高一数学函数的表示法测试题及答案

合集下载

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用2.在R上定义运算,若不等式成立,则实数a的取值范围是().A.{a|}B.{a|}C.{a|}D.{a|}【答案】C【解析】由题知∴不等式对任意实数x都成立转化为对任意实数x都成立,即恒成立,解可得.故选A.【考点】本题考查了在新定义下对函数恒成立问题的应用.关于新定义型的题,关键是理解定义,并会用定义来解题.3.已知点是直线上的任意一点,则的最小值为()A.B.C.D.【答案】A【解析】点是直线上的任意一点,则有,即,所以有,显然当时,有最小值.【考点】消元法,二次函数中配方法求最值.4.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.函数的最小值是【答案】【解析】,则函数的最小值为。

【考点】函数的性质点评:本题通过构造形式用基本不等式求最值,训练答题都观察、化归的能力.7.已知f(x)是实数集上的偶函数,且在区间上是增函数,则的大小关系是()A.B.C.D.【答案】D【解析】因为,f(x)是实数集上的偶函数,且在区间上是增函数,所以,函数的图象关于y 轴对称,在区间是减函数。

高一数学上册第一章函数及其表示知识点及练习题(含答案)

高一数学上册第一章函数及其表示知识点及练习题(含答案)

函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。

(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。

4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。

考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。

函数的表示法习题含答案

函数的表示法习题含答案
(1)∵- ∈(-∞,-1),
∴f =-2× =3.
∵ ∈[-1,1],∴f =2.
又2∈(1,+∞),∴ =f(2)=2×2=4.
∵4.5∈(1,+∞),∴f(4.5)=2×4.5=9.
(2)经观察可知a∉[-1,1],否则f(a)=2.
若a∈(-∞,-1),令-2a=6,得a=-3,符合题意;
若a∈(1,+∞),令2a=6,得a=3,符合题意.
故选:C.
【点睛】
考查函数的定义,函数的三要素,判断两函数是否相同的方法:判断定义域和解析式是否都相同.
7.A
【解析】
【分析】
先利用导数研究函数的单调性,可得函数 在 上递增,排除 ,再证明 ,有 ,可排除 , ,从而可得结果.
【详解】
令 ,则 ,
由 ,得 ,即函数 在 上单调递增,
由 ,得 ,即函数 在 上单调递减,
3.配凑法:由已知条件 ,可将 改写成关于 的表达式,然后以 代替 ,便得 的解析式;
4.消去法:已知 与 之间的关系式,可根据已知条件再构造出另外一个组成方程组,通过解方程组求出
16.(1) ;(2)
【解析】
【分析】
(1)过A、D分别作 于G, 于H,由平面图形的知识可得线段长度,由面积公式分段可得函数解析式;(2)化简A、B集合,由 可得 ,得到关于a的不等式,从而求出 的取值范围。
若 ,则
解得 或 (舍去),
或 .
(2)由题意:
【点睛】
本题考查分段函数求值以及由函数值求自变量,考查分类讨论思想以及基本求解能力.
20.(1) .(2)
【解析】
【分析】
(1) 对任意的 恒成立,等价于 对任意的 ,由此能求出实数 的最小值.

高考数学专题《函数的概念及其表示》习题含答案解析

高考数学专题《函数的概念及其表示》习题含答案解析

专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值.【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=.故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩…则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算.【详解】由题意2(3)3312f =+=.故选:D .3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24练基础【解析】根据分段函数解析式直接求解.【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=.故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( )A .1B .3C .3-D .1或3【答案】B 【解析】根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果.【详解】因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b ,所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x =的定义域是______.【答案】[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案.【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果.【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-,若()()0g f x =,则()0f x =或2,∴{}1,0,1B =-,∴{}1,0,1=- A B .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.【答案】1或【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可.【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:a =故1a =或,故答案为:1或.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤-⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围.【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=-.所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( )A .t 没有最小值B .t1-C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值.【详解】如图,作出函数()f x 的图象,()()f n f m = 且n m >,则1m £,且1n >,练提升2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤.222211317(32)(333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤ ∴当n =时,()min 1n m -=-.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案.【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-.故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+B .225y x x =--+C .y =D .11y x=-【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断.【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集;故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案.【详解】因为f (x )= 2211x x+-,所以()f x -=221()1()x x +---=2211x x+-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项,1(f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项.故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( )A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D .【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确;对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根,因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=+,由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可;【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误;令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫>⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞U ,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案.【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=,所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确;对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点,如下图所示所以(]0,3a ∈,故D 正确.故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤<【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x=,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =,即()()12,2y x x a a y a a=≥+≥+,构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+,由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝,由于01a <<1a ≤<.1a ≤<9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析.【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象.【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-;当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩.()m x图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞ .【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式;(3)根据图象可得出不等式()()f x g x >的解集.【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩.则对应的图象如图:(2)函数()min x的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-,即不等式()()f x g x >的解集为()(),20,-∞-+∞ .1.(山东高考真题)设f (x )=<x <1―1),x ≥1,若f (a )=f (a +1),则=( )A .2B .4C .6D .8【答案】C【解析】由x ≥1时f (x )=2(x ―1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f (a )=f (a+1)得a =2(a +1―1),解得a =14,则=f (4)=2(4―1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A .3B .32 C .33 D .0【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=3,33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当练真题x=32,此时旋转π6,此时满足一个x 只会对应一个y ,故选:B .3. (2018年新课标I 卷文)设函数f (x )=2―x , x ≤01 , x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (―∞ , ―1]B. (0 , +∞)C. (―1 , 0)D. (―∞ , 0)【答案】D【解析】将函数f (x )的图象画出来,观察图象可知会有2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(―∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。

高一数学函数及其表示试题

高一数学函数及其表示试题

高一数学函数及其表示试题1.下列函数中,图象如图的函数可能是().A.y=x3B.y=2x C.y=D.y=log2x【答案】C【解析】由图像可知,函数的定义域为,且过点;而选项A:的定义域为,选项B:的定义域为,选项C:的定义域为,且过点,选项D:的定义域为;故选C.考点:函数的图像.2.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.3.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与【答案】D【解析】表示同一函数必须具备两个条件:一是定义域相同,二是对应法则相同.对于A,的定义域为,而的定义域为,不符合;对于B,的定义域为,对于的定义域为,不符合;对于C,函数与函数的定义域都为,但当时,与的对应法则不相同,也不符合;对于D,函数与函数的定义域都为,且,两个函数的对应法则也相同,故相同函数的是答案D.【考点】1.函数的概念;2.对数的恒等式.4.设是集合M到集合N的映射, 若N="{1,2}," 则M不可能是()A.{-1}B.C.D.【答案】D【解析】对应法则是,根据映射的定义,集合M中的任何一个元素在N中都要有唯一的元素和他对应,而D选项中的2,,,不满足定义,所以不正确,故选D.【考点】映射的定义5.已知函数,那么的值是()A.B.C.D.【答案】D【解析】表示当自变量时对应的函数值;根据分段函数的定义,当时,;因为 , 所以.故选D【考点】1、函数的概念;2、分段函数.6.已知函数,则下列说法中正确的是()A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则【答案】D.【解析】绝对值不等式||a|-|b||≤|a±b|≤|a|+|b|,由题,a≤0,则|x-a|≤|x|-a,f(x)≥1,A错误;f(x)≥1恒成立,则a≤0,x≥0,B错误,a<0,则0≤|x-a|≤|x|-a,方程f(x)=a,左边是正数,右边是负数,无解,所以C错误,方程f(x)=a有解,则两边同号,即|x|-a与a同号,可解得0<a≤1,选D.【考点】函数与绝对值不等式.7.下列四组中表示相等函数的是 ( )A.B.C.D.【答案】B【解析】A.的定义域不同;B.是同一函数;C.的定义域不同;D.的值域不同。

【高中数学必修一】1.2.2 函数的表示法-高一数学人教版(必修1)(解析版)

【高中数学必修一】1.2.2 函数的表示法-高一数学人教版(必修1)(解析版)

第一章 集合与函数概念1.2.2 函数的表示法一、选择题1.若()()20(0)x x f x x x ⎧≥=⎨-<⎩,,,则f [f (–2)]=A .2B .3C .4D .5【答案】C【解析】∵–2<0,∴f (–2)=–(–2)=2.又∵2>0,∴f [f (–2)]=f (2)=22=4,故选C .2.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到了终点.用S 1和S 2分别表示乌龟和兔子经过时间t 所行的路程,则下列图象中与故事情节相吻合的是A .B .C .D .【答案】D3.已知函数f (x +1)=3x +2,则f (x )的解析式是A.f(x)=3x+2 B.f(x)=3x+1C.f(x)=3x–1 D.f(x)=3x+4【答案】C【解析】设t=x+1,∵函数f(x+1)=3x+2=3(x+1)–1,∴函数f(t)=3t–1,即函数f(x)=3x–1,故选C.4.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,则b的象为A.1,2中的一个B.1,2 C.2 D.无法确定【答案】A【解析】映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,可得b的象为1或2,故选A.5.若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为A.1 B.–1 C.–32D.32【答案】B【解析】∵f(x)满足关系式f(x)+2f(1x)=3x,分别令x=2,和x=12,得()()12262132222f ff f⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+=⎪⎪⎝⎭⎩①②,①–②×2得–3f(2)=3,∴f(2)=–1,故选B.6.甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点【答案】D7.已知f(x–2)=x2–4x,那么f(x)=A .x 2–8x –4B .x 2–x –4C .x 2+8xD .x 2–4【答案】D【解析】由于f (x –2)=x 2–4x =(x 2–4x +4)–4=(x –2)2–4,从而f (x )=x 2–4.故选D . 8.国内某快递公司规定:重量在1000 g 以内的包裹快递邮资标准如下表:运送距离x (km ) 0<x ≤500 500<x ≤10001000<x ≤15001500<x ≤2000… 邮资y (元)5.006.007.008.00如果某人从北京快递900 g 的包裹到距北京1300 km 的某地,他应付的邮资是 A .5.00元B .6.00元C .7.00元D .8.00元【答案】C【解析】邮资y 与运送距离x 的函数关系式为 5.00(0500)6.00(5001000)7.00(10001500)8.00(15002000)x x y x x <≤⎧⎪<≤⎪=⎨<≤⎪⎪<≤⎩,∵1300∈(1000,1500],∴y =7.00,故选C .9.已知函数()()()32121x x f x x x x ⎧>⎪=⎨-+≤⎪⎩.若()54f a =-,则a 的值为A .12-或52B .12或52C .12-D .12【答案】C【解析】当a >1时,f (a )=3514a >≠-,此时a 不存在,当a ≤1,f (a )=–a 2+2a =–54,即4a 2–8a –5=0,解可得a =–12或a =52(舍),综上可得a =12-,故选C .10.已知函数f (x )=()20(0)x x x x ⎧≥⎨<⎩,,,则f (f (–2))的值是A .2B .–2C .4D .–4【答案】C【解析】∵已知函数()()20(0)x x f x x x ⎧≥=⎨<⎩,,,∴f (–2)=(–2)2,∴f (f (–2))=f (4)=4,故选C .二、填空题11.已知f+1)=x,则f (x )=__________.【答案】x 2–1,(x ≥1)【解析】∵()12fx x x +=+=x +2x +1–1=(x +1)2–1,∴则f (x )=x 2–1,(x ≥1).故答案为:x 2–1,(x ≥1).12.已知f (x +1)=2x 2+1,则f (x –1)=__________.【答案】2x 2–8x +9【解析】设x +1=t ,则x =t –1,f (t )=2(t –1)2+1=2t 2–4t +3,f (x –1)=2(x –1)2–4(x –1)+3=2x 2–4x +2–4x +4+3=2x 2–8x +9.故答案为:2x 2–8x +9. 13.已知f (x +1)=x 2,则f (x )=__________.【答案】(x –1)2【解析】由f (x +1)=x 2,得到f (x +1)=(x +1–1)2,故f (x )=(x –1)2.故答案为:(x –1)2. 14.已知函数f (x )=ax –b (a >0),f (f (x ))=4x –3,则f (2)=__________.【答案】3三、解答题15.()()()11032f x kx b f f =+==-,,,求f (4)的值. 【解析】∵()()()11032f x kx b f f =+==-,,,∴0132k b k b +=⎧⎪⎨+=-⎪⎩,解得k =–14,b =14, ∴f (x )=–14x +14,∴f (4)=–14×4+14=–34.16.二次函数f (x )满足f (x +1)–f (x )=2x 且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[–1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【解析】(1)由题意,设f (x )=ax 2+bx +c , 则f (x +1)=a (x +1)2+b (x +1)+c .从而f (x +1)–f (x )=[a (x +1)2+b (x +1)+c ]–(ax 2+bx +c )=2ax +a +b , 又f (x +1)–f (x )=2x ,∴220a a b =⎧⎨+=⎩即11a b =⎧⎨=-⎩,又f (0)=c =1, ∴f (x )=x 2–x +1.17.已知函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩(1)在坐标系中作出函数的图象; (2)若f (a )=12,求a 的取值集合. 【解析】(1)函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩的图象如下图所示:(2)当a ≤–1时,f (a )=a +2=12,可得:a =32-;当–1<a <2时,f (a )=a 2=12,可得:a =22±;当a ≥2时,f(a )=2a =12,可得:a =14(舍去); 综上所述,a 的取值构成集合为{32-,22-,22}.18.(1)已知3311f x x x x ⎛⎫+=+ ⎪⎝⎭,求f (x ). (2)已知21f lgx x ⎛⎫+=⎪⎝⎭,求f (x ). (3)已知f (x )是一次函数,且满足3f (x +1)–2f (x –1)=2x +17,求f (x ). (4)已知f (x )满足()123f x f x x ⎛⎫+=⎪⎝⎭,求f (x ). 【解析】(1)∵3331111()3f x x x x x x x x ⎛⎫⎛⎫+=+=+-+ ⎪ ⎪⎝⎭⎝⎭, ∴f (x )=x 3–3x (x ≥2或x ≤–2).(2)令21t x +=(t >1), 则21x t =-,∴()21f t lg t =-,∴()()211f x lg x x =->.19.已知函数f (x )=1+2x x -(–2<x ≤2),用分段函数的形式表示该函数.【解析】f (x )=1+1021202x x x x x ≤≤-⎧=⎨--<<⎩,,.。

函数的表示法训练题(附答案)

函数的表示法训练题(附答案)

函数的表示法训练题(附答案)1.下列各图中,不能是函数f(x)图象的是()解析:选C.结合函数的定义知,对A、B、D,定义域中每一个x都有唯一函数值与之对应;而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f(1x)=11+x,则f(x)等于()A.11+x(x≠-1)B.1+xx(x≠0)C.x1+x(x≠0且x≠-1)D.1+x(x≠-1)解析:选C.f(1x)=11+x=1x1+1x(x≠0),∴f(t)=t1+t(t≠0且t≠-1),∴f(x)=x1+x(x≠0且x≠-1).3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=() A.3x+2B.3x-2C.2x+3D.2x-3解析:选B.设f(x)=kx+b(k≠0),∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.4.已知f(2x)=x2-x-1,则f(x)=________.解析:令2x=t,则x=t2,∴f(t)=t22-t2-1,即f(x)=x24-x2-1.答案:x24-x2-11.下列表格中的x与y能构成函数的是()A.x非负数非正数y1-1B.x奇数0偶数y10-1C.x有理数无理数y1-1D.x自然数整数有理数y10-1解析:选C.A中,当x=0时,y=±1;B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、有理数之间存在包含关系,如x=1∈N(Z,Q),故y的值不唯一,故A、B、D均不正确.2.若f(1-2x)=1-x2x2(x≠0),那么f(12)等于()A.1B.3C.15D.30解析:选C.法一:令1-2x=t,则x=1-t2(t≠1),∴f(t)=--1,∴f(12)=16-1=15.法二:令1-2x=12,得x=14,∴f(12)=16-1=15.3.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是()A.2x+1B.2x-1C.2x-3D.2x+7解析:选B.∵g(x+2)=2x+3=2(x+2)-1,∴g(x)=2x-1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是()解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A、C,又一开始跑步,速度快,所以D符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x=1对称,且过点(0,0),则此二次函数的解析式为()A.f(x)=x2-1B.f(x)=-(x-1)2+1C.f(x)=(x-1)2+1D.f(x)=(x-1)2-1解析:选D.设f(x)=(x-1)2+c,由于点(0,0)在函数图象上,∴f(0)=(0-1)2+c=0,∴c=-1,∴f(x)=(x-1)2-1.6.已知正方形的周长为x,它的外接圆的半径为y,则y关于x的函数解析式为()A.y=12x(x>0)B.y=24x(x>0)C.y=28x(x>0)D.y=216x(x>0)解析:选C.设正方形的边长为a,则4a=x,a=x4,其外接圆的直径刚好为正方形的一条对角线长.故2a=2y,所以y=22a=22×x4=28x. 7.已知f(x)=2x+3,且f(m)=6,则m等于________.解析:2m+3=6,m=32.答案:328.如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则的值等于________.解析:由题意,f(3)=1,∴=f(1)=2.答案:29.将函数y=f(x)的图象向左平移1个单位,再向上平移2个单位得函数y=x2的图象,则函数f(x)的解析式为__________________.解析:将函数y=x2的图象向下平移2个单位,得函数y=x2-2的图象,再将函数y=x2-2的图象向右平移1个单位,得函数y=(x-1)2-2的图象,即函数y=f(x)的图象,故f(x)=x2-2x-1.答案:f(x)=x2-2x-110.已知f(0)=1,f(a-b)=f(a)-b(2a-b+1),求f(x).解:令a=0,则f(-b)=f(0)-b(-b+1)=1+b(b-1)=b2-b+1.再令-b=x,即得f(x)=x2+x+1.11.已知f(x+1x)=x2+1x2+1x,求f(x).解:∵x+1x=1+1x,x2+1x2=1+1x2,且x+1x≠1,∴f(x+1x)=f(1+1x)=1+1x2+1x=(1+1x)2-(1+1x)+1.∴f(x)=x2-x+1(x≠1).12.设二次函数f(x)满足f(2+x)=f(2-x),对于x∈R恒成立,且f(x)=0的两个实根的平方和为10,f(x)的图象过点(0,3),求f(x)的解析式.解:∵f(2+x)=f(2-x),∴f(x)的图象关于直线x=2对称.于是,设f(x)=a(x-2)2+k(a≠0),则由f(0)=3,可得k=3-4a,∴f(x)=a(x-2)2+3-4a=ax2-4ax+3.∵ax2-4ax+3=0的两实根的平方和为10,∴10=x21+x22=(x1+x2)2-2x1x2=16-6a,∴a=1.∴f(x)=x2-4x+3.。

高一数学函数的表示法练习题

高一数学函数的表示法练习题

高一数学函数的表示法练习题题型一 求函数值【例1】若函数()f x 满足(21)1f x x -=+,则(1)f = .【例2】(2006年安徽高考)函数()f x 对于任意实数x 满足条件1(2)()f x f x +=,若(1)5f =-,则((5))f f = .【例3】若函数2(21)2f x x x +=-,则(3)f = .【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.【例5】已知,a b 为常数,若22()43,()1024,f x x x f ax b x x =+++=++求5a b -的值.【例6】若函数2()f x x =,则对任意实数12,x x ,下列不等式总成立的是( )A .12()2x x f +≤12()()2f x f x + B .12()2x x f +<12()()2f x f x + C .12()2x x f +≥12()()2f x f x + D .12()2x x f +>12()()2f x f x +典例分析【例7】(2006.台湾)将正整数18分解成两个正整数的乘积有:118⨯,29⨯,36⨯三种,又36⨯是这三种分解中两数的差最小的,我们称36⨯为18的最佳分解.当p q ⨯()p q ≤ 是正整数n 的最佳分解时,我们规定函数()p F n q =,例如31(18)62F ==,下列有关函数()F n 的叙述,正确的序号为 (把你认为正确的序号都写上) ⑴(4)1F =;⑵3(24)8F =;⑶1(27)3F =;⑷若n 是一个质数,则()F n 1n=;⑸若n 是一个完全平方数,则()1F n =【例8】设函数3(100)(),(89).[(5)](100)x x f x f f f x x -≥⎧=⎨+<⎩求【例9】(2001上海理,1)设函数f (x )=812,(,1]log ,(1,)x x x -⎧∈-∞⎪⎨∈+∞⎪⎩,则满足f (x )=14的x 值为 。

函数的表示法练习题

函数的表示法练习题

13、已知函数 f x
x x 4 , x x 4 ,
x 0, x 0,
求 f 1; f 3 ;
f a 1 的值.
14、画出下列函数的图像: (1) y x 2, x Z 且 x 2 ;
2
(2) y 2 x 3 x , x 0, 2 ;
2 2

x
(B) y
2 2
2 4
x
(C) y

2 8
x
(D) y
2 16
x
4 x
x 4 的定义域是(
B、 ( 2, 2)
2
C、 ( , 2) (2, )
D、 { 2, 2} )
5、若函数 f ( x ) (A)-2≤x≤2 6、若 f x A.
三、解答题 12、在国内投寄外埠平信,每封信不超过 20 g 付邮资 80 分,超过 20 g 不超过 40 g 付邮资 160 分, 超过 40 g 不超过 60 g 付邮资 240 分, 以此类推, 每封 xg 0 x 100 的信应付多少邮资 (单位: ? 分) 写出函数表达式,做出函数的图像,并求出函数的值域.
18、已知函数 y = f(x+2)的定义域为[1,4],求函数 y = f(x) 的定义域.
19、已知函数 f(x)= ax ax 1 的定义域为 R,求实数 a 的取值范围.
2
3
神木中学
2
2012 高一数学
必修 1
导学案
编写:张智亮
20、已知函数 f(3x+1)=9x -6x+5,求函数 f(x)的解析式.(用配凑法)

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析1.下列各组函数是同一函数的是①与;②与;③与;④与。

A.①②B.①③C.③④D.①④【答案】C【解析】①中两函数定义域相同,值域不同,分别为;②中两函数定义域不同,分别为;③、④中两函数定义域、值域都相同。

【考点】函数的概念,即函数的三要素:定义域、对应法则、值域。

2.设计下列函数求值算法程序时需要运用条件语句的函数为().A.B.C.D.【答案】C.【解析】因为分段函数在求值时,不同范围内的自变量对应不同的函数,所以在编写函数求值的算法程序需运用条件语句,故本题选C.【考点】基本算法语句中的条件语句的理解.3.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围【答案】(1)f(x)=x2-x+1,(2)【解析】(1)求二次函数解析式,一般方法为待定系数法.二次函数解析式有三种设法,本题设一般式f(x)=ax2+bx+1,再利用等式恒成立,求出项的系数.由a(x+1)2+b(x+1)-ax2-bx=2x得2ax+a+b=2x,所以.(2)恒成立问题一般转化为最值问题.先构造不等式,再变量分离,这样就转化为求函数的最小值问题.试题解析:(1)设f(x)=ax2+bx+1a(x+1)2+b(x+1)-ax2-bx=2x2ax+a+b=2xf(x)=x2-x+1(2)考点:二次函数解析式,二次函数最值,不等式恒成立4.已知函数,那么的值是()A.B.C.D.【答案】D【解析】表示当自变量时对应的函数值;根据分段函数的定义,当时,;因为 , 所以.故选D【考点】1、函数的概念;2、分段函数.5.下列函数中,与函数有相同图象的一个是A.B.C.D.【答案】B【解析】选项A中函数的定义域为,定义域不相同,故选项A错;选项B中函数可化为,故B正确;选项C中函数的定义域为,故选项C错;选项D中函数的定义域为,故选项D 错.所以正确答案为B.【考点】函数相等.6.设集合A=B=,从A到B的映射在映射下,B中的元素为(4,2)对应的A中元素为()A.(4,2)B.(1,3)C.(6,2)D.(3,1)【答案】D【解析】集合A=B=,从A到B的映射在映射下,B中的元素为,所以,解得,所以集合中的元素为故选D.【考点】本题主要考查了映射的定义.7.下列四组函数,表示同一函数的是( )A.,B.C.D.【答案】D【解析】 A选项两个函数的定义域相同,但至于分别是[0,+∞)和R,所以排除A.B选项的定义域分别为x≠0和x>0,所以排除B.C选项中的定义域分别为R和x≠0,所以排除C.D选项的两函数化简后都是y=x,所以选D.【考点】 1.常见函数的定义域,值域问题.2.同一函数的判定方法.8.下列4对函数中表示同一函数的是( )A.,=B.,=C.=,D.,=【答案】B【解析】A.与=定义域不同;B.与=定义域、值域、对应法则完全相同,所以是同一函数;C.=与的定义域不同;D.与=的值域不同。

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析1.下列函数中,图象如图的函数可能是().A.y=x3B.y=2x C.y=D.y=log2x【答案】C【解析】由图像可知,函数的定义域为,且过点;而选项A:的定义域为,选项B:的定义域为,选项C:的定义域为,且过点,选项D:的定义域为;故选C.考点:函数的图像.2.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.3.设= .【答案】【解析】因为所以【考点】分段函数求值4.下列各组函数表示同一函数的是()A.B.C.D.【答案】C【解析】排除,因为三个选项中两个函数的定义域各不相同,故C正确。

【考点】函数的三要素。

5.已知函数的对应关系如下表,函数的图像是如下图的曲线,其中则的值为()A.3B.2C.1D.0【答案】B【解析】由的图像与的对应关系表可知,,所以,故选B.【考点】1.函数及其表示;2.复合函数的求值问题.6.已知函数(1)若,求的值;(2)求的值.【答案】(1)1;(2)1006【解析】(1)因为.所以可以计算出的值为1,即表示两个自变量的和为1的函数值的和为1.(2)由(1)可知两个自变量的和为1的函数值的和为1.所以令…①.利用倒序又可得到…②.所以由①+②可得2S=2012.所以S=1006.试题解析:. 5分(2). 10分【考点】1.函数的表示法.2.倒序求和法.7.下列各个对应中,构成映射的是()【答案】B【解析】按照映射的定义,A中的任何一个元素在集合B中都有唯一确定的元素与之对应.在选项A中,前一个集合中的元素2在后一个集合中没有元素与之对应,故不符合映射的定义;在选项C中,前一个集合中的元素2在后一集合中有2个元素和它对应,也不符合映射的定义;在选项D中,前一个集合中的元素1在后一集合中有2个元素和它对应,也不符合映射的定义;只有选项B满足映射的定义,【考点】映射概念.8.某公司一年购买某种货物200吨,分成若干次均匀购买,每次购买的运费为2万元,一年存储费用恰好与每次的购买吨数的数值相等(单位:万元),要使一年的总运费与总存储费用之和最小,则应购买________次.【答案】10【解析】先设此公司每次都购买x吨,利用函数思想列出一年的总运费与总存储费用之和,再结合基本不等式得到一个不等关系即可求得最小值.公司一年购买某种货物200吨,分成若干次均匀购买,每次购买的运费为2万元,一年存储费用恰好与每次的购买吨数的数值相等(单位:万元),要使一年的总运费与总存储费用之和y=2x+,当且仅当x=10时取得最小值,故答案为10.【考点】函数最值的应用点评:本题主要考查了函数最值的应用,以及函数模型的选择与应用和基本不等式的应用,考查应用数学的能力,属于基础题.9.下列所示的四幅图中,可表示为y=f(x)的图像的只可能是()【答案】D【解析】在函数中,取集合A中的任何一个元素x,都能在集合B中找个唯一一个元素y与之对应,选项D具有这样的特点,而其他选项没有。

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析1.下列各组函数是同一函数的是()A.B.C.D.【答案】D.【解析】对于A,函数的定义域为,函数的定义域为,两者的定义域不相同,所以不是同一函数,即A不正确;对于B,函数的定义域为,函数的定义域为或,两者的定义域不相同,所以不是同一函数,即B不正确;对于C,函数的定义域为,函数的定义域为,两者的定义域不相同,所以不是同一函数,即C不正确;对于D,函数的定义域和值域均为,函数的定义域和值域也均为,两者的定义域和值域均相同,所以是同一函数,即D正确.【考点】相等函数的概念.2.已知,则(指出范围).【答案】.【解析】令,,即,由已知得方程:,化简整理得,,.所以,.【考点】函数的解析式求法;换元法.3.下列各组函数的图象相同的是()A.B.C.D.【答案】D【解析】函数的图象相同即是同一个函数A、定义域不相同,B、对应关系不同,C、定义域不相同,中,x不能为零;两函数相同条件是定义域相同,对应关系相同,值域相同三者有一不满足就不是同一函数,但函数定义域相同,对应关系相同值域就相同.故判断同一函数,只判断定义域,对应关系即可【考点】两函数相等4.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.5.设则f(2 016)=()A.B.-C.D.-【答案】D【解析】.【考点】求分段函数函数值.6.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与【答案】D【解析】表示同一函数必须具备两个条件:一是定义域相同,二是对应法则相同.对于A,的定义域为,而的定义域为,不符合;对于B,的定义域为,对于的定义域为,不符合;对于C,函数与函数的定义域都为,但当时,与的对应法则不相同,也不符合;对于D,函数与函数的定义域都为,且,两个函数的对应法则也相同,故相同函数的是答案D.【考点】1.函数的概念;2.对数的恒等式.7.下列函数中,与函数相同的是( )A.B.C.D.【答案】D【解析】函数相同的两个条件:定义域相同,对应法则相同.原函数的定义域为,所以,故选D.【考点】函数的概念.8.下列函数中,与函数相同的是()A.B.C.D.【答案】D【解析】根据题意,由函数,那么对于A,由于对应关系不一样,定义域相同不是同一函数,对于B,由于,对应关系式不同,不成立,对于C,由于定义域相同,对应法则不同,不是同一函数,排除法选D.【考点】本题考查同一个函数的概念.9.下列函数中,与函数有相同图象的一个是A.B.C.D.【答案】B【解析】选项A中函数的定义域为,定义域不相同,故选项A错;选项B中函数可化为,故B正确;选项C中函数的定义域为,故选项C错;选项D中函数的定义域为,故选项D 错.所以正确答案为B.【考点】函数相等.10.已知函数的值域是,则的值域是A.B.C.D.【答案】A【解析】由已知可得,令,则,此时,两个函数的定义域相同,且它们的对应关系均为,所以两个函数的值域相同,故正确答案为A.【考点】函数的定义.11.设集合A=B=,从A到B的映射在映射下,B中的元素为(4,2)对应的A中元素为()A.(4,2)B.(1,3)C.(6,2)D.(3,1)【答案】D【解析】集合A=B=,从A到B的映射在映射下,B中的元素为,所以,解得,所以集合中的元素为故选D.【考点】本题主要考查了映射的定义.12.下列四组函数中,表示同一函数的一组是()A.B.C.D.【答案】D【解析】由函数的定义可知,两个函数要为同一函数则其三要素必须相同。

数学高一必修1课时作业 函数的表示法

数学高一必修1课时作业  函数的表示法

课时作业8函数的表示法|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的解析式是()A.g(x)=2x+1B.g(x)=2x-1C.g(x)=2x-3 D.g(x)=2x+7【解析】因为g(x+2)=f(x)=2x+3,所以令x+2=t,则x=t-2,g(t)=2(t-2)+3=2t-1.所以g(x)=2x-1.【答案】 B2.函数f(x)=|x-1|的图象是()【解析】由绝对值的意义可知当x≥1时y=x-1,当x<1时,y=1-x,选B.【答案】 B3.已知函数f(x)={2x,x>0,x+1,x≤0,且f(a)+f(1)=0,则a等于()A.-3 B.-1C.1 D.3【解析】当a>0时,f(a)+f(1)=2a+2=0⇒a=-1,与a>0矛盾;当a≤0时,f(a)+f(1)=a+1+2=0⇒a=-3,适合题意.【答案】 A4.已知函数y={x2+1,x≤0,-2x,x>0,则使函数值为5的x的值是()A .-2B .2或-52C .2或-2D .2或-2或-52【解析】 当x ≤0时,x 2+1=5,x =-2.当x >0时,-2x <0,不合题意.【答案】 A5.如图所示的四个容器高度都相同.将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图像显示该容器中水面的高度h 和时间t 之间的关系,其中不正确的有( )A .1个B .2个C .3个D .4个【解析】 对于第一幅图,水面的高度h 的增加应是均匀的,因此不正确,其他均正确.【答案】 A二、填空题(每小题5分,共15分)6.已知函数f (x )在[-1,2]上的图像如图所示,则f (x )的解析式为________.【解析】 当x ∈[-1,0]时,y =x +1;当x ∈(0,2]时,y =-12x,故f (x )的解析式为f (x )=⎩⎨⎧x +1,-1≤x ≤0,-12x ,0<x ≤2.【答案】f (x )=⎩⎨⎧x +1,-1≤x ≤0,-12x ,0<x ≤2.7.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f [f (0)]=________.【解析】 由图象可知f (0)=4,f (4)=2,f [f (0)]=2. 【答案】 28.已知x ≠0,函数f (x )满足f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,则f (x )=________.【解析】 f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x -1x 2+2,所以f (x )=x 2+2. 【答案】 x 2+2三、解答题(每小题10分,共20分) 9.(1) 已知函数f (x )=x 2,求f (x -1); (2)已知函数f (x -1)=x 2,求f (x );(3)已知f (x )是一次函数,且满足3f (x +1)=6x +9,求f (x ).【解析】 (1)f (x -1)=(x -1)2=x 2-2x +1.(2)方法一(配凑法):因为f (x -1)=x 2=(x -1)2+2(x -1)+1,所以f (x )=x 2+2x +1.方法二(换元法):令t =x -1,则x =t +1,可得f (t )=(t +1)2=t 2+2t +1,即f (x )=x 2+2x +1.(3)设f (x )=ax +b ,则f (x +1)=a (x +1)+b =ax +a +b . 又∵3f (x +1)=6x +9,∴3(ax +a +b )=6x +9, ∴⎩⎨⎧3a =6,3(a +b )=9,∴⎩⎨⎧a =2,b =1,即f (x )=2x +1. 10.已知f (x )={ x +1 (x >0),π (x =0),0 (x <0).求f (-1);f (f (-1));f (f (f (-1))).【解析】 ∵-1<0,∴f (-1)=0,∴f (f (-1))=f (0)=π, ∴f (f (f (-1)))=f (π)=π+1. |能力提升|(20分钟,40分)11.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎨⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①【解析】 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎨⎧1x,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎨⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③. 【答案】 B12. 设函数f (x )={ x 2+bx +c (x ≤0),2(x >0),若f (-2)=f (0),f (-1)=-3,则方程f (x )=x 的解集为________.【解析】 当x ≤0时,f (x )=x 2+bx +c ,因为f (-2)=f (0),f (-1)=-3,所以⎩⎨⎧(-2)2-2b +c =c ,(-1)2-b +c =-3,解得⎩⎨⎧b =2,c =-2,故f (x )=⎩⎨⎧x 2+2x -2(x ≤0),2(x >0).当x ≤0时,由f (x )=x ,得x 2+2x-2=x ,解得x =-2或x =1(1>0,舍去).当x >0时,由f (x )=x ,得x =2.所以方程f (x )=x 的解集为{-2,2}. 【答案】 {-2,2}13.求下列函数解析式. (1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(2)已知f (x )满足2f (x )+f (-x )=3x ,求f (x ).【解析】 (1)设f (x )=ax +b (a ≠0), 则3f (x +1)-2f (x -1) =3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, 所以a =2,b =7, 所以f (x )=2x +7. (2)2f (x )+f (-x )=3x ,① 2f (-x )+f (x )=-3x ,② ①×2-②得3f (x )=6x +3x , 所以f (x )=3x .14.已知f (x )=x 2-1,g (x )={ x -1,x >0,2-x ,x <0.(1)求f (g (2))与g (f (2));(2)求f (g (x ))与g (f (x ))的表达式.【解析】 (1)g (2)=1,f (g (2))=f (1)=0; f (2)=3,g (f (2))=g (3)=2.(2)当x >0时,f (g (x ))=f (x -1)=(x -1)2-1=x 2-2x ; 当x <0时,f (g (x ))=f (2-x )=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎨⎧x 2-2x ,x >0,x 2-4x +3,x <0. 同理可得g (f (x ))=⎩⎨⎧x 2-2,x <-1或x >1,3-x 2,-1<x <1.。

函数的概念和函数的表示法练习与答案-人教版数学高一上必修1第一章1.2.1-1.2.2

函数的概念和函数的表示法练习与答案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章 集合与概念函数及其表示1.2.1 函数的概念和函数的表示方法测试题知识点:函数的概念1、下列式子中不能表示函数()y f x =的是 ( ) A. 2x y =B. 1y x =+~C. 0y x +=D. 2y x =2、若函数()y f x =的定义域为{|38,5}x x x -≤≤≠,值域为{|12,0}y y y -≤≤≠,则()y f x =的图象可能是 ( )3、设集合{{|02},|02}M x x N y y =≤≤=≤≤,下面的四个图形中,能表示集合M 到集合N 的函数关系的有( )A.①②③④B.①②③C.②③D.②4、函数()y f x =定义在区间[-2,3]上,则()y f x =的图象与直线x a =的交点个数为 .}5、已知函数2()1(0)f x ax a =-≠,且((1))1f f =-,则a 的取值为 . 知识点:函数的定义域和值域6、下列函数中,与函数y =( )A. ()f x =B. 1()f x x=C. ()||f x x =D. y =7、函数y = ( ) A. {|1}x x ≤B. {|0}x x ≥C. {|1,x x ≥或0}x ≤D. {|01}x x ≤≤】8、函数21()()1f x x R x =∈+的值域是 ( )A.[0,1]B.[0,1)C.(0,1]D.(0,1)9、函数22y x x =-的定义域为{0,1,2,3},那么其值域为 .10、若函数12y x =-的定义域是A,函数y =B,则A ∩B= . 知识点:函数相等11、下列各组函数中,表示同一个函数的是 ( )A. 211x y x -=-与1y x =+B. y =1y x=C. 1y =与1y x =-D. y x =与y)知识点:函数的表示法12、已知()f x 是反比例函数,且(3)1f -=-,则()f x 的解析式为 ( )A. 3()f x x=-B. 3()f x x=C. ()3f x x =D. ()3f x x =-13、已知(1)26g x x -=+,则(3)g = .14、若()f x 是一次函数, (())41f f x x =-,则()f x = .15、如图,函数()f x 的图象是曲线OAB,其中点O,A,B 的坐标分别为(0,0),(1,2),(3,1),则1()(3)f f 的值等于 .{16、作出下列函数的图象: (1) 1,y x x Z =-∈. (2) 243,[1,3]y x x x =-+∈. 知识点:分段函数及映射17、设集合A={2,4,6,8,10},B={1,9,25,49,81,100},下面的对应关系f 能构成A 到B 的映射的是( ) A. 2:(1)f x x →- B. 2:(23)f x x →- C. :21f x x →-D. :23f x x →-18、集合A 的元素按对应关系“先乘12再减1”和集合B 中的元素对应,在这种对应所成的映射:f A B →,若集合B ={1,2,3,4,5},那么集合A 不可能是 ( )、A.{4,6,8}B.{4,6}C.{2,4,6,8}D.{10}19、已知2,0,()(1),0,x xf xf x x>⎧=⎨+≤⎩则44()()33f f+-等于( )B.420、已知函数()f x的图象是两条线段(如图,不含端点),则1(())3f f= ( )A.13- B.13C.23- D.2321、函数2,010,()4,1015,5,1520,xf x xx<<⎧⎪=≤<⎨⎪≤<⎩则函数的值域是.?22、已知集合{,},{,}A a bB c d==,则从A到B的不同映射有个.【参考答案】1A.解:从函数的概念来看,一个自变量x对应一个y;而A中2x y=中一个x对应两个y.所以A不是函数.2¥B.A中y取不到2,C中不是函数关系,D中x取不到0.3 C.由函数的定义,对集合M中的任意一个元素,在集合N中都有唯一的元素与之对应,而①中对于集合M中满足1<x≤2的元素,在集合N中没有元素与之对应,故不表示集合M到集合N的函数关系;对于④集合M中的元素在N中有两个元素与之对应.故排除①④.4 0或1解:当a∈[-2,3]时,由函数定义知,y=f(x)的图象与直线x=a只有一个交点;当a∉[-2,3]时,y=f(x)的图象与直线x=a没有交点." 51解:因为f(x)=ax2-1,所以f(1)=a-1,f(f(1))=f(a-1)=a(a-1)2-1=-1,所以a(a-1)2=0,又因为a≠0,所以a-1=0,所以a=1.6B.解:因为函数y=的定义域是{x|x≠0},所以A,C,D都不对.)7D.解:要使函数有意义,需解得0≤x≤1.8C.解:因为x2≥0,所以x2+1≥1,所以0<≤1,所以值域为(0,1].9 {-1,0,3}$解:当x=0时,y=0;当x=1时,y=-1;当x=2时,y=0;当x=3时,y=3.故函数的值域为{-1,0,3}.10 [0,2)∪(2,+∞)解:由题意知A={x|x≠2},B={y|y≥0}, 则A∩B=[0,2)∪(2,+∞).11 D.解:对于选项A:函数y=的定义域不包含1,而y=x+1的定义域是R,显然不是同一个函数./对于选项B:函数y=x的定义域为x≥0,而函数y=的定义域是{x|x≠0},显然不是同一个函数.对于选项C:函数y=2x-1的值域是大于等于-1的,而直线y=x-1的值域是R,显然不是同一个函数.对于选项D:因为y=x与y=33x的最简解析式相等,且定义域都为R,所以为同一个函数.12B.解:设f(x)=(k≠0),由f(-3)=-1得=-1,所以k=3.所以f(x)=.1314、解:因为g(x-1)=2x+6,令x-1=t,则x=t+1,所以g(t)=2(t+1)+6=2t+8,即g(x)=2x+8, 所以g(3)=2×3+8=14.14 2x-或-2x+1解:设f(x)=kx+b,则f(f(x))=kf(x)+b=k(kx+b)+b=k2x+kb+b=4x-1. 所以解得或(所以f(x)=2x-或f(x)=-2x+1.15 2解:因为f(3)=1,所以=1, 所以f=f(1)=2.16 解:(1)因为x∈Z,所以图象为一条直线上的孤立点,如图(1)所示.(2)y=x2-4x+3=(x-2)2-1,当x=1,3时,y=0;¥当x=2时,y=-1,其图象如图(2)所示.17 A.解:观察集合A与B中的元素,可知集合A中元素减1后的平方对应集合B中的元素.故选项A构成从A到B的映射.18 C.解:选设x∈A,则f(x)=x-1,由f(x)=1得x=4,由f(x)=2,得x=6.由f(x)=3得x=8;由f(x)=4得x=10;由f(x)=5得x=12,据此可知,x≠2,故应选C.% 19B.解:选f=2×=,f=f=f=f =f=,故f+f=4.20B.解:选由图象知,f(x)=所以f=-1=-,所以f(f)=f=-+1=.21 {2,4,5}解:因为f(x)=所以函数的值域是{2,4,5}.422解:a→c,b→c;a→d,b→d;a→c,b→d;a→d,b→c,共4个.。

高一数学函数试题及答案

高一数学函数试题及答案

(数学1必修)函数及其表示一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷343()f x x x -3()1F x x =-⑸21)52()(-=x x f ,52)(2-=x x f 。

A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或23.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,54.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32 C .1,32或3± D 3 5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移12个单位6.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .13二、填空题1.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 。

2.函数422--=x x y 的定义域 。

3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 。

高一数学函数试题及答案

高一数学函数试题及答案

[基础训练 A 组]
一、选择题
1.已知函数 f (x) (m 1)x2 (m 2)x (m2 7m 12) 为偶函数, 则 m 的值是( ) A. 1 B. 2 C. 3 D. 4
2.若偶函数 f (x) 在 ,1上是增函数,则下列关系式中成立的是( )
A. f ( 3) f (1) f (2) 2
函数及其表示[提高训练 C 组]
一、选择题
1.若集合 S y | y 3x 2, x R,T y | y x2 1, x R ,
则 S T 是( )
A. S
B. T
C.
D.有限集
2.已知函数 y f (x) 的图象关于直线 x 1对称,且当 x (0,) 时,
4.二次函数的图象经过三点 A(1 , 3), B(1,3),C(2,3) ,则这个二次函数的 24
解析式为

5.已知函数
f
(x)

x2
1
(x 0) ,若 f (x) 10 ,则 x

2x (x 0)
三、解答题
1.求函数 y x 1 2x 的值域。 2.利用判别式方法求函数 y 2x2 2x 3 的值域。
(2) f (x) 在定义域上单调递减;(3) f (1 a) f (1 a2 ) 0, 求 a 的取值范围。
3.利用函数的单调性求函数 y x 1 2x 的值域;
4.已知函数 f (x) x2 2ax 2, x5,5.
① 当 a 1时,求函数的最大值和最小值;
(1) y x 8 3 x
(2) y x 2 1 1 x 2 x 1

高一数学必修一函数概念表示及函数性质练习题(含答案)

高一数学必修一函数概念表示及函数性质练习题(含答案)

11.已知R 是实数集,21xx ⎧⎫M =<⎨⎬⎩⎭,{y y N ==,则RN M =( )A .()1,2B .[]0,2C .∅D .[]1,22已知集合A={x |01<--ax ax },且A 3A 2∉∈,,则实数a 的取值范围是 ____3.函数f (x )=x 2﹣4x ﹣6的定义域为[0,m],值域为[﹣10,﹣6],则m 的取值范围是( )A .[0,4]B .[2,4]C .[2,6]D .[4,6] 4.设函数g(x)=x 2-2(x ∈R),f(x)=则f(x)的值域是( )A. ∪(1,+∞)B. [0,+∞)C.D. ∪(2,+∞)5.定义在),0(+∞上的函数满足对任意的))(,0(,2121x x x x ≠+∞∈,有.则满足<的x 取值范围是( )6.已知上恒成立,则实数a 的取值范围是( ) A. B.C.D.7.函数在(-1,+∞)上单调递增,则的取值范围是A .B .C .D .8.已知函数f (x )={2x 1x 01x 0+≥,,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________. 9.若函数y =2ax 1zx 2ax 3++的定义域为R ,则实数a 的取值范围是________. 10.已知函数f (x )=x 2-6x +8,x ∈[1,a],并且f (x )的最小值为f (a ),则实数a 的取值区间是________.11.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为1x =,给出下列结论:①0abc >;②24b ac =;③420a b c ++>;④30a c +>,其中正确的结论是 .(写出正确命题的序号)()f x 2121()(()())0x x f x f x -->(21)f x -1()3f 25---=a x x y a 3-=a 3<a 3-≥a 3-≤a12.已知1x f x x ⎛⎫=⎪+⎝⎭,则(1)f -= . 13.已知()221f x ax ax =++在[]2,3-上的最大值为6,则()f x 的最小值为_________.14已知[]1,0∈x ,则函数x x y --=12的值域是____15.已知2()f x ax bx =+是定义在[1,3]a a -上的偶函数,那么a b +=( )16.已知函数222f xmx m mx 为偶函数,求实数m 的值= .17.若函数f (x )=(2k -3)x 2+(k -2)x +3是偶函数,则f (x )的递增区间是____________. 18.定义在R 上的奇函数()f x ,当0x >时,()22xf x x =-,则()(0)1f f +-= .19. 函数()f x 是R 上的偶函数,且在[0,)+∞上单调递增,则下列各式成立的是( ) A .)1()0()2(f f f >>- B .)0()1()2(f f f >->- C .)2()0()1(->>f f f D .)0()2()1(f f f >->20.已知函数()f x 是定义在区间[-2,2]上的偶函数,当[0,2]x ∈时,()f x 是减函数,如果不等式(1)()f m f m -<成立,则实数m 的取值范围( ) A.1[1,)2- B. 1,2 C. (,0)-∞ D.(,1)-∞21.(5分)(2011•湖北)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g(x )=e x,则g (x )=( )A.e x﹣e ﹣xB.(e x+e ﹣x) C.(e ﹣x﹣e x) D.(e x﹣e ﹣x)22.已知函数1()f x x x=-. (1)判断函数()f x 的奇偶性,并加以证明;(2)用定义证明函数()f x 在区间[1,+∞)上为增函数; (3)若函数()f x 在区间[2,]a 上的最大值与最小值之和不小于1122a a-,求a 的取值范围.123.已知c bx x x f ++=22)(,不等式0)(<x f 的解集是)5,0(, (1)求)(x f 的解析式;(2)若对于任意]1,1[-∈x ,不等式2)(≤+t x f 恒成立,求t 的取值范围.24.已知函数()x f 为定义域为R ,对任意实数y x ,,均有)()()(y f x f y x f +=+,且0>x 时,0)(>x f(1)证明)(x f 在R 上是增函数(2)判断)(x f 奇偶性,并证明(3)若2)1(-=-f 求不等式4)4(2<-+a a f 的解集25.函数2()21f x x ax =-+在闭区间[]1,1-上的最小值记为()g a .(1)求()g a 的解析式; (2)求()g a 的最大值.26.已知函数22()1x f x ax x =++为偶函数. (1)求a 的值;1(2)用定义法证明函数()f x 在区间[0,)+∞上是增函数; (3)解关于x 的不等式(21)(1)f x f x -<+.参考答案1.D 【解析】试题分析:因0|{<=x x M 或}1|{},2≥=>x x N x ,故}20|{≤≤=x x M C R ,}21|{≤≤=x x M C N R ,故应选D.考点:集合的交集补集运算. 2.B 【解析】试题分析:函数()f x 是R 上的偶函数,所以()()22f f -=, ()()11f f -=,因为函数()f x 是[)0,+∞上增函数,则()()()210f f f >>,即()()()210f f f ->->.故B 正确. 考点:1函数的奇偶性;2函数的单调性. 3.A 【解析】试题分析:根据题意知,函数在[)0,2-上单调递增,在[]2,0上单调递减.首先满足⎩⎨⎧≤≤-≤-≤-22212m m ,可得21≤≤-m .根据函数是偶函数可知:)()(m f m f -=,所以分两种情况:当20≤≤m 时,根据不等式(1)()f m f m -<成立,有12-21m m m m <-≤≤-<-或,解得102m ≤<;当20m -≤<时,根据不等式(1)()f m f m -<成立,有12 -21m m m m -<-≤≤-<或,解得10m -≤<;综上可得112m -≤<. 考点:偶函数性质. 4.D 【解析】试题分析:根据已知中定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x,根据奇函数和偶函数的性质,我们易得到关于f (x )、g (x )的另一个方程:f (﹣x )+g (﹣x )=e ﹣x,解方程组即可得到g (x )的解析式. 解:∵f (x )为定义在R 上的偶函数 ∴f (﹣x )=f (x )又∵g (x )为定义在R 上的奇函数1g (﹣x )=﹣g (x ) 由f (x )+g (x )=e x,∴f (﹣x )+g (﹣x )=f (x )﹣g (x )=e ﹣x, ∴g (x )=(e x﹣e ﹣x) 故选D点评:本题考查的知识点是函数解析式的求法﹣﹣方程组法,及函数奇偶性的性质,其中根据函数奇偶性的定义构造出关于关于f (x )、g (x )的另一个方程:f (﹣x )+g (﹣x )=e ﹣x,是解答本题的关键. 5.B【解析】函数f (x )=x 2﹣4x ﹣6的图象是开口朝上,且以直线x=2为对称轴的抛物线 故f (0)=f (4)=﹣6,f (2)=﹣10∵函数f (x )=x 2﹣4x ﹣6的定义域为[0,m],值域为[﹣10,﹣6], 故2≤m≤4即m 的取值范围是[2,4] 故选B 6.B 【解析】试题分析:由题意,如下图:设1122(,),(,)A x yB x y ,联立21y x b y x =+⎧⎪⎨=⎪⎩得2210x bx +-=,则221212||(1)[()4]AB k x x x x =++- 25(8)b +=,O点到直线AB 的距离5d =,∴225(8)1||8()25b b b S f b ++==⋅⋅=. ∵()()f b f b -=,∴()f b 为偶函数.当0x >时,28()4b b f b ⋅+=,易知()f b 单调递增.故选B.考点:1.函数奇偶性;2.三角形面积应用. 7.A 【解析】 试题分析:因为2121()(()())0x x f x f x -->,所以函数()f x 在),0(+∞上单调增. 由(21)f x -<1()3f 得:.3221,31120<<<-<x x考点:利用函数单调性解不等式 8.C 【解析】,,所以,所以,选C.9.D【解析】令x<g(x),即x 2-x -2>0, 解得x<-1或x>2.令x ≥g(x),即x 2-x -2≤0,解得-1≤x ≤2. 故函数f(x)=当x <-1或x >2时,函数f(x)>f(-1)=2; 当-1≤x ≤2时,函数≤f(x )≤f(-1),即≤f(x )≤0.1故函数f(x)的值域是∪(2,+∞).选D.10.B 【解析】 作出函数在区间上的图象,以及的图象,由图象可知当直线在阴影部分区域时,条件恒成立,如图,点,,所以,即实数a 的取值范围是,选B.11.B 【解析】试题分析:由2()f x ax bx =+是定义在[1,3]a a -上的偶函数,得a a 31-=-,解得:41=a .再由()()x f x f =-,得()bx ax bx x a +=--22,即0=bx ,∴0=b .则41041=+=+b a .故选:B .考点:函数的奇偶性. 12.D 【解析】试题分析:由于函数52x y x a -=--在()1,-+∞上单调递增,可得当1x >-时,()()()()22253'022x a x a y x a x a -----==≥----,可得3021a a -≥⎧⎨+≤-⎩,解得3a ≤-,故选D. 考点:1、反比例函数的图象与性质;2、利用导数研究函数的单调性. 13.()12,1-- 【解析】试题分析:由题意可得()x f 在[)+∞,0上是增函数,而0<x 时,()1=x f ,故满足不等式()()x f x f 212>-的x 需满足⎪⎩⎪⎨⎧>->-012122x xx ,即⎩⎨⎧<<-+-<<--112121x x ,解得()12,1--∈x ,故答案为()12,1--.考点:不等式的解法.【方法点睛】本题考查分段函数的单调性,利用单调性解不等式,考查利用所学知识分析问题解决问题的能力,属于基础题.由题意可得 ()x f 在[)+∞,0上是增函数,而0<x 时,()1=x f ,故21x -必需在0=x 的右侧,故满足不等式()()x f x f 212>-的x 需满足⎪⎩⎪⎨⎧>->-012122x xx ,由此解出x 即可,借助于分段函数的图象会变的更加直观. 14.[)3,0 【解析】试题分析:因为函数3212+++=ax ax ax y 的定义域为R ,所以0322≠++ax ax 恒成立.若0=a ,则不等式等价为03≠,所以此时成立.若0≠a ,要使0322≠++ax ax 恒成立,则有0<∆,即03442<⨯-=∆a a ,解得30<<a .综上30<≤a ,即实数a 的取值范围是[)3,0.故答案为:[)3,0.考点:函数的定义域及其求法. 15.0或2- 【解析】试题分析:当0=m 时,()2=x f 为偶函数,满足题意;当0≠m 时,由于函数()()222+++=mx m mx x f 为偶函数,故对称轴为022=+-=mm x ,即2-=m ,故答案为0或2-.考点:函数的奇偶性.【方法点晴】本题考查函数奇偶性的应用.若已知一个函数为偶函数,则应有其定义域关于原点对称,且对定义域内的一切x 都有()()x f x f =-成立.其图象关于轴对称.()()222+++=mx m mx x f 是偶函数,对于二次项系数中含有参数的一元二次函数一定要分为二次项系数为0和二次项系数不为0两种情况,图象关于y 轴对称⇒对称轴为y 轴⇒实数m 的值.16.(]31,【解析】试题分析:函数()()[]a x x x x x f ,1,138622∈--=+-=,并且函数()x f 的最小值为()a f ,又∵函数()x f 在区间(]31,上单调递减,∴31≤<a ,故答案为:(]31,.考点:(1)二次函数的性质;(2)函数的最值及其几何意义. 17.①④ 【解析】试题分析:由图象知0a >,0c <,=12ba-,即20a b +=,所以0b <,所以0abc >,故①正确;因为二次函数图象与x 轴有两个交点,所以240b ac ∆=->,即24b ac >,故②错;因为原点O 与对称轴的对应点为(20),,所以2x =时,0y <,即420a b c ++<,故③错;因为当1x =-时,0y >,所以0a b c -+>,把2b a =-代入得30a c +>,故④正确,故填①④.考点:二次函数图象与系数的关系.【技巧点睛】利用图象判断解析式中,,a b c 的正负及它们之间的关系:(1)开口方向判断a 的正负;(2) 与y 轴交点位置判断c 的正负;(3) 对称轴位置判断b 的正负 (左同右异);(4) 与x 轴交点个数判断24b ac -的正负;(5) 图象上特殊点的位置判断一些函数值正负;(6) 对称轴判断2a b +和2a b -的正负. 18.12-【解析】 试题分析:由1x f x x ⎛⎫=⎪+⎝⎭,可令;1,1x x =-+求解可得; 11.2x x x =--=-。

高一数学函数及其表示试题

高一数学函数及其表示试题

高一数学函数及其表示试题1.下列各组函数是同一函数的是()A.B.C.D.【答案】D.【解析】对于A,函数的定义域为,函数的定义域为,两者的定义域不相同,所以不是同一函数,即A不正确;对于B,函数的定义域为,函数的定义域为或,两者的定义域不相同,所以不是同一函数,即B不正确;对于C,函数的定义域为,函数的定义域为,两者的定义域不相同,所以不是同一函数,即C不正确;对于D,函数的定义域和值域均为,函数的定义域和值域也均为,两者的定义域和值域均相同,所以是同一函数,即D正确.【考点】相等函数的概念.2.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.3.已知定义域为的函数同时满足以下三个条件:(1)对任意的,总有;(2);(3)若,,且,则有成立,则称为“友谊函数”,请解答下列各题:(1)若已知为“友谊函数”,求的值;(2)函数在区间上是否为“友谊函数”?并给出理由.(3)已知为“友谊函数”,假定存在,使得且,求证:.【答案】(1)(2)是友谊函数(3)见解析.【解析】(1)利用赋值法由得,再由得,所以(2)分别验证(1)由指数函数的性质在区间上的最小值为0,(2)直接带入验证易得(3)利用做差法直接比较(3)先利用单调性的定义证明抽象函数的单调性,然后再证明取得,又由,得(2)显然在上满足(1);(2).(3)若,,且,则有故满足条件(1)、(2)、(3),所以为友谊函数.(3)由(3)知任给其中,且有,不妨设所以:.下面证明:(i)若,则有或若,则,这与矛盾;(2)若,则,这与矛盾;综上所述:【考点】函数的概念与性质.4.下列各组函数表示同一函数的是()A.B.C.D.【答案】C【解析】排除,因为三个选项中两个函数的定义域各不相同,故C正确。

【考点】函数的三要素。

5.函数的定义域为R,且定义如下:(其中是非空实数集).若非空实数集满足,则函数的值域为.【答案】【解析】解:根据题意:当时,=当时,=当时,=综上可知,对于任意,所以答案应填:【考点】函数的概念与分段函数.6.设是集合M到集合N的映射, 若N="{1,2}," 则M不可能是()A.{-1}B.C.D.【答案】D【解析】对应法则是,根据映射的定义,集合M中的任何一个元素在N中都要有唯一的元素和他对应,而D选项中的2,,,不满足定义,所以不正确,故选D.【考点】映射的定义7.已知函数(1)若,求的值;(2)求的值.【答案】(1)1;(2)1006【解析】(1)因为.所以可以计算出的值为1,即表示两个自变量的和为1的函数值的和为1.(2)由(1)可知两个自变量的和为1的函数值的和为1.所以令…①.利用倒序又可得到…②.所以由①+②可得2S=2012.所以S=1006.试题解析:. 5分(2). 10分【考点】1.函数的表示法.2.倒序求和法.8.如果两个函数的对应关系相同,值域相同,但定义域不同,则这两个函数为“同族函数”,那么函数的“同族函数”有()A.3个B.7个C.8个D.9个【答案】D【解析】1的原象是;2的原象是.值域为{1,2},定义域分别为{1,},{,-1},{,-1},{,1},{,-1,1},{,-1,1},{,,-1},{,,1},{,,1,-1},共9个.故答案为:9.【考点】函数的概念及构成要素.点评:1的原象是正负1;2的原象是正负.值域为{1,2},由此来判断解析式为y=x2,值域为{1,2}的“同族函数”的个数.9.下列各组函数中,表示同一函数的是()A.B.C.D.【答案】C【解析】本小题考查了构成函数的三要素等知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学函数的表示法测试题及答案
1.下列关于分段函数的叙述正确的有()
①定义域是各段定义域的并集,值域是各段值域的并集;②尽管在定义域不同的部分有不同的对应法则,但它们是一个函数;③若D1、D2分别是分段函数的两个不同对应法则的值域,则D1∩D2=Ø.
A.1个B.2个
C.3个D.0个
【解析】①②正确,③不正确,故选B.
【答案】 B
2.设函数f(x)=x2+2(x≤2),2x(x>2),则f(-4)=________,若f(x0)=8,则x0=________.
【解析】f(-4)=(-4)2+2=18.
若x0≤2,则f(x0)=x02+2=8,x=±6.
∵x0≤2,∴x0=-6.
若x0>2,则f(x0)=2x0=8,∴x0=4.
【答案】18-6或4
3.已知:集合A={x|-2≤x≤2},B={x|-x≤x≤1}.对应关系f:x→y=ax.若在f的作用下能够建立从A到B的映射f:A→B,求实数a的取值范围.
【解析】①当a≥0时,集合A中元素的象满足-2a≤ax≤2a.
若能够建立从A到B的映射,
则[-2a,2a]⊆[-1,1],
即-2a≥-12a≤1,∴0≤a≤12.
②当a<0时,集合A中元素的象满足2a≤ax≤-2a,
若能建立从A到B的映射,
则[2a,-2a]⊆[-1,1],
即2a≥-1-2a≤1,∴0>a≥-12.
综合①②可知-12≤a≤12.
一、选择题(每小题5分,共20分)
1.函数y=x+|x|x的图象,下列图象中,正确的是()
高•考¥资%源~网
【答案】 C
2.设集合P={x|0≤x≤4},Q={y|0≤y≤2},下列的对应不表示从P到Q的映射的是() A.f:x→y=12x B.f:x→y=13x
C.f:x→y=23x D.f:x→y=x
【解析】根据映射的概念,对于集合P中的每一个元素在对应法则f的作用下,集合Q 中有唯一的元素和它对应.选项A、B、D均满足这些特点,所以可构成映射.选项C中f:x→y=23x,P中的元素4按照对应法则有23×4=83>2,即83∉Q,所以P中元素4在Q中无对应元素.故选C.
【答案】 C
3.设函数f(x)=1-x2(x≤1)x2+x-2 (x>1),则f1f(2)的值为()
A.1516 B.-2716
C.89 D.18
【解析】f(2)=22+2-2=4,f1f(2)=f14=1-142=1516.故选A.
【答案】 A
4.图中的图象所表示的函数的解析式为()
【答案】 B
二、填空题(每小题5分,共10分)
5.已知f(x)=x-5(x≥6)f(x+2) (x<6)(x∈N),那么f(3)=________.
【解析】f(3)=f(3+2)=f(5)=f(5+2)=f(7)=7-5=2.
【答案】 2
6.
已知函数f(x)的图象是两条线段(如图,不含端点),则f(f )=.
【答案】1/3
三、解答题(每小题10分,共20分)
7.某市营业区内住宅电话通话费为前3分钟0.20元,以后每分钟0.10元(不足3分钟按3分钟计,以后不足1分钟按1分钟计).
(1)在直角坐标系内,画出一次通话在6分钟内(包括6分钟)的通话费y(元)关于通话时间t(分钟)的函数图象;
(2)如果一次通话t分钟(t>0),写出通话费y(元)关于通话时间t(分钟)的函数关系式(可用 t 表示不小于t的最小整数).
【解析】(1)如图
(2)由(1)知,话费与时间t的关系是分段函数,当0<t≤3时,话费为0.2元;当t>3时,话费应为[0.2+( t -3)×0.1]元,
所以
8.求下列函数的图象及值域:
(1)y=1x(0<x<1)x(x≥1)
(2)y=|x+1|+|x-2|.
【解析】
(1)函数
的图象如右图,
观察图象,
得函数的值域为[1,+∞).
(2)将原函数的解析式中的绝对值符号去掉,
化为分段函数
它的图象如右图.
观察图象,显然函数值y≥3,
所以函数的值域为[3,+∞).
9.(10分)如图所示,在边长为4的正方形ABCD边上有一点P,由点B(起点)沿着折线BCDA,向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,求:y与x之间的函数解析式.
【解析】当0≤x≤4时,S△APB= ×4x=2x;
当4<x≤8时,S△APB= ×4×4=8;
当8<x≤12时,S△APB= ×4×(12-x)=24-2x,
莲山课件原文地址:/shti/gaoyi/73424.htm。

相关文档
最新文档