用频率法设计串联校正装置

合集下载

山东大学 自动控制原理 6-1串联校正

山东大学 自动控制原理 6-1串联校正

5
加入校正装置后使未校正系统的缺陷得到补偿,这 就是校正的作用。 6.1.2 校正方式 常用的校正方式有串联校正、反馈校正、前馈校 正和复合校正四种。 串联校正装置一般接在系统误差测量点之后和放大 器之前,串接于系统前向通道之中;反馈校正装置接 在系统局部反馈通道之中。
串联 校正 控制 器 对 象
1 aTs Gc ( s ) 1 Ts

(1)零极点分布图:
∵a 1
1/T
1/aT
0
∴零点总是位于极点之右,二者的距离由常
14
数a决定。零点的作用大于极点,故为超前网络。
(2)对数频率特性曲线: L()/dB 20dB/dec
1 aTs Gc ( s ) 1 Ts
20lga
特性曲线G(s )/k1所示,但稳态误差也要随之增加,所 以开环放大系数是不能减小的。而改变未校正系统的 其它参数都是比较困难的。这样就得在原系统的基础 上采取另外一些措施,即对系统加以“校正”。 所谓的“校正”,就是在原系统中加入一些参数 可以根据需要而改变的机构或装置,使系统整个特性 发生变化,从而满足给定的各项性能指标。这一附加 的装置称为校正装置。
可见,m出现在1 =1/aT 和2 =1/T 的几何中点。
1 sin m a 1 sin m
上式表明,m仅与a有关。a值选得越大,则超前网络的 微分作用越强。但为了保持较高的系统信噪比,实际选用 的a值一般不大于20。此外,m处的对数幅频值为
Lc ( m ) 10 lg a
17
L()/dB 20dB/dec 10lga 0 20lga
1 aT
1 T

()
0
m m

m

自动控制原理校正课程设计-- 线性控制系统校正与分析

自动控制原理校正课程设计-- 线性控制系统校正与分析

自动控制原理校正课程设计-- 线性控制系统校正与分析课程设计报告书题目线性控制系统校正与分析院部名称机电工程学院专业10电气工程及其自动(单)班级组长姓名学号设计地点工科楼C 214设计学时1周指导教师金陵科技学院教务处制目录目录 (3)第一章课程设计的目的及题目 (4)1.1课程设计的目的 (4)1.2课程设计的题目 (4)第二章课程设计的任务及要求 (6)2.1课程设计的任务 (6)2.2课程设计的要求 (6)第三章校正函数的设计 (7)3.1设计任务 (7)3.2设计部分 (7)第四章系统动态性能的分析 (10)4.1校正前系统的动态性能分析 (10)4.2校正后系统的动态性能分析 (13)第五章系统的根轨迹分析及幅相特性 (16)5.1校正前系统的根轨迹分析 (16)5.2校正后系统的根轨迹分析 (18)第七章传递函数特征根及bode图 (20)7.1校正前系统的幅相特性和bode图 (20)7.2校正后系统的传递函数的特征根和bode图 (21)第七章总结 (23)参考文献 (24)第一章 课程设计的目的及题目1.1课程设计的目的⑴掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。

⑵学会使用MATLAB 语言及Simulink 动态仿真工具进行系统仿真与调试。

1.2课程设计的题目 已知单位负反馈系统的开环传递函数)125.0)(1()(0++=s s s K s G ,试用频率法设计串联滞后校正装置,使系统的相角裕量 30>γ,静态速度误差系数110-=s K v 。

\第二章课程设计的任务及要求2.1课程设计的任务设计报告中,根据给定的性能指标选择合适的校正方式对原系统进行校正(须写清楚校正过程),使其满足工作要求。

然后利用MATLAB对未校正系统和校正后系统的性能进行比较分析,针对每一问题分析时应写出程序,输出结果图和结论。

基本概念两种常用校正装置设计方法频率法2

基本概念两种常用校正装置设计方法频率法2

第六章1. 基本概念2. 两种常用校正装置3. 设计方法(1)频率法(2)根轨迹法(3)复合校正 6—1 校正的基本概念一、性能指标的提法:1.稳态误差:Ess 或v Kp Kz Kv 2.动态品质:(1) 时域指标:δ% ts (2)开环频域指标:Wc ν(3)闭环频域指标:Mr Wr 或Wb 如何改变性能的问题?1. 改变系统参数:增大开环传递函数K →ess ↓→h ↘v ↘→σ(改善很有限,且稳态与动态有些矛盾)2. 改变系统结构:增加辅助装置定义:利用增加辅助装置改变系统性能方法称为— 辅助装置包括:校正装置 、控制器、调节器二、校正方式:1. 串联校正:图P36 2. 反馈校正:图 3. 复合校正:(1)按给定输入的 图 目的:理论上可以做到:C (S )=R (S )即C (t )=R (t )(2)按扰动输入的 图 目的:理论上完全消除N (s )对输入影响Cr (s )=0工程上一般采用近似补偿 三、设计方法 (频域法) 1. 试探法(分析法)首先根据检验选定校正装置的基本形式→算出校正装置的参数→检验校正后的性能指标→是否符合; 如果符合则完成设计 ;否从新设计2.综合法(数学法)首先由要求的性能指标→画出希望的开环L(w)曲线→再与原系统的L (W )想比较→得到校正装置的Lc(w)→反写出校正装置的传函6—2常用的校正装置分类:讨论电的校正装置1。

无源校正装置(RC 网络)2。

有源校正装置(运放器)调节器一、无源超前校正装置(RC 网络 传函 伯德图) 电路:U2U1CR2R1传函:(复阻抗法)Gc(s)=1+Tas/a(1+Ts) a 衰减系数 T 时间常数必须补偿a 的衰减:把原K 增加a 倍或再串一个放大器(a 倍) 补偿后:aGc(s)=1+TaS/1+TS (a>1) 二、无源迟后校正装置 电路;6—3一、超前校正问题的提出 例:系统如图所示,要求1. 在单位斜坡输入下稳态误差ess<0.1;2. 开环剪切频率3. 相角裕度 幅值裕度问是否需要校正,怎样校正?解:首先进行稳态计算K=10可以满足稳态误差要求。

自动控制原理课程设计--串联超前—滞后校正装置(2)

自动控制原理课程设计--串联超前—滞后校正装置(2)

课题:串联超前—滞后校正装置(二)专业:电气工程及其自动化班级: 2011级三班姓名:居鼎一(20110073)王松(20110078)翟凯悦(20110072)陈程(20110075)刘帅宏(20110090)邓原野(20110081)指导教师:毛盼娣设计日期:2013年12月2日成绩:重庆大学城市科技学院电气信息学院目录一、设计目的-------------------------------------------------------------1二、设计要求-------------------------------------------------------------1三、实现过程-------------------------------------------------------------33.1系统概述-------------------------------------------------------- 33.1.1设计原理------------------------------------------------- 33.1.2设计步骤------------------------------------------------- 43.2设计与分析----------------------------------------------------- 53.2.1校正前参数确定--------------------------------------- 53.2.2确定校正网络的传递函数--------------------------- 53.2.3 理论系统校正后系统的传递函数和BODE 图-- 73.2.4系统软件仿真------------------------------------------ 8四、总结------------------------------------------------------------------15五、参考文献-------------------------------------------------------------16自动控制原理课程设计报告一、设计目的(1)掌握控制系统设计与校正的步骤和方法。

自动控制原理第6章习题解——邵世凡

自动控制原理第6章习题解——邵世凡

习 题 66-1 设控制系统的开环传递函数为:()()()s s s s G 1.015.0110++= 绘出系统的Bode 图并求出相角裕量和幅值裕量。

若采用传递函数为(1+0.23s)/(1+0.023s)的串联校正装置,试求校正后系统的幅值和相角裕度,并讨论校正后系统的性能有何改进。

6—2设控制系统的开环频率特性为()()()()ωωωωωj j j j H j G 25.01625.011++= ①绘出系统的Bode 图,并确定系统的相角裕度和幅值裕度以及系统的稳定性; ②如引入传递函数()()()0125.025.005.0++=s s s G c 的相位滞后校正装置,试绘出校正后系统的Bode 图,并确定校正后系统的相角裕度和幅值裕度。

6 3设单位反馈系统的开环传递函数为()()()8210++=s s s s G 设计一校正装置,使静态速度误差系数K v =80,并使闭环主导极点位于s=-2±j23。

6-4设单位反馈系统的开环传递函数为()()()93++=s s s K s G ①如果要求系统在单位阶跃输入作用下的超凋量σ =20%,试确定K 值;②根据所确定的K 值,求出系统在单位阶跃输入下的调节时间t s 。

,以及静态速度误差系数; ③设计一串联校正装置,使系统K v ≥20,σ≤25%,t s 减少两倍以上。

6 5 已知单位反馈系统开环传递函数为()()()12.011.0++=s s s K s G 设计校正网络,使K v ≥30,γ≥40º,ωn ≥2.5,K g ≥8dB 。

6-6 由实验测得单位反馈二阶系统的单位阶跃响应如图6-38所示.要求①绘制系统的方框图,并标出参数值;②系统单位阶跃响应的超调量σ =20%,峰值时间t p =0.5s ,设计适当的校正环节并画出校正后系统的方框图。

6-7设原系统的开环传递函数为()()()15.012.010++=s s s s G 要求校正后系统的相角裕度γ=65º。

国家开放大学 机电控制工程基础 第6章 控制系统的校正与综合自测解析

国家开放大学 机电控制工程基础 第6章 控制系统的校正与综合自测解析

信息文本单项选择题(共20道题,每题4分,共90分)题目1标记题目题干在采用频率法设计校正装置时,串联超前校正网络是利用它()。

选择一项:A. 相位超前特性B. 低频衰减特性C. 相位滞后特性D. 高频衰减特性反馈恭喜您,答对了。

正确答案是:相位超前特性题目2标记题目题干闭环系统因为有了负反馈,能有效地抑制()中参数变换对系统性能的影响。

选择一项:A. 正向及反馈通道B. 反馈通道C. 前馈通道D. 正向通道反馈恭喜您,答对了。

正确答案是:正向及反馈通道题目3标记题目题干从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项:A. 系统的抗干扰能力差,需要改变高频段特性。

B. 系统虽然稳定,但稳态和动态响应都不能满足要求,整个特性都需要改变。

C. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

D. 系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频段和高频段。

反馈恭喜您,答对了。

正确答案是:系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

题目4正确获得4.00分中的4.00分标记题目题干从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项:A. 系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频段和高频段。

B. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

C. 系统虽然稳定,但稳态和动态响应都不能满足要求,整个特性都需要改变。

D. 系统的抗干扰能力差,需要改变高频段特性。

反馈恭喜您,答对了。

正确答案是:系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频段和高频段。

题目5正确获得4.00分中的4.00分标记题目题干从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项:A. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

自动控制原理课程设计题目

自动控制原理课程设计题目

自动控制原理课程设计题目:1、已知单位负反馈系统的开环传递函数K()(10)(60)G SS S S=++,试用频率法设计串联超前滞后校正装置,使(1)输入速度为1rad s时,稳态误差不大于1126rad。

(2)相位裕度30γ≥,截止频率为20rad s。

(3)放大器的增益不变。

要求:分析设计要求,说明校正的设计思路(超前校正,滞后校正或滞后-超前校正),确定串联校正装置传递函数并确定有源校正网络各元器件的参数,绘制校正网络电路图;详细设计(包括的图形有:校正结构图,校正前系统的Bode图,校正装置的Bode图,校正后系统的Bode图);用MATLAB编程代码及运行结果(包括图形、运算结果);校正前后系统的单位阶跃响应图。

2、针对二阶系统,单位负反馈系统的开环传递函数:,1)引入该校正装置后,单位斜坡输入信号作用时稳态误差,开环截止频率ωc’≥4.4弧度/秒,相位裕量γ’≥45°;2)根据性能指标要求,确定串联超前校正装置传递函数; 3)利用Matlab 绘制校正前、后及校正装置对数频率特性曲线;4)设校正装置R1=100K ,R2=R3=50K ,根据计算结果确定有源超前校正网络元件参数R4、C 值;5)绘制引入校正装置后系统电路图(设给定的电阻和电容:R=100K ,C=1μF 、10μF 若干个);6)利用Matlab 仿真软件辅助分析,绘制校正前、后及校正装置对数频率特性曲线,并验算设计结果;7)在Matlab-Simulink 下建立系统仿真模型,求校正前、后系统单位阶跃响应特性,并进行系统性能比较。

要求:分析设计要求,说明校正的设计思路(超前校正,滞后校正或滞后-超前校正);详细设计(包括的图形有:校正结构图,校正前系统的Bode 图,校正装置的Bode 图,校正后系统的Bode 图);用MATLAB 编程代码及运行结果(包括图形、运算结果); 校正前后系统的单位阶跃响应图。

自控原理第六章

自控原理第六章

ui(t)
R2 C

Ts 1 Gc ( s) Ts 1
2013-8-1 《自动控制原理》第六章
无源滞后网络
ቤተ መጻሕፍቲ ባይዱ
22
极点分布如图所示,极点总位于零点的右边,具体位置与 β有关。若T值够大,则构成一对开环偶极子,提高了系统 的稳态性能。
1 1 滞后网络的零点 zc ,极点 pc ,零、 T T
2013-8-1 《自动控制原理》第六章 15
第二节 常用校正装置及其特性
一、超前校正装置 C
又称微分校正,分为无源超 前网络和有源超前网络
+
R1 R2
+
U 0 ( s) R2 Gc ( s ) U i ( s) R1 R2
R2 R1 R2
(a 1) T R1C
R1Cs 1 ui(t) R2 R1Cs 1 R1 R2 -
2013-8-1 《自动控制原理》第六章 17
另外从校正装置的表达式来看,采用无源超前校正 装置进行串联校正时,系统的开环增益要下降倍,为了 补偿超前网络带来的幅值衰减,通常在采用无源RC超前 校正装置的同时串入一个放大倍数Kc=1/ 的放大器。超 前校正网络加放大器后,校正装置的传递函数
Ts 1 Gc ( s) Ts 1
2013-8-1
《自动控制原理》第六章
1
第一节
控制系统校正的基本概念
一、校正的一般概念
自动控制系统工程研究 分析:建立系统的数学模型并计算其性能指标 设计:根据各项性能指标来合理的选择控制方案 和结构形式 系统的校正 用添加新的环节去改善系统性能的过程称为系统的 校正,所添加的环节称为校正装置。

自动控制原理--基于频率特性法的串联超前校正

自动控制原理--基于频率特性法的串联超前校正
超前校正会使系统瞬态响应的速度变快。校正后系统的截 止频率增大。这表明校正后,系统的频带变宽,瞬态响应 速度变快;但系统抗高频噪声的能力变差。对此,在校正 装置设计时必须注意。
超前校正一般虽能较有效地改善动态性能,但未校正系统 的相频特性在截止频率附近急剧下降时,若用单级超前校 正网络去校正,收效不大。因为校正后系统的截止频率向 高频段移动。在新的截止频率处,由于未校正系统的相角 滞后量过大,因而用单级的超前校正网络难于获得较大的 相位裕量。
前 180 90 tan1(0.8 3.54) 19.4
计算超前网络参数α和T:方法一 选取校正后系统的开环截止频率
G(s) K s(0.8s 1)
m c 5rad / s
在校正后系统的开环截止频率处原系统的幅值与校正 装置的幅值大小相等、符号相反
Lo (c)
20
lg
10
c 0.8c
开环对数渐进幅频特性如伯特图中红线所示。校正后系 统的相位裕量为
" 180 90 tan1 4 tan1 2 tan1 0.5 50.9
满足系统的性能指标要求。
基于上述分析,可知串联超前校正有如下特点:
这种校正主要对未校正系统中频段进行校正,使校正后中 频段幅值的斜率为-20dB/dec,且有足够大的相位裕量。
根据对截止频率 c的要求,计算超前网络参数α和T;
关键是选择最大超前角频率等于要求的系统截止频率,即
m c 以保证系统的响应速度,并充分利用相角超前特性。显然,
m c成立的条件是 Lo (c) 10 lg

m
T
1
求出T
求出α
画出校正后系统的波特图并验证已校正系统的相角裕度。
用频率法对系统进行串联超前校正的一般步骤可归纳为:

自动控制原理例题详解-基于频率法的串联分析法校正3个例题详细步骤

自动控制原理例题详解-基于频率法的串联分析法校正3个例题详细步骤

结论: 设计的超前校正装置 Gc ( s ) =
α Ts + 1
Ts + 1
=
0.0198s + 1 ( 【注】 :一定要有结论) 。 0.0019s + 1
三、基于频率法的串联滞后校正
例 2 已知单位负反馈系统的开环传递函数 G0 ( s ) = 试设计串联校正装置,使得设计指标: 1)ν = 1 3) γ ≥ 40 解: 1.根据ν = 1 满足要求。要求 K v = 25s ,则直接取 K = K v = 25s 。
0 0
−1
联超前校正。 综上,因此滞后超前校正。 3.确定超前校正装置参数:
ϕm = γ − γ 0 ( jωc ) + (50 − 100 ) = 450 − 20 + 70 = 500
则 α1 =
1 + sin ϕm = 7.55(α1 > 1) ; 1 − sin ϕ m 1 = 0.0243 0.183s + 1 0.0243s + 1
求值,采用串联超前校正是无效的。因此必须采用滞后校正。 2)把 ωc = 2.5 代入 ∠G0 ( jωc ) ,
γ 0 (ωc ) = 1800 + ∠G0 ( jωc ) = 90° − arctg(0.1ωc ) − arctg(0.2ωc ) = 49.40 > 400 ,动态性能
满足。 综上,只需要用滞后校正。 3. 求 α : 根据 α =
4.确定滞后校正装置参数:
在 G ( s ) 基础上确立滞后参数。也就是把在要求的 ωc 处的幅值通过滞后来往下拉,使得最
'
终过 ωc 幅值=0,即 20 lg G | ( jωc ) |= 0 。因此,

利用MATLAB基于频率法实现系统串联校正

利用MATLAB基于频率法实现系统串联校正
o l d o i q _ ;
n y q u i s t ( G 木 k c 术 G o ) ; h o l d o f f ; t i t l e ( 奈 氏曲线对 比图 ) ; x l a b e l ( ( b ) ’ ) ;
c o n t e n t s o f t h e t e a c h i n g a n d e x p e r i me n t t h r o u g h
1基于频率法的 串联校正
频率 法主 要是 利 用适 当的校 正 装置 的伯 德 图配合 开环 增益 的调 整 ,来 修改 原有 的开 环 系 统的 伯德 图 ,使开 环 系统 经校 正与 增益 调 整 后的 伯德 图符 合性 能指标 要 求 。 在 自动 控 制 中运 用频 率 法 进 行 串联 校 正 ,可以 改善 幅频 特性 ,截止 频率 前移 ,增 大 幅 值裕 量 ,从而 改善 系统 的动 态性 能 。 1 . 1基于 频率 法 串联超 前校 正 超 前 校正 的传 递 函数 为
D OI :1 0 . 3 9 6 9 / j . i s s n . 1 0 0 1 - 8 9 7 2 . 2 0 1 3 . 0 1 . 0 7 8
利用MAT L AB 基于频率法 实现 系统串联 校正
梁 丽 娟 1 . 华 北 电力 大学 电子 与通 信 工 程 系 , 河 北保 定 0 7 1 0 0 3
GO= K。
b o d e ( G木 k c 半 G o ) ; h o l d o f f ; g r i d o n ; x l a b e l ( ’ ( C ) ) ;t i t I e ( 伯德 图对 比 图 ) ; s u b p l o t ( 2 , 2 , 3 ) ; n y q u i s t ( G* k c , ’ r : ) ; h

自动控制原理线性系统串联校正实验报告五..

自动控制原理线性系统串联校正实验报告五..

武汉工程大学实验报告专业 电气自动化 班号 指导教师 姓名 同组者 无实验名称 线性系统串联校正实验日期 第 五 次实验 一、 实验目的1.熟练掌握用MATLAB 语句绘制频域曲线。

2.掌握控制系统频域范围内的分析校正方法。

3.掌握用频率特性法进行串联校正设计的思路和步骤。

二、 实验内容1.某单位负反馈控制系统的开环传递函数为)1()(+=s s Ks G ,试设计一超前校正装置,使校正后系统的静态速度误差系数120-=s K v ,相位裕量050=γ,增益裕量dB K g 10lg 20=。

解:取20=K ,求原系统的相角裕度。

num0=20; den0=[1,1,0]; w=0.1:1000;[gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w);[gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; ans =Inf 12.7580 Inf 4.4165 由结果可知,原系统相角裕度7580.12=r ,srad c /4165.4=ω,不满足指标要求,系统的Bode 图如图5-1所示。

考虑采用串联超前校正装置,以增加系统的相角裕度。

1010101010幅值(d b )--Go,-Gc,GoGcM a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/sec) , P m = 12.8 deg (at 4.42 rad/sec)Frequency (rad/sec)图5-1 原系统的Bode 图由),3,8.12,50(00000c m c Φ=Φ=+-=Φ令取为原系统的相角裕度εγγεγγ,mm ϕϕαsin 1sin 1-+=可知:e=3; r=50; r0=pm1;phic=(r-r0+e)*pi/180;alpha=(1+sin(phic))/(1-sin(phic)) 得:alpha = 4.6500[il,ii]=min(abs(mag1-1/sqrt(alpha)));wc=w( ii); T=1/(wc*sqrt(alpha)); num0=20; den0=[1,1,0]; numc=[alpha*T,1]; denc=[T,1];[num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('校正之后的系统开环传递函数为:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('幅值(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('相位(0)'); xlabel('频率(rad/sec)');title(['校正前:幅值裕量=',num2str(20*log10(gm1)),'db','相位裕量=',num2str(pm1),'0';'校正后:幅值裕量=',num2str(20*log10(gm)),'db','相位裕量=',num2str(pm),'0'])1010101010-100-5050幅值(d b )--Go,-Gc,GoGc1010101010-200-150-100-50050相位(0)频率(rad/sec)图5-2 系统校正前后的传递函数及Bode 图 num/den = 0.35351 s + 1-------------- 0.076023 s + 1校正之后的系统开环传递函数为:num/den = 7.0701 s + 20 -----------------------------0.076023 s^3 + 1.076 s^2 + s 系统的SIMULINK 仿真:校正前SIMULINK 仿真模型:单位阶跃响应波形:校正后SIMULINK仿真模型:单位阶跃响应波形:分析:由以上阶跃响应波形可知,校正后,系统的超调量减小,调节时间变短,稳定性增强。

频率响应法(伯德图法)

频率响应法(伯德图法)
频率响应法(伯德图法) 频率响应法(伯德图法) 串联校正步骤
串联相位超前校正步骤
1.根据稳态误差的要求,确定开环增益K。 K 2.根据所确定的开环增益K,画出未校正系统 K v = lim s s →0 s ( s + 2) 的波特图,计算未校正系统的相位裕度γ num=20;den=[0.5 1 0]; w=logspace(-1,2,500);%产生0.1和100之间的500个频率点 sysk= tf(num,den) [mag,phase,w]=bode(sysk,w); Pm = [Gm,Pm, Wcg , Wcp]=margin(mag,phase,w);%计算校正前 的相角裕度 17.9645
50 Magnitude (dB) 0 -50 -90 Phase (deg) -1 3 5 B o d e D ia g r a m
-1 8 0 10
-1
10
0
10 Frequenc y ( r a d /s e c )
1
10
2
串联相位超前校正步骤
3.由给定的相位裕度值,计算超前校正装置提供的相位 超前量 ϕ = ϕ m = γ ′′ − γ + ε ← 补偿
50 40 30 20 10 0 -10 -20 -30 -40 -50 -1 10 -10lg(a)=-5.1313
10
0
10
1
10
2
串联相位超前校正步骤
5. 该频率ωm就是校正后系统的开环截止频率ωc wc=wm; 6.然后用下式求出T
.
T=
1
ωm a
T=1/sqrt(alpha)/wc; %计算T alphaT= alpha*T; %计算αT 7.得到校正环节的传递函数 %为补偿超前校正造成的幅值衰减,原开环系统增益 要增加,使得K1*α=1. 8.绘制校正后的系统伯德图,验证所得系统的相位裕度 是否满足设计要求,如不满足重新计算。

实验八 基于MATLAB控制系统的频率法串联超前校正设计

实验八    基于MATLAB控制系统的频率法串联超前校正设计

实验八基于MATLAB控制系统的频率法串联超前校正设计一、实验目的1、对给定系统设计满足频域性能指标的串联校正装置。

2、掌握频率法串联有源和无源超前校正网络的设计方法。

3、掌握串联校正环节对系统稳定性及过渡过程的影响。

二、实验原理用频率法对系统进行超前校正的基本原理,是利用超前校正网络的相位超前特性来增大系统的相位裕量,以达到改善系统瞬态响应的目标。

为此,要求校正网络最大的相位超前角出现在系统的截止频率(剪切频率)处。

串联超前校正的特点:主要对未校正系统中频段进行校正,使校正后中频段幅值的斜率为-20dB/dec,且有足够大的相位裕度;超前校正会使系统瞬态响应的速度变快,校正后系统的截止频率增大。

这表明校正后,系统的频带变宽,瞬态响应速度变快,相当于微分效应;但系统抗高频噪声的能力变差。

1、用频率法对系统进行串联超前校正的一般步骤为:1)根据稳态误差的要求,确定开环增益K。

2)根据所确定的开环增益K,画出未校正系统的波特图,计算未校正系统的相位裕度。

3)计算超前网络参数a和T。

4)确定校正网络的转折频率。

5)画出校正后系统的波特图,验证已校正系统的相位裕度。

6)将原有开环增益增加倍,补偿超前网络产生的幅值衰减,确定校正网络组件的参数。

三、实验内容1、频率法有源超前校正装置设计例1、已知单位负反馈系统被控制对象的传递函数为:试用频率法设计串联有源超前校正装置,使系统的相位裕度 ,静态速度误差系数 。

clc; clear;delta=2; s=tf('s');G=1000/(s*(0.1*s+1)*(0.001*s+1));margin(G) 原系统bode 图[gm,pm]=margin(G) phim1=50;phim=phim1-pm+delta; phim=phim*pi/180;alfa=(1+sin(phim))/(1-sin(phim)); a=10*log10(alfa); [mag,phase,w]=bode(G); adB=20*log10(mag); Wm=spline(adB,w,-a); t=1/(Wm*sqrt(alfa)); Gc=(1+alfa*t*s)/(1+t*s); [gmc,pmc]=margin(G*Gc) figure;margin(G*Gc) 矫正后bode figure(1);step(feedback(G,1)) 矫正后01 figure(2);step(feedback(G*Gc,1)) 矫正后02结果显示: gm = 1.0100 pm =0()(0.11)(0.0011)K G s s s s =++045γ≥11000v K s -=0.0584gmc =7.3983pmc =45.7404分析:根据校正前后阶跃响应的曲线可知:校正后的系统满足动态性能指标以及频域性能指标。

自动控制原理课程设计题目

自动控制原理课程设计题目

第1组 已知单位负反馈系统的开环传递函数0()(0.051)(0.11)K G S S S S =++,试用频率法设计串联滞后——超前校正装置使系统的速度误差系数150v K s -≥,相位裕度为00402γ=±,剪切频率(100.5)c rad s ω=±。

第2组 已知单位负反馈系统的开环传递函数02K G(S)S (0.2S 1)=+,试用频率法设计串联超前校正装置,使系统的相角裕量035γ≥,静态加速度误差系数aK 10= 第3组 已知单位负反馈系统的开环传递函数0K G(S)S(S 2)(S 40)=++,试用频率法设计串联滞后——超前校正装置,使系统的相角裕量040γ≥,静态速度误差系数1v K 20s -=第4组 已知单位负反馈系统的开环传递函数0()11(1)(1)26K G S S S S =++,试用频率法设计串联滞后校正装置,使系统的相位裕度为00402γ=±,增益裕度不低于10dB ,静态速度误差系数1v K 7s -=,剪切频率不低于1rad s第5组 已知单位负反馈系统的开环传递函数0()(0.11)(0.011)K G S S S S =++,试用频率法设计串联滞后——超前校正装置,使系统的相位裕度045γ>,静态速度误差系数250/v K rad s ≥, 幅值穿越频率30/C rad s ω≥第6组 已知单位负反馈系统的开环传递函数0K G(S)S(0.0625S 1)(0.2S 1)=++, 试用频率法设计串联滞后校正装置,使系统的相位裕度050γ=,静态速度误差系数1v K 40s -=,增益欲度30—40dB 。

第7组 已知单位负反馈系统的开环传递函数26()(46)G S S S S =++,试用频率法设计串联滞后校正装置使系统的速度误差系数1v K ≥,相位裕度为00402γ=±,剪切频率0.090.01c rad s ω=±。

串联校正装置设计的一般方法及步骤

串联校正装置设计的一般方法及步骤

串联校正装置设计的一般方法及步骤串联校正装置在控制系统设计中扮演着至关重要的角色,它可以改善系统的性能,增强系统的稳定性和鲁棒性。

下面将介绍串联校正装置设计的一般方法及步骤:一、明确系统性能需求首先,需要明确控制系统需要满足的性能需求,包括系统的稳定性、快速性、准确性等。

这些性能需求将直接决定串联校正装置的类型和参数。

二、分析系统稳定性在明确了系统性能需求后,需要对控制系统进行稳定性分析。

通过计算系统的极点和零点,判断系统是否稳定。

如果系统不稳定,需要设计相应的串联校正装置来改善系统的稳定性。

三、选择合适的串联校正装置根据系统性能需求和稳定性分析结果,选择合适的串联校正装置。

常用的串联校正装置包括:超前校正、滞后校正、滞后-超前校正等。

不同的串联校正装置具有不同的频率特性,可以用来改善系统的不同性能指标。

四、设计串联校正装置参数在选择了合适的串联校正装置后,需要设计其参数。

参数设计需要根据系统性能需求、稳定性分析结果以及串联校正装置的特性进行。

通常,可以通过调整超前、滞后环节的增益和时间常数等参数来优化系统的性能。

五、实验验证与调整在完成串联校正装置的设计后,需要进行实验验证,以确认设计是否满足系统性能需求。

在实验过程中,需要对系统进行测试和调整,以确保系统的稳定性和性能达到预期要求。

如果实验结果不满足要求,需要对串联校正装置的参数进行调整,直到达到满意的结果。

六、集成到控制系统最后,将设计的串联校正装置集成到控制系统中。

在集成过程中,需要注意与原有系统的匹配问题,避免出现不必要的干扰和波动。

同时,还需要对控制系统进行实际的运行测试,以确保整个系统能够正常运行并满足性能需求。

综上所述,串联校正装置设计的一般方法及步骤包括明确系统性能需求、分析系统稳定性、选择合适的串联校正装置、设计串联校正装置参数、实验验证与调整以及集成到控制系统中。

这些步骤需要按照顺序逐步进行,以确保设计的串联校正装置能够有效地改善控制系统的性能。

自动化习题课练习题

自动化习题课练习题
1) 试求它的幅值穿越频率 ω0 和相位裕量 r0 ,该系统是否稳定? 2) 若只用增益串联校正(改变 K 值)使系统的相位裕量为 r = 45o ,问附加增益应为多大?
L(ω )
107.
40
-20db/dec
ω
2
5
-40db/dec
最小相位系统的幅频特性图如左, 1)求该系统的传递函数 2)概略地画出对应的相频特性图


70. 已知系统方框图如左,写出从 U(s)到 Y(s)的传递函数。
D(S) G4
U(S) G1
Y(S) G2
G3
71. 试画图说明二个系统 G1(s) 和 G2 (s) 是并联的。
72. 最小相位系统是指系统的开环传递函数的零点和极点

73. 二阶系统阻尼系数 ,系统就不会出现过调。
74. 小时间迟后环节可近似为
82. 化简方框图,求传递函数
83. 实验测得系统幅频渐近线如下图,求对应的传递函数。 84. 设系统开环传递函数为 k / s(1 + 0.25s) ,若要求单位负反馈系统的阶跃响应有 16%的超调,则 k
应取何值?
85.
试简述二阶系统 G(s)
=
ω
2 n
/(s2
+ 2ζωns
+
ω
2 n
)
中,阻尼比
a -40
45. 已知某单位负反馈系统的开环传递函数为 k / s(1 + 0.25s) ,求其在单位阶跃响应下的调节时间 ts?
46. 系统的控制框图如下所示,试画出该系统的信号流图,并用 MASON 公式计算该系统的闭环传 递函数。
47. 某随动系统方框图如下所示,试求当输入信号为 r(t)=2t 时,系统的稳态误差。

实验用频率法设计串联超前校正网络

实验用频率法设计串联超前校正网络

实际应用价值
探讨实验结论在实际工程 中的应用价值,为相关领 域的研究和实践提供参考。
未来研究方向
提出进一步研究的方向和 重点,为串联超前校正网 络的优化和完善提供思路 和建议。
06
总结与展望
实验收获与体会
01
掌握频率法设计串联超前校正网络的基本原理和方法,了解超前校正 网络对控制系统性能的影响。
根据实验结果,优化串联超前校正网络的设计。
05
实验结果与讨论
实验数据展示
01
实验数据来源
实验数据来源于实际工程项目, 包括传感器采集的实时数据和历 史数据。
数据预处理
02
03
数据展示方式
对原始数据进行清洗、去噪和归 一化处理,以提高数据质量和计 算准确性。
采用图表、曲线和表格等多种方 式展示实验数据,以便更直观地 观察和分析。
研究串联超前校正网络对系统性能的影响
通过实验,研究串联超前校正网络对系统性能的影响,包括系统的稳定性、动态响应和误 差等。
探索不同参数对串联超前校正网络性能的影响
通过实验,研究不同参数(如超前相角、带宽等)对串联超前校正网络性能的影响,为实 际应用提供理论依据。
实验背景
串联超前校正网络在控制系统中的应用
超前相位的计算
超前相位是串联超前校正网络的一个 重要参数,它能够提高系统的相位裕 度,改善系统的动态性能。
超前相位的计算需要考虑系统的带宽 和相位裕度等参数,通过调整超前相 位的大小,可以优化系统的动态性能。
放大系数的确定
放大系数是串联超前校正网络的另一个重要参数,它决定了 系统增益的大小。
在设计串联超前校正网络时,需要根据系统的性能要求和实 际情况,选择合适的放大系数,以保证系统在满足性能要求 的同时具有合理的增益。

用频率法对系统进行串联滞后校正的一般步骤

用频率法对系统进行串联滞后校正的一般步骤

作为校正系统对数幅频特性渐近曲线,如图6-21所示 由图得未校正系统截止频率
表明未校正系统不稳定
设计校正装置,使系统满足下列性能指标:
使
相位裕度为
幅值裕度不低于10dB;过渡过程调节时间不超过3s
解:确定开环增益
看下图
40dB/dec
6
60dB/dec
图6-21
20dB/dec
2
分析为何要采用滞后超前校正?
1 比例负反馈校正
反馈校正方框图 如果局部反馈回路为一比例环节,称为比例反馈校正。图为振荡环节被比例负反馈包围的结构图。
闭环传递函数
其中
可以看到,比例负反馈改变了振荡环节的时间常数T、阻尼比ζ和放大系数K的数值,并且均减小了。因此,比例负反馈使得系统频带加宽,瞬态响应加快,但却使得系统控制精度下降,故应给予补偿才可保证系统的精度。这与串联校正中比例控制的作用主要是提高稳态精度是不同的,比例反馈校正的主要作用是改善被包围部分的动态特性。
Thanks For Watching.
谢谢大家!
如果反馈校正包围的回路稳定(即回路中各环节均是最小相位环节),可以用对数频率特性曲线来分析其性能。可得其频率特性为
若选择结构参数,使
G(jω)可近似为 在这种情况下,G2(jω)部分的特性几乎被反馈校正环节的特性取代,反馈校正的这种取代作用,在系统设计中常常用来改造不期望的某些环节,达到改善系统性能的目的。
根据稳态误差或静态误差系数的要求,确定开环增益K。 确定开环增益K后,画出未校正系统的波特图,
01
02
并计算未校正系统的截止频率 、相角裕度
03
用频率法对系统进行串联滞后校正的一般步骤
04
画出校正后系统的波特图并验算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gh=Gc*G1校正后系统
Gcc=Gc1*Gc超前-滞后控制器传递函数
figure(3),margin(Gh)绘制校正后系统的bode图
校正前Gm = 0.1667Pm = -35.1740wg =2.0000wc =4.4272
滞后校正的方法:
1.根据稳态性能要求,确定开环增益K;
2.利用已确定的开环增益,画出未校正系统对数频率特性曲线,确定未校正系统的截止频率wc、相位裕度γ和幅值裕度h(dB);
3.设计任务与要求
已知单位负反馈系统的开环传递函数G(s)=K0/S(S+1)(0.25S+1),试用频率法设计串联校正装置,要求校正后系统的静态速度误差系数Kv≧5S-1,系统的相角裕度r≧45°校正后的剪切频率WC≧2rad/s
4.设计方法步骤
4.1校正前系统的分析
校正前系统的开环传递函数为:
由静态速度误差系数Kv≧5S-1可选取 =30rad/s
6.验算已校正系统的相位裕度和幅值裕度。
经过滞后校正后的波特图为:
得到系统滞后校正后的频域指标Gm1 =1.5004Pm1 = 9.1726wg1 =1.8978wc1 =1.5330。
可以看到校正后的剪切频率变成了1.53rad/s相角裕度变为了9.17°,系统由先前的不稳定变为稳定了,继续给系统超前校正。校正方法为:
[mag1,phase1,w1]=bode(G1)获取经滞后校正系统的每个频率w1对应的幅值和相位角
figure(2)
margin(G1);grid绘制经过滞后校正后的系统bode图
wc2=4.5根据对滞后校正后的bode图分析,选取校正后的剪切频率,改参数可调
[Gm1,Pm2,wg1,wc1]=margin(G1)获取经过滞后校正后的频域指标
实验报告
课程名称:自动控制原理
实验项目:用频率法设计串联校正装置
专业班级:
姓 名:
学 号:
实验室号:
实验组号:
实验时间:
批阅时间:
1. 实验名称
用频率法设计串联校正装置
2. 实验目的
掌握控制系统的设计与校正方法、步骤。
提高分析问题解决问题的能力。
要求会用MATLAB画出校正前后的幅频特性图
掌握利用MATLAB对控制理论内容进行分析和研究的技能
所以开环传递函数变为
校正前:
在MATLAB中编写如下程序:
S=tf(‘s’) 生成拉普拉斯变量s
G=30/(s*(s+1)*(0.25*s+1) 生成开环传递函数
[mag,phase,w]=bode(G)获取对数频率特性上每个频率w对应 的复制和相位角
Figure(1)
Margin(g:grid) 绘制校正前系统Bode图
如果验算结果不满足指标要求,要重选 ,一般使 增大,然后重复以上步骤。
可以得到滞后-超前校正后的波特图:
经过滞后-超前校正后的系统的频域指标,此时剪切频率为2.06rad/s,幅值裕度Gm=17.2db,相角裕度Gm=45°
校正后的传递函数
校正后:
5.遇到的问题和解决办法
拿到题目时由于没有说明具体是什么方法,盲目的进行计算,费时费力。后翻书查阅资料,经计算,发现,使用超前校正较为简便。
mag2=spline(w1,mag1,wc2)求取原系统经滞后校正后在wc2处的幅值
L=20*log10(mag2)换算成分贝(wc2*sqrt(a))求时间常数
at=a*T2
Gc=tf([at 1],[T2 1])获取超前控制器的传递函数
开始只用超前校正,计算画图发现均不能满足校正要求,后改用超前滞后校正,满足要求。
取校正参数时候,检验时发现校正后的函数不满足要求,后Wc取较大值时,校正后函数满足要求。
经过翻阅资料,发现可以使用二级串联超前校正进行装置设计。
6.心得体会
在这次的课程设计之前,对于自控控制原理的相关知识,我重新翻看好几遍以前的书本。在校正设计时候,在试取值时需要对校正原理较好的理解才能取出合适的参数,期间也不是一次就成功,选了几次才选出比较合适的参数。这种不断尝试的经历让我们养成一种不断探索的科学研究精神,我想对于将来想从事技术行业的学生这是很重要的。
3.选择不同的wc",计算或查出不同的γ值,在伯特图上绘制γ(wc")曲线;
4.根据相位裕度γ"要求,选择已校正系统的截止频率wc";考虑到滞后网络在新的截止频率wc"处,会产生一定的相角滞后 ,因此,下列等式成立:
根据上式的计算结果,在曲线上可查出相应的值。
5.根据下述关系确定滞后网络参数b和T如下:
[Gm,Pm,wg,wc]=margin(G)计算校正前开环传递函数的频域指标
b=0.1取滞后网络的分度系数为0.03,一般取0.123~0.1之间
T1=50/(b*wc)滞后网络的时间常数
Gc1=tf([b*T1 1],[T1 1])滞后网络的传递函数
G1=Gc1*G经过滞后校正后校正的系统的开环传递函数
每一次课程设计都会学到不少东西,这次当然也不例外。不但对自动原理的知识巩固了,也加深了对 MATLAB 这个强大软件的学习和使用。
同时,通过这次期末的课程设计,使我认识到自己这学期对这门课程的学习还远远不够,还没有较好地将书本中的知识较好地融合,这为我在以后的学习中敲了一记警钟。
[1]梅晓榕等编.自动控制原理(第二版)[M].北京:科学出版社,2007..
从课程设计的入手到最后分析,对于我来说是个不小的挑战,要清楚的注意到每个细节是不可行的,所以遇到问题时和班上的同学一起讨论,是解决各种难题的有效方法。过这次课程设计使我懂得了理论与实际相结合是很重要的,仅有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。
执行上述命令后,可得到校正前的系统的Bode图及频域指标。
由图可以看到幅值裕度Pm=-15.6db,相角裕度Gm=-35.2°,剪切频率为4.43rad/s,由于相角裕度小于0,所以系统是不稳定的。
4.2校正方法
1)根据系统的性能,决定采用串联超前-滞后校正。
行超前-滞后环节设计。运行下面程序后,可得先经滞后校正后系统的Bode图,此时经过一次校正,系统的剪切频率为1.53rad/s,相位裕量为9.17°;最后又经一级的超前校正,得到超前-滞后校正后的Bode图,记录分析结果是否符合要求。
[2]张德丰等编.MATLAB控制系统设计与仿真.北京:电子工业出版社,2009.
[3]赵广元编. MATLAB与控制系统仿真实践.北京:北京航空航天大学出版社,2009.
[4]于洋等编.自动控制原理实验指导书.沈阳工业大学出版,2008
、、
1)根据要求,确定开环增益K。
2)利用已确定的开环增益,计算待校正系统的相角裕度。
3)根据截止频率 的要求,计算 和T,令 ,以保证系统的响应速度,并充分利用网络的相角超前特性。显然 ,成立的条件是:
根据上式不难求出 值,然后由ω =1/T 确定T。
4)验算已校正系统的相角裕度 。

求得 ,再由已知的 算出待校正系统在 时的相角欲度 。最后,按下式算出
相关文档
最新文档