巧妙利用三角形的重心的向量式证明三角形的面积比

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7

1

6

2

44E

D

O C

B A

E D

O

C

B

A G F

O E D

C

B A

巧妙利用三角形的重心的向量式证明三角形的面积比

我们知道在ABC 中,若O 是其重心,则有0OC OB OA ,反之亦成立。教学中我们遇到过很多习题,都是有关重心的应用问题,一类求面积比的习题引起笔者的注意。通过几个小题把这个问题展现的淋漓尽致。给同学们留下了深刻的印象。思维得到了锻炼。下面是此问题解决的具体过程。仅供参考。

习题1、已知点O 在ABC 内部,且有02OC OB OA 。

求AOC 与AOB 的面积比。

解析:如图D 是AB 的中点,由平行四边形法则得:OE OD OB OA 2,由题意知OC OB OA 2,所以O 是CD 的中点,即OC=OD ,由平面几何知识得OAB ABC S S 2,AOC ADC ABC S S S 42,因此AOC 与AOB 的面积比为1:2

习题2已知点O 在ABC 内部,且有032OC OB OA ,求BOC 与AOB 的面积比

解析:把032OC OB OA 变形得OC OB OC OA 2如图再由平行四边形法则得,点O 在三角形ABC 的中位线DE 上,且OD EO 2由平面几何知识得OAB ABC S S 2,又因为

OAB BOC AOC S S S 且BOC AOC S S 2因此OBC ABC S S 6所以BOC 与AOB 的面积比为1:3 习题3已知点O 在ABC 内部,且有042OC OB OA ,求OAB 与OBC 的面积比。分析:此题与上两题的区别是系数不容易分配,从共线的角度入手很难。而下面的方法恰好弥补了

上述解法的不足解析:如图O 是三角形ADE 的重心,取B 为OD 的中点,C 为

OE 的四等分点,这样才有042OC OB OA 成立,不妨设三角形ADE 的面积为24,由重心的性质知8EOA DOE AOD S S S 所以4,1,2OAB BOC AOC S S S ,所以OAB 与OBC 的面积比4:1 通过上述三道习题的展示,我们不难发现面积比与系数有很大的联系,于是大胆的猜想

面积比就是对应的系数比,下面用重心的向量式来证明:

已知点O 在ABC 内部,且有0321OC OB OA 不妨设321,,均大于 1

F O E D C B A 则3

21::::OAB OAC OBC S S S 证明:如图:设

O 是DEF 的重心,那么0OF OE OD (重心的向量式)不妨设OC OF OB OE OA OD 321,,,由三角形的面积公式得AOB OB OA S OAB sin 21,AOB OE OD S ODE sin 21

因此211ODE OAB S S ,同理321OEF OBC S S ,1

31

OFD OCA S S ,

又因为OFD

OEF ODE S S S 所以3

212

11332::1

:1:1

::OAB OAC OBC S S S 说明:有了这个结论,我们证明有关内心的向量式O 为ABC 的内心0aOA bOB cOC uu u r uuu r uuu r r .特别简单请有心者慢慢体会。

相关文档
最新文档