高考物理牛顿运动定律的应用试题经典
高中物理牛顿运动定律的应用真题汇编(含答案)及解析
高中物理牛顿运动定律的应用真题汇编(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
已知木板与物块间动摩擦因数μ1=3,木板与传送带间的动摩擦因数μ2=34,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。
(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态;(2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ;(3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。
【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin 2mg mg α= 斜面对木块的最大静摩擦力:13cos 4m f mg mg μα==由于:sin m f mg α>所以,小木块处于静止状态;(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a ='由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。
高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)
高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
高考物理易错题专题三物理牛顿运动定律(含解析)及解析
高考物理易错题专题三物理牛顿运动定律(含解析)及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
物理牛顿运动定律的应用经典例题大集合(高三复习)
高一物理牛顿运动定律的应用经典例题大集合例1.物体B 放在物体A 上,A 、B 的上下表面均与斜面平行(如图),当两者以相同的初速 度靠惯性沿光滑固定斜面C 向上做匀减速运动时,A .A 受到B 的摩擦力沿斜面方向向上。
B .A 受到B 的摩擦力沿斜面方向向下。
C .A 、B 之间的摩擦力为零。
D .A 、B 之间是否存在摩擦力取决于A 、B 表面的性质。
例2、如图所示是我国某优秀跳水运动员在跳台上腾空而起的英姿.跳台距水面高度为10 m ,此时她恰好到达最高位置,估计此时她的重心离跳台台面的高度为1 m ,当她下降到手触及水面时要伸直双臂做一个翻掌压水花的动作,这时她的重心离水面也是1 m.(取g =10 m/s 2)求:(1)从最高点到手触及水面的过程中其重心可以看作是自由落体运动,她在空中完成一系列动作可利用的时间为多长?(2)忽略运动员进入水面过程中受力的变化,入水之后,她的重心能下沉到离水面约2.5 m 处,试估算水对她的平均阻力约是她自身重力的几倍?例3.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示.已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计.取重力加速度g=10m/s2.当人以440N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为A .a=1.0m/s2,F=260NB .a=1.0m/s2,F=330NC .a=3.0m/s2,F=110ND .a=3.0m/s2,F=50N例4、有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行驶,做匀速圆周运动。
图2中粗线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h 。
下列说法中正确的是 ( )A 、h 越高,摩托车对侧壁的压力将越大;B 、h 越高,摩托车做圆周运动的向心力将越大;C 、h 越高,摩托车做圆周运动的周期将越小;D 、h 越高,摩托车做圆周运动的线速度将越大。
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC 方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++=可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s = 滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁3.如图,有一质量为M =2kg 的平板车静止在光滑的水平地面上,现有质量均为m =1kg 的小物块A 和B (均可视为质点),由车上P 处开始,A 以初速度=2m/s 向左运动,同时B 以=4m/s 向右运动,最终A 、B 两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B 离小车右端的距离;(2)从A 、B 开始运动计时,经t=6s 小车离原位置的距离。
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。
高考物理牛顿运动定律的应用题20套(带答案)
高考物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC 方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ====''由v2=2a′x′得:21.44m2vxa=''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.3.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:(1)物体与传送带间的动摩擦因数;(2) 0~8 s内物体机械能的增加量;(3)物体与传送带摩擦产生的热量Q。
高考物理牛顿运动定律题20套(带答案)
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s 【解析】 【分析】 【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma 代入数据解得a=6m/s 2上升高度代入数据解得 h=75m . (2)下落过程中 mg ﹣f=ma 1 代入数据解得落地时速度 v 2=2a 1H , 代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t = 对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W5.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.6.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤7.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgs inθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.8.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.9.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg-N=mg解得:N=0根据牛顿第三定律有:N′=N=0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg-N=ma根据匀变速直线运动规律有:a=222vh-=-15m/s2解得:N=75N(2分)根据牛顿第三定律有:N′=N=75N,即球对手的压力为75N考点:牛顿第二及第三定律的应用10.如图所示,质量1m kg=的小球套在细斜杆上,斜杆与水平方向成30α=o角,球与杆之间的滑动摩擦因数36μ=,球在竖直向上的拉力20F N=作用下沿杆向上滑动.(210/g m s=)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.【答案】(1)53N方向垂直于杆向上(2)22.5m/s(3) 0N【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。
高考物理牛顿运动定律的应用题20套(带答案)及解析
高考物理牛顿运动定律的应用题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
已知木板与物块间动摩擦因数μ1=3,木板与传送带间的动摩擦因数μ2=34,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。
(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。
【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin 2mg mg α=斜面对木块的最大静摩擦力:13cos 4m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态;(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a =' 由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.一长木板置于粗糙水平地面上,木板右端放置一小物块,如图所示。
木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4。
t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1s 时,木板以速度v 1=4m/s 与墙壁碰撞(碰撞时间极短)。
碰撞前后木板速度大小不变,方向相反。
运动过程中小物块第一次减速为零时恰好从木板上掉下。
已知木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2。
求:(1)t=0时刻木板的速度;(2)木板的长度。
【答案】(1)05/v m s =(2)163l m =【解析】【详解】(1)对木板和物块:()()11M m g M m a μ+=+令初始时刻木板速度为0v 由运动学公式:101v v a t =+代入数据求得:0=5m/s v(2)碰撞后,对物块:22mg ma μ= 对物块,当速度为0时,经历时间t ,发生位移x 1,则有21112v x a =,112v x t = 对木板,由牛顿第二定律:()213mg M m g Ma μμ++=对木板,经历时间t ,发生位移x 2221312x v t a t =- 木板长度12l x x =+代入数据,16=m 3l2.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N;(3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆=【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+ 解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5ma g s μ==,且方向向右 板产生的加速度220.5mgm a s M μ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -= 此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--= 故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-= 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-= 代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;(3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1,则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--=''3210.5m v v at s=-= 碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-= 故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.3.如图所示,小红和妈妈利用寒假时间在滑雪场进行滑雪游戏。
牛顿运动定律的10种典型例题(收藏)
牛顿运动定律的10种典型 例题(精选)
9
3. 力的独立作用原理
当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理), 而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。那个方向的力就产 生那个方向的加速度。 例7、如图所示,一个劈形物体M放在固定的斜面上,上表面水平,在水平面上放有光滑 小球m,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是: A.沿斜面向下的直线 B.抛物线 C .竖直向下的直线 D.无规则的曲线。
关键是正确判断系统的超重与失重现象,清
楚系统的重心位置的变化情况。当系统的重
心加速上升时为超重,当系统的重心加速下
降时为失重。
牛顿运动定律的10种典型 例题(精选)
16
6. 超重和失重问题
(1)定量计算: 例13. 如图所示,一根弹簧上端固定,下端挂一质量为 m0的秤盘,盘中放有质量为m的物 体,当整个装置静止时,弹簧伸长了L,今向下拉盘使弹簧再伸长△L,然后松手放开,设 弹簧总是在弹性范围内,则刚松手时,物体m对盘压力等于多少?
图10
牛顿运动定律的10种典型 例题(精选)
20 N
mB
FA mA
FB mB
FB
16 4t 3
N
当t=4s时N=0,A、B两物体开始分离,此后B做匀加速直线运动,而A做加速度逐渐减 小的加速运动,当t=4.5s时A物体的加速度为零而速度不为零。t>4.5s后,A所受合外力反 向,即A、B的加速度方向相反。当t<4s时,A、B的加速度均为
牛顿运动定律的10种典型例题
1. 力和运动的关系
例1. 如图所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开 始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中, 下列说法中正确的是( ) A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大
高考物理牛顿运动定律的应用题20套(带答案)含解析
高考物理牛顿运动定律的应用题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件;(2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离.【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆=【解析】【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围.【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得:对整体:F =(m +M )a对物体A :μMg =Ma解得:F =3N若F 大于3N ,A 就会相对B 向左滑下综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t解得:t =0.25sA 滑行距离 x A =v 0t -12a A t 2=1516mB 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求:(1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m【解析】【分析】【详解】设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2物体2:T +μmg = ma 2物体3:mg –T = ma 3且a 2= a 3由以上两式可得:22g g a μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v t x ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速T =2m a mg —T =ma 即mg =3m a得3g a = 对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2物体2:T —μmg = ma 4物体3:mg –T = ma 5且a 4= a 5得:42g g a μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.3.如图所示,质量为m=2kg 的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg ,地面光滑,现对斜面体施一水平推力F ,要使物块m 相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s 2)(1)若斜面与物块间无摩擦力,求m 加速度的大小及m 受到支持力的大小; (2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F 的取值.(此问结果小数点后保留一位)【答案】(1)7.5m/s 2;25N (2)28.8N≤F≤67.2N【解析】【分析】(1)斜面M 、物块m 在水平推力作用下一起向左匀加速运动,物块m 的加速度水平向左,合力水平向左,分析物块m的受力情况,由牛顿第二定律可求出加速度a和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得:mgtanθ=ma得a=gtanθ=10×tan37°=7.5m/s2m受到支持力20N=25N cos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:对物块分析,在水平方向有Nsinθ﹣μNcosθ=ma1竖直方向有Ncosθ+μNsinθ﹣mg=0对整体有 F1=(M+m)a1代入数值得a1=4.8m/s2 ,F1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F2,对物块分析,在水平方向有N′sinθ﹣μN′cosθ=ma2竖直方向有N′cosθ﹣μN′sinθ﹣mg=0对整体有F2=(M+m)a2代入数值得a2=11.2m/s2,F2=67.2N综上所述可以知道推力F的取值范围为:28.8N≤F≤67.2N.【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.4.某智能分拣装置如图所示,A为包裹箱,BC为传送带.传送带保持静止,包裹P 以初速度v0滑上传送带,当P滑至传送带底端时,该包裹经系统扫描检测,发现不应由A收纳,则被拦停在B 处,且系统启动传送带轮转动,将包裹送回C 处.已知v 0=3m/s ,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37º,传送带BC 长度L =10m ,重力加速度g =10m/s 2,sin37º=0.6,cos37º=0.8,求:(1)包裹P 沿传送带下滑过程中的加速度大小和方向;(2)包裹P 到达B 时的速度大小;(3)若传送带匀速转动速度v =2m/s ,包裹P 经多长时间从B 处由静止被送回到C 处;(4)若传送带从静止开始以加速度a 加速转动,请写出包裹P 送回C 处的速度v c 与a 的关系式,并画出v c 2-a 图象.【答案】(1)0.4m/s 2 方向:沿传送带向上(2)1m/s (3)7.5s(4)222200.4/80.4/ca a m s v a m s ⎧<=⎨≥⎩()() 如图所示:【解析】【分析】先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a 进行讨论分析得到v c 2-a 的关系,从而画出图像。
高考物理牛顿运动定律的应用及其解题技巧及练习题(含答案)
高考物理牛顿运动定律的应用及其解题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC 方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:()2312 2.4t t t s s =+=+≈ 【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.3.如图所示,质量为m=2kg 的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg ,地面光滑,现对斜面体施一水平推力F ,要使物块m 相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s 2)(1)若斜面与物块间无摩擦力,求m 加速度的大小及m 受到支持力的大小; (2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F 的取值.(此问结果小数点后保留一位) 【答案】(1)7.5m/s 2;25N (2)28.8N≤F≤67.2N 【解析】 【分析】(1)斜面M 、物块m 在水平推力作用下一起向左匀加速运动,物块m 的加速度水平向左,合力水平向左,分析物块m 的受力情况,由牛顿第二定律可求出加速度a 和支持力.(2)用极限法把F 推向两个极端来分析:当F 较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F 较大(足够大)时,物块将相对斜面向上滑,因此F 不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F 的取值范围. 【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得: mgtanθ=ma得 a=gtanθ=10×tan37°=7.5m/s 2m受到支持力20N=25N cos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:对物块分析,在水平方向有Nsinθ﹣μNcosθ=ma1竖直方向有Ncosθ+μNsinθ﹣mg=0对整体有 F1=(M+m)a1代入数值得a1=4.8m/s2 ,F1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F2,对物块分析,在水平方向有N′sinθ﹣μN′cosθ=ma2竖直方向有N′cosθ﹣μN′sinθ﹣mg=0对整体有F2=(M+m)a2代入数值得a2=11.2m/s2,F2=67.2N综上所述可以知道推力F的取值范围为:28.8N≤F≤67.2N.【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.4.某智能分拣装置如图所示,A为包裹箱,BC为传送带.传送带保持静止,包裹P 以初速度v0滑上传送带,当P滑至传送带底端时,该包裹经系统扫描检测,发现不应由A收纳,则被拦停在B处,且系统启动传送带轮转动,将包裹送回C处.已知v0=3m/s,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37º,传送带BC长度L=10m,重力加速度g=10m/s2,sin37º=0.6,cos37º=0.8,求:(1)包裹P沿传送带下滑过程中的加速度大小和方向;(2)包裹P到达B时的速度大小;(3)若传送带匀速转动速度v =2m/s ,包裹P 经多长时间从B 处由静止被送回到C 处; (4)若传送带从静止开始以加速度a 加速转动,请写出包裹P 送回C 处的速度v c 与a 的关系式,并画出v c 2-a 图象.【答案】(1)0.4m/s 2 方向:沿传送带向上(2)1m/s (3)7.5s(4)222200.4/80.4/ca a m s v a m s ⎧<=⎨≥⎩()() 如图所示:【解析】 【分析】先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a 进行讨论分析得到v c 2-a 的关系,从而画出图像。
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在光滑的水平面上有一足够长的质量M=4kg 的长木板,在长木板右端有一质量m=1kg 的小物块,长木板与小物块间的动擦因数μ=0.2,开始时长木板与小物块均静止.现用F=14N 的水平恒力向石拉长木板,经时间t=1s 撤去水平恒力F ,g=10m/s 2.求(1)小物块在长木板上发生相对滑幼时,小物块加速度a 的大小; (2)刚撤去F 时,小物块离长木板右端的距离s ; (3)撒去F 后,系统能损失的最大机械能△E . 【答案】(1)2m/s 2(2)0.5m (3)0.4J 【解析】 【分析】(1)对木块受力分析,根据牛顿第二定律求出木块的加速度;(2)先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离;(3)撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损失的最大机械能△E . 【详解】(1)小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则:µmg=ma 1, 解得a 1=µg=2m/s 2(2)对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-µmg=Ma 2, 解得:a 2= 3m/s 2. 小物块运动的位移:x 1=12a 1t 2=12×2×12m=1m , 长木板运动的位移:x 2=12a 2t 2=12×3×12m=1.5m , 则小物块相对于长木板的位移:△x=x 2-x 1=1.5m-1m=0.5m .(3)撤去F 后,小物块和木板的速度分别为:v m =a 1t=2m/s v=a 2t=3m/s 小物块和木板系统所受的合外力为0,动量守恒:()m mv Mv M m v +=+' 解得 2.8/v m s ='从撤去F 到物体与木块保持相对静止,由能量守恒定律:222111()222m mv Mv E M m v +=∆'++ 解得∆E=0.4J 【点睛】该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认真分析物体的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式.2.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
高考物理牛顿运动定律的应用及其解题技巧及练习题(含答案)
高考物理牛顿运动定律的应用及其解题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:μmgL =2201122mv mv 代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −atma=μmg滑块相对传送带滑动的位移为:△x=L−x相对滑动产生的热量为:Q=μmg△x代值解得:Q=0.5J【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移.2.如图所示,质量为2kg的物体在与水平方向成37°角的斜向上的拉力F作用下由静止开始运动.已知力F的大小为5N,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s末物体的瞬时速度大小和8s时间内物体通过的位移大小;(3)若8s末撤掉拉力F,则物体还能前进多远?【答案】(1)a=0.3m/s2 (2)x=9.6m (3)x′=1.44m【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f=maF sin37°+F N=mg又f=μF N联立得:a=cos37(sin37) F mg Fmμ--o o代入解得a=0.3m/s2(2)8s末物体的瞬时速度大小v=at=0.3×8m/s=2.4m/s8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动,根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a=''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.3.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
高中物理牛顿运动定律的应用真题汇编(含答案)及解析
高中物理牛顿运动定律的应用真题汇编(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,一质量M=40kg、长L=2.5m的平板车静止在光滑的水平地面上. 一质量m=10kg可视为质点的滑块,以v0=5m/s的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g=10m/s2.(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;(2)计算说明滑块能否从平板车的右端滑出.【答案】(1),(2)恰好不会从平板车的右端滑出.【解析】根据牛顿第二定律得对滑块,有,解得对平板车,有,解得.设经过t时间滑块从平板车上滑出滑块的位移为:.平板车的位移为:.而且有解得:此时,所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.答:滑块与平板车的加速度大小分别为和.滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加速度;由位移关系可得出两物体位移间相差L时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.2.如图所示,质量M=8kg的小车放在光滑水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求:(1)小物块刚放上小车时,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度?共同速度是多大?(3)从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少?(取g=10m/s2).【答案】(1)2m/s2,0.5m/s2(2)1s,2m/s(3)2.1m【解析】【分析】(1)利用牛顿第二定律求的各自的加速度;(2)根据匀变速直线运动的速度时间公式以及两物体的速度相等列式子求出速度相等时的时间,在将时间代入速度时间的公式求出共同的速度;(3) 根据先求出小物块在达到与小车速度相同时的位移,再求出小物块与小车一体运动时的位移即可.【详解】(1) 根据牛顿第二定律可得小物块的加速度:m/s2小车的加速度:m/s2(2)令两则的速度相等所用时间为t,则有:解得达到共同速度的时间:t=1s共同速度为:m/s(3) 在开始1s内小物块的位移m此时其速度:m/s在接下来的0.5s小物块与小车相对静止,一起做加速运动且加速度:m/s2这0.5s内的位移:m则小物块通过的总位移:m【点睛】本题考查牛顿第二定律的应用,解决本题的关键理清小车和物块在整个过程中的运动情况,然后运用运动学公式求解.同时注意在研究过程中正确选择研究对象进行分析求解.3.如图所示,地面上有一固定的斜面体ABCD ,其AB 边的长度2S m =,斜面倾角为370.光滑水平地面上有一块质量3M kg =的足够长的木板紧挨着斜面体静止放置.质量为1m kg =物体由A 点静止滑下,然后从B 点滑上长木板(由斜面滑至长木板时速度大小不变),已知物体与斜面体的动摩擦因数为0.25,物体与长木板的动摩擦因数为0.3,210/g m s =,0370.6sin =,0370.8cos =.求:(1)物体到达斜面底端B 点时的速度大小;(2)物体从B 点滑上长木板时,物体和长木板的加速度大小; (3)物体在长木板上滑行的最大距离.【答案】(1)4/m s (2)213/a m s = ;221/a m s = (3)2m【解析】 【分析】该题是应用牛顿第二定律解决运动问题中的物体在粗糙斜面上滑行问题和板块模型的结合题.分别根据两种题型的解答思路和方法, 求解即可. 【详解】(1)对沿斜面下滑的物体受力分析,据牛顿第二定律得:0013737mgsin mgcos ma μ-=解得:物体沿斜面下滑的加速度24/a m s =对物块沿斜面下滑的过程,应用速度位移公式得:202B v aS -=解得:物体到达斜面底端B 点时的速度4B m v s= (2)物体刚滑上长木板,对物体受力分析,由牛顿第二定律可得:21mg ma μ=解得:物体滑上长木板后物体的加速度213/a m s =,方向水平向左物体刚滑上长木板,对长木板受力分析,由牛顿第二定律可得:22mg Ma μ=解得:物体滑上长木板后长木板的加速度221/a m s =,方向水平向右(3)设经过时间t ,物体和长木板的速度相等,则:12B v a t a t -= 解得:1t s =这段时间内物体的位移2211114131 2.522B x v t a t m m =-=⨯-⨯⨯=这段时间内长木板的位移222211110.522x a t m m ==⨯⨯= 物体在长木板上滑行的最大距离122d x x m =-=4.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力F 的大小; (2)滑块开始下滑的高度h ;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s ,求滑块在传送带上滑行的整个过程中产生的热量Q . 【答案】(1) (2)0.1 m 或0.8 m (3)0.5 J【解析】 【分析】 【详解】解:(1)滑块受到水平推力F 、重力mg 和支持力F N 处于平衡,如图所示:水平推力 ① 解得:②(2)设滑块从高为h 处下滑,到达斜面底端速度为v 下滑过程 由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则 滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移:s =v 0t 由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩ 相对滑动生成的热量⑪⑫5.如图所示,长L =2m ,质量M=1kg 的木板B 静止在水平地面上,其正中央放置一质量m=2kg 的小滑块A ,现对B 施加一水平向右的恒力F .已知A 与B 、B 与地面间的动摩擦因数分别为120.20.4μμ==、,重力加速度210/g m s =,试求:(1)若A 、B 间相对滑动,F 的最小值;(2)当F =20N 时,若F 的作用时间为2s ,此时B 的速度大小; (3)当F =16N 时,若使A 从B 上滑下,F 的最短作用时间. 【答案】(1)min 18F N = (2)220/v m s = (3)2 1.73t s = 【解析】 【分析】 【详解】(1)A 、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,对A ,由牛顿第二定律可知,加速度212/a g m s μ==;对B ,由牛顿第二定律可知,()min 21F m M g mg Ma μμ-+-=, 解得min 18F N =(2)F=20N>18N ,二者间会相对滑动,对B ,由牛顿第二定律;()211F m M g mg Ma μμ-+-=解得214/a m s =;设A 从左端滑出的时间为1t ,则22111111222L a t gt μ=-,解得112t s s =<,此时B 的速度1114/==v a t m s故在F 作用后的1s 内,对B ,22F Mg Ma μ-=,解得2216/a m s =此时B 的速度()2121220/v v a t m s =+-=(3)若F=16N<18N ,则二者一起加速,由牛顿第二定律可知整体加速度()2204/3F M m ga m s M mμ-+==+; 当A 刚好从B 上滑下,F 的最短时间为2t ,设刚撤去F 瞬间,整体的速度为v ,则02v a t =撤去F 后,对A ,2112/a g m s μ==,对B :()21'228/m M g mga m s Mμμ+-==经分析,B 先停止运动,A 最后恰滑至B 的最右端时速度减为零,故221222'2v v La a -= 联立解得23 1.73t s s ==点睛:此题是牛顿第二定律的综合应用问题;解决本题的关键是先搞清物体运动的物理过程,根据物体的受力判断出物体的运动情况,结合牛顿第二定律和运动学公式进行求解.6.图示为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A 、B 两端相距3m ,另一台倾斜,传送带与地面的倾角θ= 37°,C 、D 两端相距4.45m , B 、C 相距很近。
高中物理牛顿运动定律的应用试题经典含解析
高中物理牛顿运动定律的应用试题经典含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M =6.0kg 的物块A 。
装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接。
传送带的皮带轮逆时针匀速转动,使传送带上表面以u =2.0m/s 匀速运动。
传送带的右边是一半径R =1.25m 位于竖直平面内的光滑14圆弧轨道。
质量m =2.0kg 的物块B 从14圆弧的最高处由静止释放。
已知物块B 与传送带之间的动摩擦因数μ=0.1,传送带两轴之间的距离l =4.5m 。
设第一次碰撞前,物块A 静止,物块B 与A 发生碰撞后被弹回,物块A 、B 的速度大小均等于B 的碰撞前的速度的一半。
取g =10m/s 2。
求:(1)物块B 滑到14圆弧的最低点C 时对轨道的压力; (2)物块B 与物块A 第一次碰撞后弹簧的最大弹性势能;(3)如果物块A 、B 每次碰撞后,物块A 再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B 经第一次与物块A 碰撞后在传送带上运动的总时间。
【答案】(1)60N ,竖直向下(2)12J (3)8s 【解析】 【详解】(1) 设物块B 沿光滑曲面下滑到水平位置时的速度大小为v 0,由机械能守恒定律得:2012mgR mv =代入数据解得:v 0=5m/s在圆弧最低点C ,由牛顿第二定律得:20v F mg m R-=代入数据解得:F =60N由牛顿第三定律可知,物块B 对轨道的压力大小:F′=F =60N ,方向:竖直向下; (2) 在传送带上,对物块B ,由牛顿第二定律得:μmg =ma设物块B 通过传送带后运动速度大小为v ,有2202v v al -=代入数据解得:v=4m/s由于v >u =2m/s ,所以v =4m/s 即为物块B 与物块A 第一次碰撞前的速度大小,设物块A 、B 第一次碰撞后的速度分别为v 2、v 1,两物块碰撞过程系统动量守恒,以向左为正方向,由动量守恒定律得:mv =mv 1+Mv 2由机械能守恒定律得:22212111222mv mv Mv =+ 解得:12m m 2,2s s 2vv v ==-=物块A 的速度为零时弹簧压缩量最大,弹簧弹性势能最大,由能量守恒定律得:2p 2112J 2E mv == (3) 碰撞后物块B 沿水平台面向右匀速运动,设物块B 在传送带上向右运动的最大位移为l′,由动能定理得21102mgl mv μ--'=解得:l′=2m <4.5m所以物块B 不能通过传送带运动到右边的曲面上,当物块B 在传送带上向右运动的速度为零后,将会沿传送带向左加速运动,可以判断,物块B 运动到左边台面时的速度大小为v 1′=2m/s ,继而与物块A 发生第二次碰撞。
高考物理牛顿运动定律的应用答题技巧及练习题(含答案)
高考物理牛顿运动定律的应用答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:μmgL =2201122mv mv 代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −atma=μmg滑块相对传送带滑动的位移为:△x =L−x相对滑动产生的热量为:Q=μmg △x代值解得:Q =0.5J 【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移.2.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t=0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数; (2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式.【答案】(1)08sin 5mg x θ (2)sin 5g θ(3)22084sin sin 2525mg F mg x θθ=+【解析】 【详解】(1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有:kx 0=(m+35m )gsinθ 解得:k=8 5mgsin x θ(2)由题意可知,b 经两段相等的时间位移为x 0; 由匀变速直线运动相邻相等时间内位移关系的规律可知:1014x x =说明当形变量为0010344x x x x =-=时二者分离;对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsinθ=ma 联立解得:a=15gsin θ(3)设时间为t ,则经时间t 时,ab 前进的位移x=12at 2=210gsin t θ则形变量变为:△x=x 0-x对整体分析可知,由牛顿第二定律有:F+k △x-(m+35m )gsinθ=(m+35m )a 解得:F=825mgsinθ+220425mg sin x θt 2 因分离时位移x=04x 由x=04x =12at 2解得:052x t gsin θ=故应保证0≤t <52x gsin θ,F 表达式才能成立.点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.3.如图甲所示,m 1 =5 kg 的滑块自光滑圆弧形槽的顶端A 点无初速度地滑下,槽的底端与水平传送带相切于左端导轮顶端的B 点,传送带沿顺时针方向匀速运转.m 1下滑前将m 2 = 3 kg 的滑块停放在槽的底端.m 1下滑后与m 2发生碰撞,碰撞时间极短,碰后两滑块均向右运动,传感器分别描绘出了两滑块碰后在传送带上从B 点运动到C 点的v -t 图象,如图乙、丙所示.两滑块均视为质点,重力加速度g = 10 m/s 2.(1)求A 、B 的高度差h ;(2)求滑块m 1与传送带间的动摩擦因数μ和传送带的长度L BC ; (3)滑块m 2到达C 点时速度恰好减到3 m/s ,求滑块m 2的传送时间; (4)求系统因摩擦产生的热量.【答案】(1)0.8m (2)26m (3)6.5s (4)16J 【解析】(1)由图乙可知,碰撞后瞬间,m 1 的速度v 1=1 m/s ,m 2的速度v 2 =5 m/s ,设碰撞前瞬间m 1的速度为v 0,取向右的方向为正方向,根据动量守恒:m 1v 0= m 1v 1+ m 2v 2解得:v 0 = 4 m/sm 1下滑的过程机械能守恒:211012m gh m v = 解得:h =0.8 m(2)由图乙可知,滑块m 1在传送带上加速运动时的加速度大小0.5va t∆==∆m/s 2 滑块的加速度就是由滑动摩擦力提供,故μ1m 1g = m 1a 可求出滑块m 1与传送带间的动摩擦因数μ1 = 0.05由图乙可知,滑块m 1在传送带上先加速4 s ,后匀速运动6 s 到达C 点 图线与坐标轴围成的图形的面积在数值上等于传送带的长度L BC ,即L BC = 26 m (3)滑块m 2一直做匀减速直线运动,达C 点时速度恰好减到3 m/s ,全程的平均速度为24/2v vv m s +== 设滑块m 2的传送时间为t ,则有 6.5BCL t s v== (4)由图乙可知,滑块m 1在传送带上加速阶段的位移21011182x v t at m =+= 滑块m 1在传送带上加速阶段产生的热量Q 1=μ1m 1g (vt 1-x 1)=10 J 滑块m 2在传送带上减速的加速大小413v a t '∆'=='∆m/s 2 滑块m 2受到的滑动摩擦力大小f = m 2a ′滑块m 2在传送带上减速阶段产生的热量Q 2 = f (L BC -vt ) = 6 J 系统因摩擦产生的热量Q = Q 1 + Q 2 =16 J .4.如图所示,水平传送带长为L =11.5m ,以速度v =7.5m/s 沿顺时针方向匀速转动.在传送带的A 端无初速释放一个质量为m =1kg 的滑块(可视为质点),在将滑块放到传送带的同时,对滑块施加一个大小为F =5N 、方向与水平面成θ=370的拉力,滑块与传送带间的动摩擦因数为μ=0.5,重力加速度大小为g =10m/s 2,sin37°=0.6,cos37°=0.8.求滑块从A 端运动到B 端的过程中:(1)滑块运动的时间;(2)滑块相对传送带滑过的路程. 【答案】(1)2s (2)4m 【解析】 【分析】(1)滑块滑上传送带后,先向左匀减速运动至速度为零,以后向右匀加速运动.根据牛顿第二定律可求得加速度,再根据速度公式可求出滑块刚滑上传送带时的速度以及速度相同时所用的时间; 再对共速之后的过程进行分析,明确滑块可能的运动情况,再由动力学公式即可求得滑块滑到B 端所用的时间,从而求出总时间.(2)先求出滑块相对传送带向左的位移,再求出滑块相对传送带向右的位移,即可求出滑块相对于传送带的位移. 【详解】(1)滑块与传送带达到共同速度前 , 设滑块加速度为1a ,由牛顿第二定律:()13737Fcos mg Fsin ma μ︒+-︒=解得:217.5/a m s =滑块与传送带达到共同速度的时间:111vt s a == 此过程中滑块向右运动的位移:11 3.752vs t m == 共速后 , 因 ()3737Fcos mg Fsin μ︒>-︒ ,滑块继续向右加速运动, 由牛顿第二定律:()23737Fcos mg Fsin ma μ︒--︒=解得:220.5/a m s =根据速度位移关系可得:()22212Bvv a L s -=-滑块到达 B 端的速度:8/B v m s = 滑块从共速位置到 B 端所用的时间:221B v vt s a -== 滑块从 A 端到 B 端的时间:122t t t s =+=(2)0∼1s 内滑块相对传送带向左的位移:111 3.75s vt s m =-=V ,1s ∼2s 内滑块相对传送带向右的位移: ()2120.25s L s vt m =--=V, 0∼2s 内滑块相对传送带的路程: 124s s s m =+=V V V5.如图所示,在足够高的光滑水平台面上静置一质量为m 的长木板A ,木板A 右端用轻绳绕过光滑的轻质定滑轮与质量也为m 的物体C 连接.当C 从静止开始下落距离h 时,在木板A 的最右端轻放一质量为4m 的小铁块B (初速度为0,可视为质点),最终B 恰好未从A 上滑落,A 、B 间的动摩擦因数μ=0.25.最大静摩擦力等于滑动摩擦力,重力加速度为g .计算:(1)C 由静止下落距离h 时,木板A 的速度大小v A ; (2)木板A 的长度L ;(3)若当铁块B 轻放在木板A 最右端的同时,对B 加一水平向右的恒力F =7mg ,其他条件不变,计算B 滑出A 时B 的速度大小v B .【答案】(1gh (2)2h (352gh 【解析】 【详解】(1)对A 、C 分析,有mg =2ma 1212A v a h =解得A v gh =(2)B 放在A 上后,设A 、C 仍一起加速,则mg -4μmg =2ma 2解得a 2=0即B 放在A 上后,A 、C 以速度v A 匀速运动.此时,B 匀加速运动,加速度a B 1=444mg gm μ= 设经过时间t 1,B 的速度达到v A ,且B 刚好运动至木板A 的左端 则有v A =a B 1t 1木板A 的长度L =S AC -S B =v A t 1-112A v t 解得L =2h(3)加上力F 后,B 的速度达到v A 前,A 和C 仍匀速,B 仍加速,此时 B 的加速度a B 2=424F mgg mμ+= 加速时间22A B gh v t a == B 相对A 的位移22124A B A A hS S S v t v t ∆=-=-=A 、B 共速后都向右加速,设经时间t 3,B 滑出A .有 对B 有a B 3=4342F mg g m μ-= 对A 有a AC =42mg mgg mμ+=B 相对A 的位移223333311()()22B A A B A AC S S S v t a t v t a t '∆==+-+'-解得3gh h t g == B 滑出A 时的速度v B =v A +a B 3·t 3=52gh6.如图,一块长度为9L m =、质量为1M kg =的长木板静止放置在粗糙水平地面上.另有质量为1m kg =的小铅块(可看做质点),以012/v m s =的水平初速度向右冲上木板.已知铅块与木板间的动摩擦因数为10.4μ=,木板与地面间的动摩擦因数为20.1μ=,重力加速度取210/g m s =,求:()1铅块刚冲上木板时,铅块与木板的加速度1a 、2a 的大小;()2铅块从木板上滑落所需时间;()3为了使铅块不从木板上滑落,在铅块冲上木板的瞬间,对长木板施加一水平向右的恒定拉力F ,求恒力F 的范围.【答案】(1)4m/s 2;2m/s 2(2)1s (3)2N≤F≤10N 【解析】 【分析】(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和木板的位移之差等于L ,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不能从左侧滑下求解力F 的范围;【详解】(1)铅块:11mg ma μ= 解得a 1=4m/s 2;对木板:122()mg M m g Ma μμ-+= 解得a 2=2m/s 2(2)从开始到滑落过程:2201112111()22v t a t a t L +-= 解得t 1=1s10118/v v a t m s =-=2212/v a t m s ==(3)到右端恰好共速:2202122211()22v t a t a t L '+-= '01222v a t a t -=解得a ′2=4m/s 2木板:'122()F mg M m g Ma μμ+-+= 解得F ≥2N ;共速后不能从左侧滑下:2-()()F M m g M m a μ+=+共,1a g μ≤共 解得F ≤10N , 则F 的范围:2N ≤F ≤10N 【点睛】本题主要是考查牛顿第二定律的综合应用,对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.7.如图所示,长L =2m ,质量M=1kg 的木板B 静止在水平地面上,其正中央放置一质量m=2kg 的小滑块A ,现对B 施加一水平向右的恒力F .已知A 与B 、B 与地面间的动摩擦因数分别为120.20.4μμ==、,重力加速度210/g m s =,试求:(1)若A 、B 间相对滑动,F 的最小值;(2)当F =20N 时,若F 的作用时间为2s ,此时B 的速度大小; (3)当F =16N 时,若使A 从B 上滑下,F 的最短作用时间. 【答案】(1)min 18F N = (2)220/v m s = (3)2 1.73t s = 【解析】 【分析】 【详解】(1)A 、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,对A ,由牛顿第二定律可知,加速度212/a g m s μ==;对B ,由牛顿第二定律可知,()min 21F m M g mg Ma μμ-+-=, 解得min 18F N =(2)F=20N>18N ,二者间会相对滑动,对B ,由牛顿第二定律;()211F m M g mg Ma μμ-+-=解得214/a m s =;设A 从左端滑出的时间为1t ,则22111111222L a t gt μ=-, 解得112t s s =<,此时B 的速度1114/==v a t m s故在F 作用后的1s 内,对B ,22F Mg Ma μ-=,解得2216/a m s =此时B 的速度()2121220/v v a t m s =+-=(3)若F=16N<18N ,则二者一起加速,由牛顿第二定律可知整体加速度()2204/3F M m ga m s M mμ-+==+; 当A 刚好从B 上滑下,F 的最短时间为2t ,设刚撤去F 瞬间,整体的速度为v ,则02v a t =撤去F 后,对A ,2112/a g m s μ==,对B :()21'228/m M g mga m s Mμμ+-==经分析,B 先停止运动,A 最后恰滑至B 的最右端时速度减为零,故221222'2v v La a -= 联立解得23 1.73t s s ==点睛:此题是牛顿第二定律的综合应用问题;解决本题的关键是先搞清物体运动的物理过程,根据物体的受力判断出物体的运动情况,结合牛顿第二定律和运动学公式进行求解.8.风洞实验室中可产生水平方向的,大小可调节的风力.现将一套有球的细直杆放入风洞实验室.小球孔径略大于细杆直径.如图所示.(1)当杆水平固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数.(2)保持小球所受风力不变,使杆与水平方向夹角为37°并固定,则小球从静止出发在细杆上滑下距离s=3.75m 所需时间为多少?(sin37°=0.6,cos37°=0.8) 【答案】(1)0.5(2)1s 【解析】 【分析】 【详解】(1)小球做匀速直线运动,由平衡条件得:0.5mg=μmg ,则动摩擦因数μ=0.5; (2)以小球为研究对象,在垂直于杆方向上,由平衡条件得:000.5sin 37cos37N F mg mg +=在平行于杆方向上,由牛顿第二定律得:000.5cos37sin 37N mg mg F ma μ+-=代入数据解得:a=7.5m/s 2小球做初速度为零的匀加速直线运动,由位于公式得:s=12at 2运动时间为1t s ===; 【点睛】此题是牛顿第二定律的应用问题,对小球进行受力分析是正确解题的前提与关键,应用平衡条件用正交分解法列出方程、结合运动学公式即可正确解题.9.水平的浅色长传送带上放置一质量为0.5kg 的煤块.煤块与传送带之间的动摩擦因数μ=0.2.初始时,传送带与煤块都是静止的.现让传送带以恒定的加速度a 0=3m/s 2开始运动,其速度达到v=6m/s 后,便以此速度做匀速运动.经过一段时间,煤块在传送带上留下一段黑色痕迹后,煤块相对传送带不再滑动.210/g m s =,求: (1)求煤块所受滑动摩擦力的大小. (2)求黑色痕迹的长度. (3)摩擦力对传送带做的功 【答案】(1)1N (2)3m (3)12J 【解析】 【分析】传送带与煤块均做匀加速直线运动,黑色痕迹为相对滑动形成的;分别求出有相对运动时,煤块及传送带的位移则可以求出相对位移.根据能量关系求解摩擦力对传送带做的功 【详解】(1)煤块所受滑动摩擦力的大小 f=μmg=0.2×5N=1N .(2)煤块运动的加速度为a=μg=2m/s 2;煤块与传送带相对静止所用时间632v t s a ===, 通过的位移6392x vt m m =⨯==;在煤块与传送带相对滑动的时间内:传送带由静止加速到6m/s 所用时间10623vt s s a =V == 在相对滑动过程中,传送带匀速运动的时间t 2=t-t 1=1s ,则传送带的位移x ′=2v t 1+vt 2=62×2+6×1m =12m , 则相对滑动的位移△x=x′-x=12-9m=3m . 由于煤块与传送带之间的发生相对滑动产生黑色痕迹,黑色痕迹即为相对滑动的位移大小,即黑色痕迹的长度3m .(3)此过程中摩擦力对传送带做功:21122W mv mg x J μ=+∆=10.如图所示,倾角为θ的足够长光滑、固定斜面的底端有一垂直斜面的挡板,A 、B 两物体质量均为m ,通过劲度系数为k 的轻质弹簧相连放在斜面上,开始时两者都处于静止状态.现对A 施加一沿斜面向上的恒力F = 2mgsin θ ( g 为重力加速度),经过作用时间t ,B 刚好离开挡板,若不计空气阻力,求:(1)刚施加力F 的瞬间,A 的加速度大小;(2)B 刚离开挡板时,A 的速度大小;(3)在时间t 内,弹簧的弹力对A 的冲量I A .【答案】(1)2sin a g θ=;(2)2sin A m v g k ;(3)sin (21)A m I mg k θ= 【解析】(1)刚施加力F 的瞬间,弹簧的形变不发生变化,有:F 弹=mgsin θ;根据牛顿第二定律,对A :F+F 弹-mgsin θ=ma解得a=2gsin θ.(2)由题意可知,开始时弹簧处于压缩状态,其压缩量为1sin mg x k θ=; 当B 刚要离开挡板时,弹簧处于伸长状态,其伸长量21sin =mg x x k θ=此时其弹性势能与弹簧被压缩时的弹性势能相等;从弹簧压缩到伸长的过程,对A 由动能定理:()()2121sin =2A F mg x x W mv θ-++弹 =0P W E ∆=弹解得2sin A m v g k=(3)设沿斜面向上为正方向,对A 由动量定理:()sin 0A A F mg t I mv θ-+=- ,解得2sin A I g t θ⎛⎫= ⎪ ⎪⎝⎭点睛:此题从力学的三大角度进行可研究:牛顿第二定律、动能定理以及动量定理;关键是先受力分析,然后根据条件选择合适的规律列方程;一般说研究力和时间问题用定量定理;研究力和位移问题用动能定理.。
高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)及解析
高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC 方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:μmgL =2201122mv mv代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −at ma=μmg滑块相对传送带滑动的位移为:△x =L−x相对滑动产生的热量为:Q=μmg △x代值解得:Q =0.5J 【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移.3.如图所示,质量为M =10kg 的小车停放在光滑水平面上.在小车右端施加一个F =10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量m =2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数μ=0.20.假定小车足够长.(1)求经过多长时间煤块与小车保持相对静止 (2) 求3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m 【解析】 【分析】分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位移. 【详解】(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:1N F ma μ=F N -mg =0代入数据解得:a 1=2m/s 2 刚开始运动时对小车有:2N F F Ma μ-=解得:a 2=0.6m/s 2经过时间t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v +a 2t解得:t =2s ;(2)在2s 内小黑煤块前进的位移为:21114m 2x a t ==2s 时的速度为:11122m/s 4m/s v a t ==⨯=此后加速运动的加速度为:235m/s 6F a M m ==+ 然后和小车共同运动t 2=1s 时间,此1s 时间内位移为:2212321 4.4m 2x v t a t =+=所以煤块的总位移为:128.4m x x +=(3)在2s 内小黑煤块前进的位移为:21114m 2x a t ==小车前进的位移为:21116.8m 2x v t a t '=+=两者的相对位移为:m 1 2.8x x x '∆=-=即煤块最终在小车上留下的痕迹长度2.8m . 【点睛】该题是相对运动的典型例题,要认真分析两个物体的受力情况,正确判断两物体的运动情况,再根据运动学基本公式求解.4.质量M =0.6kg 的平板小车静止在光滑水面上,如图所示,当t =0时,两个质量都为m =0.2kg 的小物体A 和B ,分别从小车的左端和右端以水平速度1 5.0v =m/s 和2 2.0v =m/s 同时冲上小车,当它们相对于小车停止滑动时,恰好没有相碰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理牛顿运动定律的应用试题经典一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
已知木板与物块间动摩擦因数μ1=3,木板与传送带间的动摩擦因数μ2=34,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。
(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。
【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin 2mg mg α=斜面对木块的最大静摩擦力:13cos 4m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态;(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a =' 由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。
2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.3.质量M =0.6kg 的平板小车静止在光滑水面上,如图所示,当t =0时,两个质量都为m =0.2kg 的小物体A 和B ,分别从小车的左端和右端以水平速度1 5.0v =m/s 和2 2.0v =m/s 同时冲上小车,当它们相对于小车停止滑动时,恰好没有相碰。
已知A 、B 两物体与车面的动摩擦因数都是0.20,取g =10m/s 2,求:(1)A 、B 两物体在车上都停止滑动时车的速度; (2)车的长度是多少?(3)从A 、B 开始运动计时,经8s 小车离原位置的距离. 【答案】(1)0.6m/s (2)6.8m (3)3.84m 【解析】 【详解】解:(1)设物体A 、B 相对于车停止滑动时,车速为v ,根据动量守恒定律有:()()122m v v M m v -=+代入数据解得:v =0.6m/s ,方向向右.(2)设物体A 、B 在车上相对于车滑动的距离分别为L 1、L 2,车长为L ,由功能关系有:()()22212121112222mg L L mv mv M m v μ+=+-+ 又L ≥L 1+L 2代入数据解得L ≥6.8m ,即L 至少为6.8m(3)当B 向左减速到零时,A 向右减速,且两者加速度大小都为12a g μ==m/s 2 对小车受力分析可知,小车受到两个大小相等、方向相反的滑动摩擦力作用,故小车没有动则B 向左减速到零的时间为2111v t a ==s 此时A 的速度为1113A v v a t =-=m/s当B 减速到零时与小车相对静止,此时A 继续向右减速,则B 与小车向右加速,设经过t s 达到共同速度v对B 和小车,由牛顿第二定律有:()2mg m M a μ=+,解得:20.5a =m/s 2 则有:12A v v a t a t =-=,代入数据解得:t =1.2s 此时小车的速度为20.6v a t ==m/s ,位移为21210.362x a t ==m 当三个物体都达到共同速度后,一起向右做匀速直线运动,则剩下的时间发生的位移为()28 3.48x v t =-=m则小车在8s 内走过的总位移为12 3.84x x x =+=m4.如图所示,一速度v =4m/s 顺时针匀速转动的水平传送带与倾角θ=37°的粗糙足长斜面平滑连接,一质量m =2Kg 的可视为质点的物块,与斜面间的动摩擦因数为μ1=0.5,与传送带间的动摩擦因数为µ2=0.4,小物块以初速度v 0=10m/s 从斜面底端上滑求:(g =10m/s 2) (1)小物块以初速度v 0沿斜面上滑的最大距离?(2)要使物块由斜面下滑到传送带上时不会从左端滑下,传送带至少多长?(3)若物块不从传送带左端滑下,物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间?【答案】(1) x 1=5m (2) L =2.5m (3)t =1.525s【解析】(1)小物块以初速度v 0沿斜面上滑时,以小物块为研究对象,由牛顿第二定律得: 1sin cos mg mg ma θμθ+=,解得2110/a m s =设小物块沿沿斜面上滑距离为x 1,则211020a x v -=-,解得15x m =(2)物块沿斜面下滑时以小物块为研究对象,由牛顿第二定律得:2sin cos mg mg ma θμθ-=,解得: 222/a m s =设小物块下滑至斜面底端时的速度为v 1,则21212v a x =解得: 125/v m s =设小物块在传送带上滑动时的加速度为a 3, 由牛顿第二定律得: 23µmg ma =,解得: 234/a m s =设物块在传送带向左滑动的最大距离为L ,则23120a L v -=-,解得: 2.5L m = 传送带至少2.5m 物块不会由传送带左端滑下(3)设物块从传送带左端向右加速运动到和传送带共速运动的距离为x 2,则222ax v =,解得: 22 2.5x m m =<,故小物体先加速再随传送带做匀速运动。
设小物体加速至与传送带共速用时t 1,则1v at =,解得11t s =设小物体匀速运动用时t 2,则22L x vt -=,解得20.125t s =设小物体由底端上滑到斜面最高点所时间t 3,则130v a t =-,解得30.4t s = 物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间123 1.525t t t t s =++=5.如图所示,地面上有一固定的斜面体ABCD ,其AB 边的长度2S m =,斜面倾角为370.光滑水平地面上有一块质量3M kg =的足够长的木板紧挨着斜面体静止放置.质量为1m kg =物体由A 点静止滑下,然后从B 点滑上长木板(由斜面滑至长木板时速度大小不变),已知物体与斜面体的动摩擦因数为0.25,物体与长木板的动摩擦因数为0.3,210/g m s =,0370.6sin =,0370.8cos =.求:(1)物体到达斜面底端B 点时的速度大小;(2)物体从B 点滑上长木板时,物体和长木板的加速度大小; (3)物体在长木板上滑行的最大距离.【答案】(1)4/m s (2)213/a m s = ;221/a m s = (3)2m【解析】 【分析】该题是应用牛顿第二定律解决运动问题中的物体在粗糙斜面上滑行问题和板块模型的结合题.分别根据两种题型的解答思路和方法, 求解即可. 【详解】(1)对沿斜面下滑的物体受力分析,据牛顿第二定律得:0013737mgsin mgcos ma μ-=解得:物体沿斜面下滑的加速度24/a m s =对物块沿斜面下滑的过程,应用速度位移公式得:202B v aS -=解得:物体到达斜面底端B 点时的速度4B m v s= (2)物体刚滑上长木板,对物体受力分析,由牛顿第二定律可得:21mg ma μ=解得:物体滑上长木板后物体的加速度213/a m s =,方向水平向左物体刚滑上长木板,对长木板受力分析,由牛顿第二定律可得:22mg Ma μ=解得:物体滑上长木板后长木板的加速度221/a m s =,方向水平向右(3)设经过时间t ,物体和长木板的速度相等,则:12B v a t a t -= 解得:1t s =这段时间内物体的位移2211114131 2.522B x v t a t m m =-=⨯-⨯⨯=这段时间内长木板的位移222211110.522x a t m m ==⨯⨯= 物体在长木板上滑行的最大距离122d x x m =-=6.如图所示,光滑水平面上放有光滑直角斜面体,倾角θ=30°,质量M =2.5kg .平行于斜面的轻质弹簧上端固定,下端与质量m =1.5kg 的铁球相连,静止时弹簧的伸长量Δl 0=2cm.重力加速度g 取10m/s 2.现用向左的水平力F 拉着斜面体向左运动,铁球与斜面体保持相对静止,当铁球对斜面体的压力为0时,求:(1)水平力F 的大小; (2)弹簧的伸长量Δl .【答案】(1)403N (2)8cm 【解析】 【分析】斜面M 、物体m 在水平推力作用下一起加速,由牛顿第二定律可求出它们的加速度,然后结合质量可算出物体m 的合力,最后利用物体的重力与合力可求出F 和弹簧的弹力. 【详解】(1)当铁球与斜面体一起向左加速运动,对斜面体压力为0时,弹簧拉力为T ,铁球受力如图:由平衡条件、牛顿第二定律得:sin T mg θ=cos T ma θ=对铁球与斜面体整体,由牛顿第二定律得:F M m a =+() 联立以上两式并代入数据得:403F N = (2)铁球静止时,弹簧拉力为T 0,铁球受力如图:由平衡条件得: 0sin T mg θ=由胡克定律得:00T k l =∆T k l =∆联立以上两式并代入数据得:8?cm l ∆= 【点睛】从整体与隔离两角度对研究对象进行受力分析,同时掌握运用牛顿第二定律解题方法.7.风洞实验室中可产生水平方向的,大小可调节的风力.现将一套有球的细直杆放入风洞实验室.小球孔径略大于细杆直径.如图所示.(1)当杆水平固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数.(2)保持小球所受风力不变,使杆与水平方向夹角为37°并固定,则小球从静止出发在细杆上滑下距离s=3.75m 所需时间为多少?(sin37°=0.6,cos37°=0.8) 【答案】(1)0.5(2)1s 【解析】 【分析】 【详解】(1)小球做匀速直线运动,由平衡条件得:0.5mg=μmg ,则动摩擦因数μ=0.5; (2)以小球为研究对象,在垂直于杆方向上,由平衡条件得:000.5sin 37cos37N F mg mg +=在平行于杆方向上,由牛顿第二定律得:000.5cos37sin 37N mg mg F ma μ+-=代入数据解得:a=7.5m/s 2小球做初速度为零的匀加速直线运动,由位于公式得:s=12at 2 运动时间为22 3.7517.5s t s s a ⨯===; 【点睛】此题是牛顿第二定律的应用问题,对小球进行受力分析是正确解题的前提与关键,应用平衡条件用正交分解法列出方程、结合运动学公式即可正确解题.8.图示为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A 、B 两端相距3m ,另一台倾斜,传送带与地面的倾角θ= 37°,C 、D 两端相距4.45m , B 、C 相距很近。