1.2二次函数的图象(2)
湘教版九年级下册数学精品教学课件 第1章二次函数 第2课时 二次函数y=ax2(a<0)的图象与性质
∴d < c < 0,∴ a > b > 0 > c > d.
y = ax2 图象 位置开 口方向
对称性
顶点最值
增减性
a>0
y
Ox
开口向上
a<0
y O
x
开口向下
a 的绝对值越大,开口越小
关于 y 轴对称,对称轴方程是直线 x=0
顶点坐标是原点(0,0)
解析:根据 a、b 的符号来确定. 当 a > 0 时,抛物线 y = ax2 的开口 向上.∵ ab > 0,∴ b > 0 . ∴直线 y = ax+b过第一、二、三象 限;当a < 0 时,抛物线 y = ax2 的开 口向下.∵ab > 0,∴b < 0.∴直线 y = ax+b 过第二、三、四象限. 故选 D.
合作探究
问题1
画二次函数
y
1 4
x2
的图象.
列表
x
0
1
2
3
4
y 1 x2 4
0
1 4
-1
9 4
-4
描点和连线:画出图象在 y 轴右边的部分,再利
用对称性画出 y 轴左边的部分.
y
这样我们得到了 y 1 x2
4
-4
o
-2
2
4x
的图象,如图.
-2
-4
问题2 观察图 y 1 x2的图象跟实际生活中的什么相像?
4
Hale Waihona Puke -4 -2 -2 -42
4
y 1 x2 的图象很像掷铅球时,铅球在空中经过的路线
浙教版九年级上册 1.2.2 二次函数的图象 课件(共35张PPT)
y轴
原点
向上
最低点
向下
最高点
越小
那么y=ax2+k 呢?
知识点1
二次函数y = ax2 +k的图象的画法
例1 在同一直角坐标系中,画出二次函数 y = 2x2 +1, y = 2x2 -1的图象。
解:先列表:
x
…
当x≤-m时,y随x增大而减小;当x≥-m时,y随x增大而增大.
向上
向下
直线x=-m
直线x=-m
(-m,k)
x=-m时,y最小值=k
x=-m时,y最大值=k
(-m,k)
图1-2-9
例3.某二次函数图象的一部分如图1-2-9所示,请求出该二次函数的表达式,并直接写出该二次函数图象在 轴右侧部分与 轴的交点坐标.
D
A. B. C. D.
B
9. 把二次函数 的图象绕原点旋转 后得到的图象的函数表达式为_________________.
[解析] 二次函数 的图象开口向上,顶点坐标为 ,图象绕原点旋转 后得到的图象的顶点坐标为 ,开口向下,所以旋转后的新图象的函数表达式为 .
10.(2021杭州一模)已知二次函数 ( 是实数).
-m
k
思考
想一想,试着画出二次函数y=a(x+m)2+k不同情况下的大致图象.( 按a,m,k的正负分类 )
二次函数y=a(x+m)2+k的图象和性质
归纳
a>0
a<0
图象
m>0
m<0
开口方向
对称轴
顶点坐标
函数的增减性
最值
1.2 第2课时 二次函数y=ax2(a<0)的图象与性质
.
5.抛物线 y = ax , |a| 越大,抛物线的开口越小.
首页
例题学习
例1:画二次函数 解:列表
x 0 0 1 2 3 4
1 y x 2 的图象. 4
1 y x2 4
1 4
-1
9 4
-4
描点和连线:画出图象在y轴右边的部分.
利用对称性画出y轴左边的部分.
-4 -2 -2 -4 2 4
2
5.抛物线 y = ax ,
|a| 越大,抛物线的开口越小.
首页
合作探究
(1)二次函数y=-x2的图象是什么形状?
一、列表
x y=-x2 … … -3 -9 -2 -4 -1 -1 0 0 1 -1 2 -4 3 -9 … …
y=x2
…
9
4
1
0
1
4
9
…
你能根据表格中的数据作 出猜想吗?
首页
二、描点
y x2
当x>0 (在对称轴的 右侧)时, y随着x的增大而 减小.
当x=0时,函数y 的值最大,最大值是0.
合作探究
二次函数y=-x2的图象与性质 1.图象开口向 下 . 2.图象关于 y轴 对称,顶点(0,0) . 3.增减性:当x<0时,y随x的增大而 增大 ,
当x>0时,y随x的增大而减小 ,简称为左升右降 . 4.最值:函数有最 大 值,最 大 值等于 0 .
当x>0时,y 随x的增大而增 大;当x<0时, y随x的增大而 2 x 在同一坐标系中,画出函数 2
合作探究
的图象,并考虑这些抛物线有什么共同点和不同点.
-4 归纳: 相同点:开口都向下,顶 点是原点而且是抛物线的 最高点,对称轴是 y 轴.
【练习】1.2 二次函数的图像 第2课时 二次函数y=a(x+m)2+k(a≠0)的图象及其特征
1.2 二次函数的图像
第2课时 二次函数y=a(x+m)2+k(a≠0)的 图象及其特征
浙教版·九年级上册
1. (3分)一次函数y=a(x-h)2(a≠0)的图象可能是( D )
2.(3分)对于抛物线y=- ①抛物线的开口向下; ③顶点坐标为(-1,3); 其中正确的结论有( C ) A.1个
轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.
(1)求二次函数与一次函数的表达式;
解:二次函数的表达式为y=(x-2)2-1,一次函数的表达式为y=x-1. (2)根据图象,直接写出满足kx+b≥(x-2)2+m的x的取值范围.
解:1≤,两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二
y= (x-4) -1 个二函数的表达式为___ .
2
1 4
9.(9分)下列抛物线可由怎样的抛物线y=ax2(a≠0),经过怎样的平移得到? (1)y=-
(2)y=-(x+ 3)2-5; (3)y=3(x- 1 )2+ 3
2
1 (x-4)2; 3
4
.
1 1 解:(1)y=- (x-4)2 可由抛物线 y=- x2 向右平移 4 个单位得到. 3 3 (2)y=-(x+ 3)2 -5 可由抛物线 y=-x2 先向左平移 3个单位,再向下平移 5 个单位 得到. 1 2 3 1 3 2 (3)y=3(x- ) + 可由抛物线 y=3x 先向右平移 个单位,再向上平移 个单位得到. 2 4 2 4
y=-8(x- )2+3 2
14. (7分)对于平面直角坐标系xOy中的点P和图形G,给出如下定义:在图形G上若存在两点M,N,使 △PMN为正三角形,则称图形G为点P的T型线,点P为图形G的T型点,△PMN为图形G关于点P的T型三角 形.若H(0,-2)是抛物线y=x2+n的T型点,则n的取值范围是
浙教版数学九年级上册《1.2 二次函数的图象》教案1
浙教版数学九年级上册《1.2 二次函数的图象》教案1一. 教材分析《1.2 二次函数的图象》是浙教版数学九年级上册的一部分,本节课主要让学生了解二次函数的图象特点,掌握二次函数的图象与系数的关系,能够通过图象解决一些实际问题。
教材通过实例引入二次函数的图象,使学生能够从实践中体会二次函数的图象特点,培养学生的观察能力、实践能力和解决问题的能力。
二. 学情分析学生在八年级时已经学习了二次函数的定义和性质,对二次函数有一定的认识。
但学生的知识水平参差不齐,部分学生对二次函数的理解不够深入,对二次函数的图象认识不足。
因此,在教学过程中,要关注学生的个体差异,通过实例引导学生观察、分析,让学生在实践中掌握二次函数的图象特点。
三. 教学目标1.了解二次函数的图象特点,掌握二次函数的图象与系数的关系。
2.能够通过图象解决一些实际问题。
3.培养学生的观察能力、实践能力和解决问题的能力。
四. 教学重难点1.教学重点:二次函数的图象特点,二次函数的图象与系数的关系。
2.教学难点:如何通过图象解决实际问题。
五. 教学方法1.情境教学法:通过实例引入二次函数的图象,让学生在实践中感受二次函数的图象特点。
2.问题驱动法:引导学生观察、分析二次函数的图象,激发学生的思考,培养学生的解决问题的能力。
3.小组合作学习:学生分组讨论,共同探究二次函数的图象与系数的关系,提高学生的合作能力。
六. 教学准备1.准备相关的实例,用于引导学生观察二次函数的图象。
2.准备多媒体教学设备,用于展示二次函数的图象。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入二次函数的图象,例如:抛物线的形状是什么?抛物线的顶点在哪里?让学生思考并回答问题,从而引出本节课的主题。
2.呈现(15分钟)利用多媒体教学设备,展示几个二次函数的图象,如y=x2、y=x2-1、y=2x^2等。
引导学生观察这些图象的特点,如开口方向、顶点位置、对称轴等。
1.2 第2课时 二次函数的图象与性质
1.[2019·虹口区一模]如果抛物线 y=(a+2)x2 开口向下,那么 a 的取值范围为
( D) A.a>2
B.a<2
C.a>-2
D.a<-2
【解析】 ∵抛物线 y=(a+2)x2 开口向下,∴a+2<0,∴a<-2.故选 D.
课件目录
首页
末页
第2课时 二次函数y=ax2(a<0)的图象与性质
1.二次函数 y=ax2(a<0)的图象 为此设计了【归类探究】中的例 1;【当堂测评】中的第 4 题;【分层作业】中 的第 1,3,6,8,9 题. 2.二次函数 y=ax2(a<0)的性质 此内容为本节的重点.为此设计了【归类探究】中的例 2;【当堂测评】中的 第 1,2,3 题;【分层作业】中的第 2,4,5,7 题.
首页
末页
第2课时 二次函数y=ax2(a<0)的图象与性质
解:(1)把点 A(-2,-8)代入 y=ax2, 得 a·(-2)2=-8,解得 a=-2. (2)开口向下,对称轴是 y 轴,顶点坐标是(0,0). (3)当 x<0 时,y 随 x 的增大而增大. (4)由(1)知抛物线的解析式为 y=-2x2,当 x=-1 时,y=-2≠-4,∴点 B(- 1,-4)不在抛物线上.
首页
末页
第2课时 二次函数y=ax2(a<0)的图象与性质
类型之二 二次函数 y=ax2(a<0)的性质 在平面直角坐标系中作出 y=-4x2 的图象,并根据图象回答下列问题:
(1)抛物线与 x 轴有交点吗?如果有,请写出交点坐标; (2)写出此抛物线的对称轴及顶点坐标; (3)当 x<0 时,随着 x 值的增大,y 值如何变化?此时抛物线上这一部分图象 的趋势可简称为什么?当 x>0 时呢? (4)当 x 取何值时,y 有最大值?最大值是多少?
二次函数的图象与性质(二)
4.已知二次函数 已知二次函数y=x2+ax+a-2. 已知二次函数 证明:不论 为何值,抛物线 不论a为何值 ⑴证明 不论 为何值 抛物线 y=x2+ax+a-2的顶点 总在 轴的下方 的顶点Q总在 轴的下方. 的顶点 总在x轴的下方 设抛物线y=x2+ax+a-2与y轴交于点, 轴交于点, ⑵设抛物线 与 轴交于点 如果过点C且平行于 且平行于x轴的直线与该抛 如果过点 且平行于 轴的直线与该抛 物线有两个不同的交点,并设另一个交 物线有两个不同的交点 并设另一个交 点为D.问 △ 能否是等边三角形? 点为 问:△QCD能否是等边三角形 能否是等边三角形 若能,请求出相应的二次函数解析式 请求出相应的二次函数解析式,若 若能 请求出相应的二次函数解析式 若 不能,请说明理由 请说明理由; 不能 请说明理由 的已知条件下,又设抛物线与 又设抛物线与x轴 ⑶在⑵的已知条件下 又设抛物线与 轴 的交点之一为A,则能使 则能使△ 的交点之一为 则能使△ACD的面积等 的面积等 于1/4的抛物线有几条 请证明你的结论. 的抛物线有几条?请证明你的结论 的抛物线有几条 请证明你的结论
3. 二次函数 二次函数y=ax2+bx+c(a≠0)与x轴有 与 轴有 两个交点(x 两个交点 1,0),(x2,0). ⑴当两个交点 在y轴的右侧 轴的右侧 ⑵当两个交点 在y轴的右侧 轴的右侧 ⑶当两个交点 在y轴的右侧 轴的右侧
4. 二次函数 二次函数y=ax2+bx+c(a≠0)与x轴有 与 轴有 两个交点(x 两个交点 1,0),(x2,0),则对称轴是直 , . 线x= 已知抛物线上有四个点(-3,m), 已知抛物线上有四个点( , ), ),(-6, ),( ),(1, ), (4,8),( ,n),( ,m), , ),( . 则n=
九年级数学下二次函数1.2二次函数的图像与性质第2课时二次函数y=ax2(a<0)的图象与性质
(2)函数y=(3a-2)x2有最大值.
解:由题意得 3a-2<0,解得 a<23. (3)抛物线 y=(a+2)x2 与抛物线 y=-12x2 的形状相同.
由题意得|a+2|=-12,解得 a1=-52,a2=-32.
(4)函数y=axa2+a的图象是开口向上的抛物线. 解:由题意得a2+a=2,解得a1=-2,a2=1. 又由题意知a>0,∴a=1.
x 的增大而增大,则 m 的值为( B )
A. 5
B.- 5
C.± 5
D.-2
12.已知点 A(-1,y1),B(- 2,y2),C(-2,y3)在二次函
数 y=-x2 的图象上,则 y1,y2,y3 的大小关系是( A )
A.y1>y2>y3
B.y1>y3>y2
C.y3>y2>y1
D.y2>y1>y3
14.函数y=-x2(-2≤x≤1)的最大值为____0____,最小值 为___-__4___.
【易错总结】本题易忽略在取值范围中当x=0时取得 最大值,最大值为0,而不是当x=1时取得最大值.
15.已知函数y=(m+3)xm2+3m-2是关于x的二次函数.
(1)求m的值. 解:根据题意,得mm2++33≠m0,-2=2, 解得mm=≠--34. 或m=1, ∴m=-4 或 m=1.
17 见习题
18 见习题
答案显示
1.二次函数 y=2πx2 的图象沿 x 轴翻折后的图象的表达式为
( C) A.y=21πx2
B.y=2xπ2
C.y=-2πx2
D.y=πx2
2.已知二次函数y=-2x2,当x>0时,其图象位于( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
1.2二次函数的图象与性质(第2课时)课件
小结 二次函数 ya(xh)2的图象及性质: (1)形状、对称轴、顶点坐标; (2)开口方向、极值、开口大小; (3)对称轴两侧增减性。
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 •4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
-2
-3
y
1(x1)2---456y
2
-7
1 x2 y 21(x1)2
2
-8
探究
三、观察三条抛物线: y
(5)增减性怎么样?
2 1
-3 -2 -1 0-1 1 2 3 x
-2
-3
y
1(x1)2---456y
2
-7
1 x2 y 21(x1)2
2
-8
归纳
二次函数 ya(xh)2的图象及性质:
复习
二次函数 yax2 c的图象及性质:
2.当a>0时,开口向上; 在对称轴的左侧,y随x的增大而减小, 在对称轴的右侧,y随x的增大而增大; 当x=0时,y取最小值为c。
复习
二次函数 yax2 c的图象及性质:
3.当a<0时,开口向下; 在对称轴的左侧,y随x的增大而增大, 在对称轴的右侧,y随x的增大而减小; 当x=0时,y取最大值为c。
专题1.2 二次函数的图象【六大题型】(举一反三)(浙教版)(解析版)
专题1.2 二次函数的图象【六大题型】【浙教版】【题型1 二次函数的配方法】 (1)【题型2 二次函数的五点绘图法】 (4)【题型3 二次函数的图象与各系数之间的关系】 (9)【题型4 二次函数图象的平移变换】 (12)【题型5 二次函数图象的对称变换】 (14)【题型6 利用对称轴、顶点坐标公式求值】 (16)【题型1 二次函数的配方法】【例1】(2022秋•饶平县校级期末)用配方法将下列函数化成y=a(x+h)2+k的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y=12x2﹣2x+3;(2)y=(1﹣x)(1+2x).【分析】(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:(1)y=12x2﹣2x+3=12(x﹣2)2+1,开口向上,对称轴是直线x=2,顶点坐标(2,1);(2)y=(1﹣x)(1+2x)=﹣2x2+x+1=﹣2(x―14)2+98,开口向下,对称轴是直线x=14,顶点坐标(14,98).【变式1-1】(2022•西华县校级月考)用配方法确定下列二次函数图象的对称轴与顶点坐标.(1)y=2x2﹣8x+7;(2)y=﹣3x2﹣6x+7;(3)y=2x2﹣12x+8;(4)y=﹣3(x+3)(x﹣5).【分析】(1)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(2)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(3)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(4)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标.【解答】解:(1)y=2(x2﹣4x)+7=2(x2﹣4x+4﹣4)+7=2(x﹣2)2﹣1,对称轴为x=2,顶点坐标为(2,﹣1);(2)y=﹣3(x2+2x)+7=﹣3(x2+2x+1﹣1)+7=﹣3(x+1)2+10,对称轴为x=﹣1,顶点坐标为(﹣1,10);(3)y=2x2﹣12x+8=2(x2﹣6x+9﹣9)+8=2(x﹣3)2﹣10,对称轴为x=3,顶点坐标为(3,﹣10);(4)y=﹣3(x+3)(x﹣5)=﹣3(x2﹣2x﹣15)=﹣3(x2﹣2x+1﹣1﹣15)=﹣3(x﹣1)2+16 3,对称轴为x=1,顶点坐标为(1,163).【变式1-2】(2021•邵阳县月考)把下列二次函数化成顶点式,即y=a(x+m)2+k的形式,并写出他们顶点坐标及最大值或最小值.(1)y=﹣2x﹣3+1 2 x2(2)y=﹣2x2﹣5x+7(3)y=ax2+bx+c(a≠0)【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,可把一般式转化为顶点式,从而求出函数图象的顶点坐标及最值.【解答】解:(1)y=﹣2x﹣3+1 2 x2=12(x2﹣4x+4)﹣2﹣3=12(x﹣2)2﹣5,顶点坐标是(2,﹣5),最小值是﹣5;(2)y=﹣2x2﹣5x+7=﹣2(x2+52x+2516)+258+7=﹣2(x+54)2+818,顶点坐标是(―54,818),最大值是818;(3)y=ax2+bx+c=a(x2+bax+b24a2)―b24a+c=a(x+b2a)2+4ac b24a,顶点坐标是(―b2a,4ac b24a),当a<0时,最大值是4ac b24a;当a>0时,最小值是4ac b24a.【变式1-3】(2022•监利市期末)用配方法可以解一元二次方程,还可以用它来解决很多问题例如:因为5a2≥0,所以5a2+1≥1,即:当a=0时,5a2+1有最小值1.同样,因为﹣5(a2+1)≤0,所以﹣5(a2+1)+6≤6有最大值1,即当a=1时,﹣5(a2+1)+6有最大值6.(1)当x= 2 时,代数式﹣3(x﹣2)2+4有最 大 (填写大或小)值为 4 .(2)当x= 2 时,代数式﹣x2+4x+4有最 大 (填写大或小)值为 8 .(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是14m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?【分析】(1)由完全平方式的最小值为0,得到x=2时,代数式的最大值为4;(2)将代数式前两项提取﹣1,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;(3)设垂直于墙的一边长为xm,根据总长度为14m,表示出平行于墙的一边为(14﹣2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.【解答】解:(1)∵(x﹣2)2≥0,∴当x=2时,(x﹣2)2的最小值为0,则当x=2时,代数式﹣3(x﹣2)2+4的最小值为4;(2)代数式﹣x2+4x+4=﹣(x﹣2)2+8,则当x=2时,代数式﹣x2+4x+4的最大值为8;(3)设垂直于墙的一边为xm,则平行于墙的一边为(14﹣2x)m,∴花园的面积为x(14﹣2x)=﹣2x2+14x=﹣2(x2﹣7x+494)+492=―2(x―72)2+492,则当边长为3.5米时,花园面积最大为492m2.故答案为:(1)2,大,4;(2)2,大,8;【题型2 二次函数的五点绘图法】【例2】(2022•东莞市模拟)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…52125…(1)求该二次函数的表达式;(2)当x=6时,求y的值;(3)在所给坐标系中画出该二次函数的图象.【分析】(1)由表格可知抛物线顶点坐标(2,1),设抛物线解析式为y=a(x﹣2)2+1,利用待定系数法即可解决问题.(2)把x=6代入(1)中的解析式即可.(3)利用描点法画出图象即可.【解答】解:(1)由表格可知抛物线顶点坐标(2,1),设抛物线解析式为y=a(x﹣2)2+1,∵x=0时,y=5,∴5=4a+1,∴a=1,∴二次函数解析式为y=(x﹣2)2+1即y=x2﹣4x+5.(2)当x=6时,y=(6﹣2)2+1=17.(3)函数图象如图所示,.【变式2-1】(2022•竞秀区一模)已知抛物线y=x2﹣2x﹣3(1)求出该抛物线顶点坐标.(2)选取适当的数据填入表格,并在直角坐标系内描点画出该抛物线的图象.x……y……【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)利用描点法画出二次函数的图象.【解答】解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,故该抛物线顶点坐标为:(1,﹣4);(2)如图所示:x…﹣10123…y…0﹣3﹣4﹣30….【变式2-2】已知二次函数y=ax2﹣2的图象经过(﹣1,1).(1)求出这个函数的表达式;(2)画出该函数的图象;(3)写出此函数的开口方向、顶点坐标、对称轴.【分析】(1)直接把(﹣1,1)代入y=ax2﹣2中求出a的值即可得到抛物线解析式;(2)利用描点法画函数图象;(2)根据二次函数的性质求解.【解答】解:(1)把(﹣1,1)代入y=ax2﹣2得a﹣2=1,解得a=3,所以抛物线解析式为y=3x2﹣2;(2)如图:(3)抛物线的开口向上,顶点坐标为(0,﹣2),对称轴为y轴.【变式2-3】(2022•越秀区模拟如图,已知二次函数y=―12x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x 轴的另一个交点;(3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴.【分析】(1)根据图象经过A (2,0)、B (0,﹣6)两点,把两点代入即可求出b 和c ,(2)把二次函数写成顶点坐标式,据此写出顶点坐标,对称轴等,(3)在坐标轴中画出图象即可.【解答】解:(1)∵的图象经过A (2,0)、B (0,﹣6)两点,∴―2+2b +c =0c =―6,解得b =4,c =﹣6,∴这个二次函数的解析式为y =―12x 2+4x ―6,(2)y =―12x 2+4x ―6=―12(x 2﹣8x +16)+8﹣6=―12(x ﹣4)2+2,∴二次函数图象的顶点坐标为(4,2)、对称轴为x =4、二次函数图象与x 轴相交时:0=―12(x ﹣4)2+2,解得:x =6或2,∴另一个交点为:(6,0),(3)作图如下.【题型3 二次函数的图象与各系数之间的关系】【例3】(2022春•玉山县月考)函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是( )A.B.C.D.【分析】根据题目中的函数解析式、二次函数的性质和一次函数的性质,利用分类讨论的方法可以得到函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是哪个选项中的图象.【解答】解:当a>0时,函数y=ax2﹣a的图象开口向上,顶点坐标为(0,﹣a),y=ax+a(a≠0)的图象经过第一、二、三象限,故选项A、D错误;当a<0时,函数y=ax2﹣a的图象开口向下,顶点坐标为(0,﹣a),y=ax+a(a≠0)的图象经过第二、三、四象限,故选项B错误,选项C正确;故选:C.【变式3-1】(2022•邵阳县模拟)二次函数y=ax2+b的图象如图所示,则一次函数y=ax+b的图象可能是( )A.B.C.D.【分析】直接利用二次函数图象得出a,b的符号,进而利用一次函数的图象性质得出答案.【解答】解:如图所示:抛物线开口向下,交y轴的正半轴,则a<0,b>0,故一次函数y=ax+b的图象经过第一、二、四象限.故选:C.【变式3-2】(2022•凤翔县一模)一次函数y=kx+k与二次函数y=ax2的图象如图所示,那么二次函数y=ax2﹣kx﹣k的图象可能为( )A.B.C.D.【分析】由二次函数y=ax2的图象知:开口向上,a>0,一次函数y=kx+k图象可知k>0,然后根据二次函数的性质即可得到结论.【解答】解:由二次函数y=ax2的图象知:开口向上,a>0,一次函数y=kx+k图象可知k>0,∴二次函数y=ax2﹣kx﹣k的图象开口向上,对称轴x=―k2a在y轴的右侧,交y轴的负半轴,∴B选项正确,故选:B.【变式3-3】(2022•澄城县三模)已知m,n是常数,且n<0,二次函数y=mx2+nx+m2﹣4的图象是如图中三个图象之一,则m的值为( )A.2B.±2C.﹣3D.﹣2【分析】可根据函数的对称轴,以及当x=0时,y的值来确定符合题意的函数式,进而确定m的值.【解答】解:∵y=mx2+nx+m2﹣4,∴x=―n2m,因为n<0,所以对称轴不可能是x=0,所以第一个图不正确.二,三两个图都过原点,∴m2﹣4=0,m=±2.第二个图中m>0,开口才能向上.对称轴为:x=―n2m>0,所以m可以为2.第三个图,m<0,开口才能向下,x=―n2m<0,而从图上可看出对称轴大于0,从而m=﹣2不符合题意.故选:A.【题型4 二次函数图象的平移变换】【例4】(2022•绍兴县模拟)把抛物线y=ax2+bx+c的图象先向右平移2个单位,再向上平移2个单位,所得的图象的解析式是y=(x﹣3)2+5,则a+b+c= 3 .【分析】先得到抛物线y=(x﹣3)2+5的顶点坐标为(3,5),通过点(3,5)先向左平移2个单位再向下平移2个单位得到点的坐标为(1,3),然后利用顶点式写出平移后的抛物线解析式,再把解析式化为一般式即可得到a、b和c的值.【解答】解:∵y=(x﹣3)2+5,∴顶点坐标为(3,5),把点(3,5)先向左平移2个单位再向下平移2个单位得到点的坐标为(1,3),∴原抛物线解析式为y=(x﹣1)2+3=x2﹣2x+4,∴a=1,b=﹣2,c=4.∴a+b+c=3,故答案为3.【变式4-1】(2022•澄城县二模)要得到函数y=﹣(x﹣2)2+3的图象,可以将函数y=﹣(x﹣3)2的图象( )A.向右平移1个单位,再向上平移3个单位B.向右平移1个单位,再向下平移3个单位C.向左平移1个单位,再向上平移3个单位D.向左平移1个单位,再向下平移3个单位【分析】根据抛物线顶点的变换规律得到正确的选项.【解答】解:抛物线y=﹣(x﹣3)2的顶点坐标是(3,0),抛物线y=﹣(x﹣2)2+3的顶点坐标是(2,3),所以将顶点(3,0)向左平移1个单位,再向上平移3个单位得到顶点(2,3),即将函数y=﹣(x﹣3)2的图象向左平移1个单位,再向上平移3个单位得到函数y=﹣(x﹣2)2+3的图象.故选:C.【变式4-2】(2022秋•滨江区期末)将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则4a﹣2b﹣1的值是 2 .【分析】根据二次函数的平移得出平移后的表达式,再将点(﹣2,5)代入,得到4a﹣2b=3,最后整体代入求值即可.【解答】解:将抛物线y=ax2+bx﹣1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(﹣2,5),代入得:4a﹣2b=3,则4a﹣2b﹣1=3﹣1=2.故答案为:2.【变式4-3】(2022•澄城县二模)二次函数y=(x﹣1)(x﹣a)(a为常数)图象的对称轴为直线x=2,将该二次函数的图象沿y轴向下平移k个单位,使其经过点(0,﹣1),则k的值为( )A.3B.4C.2D.6【分析】根据抛物线解析式得到抛物线与x轴的交点横坐标,结合抛物线的轴对称性质求得a的值,结合抛物线解析式求平移后图象所对应的二次函数的表达式,利用待定系数法求得k的值.【解答】解:由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴1a2=2.解得a=3.则该抛物线解析式是:y=x2﹣4x+3.∴抛物线向下平移k个单位后经过(0,﹣1),∴﹣1=3﹣k.∴k=4.故选:B.【题型5 二次函数图象的对称变换】【例5】(2022•绍兴县模拟)在同一平面直角坐标系中,若抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,则a+b的值为( )A.﹣5B.3C.5D.15【分析】根据关于x轴对称,函数y是互为相反数即可求得.【解答】解:∵抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,∴﹣y=﹣x2﹣(2a﹣b)x﹣b﹣1,∴―(2a―b)=a+b ―b―1=a―4,解得a=0,b=3,∴a+b=3,故选:B.【变式5-1】(2022•苍溪县模拟)抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为 y=﹣(x﹣2)2 .【分析】写出顶点关于y轴对称的点,把它作为所求抛物线的顶点,这样就可确定对称后抛物线的解析式.【解答】解:抛物线y=﹣(x+2)2顶点坐标为(﹣2,0),其关于y轴对称的点的坐标为(2,0),∵两抛物线关于y轴对称时形状不变,∴抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为y=﹣(x﹣2)2.故答案是:y=﹣(x﹣2)2.【变式5-2】(2022•蜀山区校级二模)在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是( )A.y=﹣(x﹣1)2﹣2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+2【分析】先利用配方法得到抛物线y=x2+2x+3的顶点坐标为(﹣1,2),再写出点(﹣1,2)关于原点的对称点为(1,﹣2),由于旋转180°,抛物线开口相反,于是得到抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.【解答】解:y=x2+2x+3=(x+1)2+2,抛物线y=x2+2x+3的顶点坐标为(﹣1,2),点(﹣1,2)关于原点的对称点为(1,﹣2),所以抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.故选:A.【变式5-3】(2022春•仓山区校级期末)在平面直角坐标系中,已知抛物线L1:y=kx2+4kx+8(k≠0)与抛物线L2关于x轴对称,且它们的顶点相距8个单位长度,则k的值是( )A.﹣1或3B.1或﹣2C.1或3D.1或2【分析】先求出抛物线L1的顶点坐标,再根据顶点相距8个单位长度列方程即可解得答案.【解答】解:∵y=kx2+4kx+8=k(x+2)2+8﹣4k,∴抛物线L1:y=kx2+4kx+8顶点为(﹣2,8﹣4k),∵抛物线L1:y=kx2+4kx+8(k≠0)与抛物线L2关于x轴对称,它们的顶点相距8个单位长度,∴8﹣4k=82或8﹣4k=―82,解得k=1或k=3,故选:C.【题型6 利用对称轴、顶点坐标公式求值】【例6】(2022•苍溪县模拟)已知二次函数y=(a﹣1)x2﹣x+a2﹣1图象经过原点,则a的取值为( )A.a=±1B.a=1C.a=﹣1D.a=0【分析】把(0,0)代入函数解析式求出a的值,再由a﹣1≠0求解.【解答】解:把(0,0)代入y=(a﹣1)x2﹣x+a2﹣1得0=a2﹣1,解得a=1或a=﹣1,∵a﹣1≠0,∴a=﹣1,故选:C.【变式6-1】(2022•合肥模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,则c的值等于 7或15 .【分析】根据抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,可知顶点的纵坐标的绝对值是4,然后计算即可.【解答】解:∵抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,∴|4×1×(c2)(6)24×1|=4,解得c1=7,c2=15,故答案为:7或15.【变式6-2】(2022•襄城区模拟)已知二次函数y=x2+bx+c的顶点在x轴上,点A(m﹣1,n)和点B (m+3,n)均在二次函数图象上,求n的值为 4 .【分析】根据题意得出b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A 的坐标代入即可求得n的值.【解答】解:∵点A(m﹣1,n)和点B(m+3,n)均在二次函数y=x2+bx+c图象上,∴―b2=m1m32,∴b=﹣2(m+1),∵二次函数y=x2+bx+c的顶点在x轴上,∴b2﹣4c=0,∴[﹣2(m +1)]2﹣4c =0,∴c =(m +1)2,∴y =x 2﹣2(m +1)x +(m +1)2,把A 的坐标代入得,n =(m ﹣1)2﹣2(m +1)(m ﹣1)+(m +1)2=4,故答案为:4.【变式6-3】(2022•公安县期中)已知二次函数y =x 2+mx +m ﹣1,根据下列条件求m 的值.(1)图象的顶点在y 轴上.(2)图象的顶点在x 轴上.(3)二次函数的最小值是﹣1.【分析】(1)将二次函数配方成顶点式y =(x +m 2)2―m 24m 44,由图象的顶点在y 轴上可得―m 2=0,即m =0;(2)由图象的顶点在x 轴上可得m 24m 44=0,解之即可;(3)由二次函数的最小值是﹣1可得―m 24m 44=―1,解之即可.【解答】解:(1)y =x 2+mx +m ﹣1=x 2+mx +m 24―m 24+m ﹣1=(x +m 2)2―m 24m 44,∴抛物线的顶点坐标为(―m 2,―m 24m 44)∵图象的顶点在y 轴上,∴―m 2=0,即m =0;(2)∵图象的顶点在x 轴上,∴m 24m 44=0,解得m =2;(3)∵二次函数的最小值是﹣1,∴―m 24m 44=―1,解得:m =0或m =4.。
1.2二次函数的图象(2)课件
特征:函数y=a(x+m)2的图象的顶点坐标是_(-___m_,__0),对 称轴是直线__x_=__-_m_____.图象的开口方向与函数y=ax2的图
象__相__同_____.
解:(1)顶点(-1,-4),开口向上,对称轴为直 线x=-1; (2)y=(x-1)2; (3)y=(x+1)2- 4向右平移1个单位,再向上平移4个单位.
课堂总结
1.二次函数y=a(x+m)2(a≠0)型的图象及其特征 平移:(1)一般地,函数y=a(x+m)2(a≠0)的图象与函数 y=ax2的图象只是位置不同,它可由y=ax2的图象
对称轴是 __直__线__x_=_-_m____,
顶点坐标是 _(_-_m_,__k_)___。
函数y=a(x+m)2+k的图象的性质: 一般地函数y=a(x+m)2+k的图象,函数y=ax2的图象只是位置不同,
(1)可以由y=ax2的图象先向右(当m<0)或向左(当m>0)平移 ∣m∣个单位,再向上(当k>0)或向下(当k<0)平移∣k∣个单位 得到,
(2)顶点坐标是(-m,k),对称轴是直线x=-m, (3)图象在x轴的上方还是下方,开口方向向上还是向下等性质由 y=ax2来决定的。
记忆方法:
1. 左加右减 2.根据顶点坐标的变化(0,0)
(-m.0)
课堂练习
1.将抛物线y=2x2向上平移3个单位,再向右平移2个单
位,所得到的抛物线为( B )
【点悟】 解此类题可以将不同形式的解析式
统一为y=a(x+m)2+k的形式,便于解答.
第三讲二次函数y=ax2+bx+c(a≠0)的图象2021年新九年级数学暑假课程(浙教版)(原卷版)
第三讲 二次函数y=ax 2+bx+c(a ≠0)的图象1.2二次函数的图象(2)【学习目标】1.会用描点法画二次函数2(0)y ax bx c a =++≠的图象.2.会用配方法将二次函数2y ax bx c =++的解析式写成2()y a x h k =-+的形式; 3掌握二次函数y=ax 2+bx+c(a ≠0)图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系。
【基础知识】一、二次函数2(0)y ax bx c a =++≠与=-+≠2()(0)y a x h k a 之间的相互关系 1.顶点式化成一般式从函数解析式2()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++ ⎪⎝⎭. 对照2()y a x h k =-+,可知2b h a =-,244ac b k a-=.∴ 抛物线2y ax bx c =++的对称轴是直线2bx a =-,顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭.要点:1.抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭,可以当作公式加以记忆和运用.2.求抛物线2y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 二、二次函数2(0)y ax bx c a =++≠的图象的画法 1.一般方法:列表、描点、连线;2.简易画法:五点定形法.其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴. (2)求抛物线2y ax bx c =++与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 要点:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象, 三、二次函数2(0)y ax bx c a =++≠的图象 1.二次函数20()y ax bx c a =++≠图象与性质函数二次函数2y ax bx c =++(a 、b 、c 为常数,a ≠0)图象0a >0a <开口方向 向上 向下对称轴直线2b x a=-直线2b x a=-顶点坐标24,24b ac b aa ⎛⎫-- ⎪⎝⎭24,24b ac b aa ⎛⎫-- ⎪⎝⎭2.二次函数20()y ax bx c a =++≠图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系项目 字母字母的符号 图象的特征 a a >0 开口向上 a <0 开口向下 bab >0(a ,b 同号) 对称轴在y 轴左侧 ab <0(a ,b 异号)对称轴在y 轴右侧 cc=0图象过原点 c >0 与y 轴正半轴相交 c <0 与y 轴负半轴相交 b 2-4acb 2-4ac=0与x 轴有唯一交点 b 2-4ac >0 与x 轴有两个交点 b 2-4ac <0与x 轴没有交点【考点剖析】考点一:二次函数2(0)y ax bx c a =++≠的图象例1.已知函数2y ax bx c =++的图象经过点(0,3),c 的值是 ( )A .0B .1C .2D .3例2.二次函数(2)(4)y x x =+-的对称轴是 ( )A .直线x=-2B .直线x=-4C .直线x=1D .直线x=-1例3.二次函数2287y x x =++的图象大致是( )A .B .C .D .例4.抛物线2(1)(3)y x x =+-的顶点坐标是( )A .(-1,8)B .(1,-8)C .(-1,-3)D .(1,3)考点二:二次函数2(0)y ax bx c a =++≠的图象综合问题例5.如果抛物线224y x x m =-+的顶点关于原点对称点的坐标是(-1,-3),那么m 的值是( )A .5B .-3C .-9D .-1例6.在平面直角坐标系中,将抛物线212y x =-向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是( )A .21322y x x =---B .21122y x x =-+- C .21322y x x =-+-D .21122y x x =---例7.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表:x 7- 6- 5- 4-3-2-y27- 13-3-353则当1x =时,y 的值为( ) A .5B .3-C .13-D .27-例8.在同一直角坐标系中,函数y mx m =+和222y mx x =-++的图象可能是( )A .B .C .D .【过关检测】一、单选题1.二次函数y =x 2+6x +1图象的对称轴是( ) A .x =6B .x =﹣6C .x =﹣3D .x =422.用配方法将二次函数289y x x =--化为2()y a x h k =-+的形式为( ) A .2(4)7y x =-+ B .2(4)25y x =-- C .2(4)7y x =++D .2(4)25y x =+-3.二次函数y =x 2+x ﹣2的图象与x 轴交点的横坐标是( ) A .2和﹣1B .﹣2和1C .2和1D .﹣2和﹣14.在同一平面直角坐标系中,将函数2241y x x =+-的图象向右平移2个单位,再向下平移1个单位长度,得到新图象的顶点坐标是( ) A .()3,4--B .()1,4-C .()1,3-D .()1,3--5.抛物线2257y x x =--+的顶点在( ) A .第一象限B .x 轴上C .第二象限D .y 轴上6.二次函数y =x 2+p x +q 中,若p+q=0,则它的图象必经过下列四点中( ) A .(-1,1)B .(1,-1)C .(-1,-1)D .(1,1)7.抛物线y =-2x 2-x +1的顶点在第_____象限( ) A .一 B .二C .三D .四8.设函数的图象如图所示,它与轴交于A 、B 两点,线段OA 与OB 的比为1∶3,则的值为( )A .或2B .C .1D .29.如图,抛物线2y ax bx c =++与两坐标轴的交点分别是A 、B 、E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系:①0a c +=;②0b =;③1-=ac ;④2c S ABE =∆其中正确的有( )A .4个B .3个C .2个D .1个10.已知抛物线m x m x y +-+=)1(52与x 轴两交点在y 轴同侧,它们的距离的平方等于4925,则m 的值为( ) A .-2B .12C .24D .-2或2411.抛物线y =ax 2+bx +c (a ≠0)的图象如下图所示,那么( )A .a <0,b >0,c >0B .a <0,b <0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <012.已知:如图所示,抛物线y =ax 2+bx +c 的对称轴为x =﹣1,与x 轴交于A 、B 两点,交y 轴于点C ,且OB =OC ,则下列结论正确的个数是( )①b =2a ②a ﹣b +c >﹣1 ③0<b 2﹣4ac <4 ④ac +1=b .A .1个B .2个C .3个D .4个二、填空题13.二次函数223y x x =--+的图象的顶点坐标是_________.14.将二次函数223y x x =-+化成2()y x h k =-+的形式,则y =__________.15.把抛物线2y ax bx c =++先向右平移3个单位,再向下平移2个单位,所得抛物线解析式为235y x x -=-,则a+b+c=___________。