反比例函数的教学设计

合集下载

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 理解反比例函数的定义及其性质;2. 学会如何求反比例函数的解析式;3. 能够运用反比例函数解决实际问题。

过程与方法:1. 通过观察实例,引导学生发现反比例函数的规律;2. 利用图形计算器,让学生直观地感受反比例函数的图像和性质;3. 培养学生运用数学知识解决实际问题的能力。

情感态度与价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生勇于探索、积极思考的科学精神;3. 培养学生合作交流、解决问题的能力。

二、教学重点与难点:重点:1. 反比例函数的定义及其性质;2. 反比例函数的图像特征。

难点:1. 反比例函数解析式的求解;2. 反比例函数在实际问题中的应用。

三、教学过程:环节一:导入新课1. 利用实例引入反比例函数的概念;2. 引导学生发现反比例函数的规律;3. 提问:什么是反比例函数?它有哪些特点?环节二:自主探究1. 学生利用图形计算器,观察反比例函数的图像;2. 学生总结反比例函数的性质;3. 学生分组讨论,探讨反比例函数的解析式求解方法。

环节三:课堂讲解1. 教师讲解反比例函数的定义及其性质;2. 教师示范求解反比例函数解析式;3. 教师举例说明反比例函数在实际问题中的应用。

环节四:巩固练习1. 学生完成课后练习题;2. 学生互相讨论,解决练习题中的问题;3. 教师点评并讲解练习题。

环节五:课堂小结1. 学生总结本节课所学内容;2. 教师强调反比例函数的重要性和应用价值;3. 学生分享学习心得和感悟。

四、教学评价:1. 课后练习题的完成情况;2. 学生对反比例函数的理解程度;3. 学生在实际问题中运用反比例函数的能力。

五、教学资源:1. 反比例函数的PPT;2. 图形计算器;3. 课后练习题及答案。

六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索反比例函数的定义和性质;2. 利用信息技术工具,如图形计算器,直观展示反比例函数的图像,增强学生对函数概念的理解;3. 通过实际问题的引入,让学生体会反比例函数在生活中的应用,提高学生解决实际问题的能力;4. 注重学生合作交流,鼓励学生分组讨论,培养学生的团队协作精神;5. 及时反馈,针对学生的掌握情况,调整教学进度和方法。

《反比例函数》初三数学教案

《反比例函数》初三数学教案

《反比例函数》初三数学教案《反比例函数》初三数学教案作为一名辛苦耕耘的教育工作者,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。

那要怎么写好教案呢?下面是店铺收集整理的《反比例函数》初三数学教案,仅供参考,希望能够帮助到大家。

《反比例函数》初三数学教案篇1一、创设情境引入课题活动1问题:你们还记得一次函数图象与性质吗?设计意图通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。

师生形为:教师提出问题。

学生思考、交流,回答问题。

教师根据学生活动情况进行补充和完善。

二、类比联想探究交流活动2问题:例2 画出反比例函数y= 与y=- 的图象。

(教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。

)设计意图:通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。

师生形为:学生可以先自己动手画图,相互观摩。

在此活动中,教师应重点关注:1学生能否顺利进行三种表示方法的相互转换:2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;3在动手作图的过程中,能否勤于动手,乐于探索。

比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。

)设计意图:学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。

在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。

师生形为:学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。

教师参与到学生的讨论中去,积极引导。

(三)探索比较发现规律活动3问题:观察反比例函数y= 与y=- 的图象。

第六章反比例函数(教案)

第六章反比例函数(教案)
c.增减性理解:通过具体数值分析,如当x>0时,k>0和k<0的情况下,y的增减性变化,让学生能够清晰地理解并应用这一性质。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个变量的乘积保持不变的情况?”(如:在固定面积的土地上,种植的作物密度与每株作物的占地面积成反比。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
第六章反比例函数(教案)
一、教学内容
本节课选自《数学》八年级下册,对应章节为第六章“反比例函数”。教学内容主要包括以下三个方面:
1.反比例函数的定义:引导学生理解反比例函数的概念,掌握其一般形式y=k/x(k≠0)。
2.反比例函数的性质:探讨反比例函数的图像特点,如图像为双曲线,以及在不同象限内的增减性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y=k/x(k≠0)的函数,它描述了两个变量之间的反比关系。反比例函数在解决实际问题中具有重要作用,如物理中的电流、电压关系等。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了反比例函数在实际中的应用,以及它如何帮助我们解决问题。
-反比例函数在实际问题中的应用,如何从描述中抽象出反比例关系,并建立函数模型。
-对反比例函数增减性的理解,尤其是在不同象限内如何判断其变化趋势。
举例:
a.图像的双曲线特性:通过绘制图像和观察,帮助学生理解反比例函数图像为何是双曲线,并解释渐近线的含义。
b.实际问题中的应用:给出具体情境,如“某商品的价格与购买数量成反比”,指导学生如何将问题描述转化为数学表达式,即y=k/x的形式。

反比例函数教案设计思路 反比例函数优秀教案

反比例函数教案设计思路 反比例函数优秀教案

反比例函数教案设计思路反比例函数优秀教案反比例函数教案设计思路第 1 篇一、教学目标【学问与技能】从现实情境和已知阅历动身,争辩两个变量之间的相互关系,加深对概念的理解。

了解反比例函数的意义,理解反比例函数的概念。

会求简洁实际问题中的反比例函数解析式。

【过程与方法】经受抽象反比例函数概念的过程,进一步提高探究问题、归纳问题的力气,能运用函数思想方法解决有关问题。

【情感态度与价值观】增加用函数观点思考问题的意识和习惯。

二、教学重难点【重点】反比例函数的概念。

【难点】反比例函数的概念。

三、教学过程(一)导入新课情景设置:(呈现图片)生活中,存在着许多变化的量,比如:在乘坐火车时观看列车时刻表,你就能观看到许多变化的量.思考:表中有哪些是常量?哪些是变量?变量之间有怎样的关系?问题:一辆列车从南京动身开往上海,以速度v(km/h)行驶,行驶时间为t(h),行驶路程为s(km).(1)若速度v=160(km/h),行驶路程s(km)与行驶时间为t(h)之间的关系式为?(2)若南京到上海总路程约301km,行驶速度v与行驶t(h)的关系式为?我们利用数学表达式描述了这两个生活中的例子,同学们观看这两个表达式,这里有你生疏的函数吗?(3)v,t的积为定值,在学校里我们学过,假如两个量的乘积确定,那么这两个量成反比例,能把它写成函数形式吗?假如可以写成,那么v是t的函数吗?(二)生成新知出示例题:(1)京沪铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;反比例函数教案设计思路第 2 篇反比例函数解题技巧反比例函数是学校数学函数部分的重要内容,是一个核心学问点.由反比例函数的图像和性质能衍生出许多数学问题.随着新课改的不断深化,在近几年的各地中考数学试卷中,以反比例函数为背景设计的新题型也随处可见,试题难度以低、中档为主,常见的题型有填空题、选择题和解答题.同学们要能娴熟运用反比例函数的图像和性质答题.一、利用反比例函数图像的增减性例1 反比例函数y等于[2x]图像上有三个点(x1,y1)、(x2,y2)、(x3,y3),其中(x1【点拨】假如我们能把函数的图像大致画出来,在图像上描出三个对应点,那么我们解决这种问题就相对比较直观,也比较简洁了.例2 在反比例函数[1-2mx]的图像上有两点A(x1,y1)、B(x2,y2),当x10A. m0B. m0C.[m12]D.[m12]【点拨】对于这道题,我们必需依据x和y的关系先推断函数图像的分布,然后依据函数图像的增减性来求m值的范围.例3 工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧,进行锻造操作.经过8min时,材料温度降为600℃.煅烧时,温度y(℃)和时间x(min)成一次函数关系;锻造时,温度y(℃)和时间x(min)成反比例关系(如图1).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y和x的函数关系式,并且写出自变量x的取值范围;(2)依据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?【点拨】由图像可知曲线BC的表达式是y等于[4800x],在解决其次个问题时,科学的解法应当是令y等于[4800x]480,但由于大家还没有学过分式不等式,那只能先解方程[4800x]等于480,然后结合函数的增减性得出x10.二、利用反比例函数表达式中"k"的几何意义争论函数问题要*函数的本质特征.反比例函数y等于[kx](k0)中,反比例系数k有一个很重要的几何意义:过反比例函数y等于[kx(k0)]图像上任意一点P作x轴、y轴的垂线PM、PN,垂足为M、N,则矩形PMON的面积S等于PMPN等于[yx 等于xy等于k].所以,过双曲线上任意一点作x轴、y轴的垂线,它们和x轴、y 轴所围成的矩形面积为常数.从而有S△PNO等于S△PMO等于[12k].在解决有关反比例函数的问题时,若能灵敏运用反比例函数中"k"的几何意义,则会给解题带来很多便利.应用1:比较面积大小.例4 如图2,在函数y等于[2x](x0)的图像上有三点A、B、C.过这三点分别向x轴、y轴作垂线.过每一点所作的两条垂线和x轴、y轴围成的矩形的面积分别为SA、SB、SC,则( ).A. SASBSCB. SAC. SA【点拨】依据反比例函数中"k"的几何意义可知SA等于2,SB等于2,SC等于2.所以SA等于SB等于SC.故选D.应用2:求面积.例5 若函数y等于kx(k0)和函数y等于[1x]的图像相交于A、C两点,AB垂直x轴于B,则△ABC的面积为( ).A. 1B. 2C. kD. k2【点拨】如图3,若先求出A、C两点的坐标,再求△ABC的面积,则解题过程简洁烦琐.若能利用反比例函数中"k"的几何意义,则能"快刀斩乱麻".解:由反比例函数图像关于原点成中心对称知O为AC中点.依据反比例函数中"k"的几何意义,有S△ABO等于[121]等于[12].又由于△ABO和△BOC是同底等高的三角形,所以S△ABC等于2[12]等于1.故选A.应用3:确定解析式.例6 如图4,反比例函数y等于[kx][(k0)]和一次函数y等于-x-k的图像相交于A点,过A点作ABx轴于点B.已知S△AOB等于2,直线y等于-x-k和x轴相交于点C.求反比例函数和一次函数的解析式.【点拨】由反比例函数y等于[kx][(k0)]中"k"的几何意义知S△AOB等于2等于[12][k],故[k等于4].又由于反比例函数图像在其次、四象限,所以[k等于-4].从而可知,两个函数的解析式分别为[y等于-4x]和y等于-x+4.三、利用反比例函数图像的对称性中心对称的实质是旋转变换,和函数图像融合时具有较强的直观性、操作性,较好地实现了数学基本学问、空间观念和多种数学思维力气的综合运用,由于反比例函数的图像有中心对称性,所以可以将非特殊图形转化为特殊图形(圆形),解题的关键是面积的割补及对称转化.例7 下图中正比例函数和反比例函数的图像相交于A、B两点,分别以A、B两点为圆心,作出和y轴相切的两个圆,若点A的坐标为(1,2),求图中两个阴影面积的和.【点拨】利用反比例函数图像和圆的对称性求解.解:由点A的坐标可知,圆的半径是1,又由反比例函数的对称性知,两个阴影部分的面积和应为一个圆的面积,因此图中两个阴影面积的和为.例8 已知反比例函数y等于[1x]、y等于-[1x]的图像和一个圆,则图中阴影部分的面积是( ).A. B.2 C.4 D.条件不足,无法求【点拨】依据反比例函数的图像的对称性和圆的对称性得出:图中阴影部分的面积等于圆的面积的一半,由于圆的半径是2,所以图中阴影部分的面积是[12]22等于2.故选B.四、利用一次函数图像和反比例函数图像的交点解一次函数和反比例函数相结合的题,要充分利用"交点在两个函数图像上"这个有利的条件,确定函数的关系式,并结合图像,依据函数图像的相关性质分析函数值之间的关系.例9 如图,一次函数和反比例函数的图像相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是 .【点拨】由一次函数和反比例函数的图像相交于A、B两点,可知图中使反比例函数的值小于一次函数的值的x的取值范围是:x-1或0此外,还有一次函数和反比例函数的综合应用题,一般它包含两个区间的函数关系,因此同学们在求两个函数的关系式时应特别留意转折点(即公共点),它又是自变量的取值范围的分界点.解决函数情境应用题的核心是通过观看和分析图像、图表、情境,捕获有效信息,并对已获得的信息进行加工、处理和整理,分清变量之间的关系,选择适当的数学工具,將实际问题转化为相应的函数数学模型来解决问题.【反比例函数教案设计思路反比例函数优秀教案】。

反比例函数教学设计(通用6篇)

反比例函数教学设计(通用6篇)

反比例函数教学设计(通用6篇)反比例函数教学设计(通用6篇)作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

反比例函数教学设计1教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学方法教师引导学生进行归纳.教具准备投影片两张第一张:(记作5.1A)第二张:(记作5.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B 地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.Ⅱ.新课讲解[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?1.复习函数的定义[师]大家还记得函数的定义吗?[生]记得.在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y 都有唯一确定的值与它对应,则称y是x的函数.[师]大家能举出实例吗?[生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.[师]请看下面的问题.电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?请大家交流后回答.[生](1)能用含有R的代数式表示I.由IR=220,得I= .(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I= .当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.[师]这位同学回答的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I= ,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.投影片:(5.1A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt,则有t= .当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.[师]从上面的两个例题得出关系式I= 和t= .它们是函数吗?它们是正比例函数吗?是一次函数吗?[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I= 与t= 可知关系式为y= (k为常数且k≠0).[师]很好.一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式,那么称y是x的反比例函数.从y= 中可知x作为分母,所以x不能为零.3.做一做投影片(5.1B)1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:x-2-113y2-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy=20.则有y= .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m= .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y 的值.[生]设反比例函数的表达式为y= .(1)当x=-1时,y=2;∴k=-2.∴表达式为y=- .(2)当x=-2时,y=1.当x=- 时,y=4;当x= 时,y=-4;当x=1时,y=-2.当x=3时,y=- ;当y= 时,x=-3;当y=-1时,x=2.因此表格中从左到右应填-3,1,4,-4,-2,2,- .Ⅲ.课堂练习随堂练习(P131)Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.Ⅴ.课后作业习题5.1Ⅵ.活动与探究已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?分析:由y与x成反比例可知y= ,得y-1与成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.板书设计反比例函数教学设计2一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

6.1反比例函数(教案)(3)

6.1反比例函数(教案)(3)
5.培养学生的团队合作意识,通过小组讨论与合作,让学生在探讨反比例函数相关知识的过程中,学会倾听、交流、协作。
三、教学难点与重点
1.教学重点
(1)反比例函数的定义:y = k/x(k≠0),强调k不为零,这是反比例函数成立的前提条件。
举例:在实际问题中,如速度与时间的关系,当时间为零时,速度没有意义,因此k不能为零。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x(k≠0)的函数。它在描述现实生活中的反比关系方面具有重要应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了反比例函数在描述物体在反比例力作用下运动的应用,以及它如何帮助我们解决问题。
针对这个问题,我计划在接下来的课程中,增加一些与生活紧密相关的反比例函数实例,让学生更加直观地感受反比例函数的作用。此外,我还将加强对学生的引导,鼓励他们在小组讨论中积极发表自己的观点,提高他们的参与度。
另外,我在课程中强调了反比例函数与一次函数图像的关系,但感觉学生们对此部分的掌握程度并不理想。在今后的教学中,我需要更加注重这方面的讲解和练习,让学生更好地理解两者之间的联系和区别。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、图像性质和实际应用。同时,我们也通过实践活动和小组讨论加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(2)反比例函数的图像与性质:双曲线、在每个象限内y随x的增大而减小(k>0)或增大(k<0)。

反比例函数教案优秀7篇

反比例函数教案优秀7篇

反比例函数教案优秀7篇《反比例函数》教学设计篇一一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。

因此反比例函数的概念与意义的教学是基础。

二、学情分析由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

三、教学目标知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式。

解决问题:能从实际问题中抽象出反比例函数并确定其表达式。

情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。

四、教学重难点重点:理解反比例函数意义,确定反比例函数的表达式。

难点:反比例函数表达式的确立。

五、教学过程(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x (单位:m)的变化而变化。

请同学们写出上述函数的表达式14631000(2)y=txk可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx (1)v=是自变量,y是函数。

此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。

由于是分式,当x=0时,分式无意义,所以x≠0。

当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。

此时y 就不是反比例函数了。

举例:下列属于反比例函数的是(1)y=(2)xy=10(3)y=k—1x(4)y=—此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x—1成反比例,y+1与x成反比例,y+1与x—1成反比例,将如何设其解析式(函数关系式)已知y与x成反比例,则可设y与x的函数关系式为y=kx?1k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x—1成反比例,则可设y与x的函数关系式为y=已知y+1与x—1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!反比例函数教案(优秀6篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

26.1.1反比例函数教案

26.1.1反比例函数教案

26.1.1反比例函数教案篇一:九年级下册数学26.1反比例函数教学设计26.1反比例函数板书设计:反比例函数定义:等价形式:篇二:26.1.1反比例函数教案第26章反比例函数26.1.1反比例函数【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。

从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。

因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。

【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定【学法指导】自主、合作、探究篇三:26.1反比例函数教案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如y?k(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量xx栏建一个面积为另一边长y(m)与的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数?y?k(k≠0)?xy=k(k≠0)?变量y与x成反比例,比例系数为k.x第1页k(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,x 123分母不能是多项式,只能是x的一次单项式,如y?,y?等都是反比例函数,但y?就不是关1xx?1x2拓展(1)在反比例函数y?于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数y?k中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上x一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式y?k(k≠0).x(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.第2页(3)反比例函数y?k(k≠0)的图象的两个分支关于原点对称.x(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0. k的图象是由两支曲线组x(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数y?成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。

运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。

案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。

师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。

通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。

二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。

复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。

案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。

师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。

那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。

生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。

反比例函数教案设计(优秀篇)

反比例函数教案设计(优秀篇)

反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:理解反比例函数的概念,掌握反比例函数的性质和图像特点;能够运用反比例函数解决实际问题。

2. 过程与方法:通过观察、分析、归纳等方法,探索反比例函数的性质;学会用图像和解析式表示反比例函数。

3. 情感态度价值观:培养学生的数学思维能力,提高学生对数学的兴趣;培养学生合作交流的能力,提高学生的团队协作精神。

二、教学内容1. 反比例函数的概念:反比例函数的定义、形式。

2. 反比例函数的性质:比例系数、定义域、值域、图像特点。

3. 反比例函数的图像:绘制反比例函数的图像,观察图像的形状和特点。

4. 反比例函数的实际应用:解决实际问题,如面积、速度、浓度等问题。

三、教学重点与难点1. 重点:反比例函数的概念、性质和图像特点。

2. 难点:反比例函数的实际应用,特别是复杂问题的解决。

四、教学方法与手段1. 教学方法:采用问题驱动、案例分析、小组讨论等教学方法,引导学生主动探究、积极参与。

2. 教学手段:利用多媒体课件、反比例函数图像软件等辅助教学,提高教学效果。

五、教学过程1. 导入新课:通过一个实际问题,引入反比例函数的概念。

2. 自主学习:学生自主学习反比例函数的定义和性质,理解反比例函数的概念。

3. 合作探究:学生分组讨论,探索反比例函数的图像特点,总结反比例函数的性质。

4. 课堂讲解:教师讲解反比例函数的性质和图像特点,引导学生理解反比例函数的概念。

5. 练习巩固:学生进行课堂练习,运用反比例函数解决实际问题。

6. 课堂小结:教师总结本节课的反比例函数知识点,强调重点和难点。

7. 课后作业:布置相关的课后作业,巩固反比例函数的知识。

六、教学评价1. 评价目标:检查学生对反比例函数的概念、性质和图像特点的理解程度。

2. 评价方法:课堂提问、课堂练习、课后作业、小组讨论等。

3. 评价内容:反比例函数的定义、性质、图像特点,以及实际应用能力的展示。

七、教学反馈1. 课堂反馈:通过课堂提问、练习等环节,及时了解学生的学习情况,对学生的疑惑进行解答。

(完整版)反比例函数教案

(完整版)反比例函数教案

第十七章 反比例函数17.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xky =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0.讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。

(3)xky =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k(k ≠0)的形式三、例题的意图分析教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念.补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

四、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的? 五、例习题分析例1.见教材P47分析:因为y 是x 的反比例函数,所以先设xky =,再把x =2和y =6代入上式求出常数k,即利用了待定系数法确定函数解析式。

反比例函数教案6篇

反比例函数教案6篇

反比例函数教案精选6篇作为一无名无私奉献的教育工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

那么你有了解过教案吗?下面是本文范文为大伙儿带来的6篇《反比例函数教案》,亲的肯定与分享是对我们最大的鼓励。

反比例函数教案篇一教学目标(1)进一步体验现实生活与反比例函数的关系。

(2)能解决确定反比例函数中常数志值的实际问题。

(3)会处理涉及不等关系的实际问题。

(4)继续培养学生的交流与合作能力。

重点:用反比例函数知识解决实际问题。

难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。

教学过程:1、引入新课上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。

今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。

例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。

轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨2、提出问题、解决问题(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t0.t(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)(3)明确了问题的区别,那么第二问怎样解决根据反比例函数v=240(t0),当t=5时,v=48。

即每天至少要48吨。

这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。

实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0t≤5,即0240/v≤5,可以知道v≥48即至少要每天48吨。

反比例函数的说课稿5篇

反比例函数的说课稿5篇

反比例函数的说课稿5篇生活的紧密联系,增加应用意识,提高运用代数方法解决问题的能力.(二)能力训练要求通过对反比例函数的应用,培养学生解决问题的能力.(三)情感与价值观要求经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题,理解问题,并能综合运用所学的学问和技能解决问题,发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用.教学重点用反比例函数的学问解决实际问题.教学难点如何从实际问题中抽象出数学问题、建立数学模型,用数学学问去解决实际问题.教学方法老师引导学生探究法.教具预备投影片四张第一张:(记作5.3A)第二张:(记作5.3B)第三张:(记作5.3C)第四张:(记作5.3D)教学过程Ⅰ.创设问题情境,引入新课[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?[生]是为了应用.[师]很好.学习的目的是为了用学到的学问解决实际问题.毕竟反比例函数能解决一些什么问题呢?本节课我们就来学一学.一、新授:1、实例1:(1)用含S的代数式表示P,P是 S的反比例函数吗?为什么?答:P=600s (s0),P 是S的反比例函数。

(2)、当木板面积为0.2 m2时,压强是多少?答:P=3000Pa(3)、假如要求压强不超过6000Pa,木板的面积至少要多少?答:至少0.lm2。

(4)、在直角坐标系中,作出相应的函数图象。

(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。

二、做一做1、(1)蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R之间的函数关系如图5-8 所示。

(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?电压U=36V , I=60k2、完成下表,并回答问题,假如以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应掌握在什么范围内? R() 3 4 5 6 7 8 9 10I(A )3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 )(1)分别写出这两个函数的表达式;(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;1.反比例的应用教学设计2.函数图像教学设计3.反比的函数教学设计4.六班级数学反比例教学设计5.二次函数线段最值教学设计6.任意角的三角函数教学设计7.高中数学函数教学设计8.二次函数概念教学设计9.关于《长城》教学设计10.关于将心比心教学设计反比例函数的说课稿(精选篇4)目标:1、使学生理解反比例函数的概念;2、使学生能依据问题中的条件确定反比例函数的解析式;3、能结合图象理解反比例函数的性质。

初二数学《反比例函数》说课稿(通用5篇)

初二数学《反比例函数》说课稿(通用5篇)

初二数学《反比例函数》说课稿初二数学《反比例函数》说课稿(通用5篇)作为一无名无私奉献的教育工作者,常常要根据教学需要编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。

写说课稿需要注意哪些格式呢?下面是小编为大家收集的初二数学《反比例函数》说课稿(通用5篇),仅供参考,大家一起来看看吧。

初二数学《反比例函数》说课稿1各位评委:大家好!今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。

我将从如下步骤进行。

一、说教材1、内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。

因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

2、学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

二、说教学目标根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:1、从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

三、说教法本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。

于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

关于反比例函数数学教案5篇

关于反比例函数数学教案5篇

关于反比例函数数学教案5篇关于反比例函数数学教案5篇数学教学鼓励学生进行创新思维和批判性思考。

学生应该有独立思考能力,能够对于数学问题进行分析、评价和解决方案的提出。

下面给大家分享反比例函数数学教案,欢迎阅读!反比例函数数学教案篇1教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

教学目的:1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

2.使学生进一步认识事物之间的相互联系和发展变化规律。

3.初步渗透函数思想。

教具准备:投影仪、投影片、小黑板。

教学过程:一、复习1.让学生说说什么是成正比例的量:2.用投影片出示下面的题:(1)下面各题中哪两种量成正比例为什么①笔记本单价一定,数量和总价:⑨汽车行驶速度一定.行驶的路程和时间。

②工作效率一定.’工作时间和工作总量。

①一袋大米的重量一定.吃了的和剩下的。

(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。

在什么条件下,其中两种量成正比例二、导入新课教师:如果加工零件总数一定。

每小时加工数和加工时间会成什么样的变化.关系怎样就是我们这节课要学习的内容。

三、新课1.教学例4。

出示例4;丰机械厂加工一批机器零件。

每小时加工的数量和所需的加工时间如下表。

让学生观察这个表,然后每四人一组讨论下面的问题:(1)表中有哪两种量(2)所需的加工时间怎样随着每小时加工的个数变化(3)每两个相对应的数的乘积各是多少学生分组讨论后集中发言。

然后每个小组选代表回答上面的问题。

随着学生的回答,教师板书如下:每小时加工数加工时间10 × 60 =600。

30 × 20 =600。

40 × 15 =600,“这个积600。

实际上是什么”在“加工时间”后面板书:零件总数“积一定,就说明零件总数怎样”在零件总数后面板书:(一定)“每小时加工数、加工时间和零件总数这三种量有什么关系呢”学生回答后,教师小结:通过刚才的观察分析.我门可以看出。

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:(1)理解反比例函数的定义;(2)掌握反比例函数的性质;(3)能够运用反比例函数解决实际问题。

2. 过程与方法:(1)通过观察实例,引导学生发现反比例函数的规律;(2)利用图形演示反比例函数的特点;(3)运用数学建模的方法,解决生活中的反比例函数问题。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生运用数学知识解决实际问题的能力;(3)培养学生的团队协作和交流能力。

二、教学重点与难点1. 教学重点:(1)反比例函数的定义;(2)反比例函数的性质;(3)反比例函数在实际问题中的应用。

2. 教学难点:(1)反比例函数图形的特点;(2)解决实际问题时,如何建立反比例函数模型。

三、教学过程1. 导入新课:(1)引导学生回顾正比例函数的知识;(2)通过提问,激发学生对反比例函数的好奇心。

2. 自主学习:(1)让学生阅读教材,理解反比例函数的定义;(2)学生相互讨论,总结反比例函数的性质。

3. 课堂讲解:(1)利用图形演示反比例函数的特点;(2)讲解反比例函数在实际问题中的应用。

4. 课堂练习:(1)布置一些反比例函数的题目,让学生独立完成;(2)挑选学生回答,总结解题思路。

5. 课后作业:(1)巩固反比例函数的知识;(2)培养学生运用反比例函数解决实际问题的能力。

四、教学评价1. 课堂讲解:评价学生对反比例函数的理解程度;2. 课堂练习:评价学生运用反比例函数解决问题的能力;3. 课后作业:评价学生对反比例函数知识的掌握情况。

五、教学资源1. 教材:提供反比例函数的相关知识;2. 图形演示软件:帮助学生直观地理解反比例函数的特点;3. 实际问题案例:培养学生运用反比例函数解决实际问题的能力。

六、教学策略1. 实例引导:通过展示实际生活中的反比例关系,如人口增长、radioactive decay等,让学生直观地感受反比例函数的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.1 反比例函数
盐城市初级中学周咏梅
教材分析:
本节的内容主要是反比例函数的概念,教材设计的基本思路是从现实生活中大量的反比例关系中抽象出反比例函数的概念,让学生感受反比例函数是刻画现实世界中特定数量关系的一种有效的数学模型,逐步从对具体的反比例函数的感性认识上升到对抽象的反比例函数概念的理性认识.同时,本节内容的学习,直接关系到本章后续内容的学习,也是继续学习其他各类函数的基础.另外,其中蕴涵的类比、归纳、对应和函数的数学思想方法,对学生今后研究问题、解决问题以及终身的发展都是非常有益的.
教学目标:
1.理解反比例函数的概念,能判断一个给定的函数是否为反比例函数.2.能根据实际问题中的条件确定反比例函数的解析式.
3.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;在抽象反比例函数概念的过程中,进一步渗透类比、归纳、对应、函数、转化等数学思想方法;通过学习反比例函数,培养学生合作交流和探索的能力.
教学重点:
经历抽象反比例函数概念的过程,理解反比例函数的概念.
教学难点:
领会反比例函数的意义,理解反比例函数的概念.
教学方法:
本节课采用探索式教学法,引导学生通过独立思考、自主探索、合作交流等活动方式亲历知识的发生、发展过程,学会获取新知识的方法,有利于实现教学目标.练习时,设计学生编题比赛,从学生所编的题中选题作为学生练习,激发学生的自信心,调动学生学习的兴趣.
教学手段:
利用多媒体辅助教学,增强直观性,提高学习效率和质量,激发学习兴趣,调动积极性.
教学过程:
一、创设情境,提出问题
展示图片:
飞驰的列车
(展示图片)生活中,存在着许多变化的量,比如:在乘坐火车时,你就能观察到许多变化的量.这是南京到上海的部分列车时刻表,观察表中的数据,思考:表中有哪些是常量?哪些是变量?变量之间有怎样的关系?
问题一一辆列车从南京出发开往上海,以速度v(km/h)行驶,行驶时间为t(h),行驶路程为s(km).
(1)若速度v=160(km/h),行驶路程s(km)与行驶时间为t(h)之间的关系式为s=160t.
(2)若列车已经行驶了80km,继续以v=150(km/h)的速度行驶t(h),行驶总路程s(km)与时间t(h)之间的关系式为s=150t+80.(3)若南京到上海总路程约301km,行驶速度v与行驶t(h)的关系式为vt=301 .
我们利用数学表达式描述了这三个生活中的例子,同学们观察这三个表达式,这里有你熟悉的函数吗?
(3)中v,t的积为定值,在小学里我们学过,如果两个量的乘积一定,那
么这两个量成反比例,能把它写成函数形式吗?v=301
t
,那么v是t的函数吗?
(4)给定变量t的值,变量v都有唯一确定的值与它对应吗?
(5)速度v是时间t的函数吗?你是如何判断的?
这是个什么函数呢?其实,在我们的生活中还存在着许多类似的函数,我们一起来看一看?
问题二用函数表达式表示下列问题中变量之间的关系:
(1)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;
(2)游泳池的容积为5000m3,向池内注水,注满水所需时间a(h)随注水速度b(m3/h)的变化而变化;
(3)实数m与n的积为-200,m 随n的变化而变化.
二、合作交流,探究概念
1.观察交流,生成概念.
请同学们观察黑板上这些表达式,它们有哪些共同的特点呢?
你能类比一次函数的定义,给反比例函数下个定义吗?
反比例函数:一般地,形如y=k
x
(k为常数,k≠0)的函数叫做反比例函
数,其中x是自变量,y 是x的函数.2.合作交流,剖析概念.
思考以下几个问题.
(1)反比例函数满足哪种形式?反过来满足y=k
x
(k为常数,k≠0)的形
式一定是反比例函数.
(2)定义中k为常数,是指k可以取哪些类型的数(可举例说明)?
(3)自变量、函数值有取值范围吗?如果有,说出取值范围.
教师引导学生归纳总结.
请举出1、2个反比例函数的例子.
教师注意补充如:
2
=-
y
x

2
3
=-
y
x
,2xy=1.
三、联系生活、应用概念
1.联系生活,应用概念.
反比例函数是刻画现实世界的一种有效模型,在数学问题的研究中有着广泛的应用,比如:
例(1)面积是50cm2的矩形,一边长y(cm)随另一边长x(cm)的变化而变化.
(2)体积是100 cm3的圆锥,高h(cm)随底面面积s(cm2)的变化而变化.
(3)江苏省的总面积为1.026×105平方千米,人均占有土地面积s(平方千米/人)随全省总人口n(人)的变化而变化.
(4)妈妈买菜已经用了25(元),还想买5元/斤的鱼a斤,则总的花费y (元)随着所购买的斤数a(斤)的变化而变化.
2.练习互动,深化知识.
你还能举出反比例函数的其他实际例子吗?请每个同学写出一道符合下列条件的实际应用题.
条件:
(1)所出题中含有两个变量,体现反比例函数关系;
(2)符合实际意义,无文字表达错误;
(3)每位同学出一道题,经小组讨论后,推选一道一题,到讲台前展示.3.欣赏图片,感受应用.
让我们再次来感受生活中蕴含的反比例函数.(图片展示)
美妙的灯光把舞台妆点的美轮美奂,灯光的明暗受到电流I、电压U和电阻
R的影响,它们之间满足U=IR,通常交流电源电压为220伏,
220

I
R
,电阻R
增大,电流I变小,灯变暗;电阻R减小,电流I变大,灯变亮.
温馨的房间需要铺设地板砖来装饰,房间的面积不变,选用地面砖的块数y 是一块地面砖的面积s的反比例函数.
四、小结回顾,快乐提升
谈谈你本节课的收获!
通过本节课的学习,你最大的收获是什么?你最大的疑惑是什么?
五、类比迁移,整体把握
本节课我们一起了解了反比例函数的概念,当然我们对反比例函数的研究才刚刚开始,本章将对《反比例函数》进行系统的研究,那么本章将研究反比例函数的哪些内容呢?不妨作一次思考和展望:八年级上学期我们研究过一次函数是从哪几个方面进行研究的?我们一起来梳理一下:
一次函数的概念——一次函数的图像与性质——一次函数的应用——一次函数与一元一次方程、一元一次不等式、二元一次方程组的联系.类比:类比一次函数的研究我们也将从以下几个方面对反比例函数进行研究.
反比例函数的概念——反比例函数的图像与性质——反比例函数的应用——反比例函数与一次函数、分式方程的联系.
我们还可以做一个大胆的猜想:以后研究函数基本从哪几方面去研究?
函数概念——函数图像与性质——函数的应用——函数与函数、方程的联系.
同学们,结合刚才的知识结构图,你认为下节课将研究反比例函数的什么知识呢?
生:反比例函数的图像.
我们一起期待下节课反比例函数图像的探索.六、作业布置
课本126页习题1、2题.
七、板书设计。

相关文档
最新文档