<lne=1,=<=<x=log32,∴z<x<y.故选:C.【点评】本题考查三个数的大小的比较,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11.(5分)在三棱锥P﹣ABC中,P A⊥平面ABC,,AP=3,,Q是边BC上的一动点,且直线PQ与平面ABC所成角的最大值为,则三棱锥P﹣ABC的外接球的表面积为()A.45πB.57πC.63πD.84π【分析】根据题意画出图形,结合图形找出△ABC的外接圆圆心与三棱锥P﹣ABC外接球的球心,求出外接球的半径,再计算它的表面积.【解答】解:三棱锥P﹣ABC中,P A⊥平面ABC,直线PQ与平面ABC所成角为θ,如图所示;则sinθ==,且sinθ的最大值是,∴(PQ)min=2,∴AQ的最小值是,即A到BC的距离为,∴AQ⊥BC,∵AB=2,在Rt△ABQ中可得,即可得BC=6;取△ABC的外接圆圆心为O′,作OO′∥P A,∴=2r,解得r=2;∴O′A=2,取H为P A的中点,∴OH=O′A=2,PH=,由勾股定理得OP=R==,∴三棱锥P﹣ABC的外接球的表面积是S=4πR2=4×=57π.故选:B.【点评】本题考查了几何体外接球的应用问题,解题的关键求外接球的半径,是中档题.12.(5分)已知f′(x)是函数f(x)的导函数,且对任意的实数x都有f′(x)=e x(2x+3)+f(x)(e是自然对数的底数),f(0)=1,若不等式f(x)﹣k<0的解集中恰有两个整数,则实数k的取值范围是()A.[﹣,0)B.[﹣,0]C.(﹣,0]D.(﹣,0)【分析】令G(x)=,可得G′(x)==2x+3,可设G(x)=x2+3x+c,G(0)=f(0)=1.解得c=1.f(x)=(x2+3x+1)e x,利用导数研究其单调性极值与最值并且画出图象即可得出.【解答】解:令G(x)=,则G′(x)==2x+3,可设G(x)=x2+3x+c,∵G(0)=f(0)=1.∴c=1.∴f(x)=(x2+3x+1)e x,∴f′(x)=(x2+5x+4)e x=(x+1)(x+4)e x.可得:x=﹣4时,函数f(x)取得极大值,x=﹣1时,函数f(x)取得极小值.f(﹣1)=﹣,f(0)=1,f(﹣2)=﹣<0,f(﹣3)=>0.∴<k≤0时,不等式f(x)﹣k<0的解集中恰有两个整数﹣1,﹣2.故k的取值范围是.故选:C.【点评】本题考查了利用导数研究其单调性极值与最值及其图象性质、方程与不等式的解法、数形结合思想方法、构造方法,考查了推理能力与计算能力,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知平面向量,满足=3,且||=1,||=2,则||等于.【分析】由已知可求,然后结合向量的数量积的性质||=,代入即可求解.【解答】解:∵=3,∴=3,∵||=1,||=2,=﹣1,则||===故答案为:【点评】本题主要考查了平面向量的数量积的运算性质的简单应用,属于基础试题.14.(5分)已知奇函数f(x)=A cos(ωx+φ)(A>0,ω>0,0<φ<π)的导函数的部分图象如图所示,E是最高点,且△MNE是边长为1的正三角形,那么f()=﹣.【分析】根据函数的奇偶性求出φ,根据△MNE是边长为1的正三角形求出A和ω,可得函数的解析式,从而求得f()的值.【解答】解:奇函数f(x)=A cos(ωx+φ)(A>0,ω>0,0<φ<π)的导函数的部分图象如图所示,∴φ=,f(x)=A cos(ωx+)=﹣A sinωx.E是最高点,且△MNE是边长为1的正三角形,∴==1,∴ω=π,A=,故f (x)=﹣sinπx.那么f()=﹣sin=﹣,故答案为:﹣.【点评】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,函数的奇偶性,正三角形的性质,属于基础题.15.(5分)已知实数x,y满足约束条件:,若z=x﹣ay只在点(4,3)处取得最小值,则a的取值范围是(﹣∞,1).【分析】由约束条件作出可行域,然后对a进行分类,当a≥0时显然满足题意,当a<0时,化目标函数为直线方程斜截式,比较其斜率与直线BC的斜率的大小得到a的范围.【解答】解:由实数x,y满足约束条件:作可行域如图,联立,解得C(4,3).当a=0时,目标函数化为z=x,由图可知,可行解(4,3)使z=x﹣ay取得最大值,符合题意;当a>0时,由z=x﹣ay,得y=x﹣,此直线斜率大于0,当在y轴上截距最大时z 最大,可行解(4,3)为使目标函数z=x﹣ay的最优解,a<1符合题意;当a<0时,由z=x﹣ay,得y=x﹣,此直线斜率为负值,要使可行解(4,3)为使目标函数z=x﹣ay取得最大值的唯一的最优解,则<0,即a<0.综上,实数a的取值范围是(﹣∞,1).故答案为:(﹣∞,1).【点评】本题考查线性规划问题,考查了分类讨论的数学思想方法和数形结合的解题思想方法,解答的关键是化目标函数为直线方程斜截式,由直线在y轴上的截距分析z的取值情况,是中档题.16.(5分)已知F是抛物线y2=4x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=﹣4(其中O为坐标原点),则△ABO面积的最小值是4.【分析】设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),x=ty+m代入y2=4x,可得y2﹣4ty﹣4m=0,根据韦达定理有y1•y2=﹣4m,由•=﹣4,得(y1•y2)2+y1•y2=﹣4,由点A,B位于x轴的两侧,得y1•y2=﹣8,从而m=2.由此能求出△ABO面积的最小值.【解答】解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),x=ty+m代入y2=4x,可得y2﹣4ty﹣4m=0,根据韦达定理有y1•y2=﹣4m,∵•=﹣4(其中O为坐标原点),∴x1•x2+y1•y2=﹣4,从而(y1•y2)2+y1•y2=﹣4,∵点A,B位于x轴的两侧,∴y1•y2=﹣8,故m=2.不妨令点A在x轴上方,则y1>0,又F(1,0),∴S△ABO=×2×(y1﹣y2)=y1﹣y2=y1+≥=4,当且仅当y1=,即y1=2时,取“=”号,∴△ABO面积的最小值是4.故答案为:4.【点评】本题考查三角形面积的最小值的求法,考查直线方程、抛物线、韦达定理、基本不等式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17〜21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)设数列{a n}的前n项和为S n,且S n=n2﹣n+1,在正项等比数列{b n}中,b2=a2,b4=a5.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设c n=a n b n,求数列{c n}的前n项和.【分析】(1)由S n=n2﹣n+1,n≥2时,a n=S n﹣S n﹣1,n=1时,a1=S1=1.即可得出a n.设正项等比数列{b n}的公比为q,由b2=a2=2,b4=a5=8.可得q,利用通项公式可得b n.(2)由(1)得:c n=a n b n=.设数列{c n}的前n项和为T n.利用错位相减法即可得出.【解答】解:(1)由S n=n2﹣n+1,n≥2时,a n=S n﹣S n﹣1=n2﹣n+1﹣[(n﹣1)2﹣(n ﹣1)+1]=2n﹣2,n=1时,a1=S1=1.∴a n=.设正项等比数列{b n}的公比为q,∵b2=a2=2,b4=a5=8.∴=2.∴b n=2×2n﹣2=2n﹣1.(2)由(1)得:c n=a n b n=.设数列{c n}的前n项和为T n.n=1时,T1=1;n≥2时,T n=1+22+2×23+3×24+……+(n﹣1)•2n,∴2T n=2+23+2×24+……+(n﹣2)•2n+(n﹣1)•2n+1,∴﹣T n=3+23+24+……+2n﹣(n﹣1)•2n+1=﹣(n﹣1)•2n+1﹣4,∴T n=(n﹣2)•2n+1+5.n=1时也成立.∴T n=(n﹣2)•2n+1+5.【点评】本题考查了数列递推关系、等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.18.(12分)如图.四棱锥P﹣ABCD中.平而P AD⊥平而ABCD,底而ABCD为梯形.AB ∥CD,AB=2DC=2,AC∩BD=F,且△P AD与△ABD均为正三角形,G为△P AD的重心.(1)求证:GF∥平面PDC;(2)求平面AGC与平面P AB所成锐二面角的正切值.【分析】(1)连接AG并延长交PD于H,连接CH,由重心性质结合已知可得,再由平行线截线段成比例可得GF∥HC.由线面平行的判定可得GF∥平面PDC;(2)由已知证明PE⊥平面ABCD,以E为原点建立如图所示空间直角坐标系,结合AB =,可得所用点的坐标,求出两个平面P AB、AGC的一个法向量,由两法向量所成角得余弦值可得平面AGC与平面P AB所成锐二面角的正切值.【解答】(1)证明:连接AG并延长交PD于H,连接CH,由于ABCD为梯形,AB∥CD且AB=2DC,知,又G为△P AD的重心,∴,在△AHC中,∵,∴GF∥HC.又HC⊂平面PCD,GF⊄平面PCD,∴GF∥平面PDC;(2)解:∵平面P AD⊥平面ABCD,△P AD与△ABD均为正三角形,延长PG交AD的中点E,连接BE,∴PE⊥AD,BE⊥AD,则PE⊥平面ABCD,以E为原点建立如图所示空间直角坐标系,∵AB=.∴A(,0,0),P(0,0,3),B(0,3,0),D(,0,0),G(0,0,1),∴,,.设C(x0,y0,z0),∵,∴,可得,,z0=0,∴C().∴.设平面P AB的一个法向量为.由,取z=1,可得.同理可得平面AGC的一个法向量.∵cos<>=.∴sin<>=.则平面AGC与平面P AB所成锐二面角的正切值为.【点评】本题考查直线与平面平行的判定,考查空间想象能力和思维能力,训练了利用空间向量求解二面角的平面角,是中档题.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P(X ≤n)≥0.5中n的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:X16171819202122P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X =19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)如图,在平面直角坐标系中,已知点F(1,0),过直线l:x=2左侧的动点P 作PH⊥l于点H,∠HPF的角平分线交x轴于点M,且PH=MF,记动点P的轨迹为曲线P.(1)求曲线P的方程.(2)过点F作直线m交曲线P于A,B两点,点C在l上,且BC∥x轴,试问:直线AC是否恒过定点?请说明理由.【分析】(1)设P(x,y),由题意可得:|MF|=|PF|,可得==.即=,化简整理即可得出.(2)由题意可得:直线m的斜率不为0,可设直线m的方程为:x=ty+1.设A(x1,y1),B(x2,y2).与椭圆方程联立化为:(t2+2)y2+2ty﹣1=0,直线AC的斜率k=,方程为:y﹣y2=(x﹣2).结合根与系数的关系化简整理即可得出.【解答】解:(1)设P(x,y),由题意可得:|MF|=|PF|,∴==.即=,化为:+y2=1.(2)由题意可得:直线m的斜率不为0,可设直线m的方程为:x=ty+1.设A(x1,y1),B(x2,y2).联立,化为:(t2+2)y2+2ty﹣1=0,△>0成立.∴y1+y2=,y1y2=﹣,x1=ty1+1.∴直线AC的斜率k=,方程为:y﹣y2=(x﹣2).即:y=[x﹣2+].又===.∴y=(x﹣2+),即y=(x﹣).∴直线AC恒过定点.【点评】本题考查了椭圆的标准方程及其性质、斜率计算公式、一元二次方程的根与系数的关系、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.21.(12分)设函数f(x)=e2x,g(x)=kx+1(k∈R).(Ⅰ)若直线y=g(x)和函数y=f(x)的图象相切,求k的值;(Ⅱ)当k>0时,若存在正实数m,使对任意x∈(0,m),都有|f(x)﹣g(x)|>2x 恒成立,求k的取值范围.【分析】(Ⅰ)设切线的坐标为(t,e2t),得到(1﹣2t)e2t=1,令h(x)=(1﹣x)e x,根据函数的单调性求出k的值即可;(Ⅱ)通过讨论k的范围,结合对任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立以及函数的单调性求出对应的函数的单调区间,求出k的具体范围即可.【解答】解:(Ⅰ)设切线的坐标为(t,e2t),由f(x)=e2x得f′(x)=2e2x,∴切线方程为y﹣e2t=2e2t(x﹣t),即y=2e2t x+(1﹣2t)e2t,由已知y=2e2t x+(1﹣2t)e2t和y=kx+1为同一条直线,∴2e2t=k,(1﹣2t)e2t=1,令h(x)=(1﹣x)e x,则h′(x)=﹣xe x,当x∈(﹣∞,0)时,h′(x)>0,h(x)单调递增,当x∈(0,+∞)时,h′(x)<0,h(x)单调递减,∴h(x)≤h(0)=1,当且仅当x=0时等号成立,∴t=0,k=2,(Ⅱ)①当k>2时,由(Ⅰ)知:存在x>0,使得对于任意x∈(0,x0),都有f(x)<g(x),则不等式|f(x)﹣g(x)|>2x等价于g(x)﹣f(x)>2x,即(k﹣2)x+1﹣e2x>0,设t(x)=(k﹣2)x+1﹣e2x,t′(x)=k﹣2﹣2e2x,由t′(x)>0,得:x<ln,由t′(x)<0,得:x>ln,若2<k≤4,ln≤0,∵(0,x0)⊆(ln,+∞),∴t(x)在(0,x0)上单调递减,注意到t(0)=0,∴对任意x∈(0,x0),t(x)<0,与题设不符,若k>4,ln>0,(0,ln)⊆(﹣∞,ln),∴t(x)在(0,ln)上单调递增,∵t(0)=0,∴对任意x∈(0,ln),t(x)>0,符合题意,此时取0<m≤min{x0,ln},可得对任意x∈(0,m),都有|f(x)﹣g(x)|>2x,②当0<k≤2时,由(Ⅰ)知e2x﹣(2x+1)≥0,(x>0),f(x)﹣g(x)=e2x﹣(2x+1)+(2﹣k)x≥(2﹣k)x≥0对任意x>0都成立,∴|f(x)﹣g(x)|>2x等价于e2x﹣(k+2)x﹣1>0,设φ(x)=e2x﹣(k+2)x﹣1,则φ′(x)=2e2x﹣(k+2),由φ′(x)>0,得x>ln>0,φ′(x)<0得x<ln,∴φ(x)在(0,ln)上单调递减,注意到φ(0)=0,∴对任意x∈(0,ln),φ(x)<0,不符合题设,综上所述,k的取值范围为(4,+∞).【点评】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想、是一道综合题.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以原点为O极点,以x轴正半轴为极轴,圆C的极坐标方程为ρ=4.(1)将圆C的极坐标方程化为直角坐标方程;(2)过点P(2,0)作斜率为1直线l与圆C交于A,B两点,试求的值.【分析】(1)圆C的极坐标方程为ρ=4,展开可得:ρ2=4×ρ(cosθ﹣sinθ),利用互化公式即可得出直角坐标方程.(2)直线l的参数方程为:(t为参数),代入上述方程可得:t2+2t﹣4=0.===.【解答】解:(1)圆C的极坐标方程为ρ=4,展开可得:ρ2=4×ρ(cosθ﹣sinθ),可得直角坐标方程:x2+y2﹣4x+4y=0.(2)直线l的参数方程为:(t为参数),代入上述方程可得:t2+2t﹣4=0.t1+t2=﹣2,t1t2=﹣4,则=====.【点评】本题考查了极坐标方程化为参数方程、参数方程化为普通方程及其应用、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]23.已知定义在R上的函数f(x)=|x﹣2m|﹣|x|,m∈N,且f(x)<4恒成立.(1)求实数m的值;(2)若α∈(0,1),β∈(0,1),f(α)+f(β)=3,求证:+≥18.【分析】(1)依据题设借助绝对值的几何意义分析求解m;(2)借助题设条件运用基本不等式进行求解.【解答】解:(1)定义在R上的函数f(x)=|x﹣2m|﹣|x|,m∈N,且f(x)<4,可得:|x﹣2m|﹣|x|≤|2m|<4,则|m|<2,解得﹣2<m<2.又m∈N,∴m=1,0,证明(2)当m=0时,f(x)=0,显然不满足,f(α)+f(β)=3,当m=1时,f(x)=|x﹣2|﹣|x|=∵α∈(0,1),β∈(0,1),∴f(α)+f(β)=2﹣2α+2﹣2β=3,即α+β=,∴:+=2(+)(α+β)=2(5++)≥2(5+2)=18,当且仅当=,即α=,β=时取等号,故+≥18.【点评】本题考查绝对值不等式的解法,不等式的证明,考查转化思想以及计算能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档