02-交错级数及其审敛法PPT
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又an (Vn -1)+1 1 + 1 n — 1 yl~n +1 n — 1
则{an }单调递减.显然lim an =
0.
故原级数收敛.
n—8
三、小结
8
8
如果级数为交错级数£ (-1) “与或£ (-1) n
验证:% }单调递减且趋于0 ,则级数收敛a.n9
n=1
n=1
竺"ns ns
・级数收敛于和S, 且s < a1.
(2)余项 rn =~(an+1 - an+2 + …), + rn\ = an+1 - an+2 …,
满足收敛的两个条件,...|" < an+!•
定理证毕.
8 (-1)项
例1、判别级数£n — 1
的敛散性.
n=2
解:记an = = > 0,则级数为交错级数. n — 1
Βιβλιοθήκη Baidu(ii) lim an = 0 .
nT8 8
£ 则⑴ (-1)n-1 an收敛,且其和s满足:0 < s < a1;
n=1
(2)级数的余项rn = s-sn满足|rn| < an+1.
板书少 证明:⑴..・an_1 - an > 0,
•・• s2 n = (a1 一 a2)+ (a3 一 a4)+ …+ (a2 n-1 一 a 2 n)
数列{ s2〃}是单调增加的,
又 s2n = a1 一 (a2 一 a3)-----(a2n-2 一 a2n-1)
一 a2n
< "数列{S2n }是有界的,
lim s2n = s < a1. •/ lim a2n+1 = 0,
n—8
n—B
板 书,・・・ lim 5+i = lim(sn + a2w+1) = s,
一、交错级数及其审敛法
定义:正、负项相间的级数称为交错级数,即
8
8
£ (~1)n an,或 £(-1)-1 an,
n=1
n=1
其中对任意n,有an > 0 .
交错级数审敛法(莱布尼茨判别法):
8
若交错级数£ (-1)"T an (匕> 0)的一般项满足:
n=1
① an+i < an (n = L2,…);