利息理论习题整理
利息理论 复习题及参考答案
第1页 (共7页)利息理论复习题单项选择题1. 已知()223A t t t =++,要使10%n i ≤,则n 至少等于( )。
(A) 18 (B) 19 (C) 20 (D) 21 (E) 222. 已知21t t δ=+,则第10年的()2d 等于( )。
(A) 0.1671 (B) 0.1688 (C) 0.1715 (D) 0.1818 (E) 0.1874第2页 (共7页)3. 某永久年金在第一年末支付1,第二年末支付3,第三年末支付5,LL ,则该年金的现值为( )。
(A) 221v v v +−(B)21v v v −+ (C)()221v v v +−(D) 2221v v v +− (E)221v v v ++4. 如果现在投资3,第二年末投资1,则在第四年末将积累5,则实际利率为( )。
(A) 6.426% (B) 6.538% (C) 6.741% (D) 6.883% (E) 6.920%5. 假定名义利率为每季度计息一次的年名义利率6%,则1000元在3年末的积累值为( )元。
(A) 1065.2 (B) 1089.4 (C) 1137.3 (D) 1195.6 (E) 1220.16.某人初始投资额为100,假定年复利为4%,则这个人从第6年到第10年的5年间所赚利息为()。
(A)26(B)27(C)28(D)29(E)307.某人用2000元一次性购买了15年确定年金,假定年利率为6% ,第一次年金领取从购买时开始,计算每次可以领取的金额为()元。
(A)167.45(B)177.45(C)180.13(D)194.27(E)204.188.某年金分20年于每月月初支付30元。
利息每月转换一次,年名义利率为12%,则该年金现值为()元。
(A)2652.52(B)2751.84(C)2755.42(D)2814.27(E)2842.33第3页(共7页)第4页 (共7页)9. 某总额1000元的债务,原定将分10年于每年年末等额偿付,合同年有效利率为5%。
利息理论试题
一、选择题(共20分,每题4分) 1.累积函数 2.各个量的关系 3.年金符号的识别4.期初与期末年金现值的关系 4.期初与期末年金终值的关系 5等额偿还的描述 5等本金偿还的描述1.已知累积额函数2()251A t t t =++,则累积函数()a t =( )。
A 、2251t t ++ B 、25t + C 、45t + D 、51t + 1.下列关于累积函数的表述,错误的是( )。
A 、 B 、 C 、 D 、2.对符号()m n a 含义的表述正确的是( )。
A 、一年支付m 次, 且每期期初支付1m 元的n 年期确定年金的终值 B 、一年支付m 次,且每期期初支付1m 元的n 年期确定年金的现值C 、一年支付m 次,且每期期末支付1m元的n 年期确定年金的现值D 、一年支付m 次,且每期期初支付1元的n 年期确定年金的现值3.在复利场合下,关于累积函数()a t 的计算,下列各式不正确的选项为:( )。
A 、0()ts dsa t e δ-⎰= B 、()()(1)m mt i a t m=+C 、()()(1)m mtd a t m -=- D 、()(1)t a t d -=- 4.关于单利与复利计息的表述,下列选项中错误的是( )。
A 、采用复利计息产生的累积额比较多B 、单利累积额呈线性增长C 、复利累积额呈指数增长D 、短期业务一般用单利计息 5.期初付期末付年金现值的关系 6.等额还贷和等本金还贷二、计算题(共70分) 24‘利息度量(3)16‘年金(2)10‘债务偿还(3)假如某人借银行10万元,使用5年等额偿债基金的方式还款,假如还银行的利率为5% 偿债基金利率为3%,请构造偿债基金表。
解:三、证明题(共10分,第1题4分,第2题6分)1.证明关系式1(1)nn nS S i =-++ 。
2.如果在n 年定期内,第一年末收付1元,第二年末收付2元,以后每次比上一次递增1元|()n n n a nv Ia i-=。
利息理论习题
利息理论习题1.11. Sally has two IRAs. IRA 1 earns interest at 8% effective annually and IRA 2 earns interest at 10% effective annually. She has not made any contributions since January 1, 1985, when the amount in IRA 1 was twice the amount in IRA2.The sum of the two accounts on January 1, 1993 was $75000. Determine how much was in IRA 2 on January 1, 1985? (Individual Retirement Account)2. Suppose we are given that the effective rate of interest is 5% in the first year and 6% in the second year .We invest $1 at time 0. How much is in the fund at the end of two years?3. An investor puts 100 into Fund X and 100 into Fund Y. Fund Y earns compound interest at the annual rate of j, and Fund X earns simple interest at the annual rate of 1.05j . At the end of 2 years, the amount in Fund Y is equal to the amount in Fund X. Calculate the amount in Fund Y at the end of 5 years?4. Eric deposits X into a savings account at time 0, which pays interest ata nominal rate of i , compounded semiannually. Mike deposits 2X into a different savings account at time 0, which pays simple interest at an annual rate of i .Eric and Mike earn the same amount of interest duringthe last 6 months of the 8th year. Calculate i.5. John invests 1000 in a fund which earns interest during the first year at a nominal rate of K convertible quarterly. During the 2nd year the fund earns interest at a nominal discount rate of K convertible quarterly. At the end of the 2nd year, the fund has accumulated to 1173.54. Calculate K.6. A deposit of X is made into a fund which pays an annual effective interest rate of 6% for 10 years. At the same time, X/2 is deposited into another fund which pays an annual effective rate of discount of d for 10 years. The amounts of interest earned over the 10 years are equal for both funds. Calculate d.7. You are given: 2()A t Kt Lt M =++for 02t ≤≤(0)100,(1)110,(2)136A A A === Determine the force of interest at time 12t =. 8. At time 0, 100 is deposited into Fund X and also into Fund Y. Fund X accumulates at a force of interest ()20.51t t δ-=+. Fund Y accumulates at an annual effective interest rate of i . At the end of 9 years, the accumulated value of Fund X equals the accumulated value of Fund Y. Determine i .1.21. At an effective annual interest rate of ,0i i>, each of the following two sets of payments has present value K:1) A payment of 121 immediately and another payment of 121 atthe end of one year.2) A payment of 144 at the end of two years and another paymentof 144 at the end of three years. Calculate K.2. You are given:1)The sum of the present values of a payment of X at the end of 10years and a payment of Y at the end of 20 years is equal to thepresent value of a payment of X+Y at the end of 15 years.2)X+Y=1003)5%i=. Calculate X.3.A customer is offered an investment where interest is calculatedaccording to the following force of interest :0.02030.0453 tt ttδ≤≤=?>The customer invests 1000 at time 0. What nominal rate of interest , compounded quarterly, is earned over the first four-year period?4. Payments of 300,500 and 700 are made at the end of years five, sixand eight, respectively. Interest is accumulated at an annual effective rate of 4%. You are to find the point in time at which a single payment of 1500 is equivalent to the above series of payments. You are given:1) X is the point in time calculated by the method of equated time2) Y is the exact point in time. Calculate X+Y.5.Jones agrees to pay an amount of 2X at the end of 3 years and an amount of X at the end of 6 years. In return he will receive2000 at the end of 4 years and 3000 at the end of 8 years. At an 8% effective annual interest rate , what is the size of Jone s’ second payment?6. David can receive one of the following two payment streams:1) 100 at time 0, 200 at time n, and 300 at time 2n2) 600 at time 10At an annual effective interest rate of i ,the present value of the twostreams are equal. Given 0.75941n v , determine i7. You are given two loans, with each loan to be paid by a single payment in the future. Each payment includes both principal and interest.The first loan is repaid by a 3000 payment at the end of four years. The interest is accrued at 10% per annum compounded semiannually. The second loan is repaid by a 4000 payment at the end of five years. The interest is accrued at 8% per annum compounded semiannually.These two loans are to be consolidated. The consolidated loan is to be repaid by two equal installments of X, with interest at 12% per annum compounded semiannually. The first payment is due immediately and the second payment is due one year from now. Calculate X8. At a certain interest rate the present value of the following two patterns are equal:1)200 at the end of 5 years plus 500 at the end of 10 years2)400.94 at the end of 5 yearsAt the same interest rate, 100 invested now plus 120 invested at the end of 5 years will accumulate to P at the end of 10 years. Calculate P2.1例2.1.2 一项贷款,总额为1000元,年利率为9%.设有一下三种偿还方式:(1)贷款总额以及应付利息在第10年年末一次性偿还;(2)每年年末偿还该年度的应付利息,本金在第10年年末偿还;(3)在10年中美年年末进行均衡偿付。
刘占国《利息理论》习题解答
《利息理论》习题详解 第一章 利息的基本概念1、解: (1))()0()(t a A t A =又()25A t t =+(0)5()2()1(0)55A A t a t t A ∴===++ (2)3(3)(2)11(92 2.318I A A =-=== (3)4(4)(3)0.178(3)A A i A -===2、解:202()(0)(1)1(1-6)180=100(a 5+1)4a=125a t at ba b i =+∴==+=∴∴用公式(8)300(83)386.4A a ∴=-=3、解:15545(4)(3)(1)100(10.04)0.05 5.2n n n I i A I A i A i i -=∴==+=+⨯=4、解: (1)1n n n I i A -=113355(1)(0)1101000.1(0)(0)100(3)(2)1301200.0833(2)(2)120(5)(4)1501400.0714(4)(4)140I A A i A A I A A i A A I A A i A A --∴====--====--====(2)1nn n I i A -=113355(1)(0)1101000.1(0)(0)100(3)(2)133.11210.1(2)(2)121(5)(4)161.051146.410.1(4)(4)146.41I A A i A A I A A i A A I A A i A A --∴====--====--====5、证明: (1)123(1)()(2)(1)(3)(2)()(1)m m m m k I A m A m I A m A m I A m A m I A m k A m k ++++=+-=+-+=+-+=+-+-123123()()()()()m m m m k m m m n I I I I A m k A m n m k A n A m I I I I m n +++++++∴++++=+-=+-=++++<令有(2)()(1)()1(1)(1)n A n A n A n i A n A n --==---()1(1)()(1)(1)n n A n i A n A n i A n ∴+=-∴=+-6、证明: (1)112123123(1)(0)(0)(2)(0)(0)(0)(3)(0)(0)(0)(0)()(0)(0)(0)(0)(0)k nk i a a a i a a a i a i a a a i ai a i a n a a i a i a i a i ∴=+=++=+++=+++++第期的单利利率是又(0)1a =123123()1()(0)()1nna n i i i i a n a a n i i i i ∴=+++++∴-=-=++++(2)由于第5题结论成立,当取0m =时有12()(0)n A n A I I I -=+++7、解:(1)由单利定义有()(0)()(0)(1)A t A a t A i t ==+ (5.5)50003000(1 5.5)A i ∴==+解得0.121i =(2)由复利定义有()(0)()(0)(1)t A t A a t A i ==+ 5.5(5.5)50003000(1)A i ∴==+解得0.0973i =8、解:(1)有单利积累公式建立方程有300200(10.058)t =+解得8.62t =(2)由复利积累公式建立方程有300200(10.058)t =+解得7.19t =9、解:(1)以单利积累计算1205003i =⨯1200.085003i ∴==⨯800(10.085)1120∴+⨯=(2)以复利积累计算3120500500(1)i +=+0.074337i ∴=5800(10.074337)1144.97∴+=10、解:设在第n 期等价于5%的实际利率有()(1)(1)n A n A n i A n --=-又()(0)(1),(1)(0)(1)A n A n i A n A n i i =+-=+-0.15%10.1(1)n i n ∴==+-解得11n =11、解:设该款项的金额为(0)A 有(1)在第三个月单利利息为:30.01(0)I A =单在第三个月复利利息为:323(0)1+0.01-(0)1+0.01=0.010201(0)I A A A =复()()33:=0.010.010201=0.98I I ∴单复:(2)在第六个月单利利息为:6=0.01(0)I A 单在第六个月复利利息为:656(0)1+0.01-(0)1+0.01=0.01051(0)I A A A =复()()66:=0.010.01051=0.951I I ∴单复:12、解:设原始金额为(0)A 有(0)(10.1)(10.08)(10.06)1000A +++=解得 (0)794.1A =13、证明: (1)令()(1)(1)t f i i it =+-+有(0)0f =,1()(1)t f i t i t -'=+-又对于所有0<i<1有111(1)=1(1)t ti i --+<+ 11()(1)0t i f i t i t -'∴<<=+-<当0时,,即()f i 在1i <<0是单调减函数,因此有当1i <<0时有()(1)(1)0,(1)(1)t t f i i it i it =+-+<+<+即,命题得证。
期末考必备利息理论试题1.doc
一、选择题(共20分,每题4分)1.已知累积额函数A(/) = 2r+5/ + l,则累积函数。
(7)= (A )oA、2/" + 5/ +1 B2/ + 5 C4-t + 5 D57 + 12.对符号d歆含义的表述正确的是(B )。
A、一年支付m次,且每期期初支付上元的n年期确定年金的终值mB、一年支付m次,且每期期初支付上元的n年期确定年金的现值mC、一年支付m次,且每期期末支付L元的n年期确定年金的现值mD、一年支付m次,且每期期初支付1元的n年期确定年金的现值3.在复利场合下,关于贴现函数Q T。
)的计算,下列各式不正确的选项为:(C )o小盼-C^ds A、厂。
)=(1 —d)‘ B、Q T Q)=(I +—广,"C> tz"'(/) = (l ---- y mt D、厂(/)=那。
m m4.关于期初付确定年金的现值,下列表述错误的是(B )。
A、有= 1 +。
一B、— va-iC、(1 + z)D、a-, = a—. - v n n\ n-\\n\ n\ n\ n\ x n\ n+\\5.王先生因为买房向招商银行贷款30万元,月按揭等额还贷,设贷款利率恒定,则下列表述错误的是(D )A、月付利息所占月还款额的比例越来越小B、每月所付利息越来越少C、每月所付本金越来越多D、每月偿还的本金一样1.下列关于累积函数。
(7)的表述,错误的是(B )。
A、tz(O) = 1B、。
⑺时间的递增函数C、表示单位本金的累积额D、。
(7)不一定为连续函数2.对符号耳任含义的表述正确的是(C )。
A、一年支付m次,且每期期初支付上元的n年期确定年金的终值mB、一年支付m次,且每期期初支付上元的n年期确定年金的现值mC、一年支付m次,且每期期末支付上元的n年期确定年金的现值mD、一年支付m次,且每期期初支付1元的n年期确定年金的现值3.在复利场合下,关于累积函数"(7)的计算,下列各式不正确的选项为:(D )。
利息理论期末考试模拟测试试题含参考答案
利息理论期末考试模拟测试试题含参考答案题1:单利和复利的计算问题(20分)1. 一笔100,000元的投资,年利率为5%。
如果采用单利计算,则一年后的本息总额为多少?(5分)参考答案:本息总额=本金×(1 + 年利率 ×期限)= 100,000 ×(1 + 0.05 × 1)= 105,000元。
2. 一笔500,000元的投资,按照复利计算,年利率为4%,如果存款期限为5年,则五年后的本息总额为多少?(15分)参考答案:本息总额=本金×(1 + 年利率)^ 期限= 500,000 ×(1 + 0.04)^ 5 = 608,848.32元。
题2:复利公式推导与应用问题(30分)1. 请推导复利计算公式。
(10分)参考答案:设本金为P,年利率为r,期限为n年。
根据复利计算的原理,本息总额可表示为:本息总额=P×(1 + r)^ n。
2. 一笔投资本金为50,000元,年利率为8%。
如果计划将本息总额增加到100,000元,需要存款多少年?(20分)参考答案:设期限为n年,根据复利计算公式可得:100,000 = 50,000 ×(1 + 0.08)^ n。
通过求解方程得到:n≈8.66年。
题3:连续复利问题(20分)1. 一笔本金为10,000元的投资,年利率为6%,如果采用连续复利计算,10年后的本息总额为多少?(20分)参考答案:本息总额=本金×e^(年利率 ×期限),其中e为自然对数的底,约等于2.71828。
计算可得:本息总额≈10,000 × e^(0.06 × 10) ≈ 18,193.86元。
题4:利息与投资风险的关系问题(30分)1. 投资A和投资B分别提供年利率为5%和8%的投资回报。
根据风险-收益原则,一般情况下,哪种投资风险更高?(10分)参考答案:一般情况下,高利率的投资回报意味着高投资风险。
金融数学(利息理论)复习题练习题
1. 某人借款1000元,年复利率为9%,他准备利用该资金购买一张3年期,面值为1000元的国库券,每年末按息票率为8%支付利息,第三年末除支付80元利息外同时偿付1000元的债券面值,如果该债券发行价为900元,请问他做这项投资是否合适?2. 已知:1) 16565111-++=+))(()()()(i i mim 求?=m 2) 16565111---=-))(()()()(d d md m 求?=m由于i nn i mm i n m +=+=+111)()()()( 由于d nn d mm d n m -=-=-111)()()()(3. 假设银行的年贷款利率12%,某人从银行借得期限为1年,金额为100元的贷款。
银行对借款人的还款方式有两种方案:一、要求借款人在年末还本付息;二、要求借款人每季度末支付一次利息年末还本。
试分析两种还款方式有何区别?哪一种方案对借款人有利?4. 设1>m ,按从小到大的顺序排列δ,,,,)()(m m d d ii解:由d i d i ⋅=- ⇒ d i >)()(m m d d >+1 ⇒ )(m d d < )()(n m d i > ⇒ )()(m m i d < )()(m m i i <+1 ⇒ i i m <)(δδ+>=+11e i , δ==∞→∞→)()(l i m l i mm m m m d i ⇒ i i d d m m <<<<)()(δ5. 两项基金X,Y 以相同的金额开始,且有:(1)基金X 以利息强度5%计息;(2)基金Y 以每半年计息一次的名义利率j 计算;(3)第8年末,基金X 中的金额是基金Y 中的金额的1.5倍。
求j.6. 已知年实际利率为8%,乙向银行贷款10,000元,期限为5年,计算下列三种还款方式中利息所占的额度:1)贷款的本金及利息积累值在第五年末一次还清; 2)每年末支付贷款利息,第五年末归还本金; 3)贷款每年年末均衡偿还(即次用年金方式偿还)。
XXX《利息理论》综合作业答卷
XXX《利息理论》综合作业答卷XXX《利息理论》综合作业一、单选题(共17道试题,共51分)1.有一项3年期、每年初付款100元的年金,第1年的利率为2%,第2年的利率为3%,第3年的利率为4%。
该年的终值为多少元?答案:B,320元。
2.某人签署了一张1年期的1000元借据并从银行获得920元。
在第6个月末,该人支付了288元。
在单贴现方式,该人的这笔付款会使借据的面值减少多少元?答案:B,700元。
3.以年利率4%在第1年初和第2年初分别投资1万元,并将每年的利息以年利率2%进行再投资,那么,在第4年末,这项投资的积累值为多少万元?答案:B,228.73万元。
4.若i/j=3/4,则i与j的关系式为什么?答案:D,i=0.75j。
5.利用年金当前值的概念,如果X=3000,Y=4000,Z=3000,则年金的支付期数为多少?答案:B,4期。
6.在未来5年内,某人以偿债基金法来偿还一笔100万元的贷款,贷款年利率为4%,偿债基金存款年利率为2%。
该偿债基金在第4年末的净本金支出为多少万元?答案:C,20.392万元。
7.当债券的价格高于其赎回值时,称该债券被按什么方式出售?答案:B,溢价方式。
8.对于等额偿债基金法,必然有L什么?答案:A,L>0.9.某人在未来20年内以等额本金法来偿还一笔金额为100万元的贷款,贷款年利率为4%。
该人前10年内支付的利息总额为多少万元?答案:B,31万元。
10.在常规单利法下,投资期年数=投资期天数/什么?答案:C,360.11.有一项10年期的期末付年金,每季度付款1000元,每年计息4次的名义利率为6%。
该年金的现值为多少元?答案:D,.85元。
答案:错误,应为公式P=C/(1+i/n)^n+g/n/(1+i/n)^n-123.在等额本息法下,每期偿还的本金和利息相等。
答案:正确24.在满期偿还法下,债务人在借款期间只需支付利息,到期一次性偿还本金和最后一期利息。
利息理论答案
试题名称:利息理论层次:( ) 专业:年级:学号:姓名:分数:一、填空题(每题2分,共20分)1、英国经济学家认为利息的来源至少有两个方面:一是将把借贷的资金作为资本来使用会带来利润,所以利息来自于利润;二是将借贷的资金用于消费,利息就来自于其他收入,有可能是地租。
2、凯恩斯在他的著作中提出人们持有货币的动机主要有三种。
3、贴现是指____________。
4、我们一般用_______来表示名义贴现率。
5、已知年实际利率为8%,那么按季度转换的名义利率为。
6、常规单利法假定一个日历月有天,一个日历年有天。
7、欧洲货币市场的放款利率一般是以为基础,再加上一个附加利息来计算。
8、年金支付时,相邻的两个计息日期之间的时间间隔称为。
9、利率求解时介绍的迭代法,是指通过求得数值结果的方法。
10、偿还贷款的两种基本方法分别为。
二、名词解释(每题5分,共20分)1、利息强度2、期货3、年金4、再投资收益率三、计算题(每题10分,共40分)1、在年单利和年复利9%条件下,3年末本利和为1000元的投资现值各为多少?2、已知年(名义)利率8%,按季复利,求500元的投资在5年后的终值?3、某人每年年末存入银行1000元,前6年的实际利率为5%,后4年的实际利率为4%,计算第10年年末时的存款积累值?4、某客户将10 000元现金于1月1日作为活期储蓄存入银行,他每季度末从银行领取500元,直到剩余存款经一个季度积累的本利和不够一次领取500元为止,剩余额在最后一次足额领取时一并支出。
每月利率为i=0.005,计算客户领取次数和不足额部分?四、简答题(每题10分,共20分)1、影响利率水平的主要因素有哪些?2、简要回答国际金融市场利率是如何确定的?教学负责人签字年月日。
利息理论复习资料_普通用卷
利息理论课程一单选题 (共14题,总分值14分 )1. 王女士于每年年初存入银行1000元钱,其中6%的年利率针对前4次的存款,10%的年利率针对后6次的存款,则第10年末时的存款累积值为()元。
(1 分)A. A.6577.80B. B.8487.17C. C.13124.26D. D.15064.972. 某人在每年初存款100元,共存20年,利率为i,按单利计算,第20年末积累额达到2840元。
按复利计算。
第20年末积累金额为()元。
(1 分)A. A.3092.92B. B.3094.92C. C.3096.92D. D.3098.923. 假设你现在打算做一项为期10年的投资;每一年初投资1000元,此项投资的实质利率为8%,而其利息可按6%实质利率进行再投资,那么第十年末的基金金额可达到()(1 分)A. A.15296B. B.15396C. C.15496D. D.155964. 有一项10年期的期末付年金,每季度付款1000元,每年计息4次的名义利率为6%。
该年金的终值(积累值)为()元。
(1 分)A. A.54261.89B. B.54265.89C. C.54267.89D. D.54263.895. 与名义年利率为15%的连续复利相当的半年复利的名义年利率是()(1 分)A. A.13.577%B. B.14.577%C. C.15.577%D. D.16.577%6. 一笔100元资金在年单利率5%下积累,如果另一笔100元资金在年复利率()下积累,这两笔资金在第10年末的积累值就会相等。
(1 分)A. A.4.12%B. B.4.14%C. C.4.16%D. D.4.18%7. 下列各种说法,错误的是()(1 分)A. A.债券的期限越长,利率风险越高B. B.债券的价格与利率呈反向关系C. C.债券的息票率越高,利率风险越高D. D.利率上涨引起债券价格下降的幅度比利率下降引起债券价格上升的幅度小8. 一笔资金以单利率5%逐年积累。
利息理论习题整理53页PPT
40、学而不思自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
利息理论习题整理
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
《利息理论》测试题
《利息理论》测试题题型分值分布•选择题:每题2分,共20分•填空题:每题2分,共20分•名词解释题:每题5分,共15分•解答题:每题10分,共30分•计算题:每题5分,共15分•案例分析题:每题10分,共30分•总分:100分一、选择题(每题2分,共20分)1.利息的基本概念是指资金所有者由于借出资金而取得的报酬,它从属于相应的______。
A. 本金B. 利润C. 费用D. 收益2.简单利率是指按单利计算利息的方法,其利息与本金的比率称为______。
A. 年金利率B. 简单利率C. 复利率D. 贴现率3.在复利计算中,若本金为P,年利率为r,经过n年后的本利和F的公式是______。
A. F = P(1 + r)^nB. F = P(1 - r)^nC. F = P / (1 + r)^nD. F = P / (1 - r)^n4.年金是指一系列按照相等时间间隔支付的固定金额,其中每期期末支付的是______。
A. 普通年金B. 即付年金C. 递延年金D. 永续年金5.名义利率是指没有考虑通货膨胀因素的利率,而实际利率则是考虑了通货膨胀因素后的真实利率,两者之间的关系是______。
A. 实际利率 = 名义利率 + 通货膨胀率B. 实际利率 = 名义利率 - 通货膨胀率C. 实际利率 = 名义利率 * 通货膨胀率D. 实际利率与名义利率无关6.现值是指未来某一时点上的一定量资金折算到现在所对应的金额,这一过程称为______。
A. 贴现B. 利息计算C. 复利计算D. 年金计算7.在债券定价中,如果市场利率上升,则债券价格会______。
A. 上升B. 下降C. 不变D. 无法确定8.若一笔贷款的年利率为10%,按年复利计息,则两年后归还的本利和是借款本金的______倍。
A. 1.10B. 1.20C. 1.21D. 1.309.在等额本息还款法中,每月的还款金额是固定的,这个金额由______两部分组成。
利息理论课后习题答案
第一章利息的基本概念1.)()0()(t a A t A =2.,11)0(=∴=b a 180)5(100=a 508)8()5(300=a a 3~5.用公式(1-4b)7~9.用公式(1-5)、(1-6)11.第三个月单利利息1%,复利利息23%)11(%)11(+−+12.1000)1)(1)(1(321=+++i i i k 14.nn nni i i i −−+⋅+>+++)1()1(2)1()1(16.用p.6公式17.用P.7最后两个公式19.用公式(1-26)20.(1)用公式(1-20);(2)用公式(1-23)22.用公式(1-29)23.(1)用公式(1-32);(2)用公式(1-34)及题6(2)结论24.用公式(1-32)25.44216%1(1)(110%)118%45%12i ⎛⎞+=++⎜⎟−⎝⎠⎛⎞−⎜⎟⎝⎠26.对于c)及d),,,c)中,,δn e n a =)(1111)1(−=−=+==∴v di e a δ∴v ln −=δd)中,δ−−=ed 128.∫=tdxx e t a 0)()(δ29.;4411⎟⎠⎞⎜⎝⎛+=+j i h e j =+131.(1)902天39.,两边同时求导,,类似t e tA dr +=∫10δ)1ln(0t dr tA +=∫∴δtt A +=11)(δ)(t B δ46.,10009200.081000d −==9202108.01(288)08.01(=×−+−x 第二章年金4.解:12010.087110.0870.08712160001000110.087121212A −−⎛⎞−+⎜⎟⎛⎞⎛⎞⎝⎠=+⋅++⎜⎟⎜⎟⎝⎠⎝⎠5.解:()()()()22211111111(*)nnn nn i a x i xiii xi a y i i −−−−+==⇒+=−−+−−===将代入(*)1d i d=−7.解:100010001000011718…()51218100010.0839169.84s −+=&&8.解:100.1100.15000s Ra =&&&&9.解:100.1100.155000s Ra =&&&&14.解:永续年金每年支付R112n n Ra R a i ⎛⎞=−⎜⎟⎝⎠17.解:解得即正常还款次数为95次0.0081500100000m a =95.6m ≈解得95950.0081500(10.008)100000a f −++=965.74f =19.解:()()()(2)(2)(2)1055222105100020001700011171150i i i s s s i i i ⎛⎞−+=⎜⎟⎜⎟⎝⎠∴+++−++=令105()1715f t t t t =+−+0(1.03)(1.035)(1.03)1.03 1.035 1.03f f f i −−=−−(1.032)0.003186f =−23.解:,()4660.0411 1.04i a i −−−++40.04114i ⎛⎞+=+⎜⎟⎝⎠24.解:R 1.1025R 1.205R 01423得4321.05 1.1025 1.05 1.1025 1.05 1.205 1.0511000R R R R ×+++=2212.147R =25.解:()()()1211111nn nn n a i n i i i a iii −−−−∂−++−++=∴=∂其中通过公式(2-76)得到0.1020.116.8670.10.002n n n n i a a a i==∂−∴==∂L n29.解:7777111v a v i a iKi−=∴=−=−类似地,111811181111v ia iL v ia iM=−=−=−=−,从而71118(1)(1)1v v v iK iL iM =∴−−=−Q L K M i KL+−=31.解:(2)(12)(2)(12)(12)1112nn nnnv v i i aaa id i−−⎛⎞===+⎜⎟⎝⎠&&,32.解:()500lim 110000tn i n a i −→∞+=&&半半,()()122111111i i i d d−+==+⇒+=−−半半()1211i d −=−−半()1120ti i −+∴=半半36.解:()()()2020201195.36n n anv a i n i Ia ii−−+−+=∴=&&37.解:110123……1该永续年金现值为1i11123……6541该永续年金现值为:()()24111(2)i i i i−−++++=+L ∴所求年金现值为:113(2)(2)i i i i i i++=++39.解:()01ntkt v dt f g h−=−−∫11lim lim n n n n v f a δδ→∞→∞−===1(1)ng kn v δ=−⋅40.解:011()1tdrr a t e t+∫==+1001()ln(1)1nnn a a t dt dt n t−===++∫∫42.解:后五年等比()()()551051111000105011k i s s i i i k+⎛⎞−⎜⎟+⎝⎠−+×++−&&&&43.解:120567……10983…414684468111v v v v a a a i i i i i i i vd−+−+−+=+++=−L L 45.解:2300.015251.0215KsKa−=+&&&&46.解:1010120180180300300 1.03 1.03i i i iia a a a a −−++=月月新月新月月11x110000047.解:011()1tdrr a t e t+∫==+231414212111(0)(1)()(1)84.51v t a t dt t dt t−=−=−=+∫∫48.解:11tn t n v v a a δδ−−==,()001111144010%t n nnt n v v a dt dt n n a δδδδ⎛⎞−−==−=−=×=⎜⎟⎝⎠∫∫49.解:1)()11t n nt tt t atv Ia i==−=∑∑&&第三章收益率2.解:234000 1.120000.93382×−×=3.解:237000100040005500(0)v v v v v −−++=110.090.11.09 1.1i v i v ====时,;时,令(0)0v v i=⇒及7.解:81.516.510(1)11.995%x x i i ⋅⋅=+⇒=8.解:11100.250.751(1)1(1)1(1)100000150002000011000kkkdtdtdtt k t k t k e ee+−+−+−∫∫∫+−=解得:0.14117k =10.解:1234567810911111i 2i 3i 4i 5i5i5i5i5i5i本金利息560.0450.0461000 1.04550.04s i is −⎛⎞++⎜⎟⎝⎠13.解:50000068000060000500055000A B I ===−=,,29.78%Ii A B I=≈+−14.解:()11144320000112%5000180001112%196104B i −⎛⎞⎡⎤⎛⎞=×++×+−×+−×=⎜⎟⎜⎟⎢⎥⎝⎠⎣⎦⎝⎠15.解:书后答案是,不知我对它对。
利息理论章考试题
利息理论章考试题
考试时间40分钟
1、已知某4年期的贷款以以下方式计息:
第1年以实质贴现率6%;
第2年以每二年计息一次的年名义贴现率5%;
第3年以每半年计息一次的年名义利率5%;
第4年以利息强度5%;
求各年年实质利率。
2、某人第一年初存300元,第五年初存500元。
假设存款利率在前3年为6%,后3年为12%。
求第六年末能取多少钱。
(分别用单、复利计息方式计算)
3、为了在第4年末得到2000元及在第10年末得到5000元,投资者愿意立即投资3000元,并在第3年末追加一笔投资。
如果季度转换利率为0.06,试确定追加投资的数额。
4、某三十年期贷款每年还1000元,在第十五年的正常还款之后,借款人在一次性多还2000元,如果将其全部用于扣除贷款余额,剩余的余额分十二年等额还清。
若年利率为9%,试计算后十二年的年还款额。
5、某借款人分10年偿还贷款,贷款年利率为5%,每年还款1000元,贷款额的一半用分期偿还法偿还,另一半按偿债基金法偿还,偿债基金的存款利率为4%,计算贷款额。
利息理论习题整理
解 方法一:比较等价的年实利率
已知
i(2) A
7%,
iA
1
7% 2
2
1
7.1225%
iB =7.05%
方法二:比较实际收益
aA (5)
1
7% 2
10
1.4106
aB (5) 1 7.05%5 1.4058
aA (5) aB (5)
X
7 8 9 10 600
X
600v6 100v10 200 v10
186.75
100
200
3)t=10
0 1 2 34 56
100v20 200v10 X 600v4
X
7 8 9 10
600
X 600v4 100v20 200v10 186.75
2019/9/9
10
100
200
2)t=5
0 1 2 34 56
100(110i) 200 X 600 110i 1 6i
X
7 8 9 10 600
由此可以解得: X 201.42
100
200
X
3)t=10
0 1 2 3 4 5 6 7 8 9 10
600
100(1 20i) 200(110i) X 600(1 4i)
贴现率 d iv 0.04762
从而借款人在期初实际可得
10000(1 d) 10000v 9524(元)
2019/9/9
4
例1-5 若现有面额为100 元的零息债券在到期前 一年的时刻价格为95 元,同时短期一年储蓄利率为 5.25%,如何进行投资选择?
刘占国《利息理论》习题答案与提示
第一章 利息的基本概念1.)()0()(t a A t A =2.11)0(=∴=b a 180)5(100=a ,508)8()5(300=a a3~5.用公式(1-4b)7~9.用公式(1-5)、(1-6)11.第三个月单利利息1%,复利利息23%)11(%)11(+-+ 12.1000)1)(1)(1(321=+++i i i k14.n n n n i i i i --+⋅+>+++)1()1(2)1()1( 16.用p.6公式17.用P .7最后两个公式19.用公式(1-26)20.(1)用公式(1-20); (2)用公式(1-23) 22. 用公式(1-29)23.(1) 用公式(1-32);(2) 用公式(1-34)及题6(2)结论 24. 用公式(1-32)25.44216%1(1)(110%)118%45%12i ⎛⎫+=++ ⎪-⎝⎭⎛⎫- ⎪⎝⎭ 26.对于c)及d),δn e n a =)(,1111)1(-=-=+==∴vdi e a δ,∴c)中,v ln -=δ,d)中,δ--=e d 128.⎰=tdxx et a 0)()(δ29.4411⎪⎭⎫ ⎝⎛+=+j i ;he j =+131.(1)902天 39.tetA dr+=⎰10δ )1ln(0t dr tA +=⎰∴δ,两边同时求导,tt A +=11)(δ,)(t B δ类似46.10009200.081000d -==,920)2108.01(288)08.01(=⨯-+-x第二章 年金4.解:12010.087110.0870.08712160001000110.087121212A --⎛⎫-+ ⎪⎛⎫⎛⎫⎝⎭=+⋅++ ⎪ ⎪⎝⎭⎝⎭5.解:()()()()22211111111(*)nnn nn i a x i xiii xi a y ii----+==⇒+=--+--===将1d i d=-代入(*)7.解:()51218100010.0839169.84s -+=8.解:100.1100.15000s Ra = 9.解:100.1100.155000s Ra = 14.解:永续年金每年支付R112n n Ra R a i ⎛⎫=- ⎪⎝⎭17.解:0.0081500100000m a = 解得95.6m ≈ 即正常还款次数为95次 95950.0081500(10.008)100000a f -++= 解得965.74f =19.解:()()()(2)(2)(2)1055222105100020001700011171150i i i s s s i i i ⎛⎫-+= ⎪ ⎪⎝⎭∴+++-++= 令105()1715f t t t t =+-+0(1.03)(1.035)(1.03)1.031.0351.03f ff i --=--(1.032)0.003f =- 1000 1000 1000 011718…23.解:()4660.0411 1.04i a i---++,40.04114i ⎛⎫+=+ ⎪⎝⎭24.解:4321.05 1.1025 1.05 1.1025 1.05 1.205 1.0511000R R R R ⨯+++= 得2212.147R =25.解:()()()1211111nn nn n a i n i i i a iii----∂-++-++=∴=∂.1020.116.8670.10.002n n nn i a a a i==∂-∴==∂ 其中n 通过公式(2-76)得到29.解: 7777111v a v i a iK i-=∴=-=-类似地,111811181111via iL via iM =-=-=-=-,71118(1)(1)1v v vi K i L i M=∴--=- 从而L K Mi K L+-=31.解:(2)(12)(2)(12)(12)1112nnnnn v v i i a a a idi--⎛⎫===+ ⎪⎝⎭ ,32.解:()500lim 110000tn in a i -→∞+= 半半()()122111111i i id d-+==+⇒+=--半半,()1211i d -=--半()1120ti i -+∴=半半36.解:()()()2020201195.36n na nv a i n i Ia ii--+-+=∴=37.解:该永续年金现值为1i1 1 0123 … …R 1.1025R 1.205R 014231该永续年金现值为:()()24111(2)i i i i--++++=+∴所求年金现值为:113(2)(2)i i i i i i++=++ 39.解:()01nt kt v dt f g h -=--⎰11lim limnn n n vf a δδ→∞→∞-===1(1)ng k n v δ=-⋅40.解:011()1tdrr a t et +⎰==+11()ln(1)1n n n a a t dt dt n t-===++⎰⎰42.解:后五年等比()()()551051111000105011k i s s i i i k+⎛⎫- ⎪+⎝⎭-+⨯++-43.解:4684468111vv vva a a iiiiii i v d-+-+-+=+++=- 45.解:2300.015251.0215K s K a -=+46.解:1010120180180300300 1.031.03i iiiia a a a a --++=月月新月新月月11x 110000047.解:011()1tdrr a t e t +⎰==+1414212111(0)(1)()(1)84.51v t a t dt t dt t-=-=-=+⎰⎰48.解:11tnt n vva a δδ--==,1 2 0 5 67 … …10 9 8 3…4 111 0123... (6)5 41 2 3()01111144010%tnn n t nvv a dt dt n n a δδδδ⎛⎫--==-=-=⨯= ⎪⎝⎭⎰⎰49.解:1)()11t nnttt t a tv Ia i==-=∑∑第三章收益率2.解:234000 1.120000.93382⨯-⨯=3.解:237000100040005500(0)v v v v v --++= 110.090.11.091.1i v i v ====时,;时,令(0)0v v i =⇒及7.解:81.516.510(1)11.995%x x i i ⋅⋅=+⇒= 8.解:11100.250.751(1)1(1)1(1)100000150002000011000kkkdtdtdtt k t k t k eee+-+-+-⎰⎰⎰+-=解得:0.14117k =10.解:560.0450.04610001.04550.04s i i s -⎛⎫++⎪⎝⎭13.解:50000068000060000500055000A B I ===-=,, 29.78%I i A B I=≈+-14.解:()11144320000112%5000180001112%196104B i -⎛⎫⎡⎤⎛⎫=⨯++⨯+-⨯+-⨯= ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭15.解:1212121kt dtt ek ++⎰=⇒= 书后答案是1k =,不知我对它对。
利息理论复习题
300(1.02)450a40.02[(1.02)21]
s20.02
2006年秋
李勇权 南开大学
44.一项1000的贷款,利率为月度转换名义利率 6%,用20次等额的半年度支付R来分期偿还。
(1)100
s 6 0.005
R
a
120 0.005
(2)第一次支付中的本金部分为R-1000×(1.005)
2000)、(4,2500)、(5,3000)、(6,
3500)、(7,4000)、(8,4500)、(9, 5000)、(10,0000)在0时的现值为
1000a500(a99v9)5000v9
9
i
i
2006年秋
李勇权 南开大学
s 20
38.
(Ds) 20
20s 20
20
i
2006年秋
李勇权 南开大学
2006年秋
李勇权 南开大学
7.divid-vivid=did
2006年秋
李勇权 南开大学
9.a n t
s t
0
as
n
n
2006年秋
李勇权 南开大学
10. d(12) v1/12 v2/12
i(12) 1v1/12
2006年秋
李勇权 南开大学
20
11. i
s s 21
t
21
t 1
2006年秋
2
2
32
2006年秋
李勇权 南开大学
13.一年金前10年每年末支付10,然后 每年递减1,共支付9年,以后每年末 支付1,直至永远,年利率为4%,计算 此年金的现值。
A、117 B、119 C、121 D、123 E、125
利息理论——复习题
复习题1. 一笔1000元的贷款,年利率7%,5年后应当偿还的本利和是多少?(1403元)2. 某企业向银行借钱,第一年初借30000元第3年初借50000元,协议在第6年末偿还,年利率为8%,问第6年末应偿还多少钱?(115630元)3. 一笔1000元贷款,年利率为8.8%,问债务期限为5.5年的本利和为何值?(1590.2)4. 现在借了3000元,言明4年末偿还4500元,问这笔债务的年利率是多少?(10.7%)5. 若某企业拥有两张未到期的期票,第一张期票的票面值10000元,2年后到期,另一张期票票面值15000元,3年后到期。
现企业急需用钱,所以拿这两张期票进行贴现,若接受此期票期望得到7%的资金年利率,那么,他最多付多少钱能收购此期票?(20980)6. 某企业第一年初借了80000元,第2年初又借了75000元,第3年初再借了一笔钱,所有这些债务都在第7年末偿还,偿还总金额为343700元,年利率为8%,问这个企业第3年初借了多少钱?(59600)7. 有一笔20年的债券,票面值为10000元,现每年年末一等额金额存入银行,问存多少金额才能偿还这笔债务?设银行存款年利率为7%.(243.9)8. 一笔1000元的贷款,在4.5年内还清,每半年计息一次,则年实质利率为多少?(8.16%)9. 一个家庭希望在某一大学教育基金中,到第20年末积累到5万元。
如果他们在头10年中每年末存入1000元,而在第2个10年中每年末存入1000+X 元,若该项基金之实质利率为7%,试确定X 。
(651.72元)。
10. 从Z 年6月7日到Z+11年12月7日每季度付款100元。
若季度转换名义利率为6%,a)确定Z-1年9月7日的现时值。
b)确定Z+8年3月7日的当前值。
c) 确定Z+12年6月7日的积累值。
(3256.88;5403.15;6959.37)11. 在今后20年内,每年初向一基金存入1000元,30年后开始每年付款且永远持续下去,其中第一笔付款是在第30年之末。
利息理论——复习题
复习题1. 一笔1000元的贷款,年利率7%,5年后应当偿还的本利和是多少?(1403元)2. 某企业向银行借钱,第一年初借30000元第3年初借50000元,协议在第6年末偿还,年利率为8%,问第6年末应偿还多少钱?(115630元)3. 一笔1000元贷款,年利率为8.8%,问债务期限为5.5年的本利和为何值?(1590.2)4. 现在借了3000元,言明4年末偿还4500元,问这笔债务的年利率是多少?(10.7%)5. 若某企业拥有两张未到期的期票,第一张期票的票面值10000元,2年后到期,另一张期票票面值15000元,3年后到期。
现企业急需用钱,所以拿这两张期票进行贴现,若接受此期票期望得到7%的资金年利率,那么,他最多付多少钱能收购此期票?(20980)6. 某企业第一年初借了80000元,第2年初又借了75000元,第3年初再借了一笔钱,所有这些债务都在第7年末偿还,偿还总金额为343700元,年利率为8%,问这个企业第3年初借了多少钱?(59600)7. 有一笔20年的债券,票面值为10000元,现每年年末一等额金额存入银行,问存多少金额才能偿还这笔债务?设银行存款年利率为7%.(243.9)8. 一笔1000元的贷款,在4.5年内还清,每半年计息一次,则年实质利率为多少?(8.16%)9. 一个家庭希望在某一大学教育基金中,到第20年末积累到5万元。
如果他们在头10年中每年末存入1000元,而在第2个10年中每年末存入1000+X 元,若该项基金之实质利率为7%,试确定X 。
(651.72元)。
10. 从Z 年6月7日到Z+11年12月7日每季度付款100元。
若季度转换名义利率为6%,a)确定Z-1年9月7日的现时值。
b)确定Z+8年3月7日的当前值。
c) 确定Z+12年6月7日的积累值。
(3256.88;5403.15;6959.37)11. 在今后20年内,每年初向一基金存入1000元,30年后开始每年付款且永远持续下去,其中第一笔付款是在第30年之末。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)从2003年1月1日到5月20日共计140天,故计息天数 解: 为139天,
5.26% 5.25%, 债券投资优于储蓄。
2018/11/27 5
i(m) 12% 解: i 1 (1 ) 1 1 1 12.68% m 12 d 10% (2)d 1 1 1 1 9.63% m 4
(m) (n)
m
n
12% 1 12
2018/11/27
12
d 1 2
(2)
2
d (2)
12% 6 2 1 1 11.59% 12
6
例:某资金帐户现金流如下:在时刻0有100元资 金支出,在时刻5有200元资金支出,在时刻10有 最后一笔资金支出;作为回报,在时刻8有资金收 回600元。假定半年结算年名义利率为8%,试计 算时刻10的支出金额大小。 解:设时刻10的支出金额为X,则整个业务的 现金流程图如下:
贴现率 d iv 0.04762 从而借款人在期初实际可得
10000(1 d ) 10000v 9524 (元)
2018/11/27 4
例1-5 若现有面额为100 元的零息债券在到期前
一年的时刻价格为95 元,同时短期一年储蓄利率为
5.25%,如何进行投资选择?
解 从贴现的角度看,零息债券的贴现率 d =5% ,而储 i 4.988% 5%, 债券投资优于储蓄。 蓄的贴现率 d 1 i d 5% 从年利率的角度看,零息债券 i 1 d 1 5%
结论:不同比较日的价值方程的计算结果相同
2018/11/27 9
2°依单利方式计算: 半年期单利率i=4% 选取不同的比较日t的价值方程(收支平衡): 1)t=0
100 0 1 2 3 4 200 5 6 7 8 600 9 X 10
200 X 600 100 1 10i 1 20i 1 16i
100 0 1 2 3 4 200 5 6 7 8 600 9 X 10
2018/11/27
7
1°依复利方式计算: 半年结算年名义利率=8% 半年期实际利率=4% 半年期积累因子 v 1 1 4% 半年期贴现因子
100
v (1 4%)1
选取不同的比较日t的价值方程(收支平衡):
解 方法一:比较等价的年实利率
(2) A
已知 i
7% 7%, iA 1 1 7.1225% iB =7.05% 2
10
2
方法二:比较实际收益
7% a A (5) 1 1.4106 2
aB (5) 1 7.05% 1.4058
3)t=10
100 0 1 2 3 4
5
100(1 20i) 200(1 10i) X 600(1 4i)
由此可以解得:
2018/11/27
X 236
结论:不同比较日的价值方程的计算结果不同
11
方法2:用代数方法求解 例:已知两年后的2000元和四年后的3000元的现值之 和为4000元,试计算年利率。 解:比较日为初始时刻,则价值方程为
由此可以解得: X
2018/11/27
221.39
10
2)t=5
100 0 1 2 3 4
200 5 6 7 8 600 9
X 10
X 600 100(1 10i) 200 1 10i 1 6i
由此可以解得: X
201.42
200 X 6 7 8 600 9 10
(m) m 4
例1-6(1)求每月结算的年利率为12%的实际利率; (2)求每季结算的年贴现率为10%的实际贴现率; (3)求相当于每月结算的年利率为12%的半年结算 的年贴现率。 m
12
i d 1 1 (3) 1 1 i m 1 d n
5
aA (5) aB (5)
结论:A收益高
2018/11/27 3
例1-4 假设期初借款人从贷款人处借入10000元并 约定一年到期时还10500元(即利率i = 5% )。如果借 款人希望期初时即付给贷款人利息,1 年到期时偿还 本金10000元,问:期初借款人实际可得金额是多少? 解
1 贴现因子 v 0.9524 1 i
单利: A(t ) 1000(1 it )
139 (元) 1000(1 0.12 ) 1045.70 365 t 复利: A(t ) 1000(1 i)
1000(1 0.12)
2018/11/27
139 365
(元) 1044.10
2
例1-3 有以下两种5 年期的投资选择:A 年利率 7%,每半年计息一次;B 年利率7.05%, 每年计息 一次。试比较两种选择的收益。
1)t=0
200 1 2 3 4 5 6 7 8 600 9
X 10
0
100 200v10 Xv20 600v16
2018/11/27
600v16 100 200v10 X 186.75 20 v
8
2)t=5
100 0 1 2 3 4
200 5 6 7 8 600 9
X 10
100v10 200 Xv10 600v6
600v6 100v10 200 X 186.75 10 v
3)t=10
100 0 1 2 3 4
200 5 6 7 8 600 9
X 10 Leabharlann 100v20 200v10 X 600v 4 X 600v4 100v20 200v10 186.75