角动量守恒定律ppt课件
合集下载
《角动量守恒定律》课件
未来对于角动量守恒定律的研究和应用,将会推动物理学和科技领域的 不断发展,为人类社会的进步提供更加坚实的理论基础和技术支持。
05
角动量守恒定律的拓展学习
与角动量相关的其他定律
角动量定理
描述角动量随时间变化的 规律,即角动量定理。
拉格朗日定理
与角动量守恒定律相关的 另一个重要定理,它描述 了系统在保守力作用下的 运动规律。
公式
L=r×p,其中L表示角动量,r表 示位置矢量,p表示动量。
Байду номын сангаас
角动量守恒的条件
无外力矩作用
系统内力的力矩相互抵消,或者系统受到的外力矩为零。
孤立系统
系统与外界没有能量交换或相互作用,即系统处于孤立状态 。
角动量守恒定律的应用场景
01
02
03
天体运动
行星绕太阳的旋转运动、 卫星绕地球的运动等都遵 循角动量守恒定律。
哈密顿原理
一个描述系统在保守力作 用下最短路径的原理,与 角动量守恒定律有密切联 系。
角动量守恒定律的深入学习资源
《经典力学》教材
深入探讨角动量守恒定律的理论 基础和应用,包括数学推导和实
例分析。
网络公开课
一些在线教育平台提供关于角动量 守恒定律的深入学习课程,可以作 为辅助学习资料。
学术论文
查阅相关学术论文,了解角动量守 恒定律在前沿科学研究中的应用和 最新研究成果。
们更好地设计和控制卫星轨道。
分子运动实例
总结词
分子转动是微观领域中角动量守恒的实例,对于理解化学反应机理和分子结构具有重要意义。
详细描述
分子转动是指分子中的原子或基团绕分子轴线的旋转运动。在分子转动过程中,分子的角动量是守恒的。这是因 为分子内部没有摩擦力矩,从而保证了角动量的守恒。了解和利用角动量守恒定律,可以帮助我们更好地理解和 预测化学反应机理和分子结构。
05
角动量守恒定律的拓展学习
与角动量相关的其他定律
角动量定理
描述角动量随时间变化的 规律,即角动量定理。
拉格朗日定理
与角动量守恒定律相关的 另一个重要定理,它描述 了系统在保守力作用下的 运动规律。
公式
L=r×p,其中L表示角动量,r表 示位置矢量,p表示动量。
Байду номын сангаас
角动量守恒的条件
无外力矩作用
系统内力的力矩相互抵消,或者系统受到的外力矩为零。
孤立系统
系统与外界没有能量交换或相互作用,即系统处于孤立状态 。
角动量守恒定律的应用场景
01
02
03
天体运动
行星绕太阳的旋转运动、 卫星绕地球的运动等都遵 循角动量守恒定律。
哈密顿原理
一个描述系统在保守力作 用下最短路径的原理,与 角动量守恒定律有密切联 系。
角动量守恒定律的深入学习资源
《经典力学》教材
深入探讨角动量守恒定律的理论 基础和应用,包括数学推导和实
例分析。
网络公开课
一些在线教育平台提供关于角动量 守恒定律的深入学习课程,可以作 为辅助学习资料。
学术论文
查阅相关学术论文,了解角动量守 恒定律在前沿科学研究中的应用和 最新研究成果。
们更好地设计和控制卫星轨道。
分子运动实例
总结词
分子转动是微观领域中角动量守恒的实例,对于理解化学反应机理和分子结构具有重要意义。
详细描述
分子转动是指分子中的原子或基团绕分子轴线的旋转运动。在分子转动过程中,分子的角动量是守恒的。这是因 为分子内部没有摩擦力矩,从而保证了角动量的守恒。了解和利用角动量守恒定律,可以帮助我们更好地理解和 预测化学反应机理和分子结构。
角动量角动量守恒PPT课件
M M1 M2 M3
(2)刚体内作用力和反作用力的力矩互相抵消.
M ij
rj
j
O
d ri
i Fji
Fij
Mij M ji
M ji
(3)力矩必须明确是对哪个点(或轴) 8
三、角动量定理 角动量守恒
1.质点的角动量定理
将角动量 L r p 两边对时间求导
14
角动量守恒定律是一条普遍的规律,存在
于很多自然现象中,例如,行星受恒星引力作
用作椭圆轨道运动,引力的作用线始终通过恒
星中心,这样的力称为有心力。由于有心力对
力心的力矩恒为零,因此,受有心力作用的质
点对力心的角动量守恒。 掠面速度
·m
f
r
dS 1 r v dt 2
o r
vdt
12
将角动量定理的微分形式 M dL 两边乘以
dt 并积分得
t
dt
0 M dt L L0
t
0 M
dt :
质点或质点系的合外力矩的冲量矩;
L0 与L 分别是质点或质点系始末状态的角动量。
在一段时间内,质点(系)角动量的增量
等于作用于质点(系)的合外力矩的冲量
矩——质点(系)角动量定理的积分形式
Lrp
(xi yj zk ) (pxi py j pzk )
各坐标轴的分量
Lx ypz zpy Ly zpx xpz Lz xpy ypx
分别称为对 x、y 、z 轴的角动量
2
例 质点L沿某r一 p方向r作 m直v线运动,对O点的角动量 角动量大小为
L rm vsin m v d
角动量守恒定律.pptx
角动量守恒定律
一、角动量定理
由转动定律
4-3 角动量守恒定律
M dL dt
Mdt dL
L L t2 Mdt L2 dL
t1
L1
21
系统所受合外力矩的冲量矩等于系统 角动量的增量。
4-3 角动量守恒定律
二、角动量守恒定律
由角动量定理:
t2 t1
M
d
t
L2
L1
若 M 0,则 L J =恒矢量
4-3 角动量守恒定律
一、角动量定理:
t2 tL1
二、角动量守恒定律:
若 M 0,则 L J =恒量
1、刚体: J不变, 也不变(大小、方向) 2、非刚体: J变, 变 → J ,;J ,
课后思考:
4-3 角动量守恒定律
试分析为什么直升机要安装尾翼螺旋桨呢?
4-3 角动量守恒定律
内容:当系统所受合外力矩为零时,则 系统的总角动量保持不变。
应用:
4-3 角动量守恒定律
1、刚体: J不变, 也不变 (大小、方向)
应用:
4-3 角动量守恒定律
2、非刚体: J变, 变 → J ,;J ,
4-3 角动量守恒定律
2、非刚体: J变, 变 → J ,;J ,
J ,
J ,
小结:
第3章 角动量守恒定律 PPT课件
若转轴不动,称定轴转动。 O
1. 定轴转动特征
(1) 刚体上各点都在垂直于固定轴的平面内(转动平面) 做圆周运动.其圆心都在一条固定不动的直线(转轴)上.
(2) 刚体上各点到转轴的垂直线在同样的时间内所转过 的角度都相同。因而用角量描述刚体的运动.
www. ******.com
3.3 刚体的运动
2. 定轴转动的描述
解:
N
R
T
Mg
T' M.
a R
mg
m
www. ******.com
3.4 刚体的角动量 转动定律 转动惯量
根据转动定律 根据牛顿第二定律
TR=Jβ
1 MR2
2
mg-T=ma
因绳与滑轮间无滑动,所以 a=Rβ
解以上三式得
a mg mM /2
a
mg
R R( m M / 2 )
rF
www. ******.com
3.1 质点的角动量 力矩
3.1.2 质点的角动量定理
力矩定义:
M rF
力矩大小:
M r F sinθ 式中 rsinθ d 为力臂,则
M Fd
因 Fsin θ F ,即合力切向分量,所以:
M r F
www. ******.com
3.2 质点的角动量守恒定律
(1) 角坐标 称角位置或角坐标。
规定逆时针转向 为正。
p x
O
刚体定轴转动的运动学方程
= (t) (2) 角位移
为 t时间内刚体所转过的角度。
p x O
www. ******.com
3.3 刚体的运动
(3) 角速度 角速度 lim Δ d Δt0 Δt dt 在定轴转动中,转向只可能有
第角动量角动量守恒定律PPT课件
(练习二,17)
解 设猴子、重物对地面的速度分别为
。
由猴、重物组成的系统角动量守恒,得
v1、v 2
v1 v2
R
∵ v1 v猴绳 v绳-地 v v绳-地
v1
v2
而 v绳地 v物地 v2 , 则 v1 v v2
∴
v2
v 2
第23页/共29页
机械能不守恒
力物的猴拉加,力由速于上和轻爬相绳过等各程m,处中1又g张,因力绳为相对猴等猴和,的物所拉相以力同在大质另于量一猴,端的绳重对重T1
[ C]
第9页/共29页
第五章 角动量、角动量守恒定律
本章主要阐述三个问题:
1)角动量。 2)角动量守恒定律。 3)有心力与角动量守恒定律。 3)有心力与角动量守恒定律。
第10页/共29页
5-3 有心力与角动量守恒定律
自然界中有些力具有这样的性质:力的方向始终通过某一固定点,力的 大小仅依赖于质点与这个点之间的距离。我们称这样的力为有心力,相应的 固定点称为力心。例如,万有引力是有心力;静电作用力也是有心力。
作半径为 的m圆轨道运动。取圆周上 点R为参考点,如图所示,试求:①质P点
在图中点1处所受的力矩 和质点的角动量
的力矩 和质点的角动量 。
;②质m点
在图中点2处所受
M1
L1
m
M2
L2
解 ① 力矩 M 1
2
在点1处, 所m受引力指向 点,故 P M 1 0
角动量 L1
由 m作圆周运动的动力学方程,可得速度
A 另离一端系向一右质,运量绳O动子,处到于达松位的弛置物状体态时。。物开O现体始A在速时使度,物的物体方m体以向位与与于0绳.位5d垂k置垂g直直0。处.的2试,5初求m速物度间体的在距 处
角动量守恒定律34页PPT
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
角动量守恒定律
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
33、如4、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
Thank you
刚体定轴转动的角动量定理和角动量守恒定律课件
转动惯量的特性
只与刚体的质量和各质点到转动轴 的距离有关,与转动角速度的大小 无关。
02
角动量定理
角动量的定义与性质
角动量的定义
角动量是描述刚体转动状态的物理量 ,等于刚体的转动惯量乘以角速度。
角动量的性质
角动量是矢量,具有方向和大小;对 于定轴转动,角动量位于转轴上;角 动量是相对量,与参考系的选择有关 。
理解角动量守恒定律的证明方法是深入理解该定律的重要途径。
详细描述
证明角动量守恒定律的方法主要有两种,一种是基于牛顿第二定律和转动定理推导,另一种是通过分析系统的能 量变化来证明。通过这些证明方法,可以更深入地理解角动量守恒定律的物理意义和适用条件。
04
刚体定轴转动的实例 分析
刚体定轴转动的实例介绍
角动量守恒定律的内容及应用
总结词
掌握角动量守恒定律的内容及应用是解决实际问题的关键。
详细描述
角动量守恒定律表明,对于不受外力矩或所受外力矩的矢量和为零的系统,其总角动量保持不变。这 一原理在日常生活、工程技术和科学研究中有广泛的应用,如行星运动、陀螺仪、火箭飞行等。
角动量守恒定律的证明方法
总结词
陀螺仪
风扇
陀螺仪是一个典型的刚体定轴转动实 例,其工作原理就是角动量守恒定律 。
当风扇的扇叶旋转时,可以将其视为 刚体定轴转动,这个过程涉及到角动 量定理的应用。
自行车轮
自行车轮在转动时,也是一个刚体定 轴转动的例子,其转动惯量对于理解 角动量定理和角动量守恒定律非常有 帮助。
刚体定轴转动的角动量定理应用实例
舞蹈演员在进行旋转动作时,可以通过改变身体的姿势来改变转动惯量,从而控制旋转的 速度。
刚体定轴转动的角动量守恒定律应用实例
只与刚体的质量和各质点到转动轴 的距离有关,与转动角速度的大小 无关。
02
角动量定理
角动量的定义与性质
角动量的定义
角动量是描述刚体转动状态的物理量 ,等于刚体的转动惯量乘以角速度。
角动量的性质
角动量是矢量,具有方向和大小;对 于定轴转动,角动量位于转轴上;角 动量是相对量,与参考系的选择有关 。
理解角动量守恒定律的证明方法是深入理解该定律的重要途径。
详细描述
证明角动量守恒定律的方法主要有两种,一种是基于牛顿第二定律和转动定理推导,另一种是通过分析系统的能 量变化来证明。通过这些证明方法,可以更深入地理解角动量守恒定律的物理意义和适用条件。
04
刚体定轴转动的实例 分析
刚体定轴转动的实例介绍
角动量守恒定律的内容及应用
总结词
掌握角动量守恒定律的内容及应用是解决实际问题的关键。
详细描述
角动量守恒定律表明,对于不受外力矩或所受外力矩的矢量和为零的系统,其总角动量保持不变。这 一原理在日常生活、工程技术和科学研究中有广泛的应用,如行星运动、陀螺仪、火箭飞行等。
角动量守恒定律的证明方法
总结词
陀螺仪
风扇
陀螺仪是一个典型的刚体定轴转动实 例,其工作原理就是角动量守恒定律 。
当风扇的扇叶旋转时,可以将其视为 刚体定轴转动,这个过程涉及到角动 量定理的应用。
自行车轮
自行车轮在转动时,也是一个刚体定 轴转动的例子,其转动惯量对于理解 角动量定理和角动量守恒定律非常有 帮助。
刚体定轴转动的角动量定理应用实例
舞蹈演员在进行旋转动作时,可以通过改变身体的姿势来改变转动惯量,从而控制旋转的 速度。
刚体定轴转动的角动量守恒定律应用实例
大学物理角动量守恒定律ppt课件
v M 外 dt
d J
dt
v L1 v L2
v L1
dL v
dL
J d
dt
L2 v L2
L1 v L1
积分
M轴 dt Jd J2 J1
当 M 轴合外 0 时
t1
1
J2 J1 恒量
定轴转动刚体 角动量守恒
若转动惯量有变化,则有:J22 J11 恒量 19
5.5 定轴转动刚体的转动定律 转动中的功和能
Jz Jc mh2
式中:
J
关于通过质心轴的转动惯量
c
m 是刚体质量, h 是 c 到 z 的距离
h Cz
J z 是对平行于质心轴的一个轴的转动惯量
23
2) 转动惯量叠加,如图
z B
Jz JA JB JC
A
C
式中:J A 是A球对z轴的转动惯量
JB 是B棒对z轴的转动惯量
J c 是C球对z轴的转动惯量
点的角动量
有 r
1 2
g
t
2
LA
r
p
1 2
mpt3gmvg
mgt 0
o
r
RA r
(2) 对 O 点的角动量
m
mv
r r R
LO r p (R r) p R p R mgt
Rg
LO Rmgt
4
2. 质点的角动量定理
角动量的时间变化率
dL
d
(r
v
r
O
B S
A r
[证明] (1) 行星对太阳O的角动量的大小为
L r p rmvsin
其中 是径矢 r 与行星的动量 p 或速度 v 之间的夹角.
d J
dt
v L1 v L2
v L1
dL v
dL
J d
dt
L2 v L2
L1 v L1
积分
M轴 dt Jd J2 J1
当 M 轴合外 0 时
t1
1
J2 J1 恒量
定轴转动刚体 角动量守恒
若转动惯量有变化,则有:J22 J11 恒量 19
5.5 定轴转动刚体的转动定律 转动中的功和能
Jz Jc mh2
式中:
J
关于通过质心轴的转动惯量
c
m 是刚体质量, h 是 c 到 z 的距离
h Cz
J z 是对平行于质心轴的一个轴的转动惯量
23
2) 转动惯量叠加,如图
z B
Jz JA JB JC
A
C
式中:J A 是A球对z轴的转动惯量
JB 是B棒对z轴的转动惯量
J c 是C球对z轴的转动惯量
点的角动量
有 r
1 2
g
t
2
LA
r
p
1 2
mpt3gmvg
mgt 0
o
r
RA r
(2) 对 O 点的角动量
m
mv
r r R
LO r p (R r) p R p R mgt
Rg
LO Rmgt
4
2. 质点的角动量定理
角动量的时间变化率
dL
d
(r
v
r
O
B S
A r
[证明] (1) 行星对太阳O的角动量的大小为
L r p rmvsin
其中 是径矢 r 与行星的动量 p 或速度 v 之间的夹角.
大学物理5.3角动量守恒定律解析课件
6.3kms1
➢ 增加通讯卫星的可利用率
探险者号卫星偏心率高
近地
h1 160.9km
v1 3.38104 kms1 t小很快掠过
远地
h1 2.03105 km v1 1225kms1 t大充分利用
第10页,共33页。
➢ 地球同步卫星的定点保持技术 卫星轨道平面与地球赤道平面倾角为零
严格同步条件 轨道严格为圆形 运行周期与地球自转周期完全相同 (23小时56分4秒)
第24页,共33页。
回顾作业 P72 4 -11
CB
Ny o Nx
F轴 0
M轴 0
A
A、B、C系统
p不守恒;
A、B、C系统对 o 轴角动量守恒
mA mB v1R mA mB mc vR
第25页,共33页。
练习:已知 m = 20 克,M = 980 克 ,v 0 =400米/秒,绳 不可伸长。求 m 射入M 后共同的 v =?
“1987超新星事件” 杨桢
第32页,共33页。
解:内核坍缩过程不受外力矩作用, 对自转轴的角动量守恒
2 5
mR020
2 5
mR2
得坍缩后的角速度为:
R0 R
2
0
2 107 6 103
2
45
2
24 3600
17.9
rad s-1
第33页,共33页。
Lz 恒量
第15页,共33页。
例.已知:两平行圆柱在水平面内转动,
m1 , R1 , 10 ; m2 , R2
求:接触且无相对滑动时
1 ? 2 ?
, 20
10
20
m1
.o1
R1
大学物理-角动量守恒定律 PPT
dt 12
dt
考虑到 t
dr g cost 7lg cos(12v0 t)
dt 2
24 v0
7l
37
例6 一杂技演员M由距水平跷板高为h 处 自由下落到跷板的一端A,并把跷板另一端 的演员N弹了起来.问演员N可弹起多高?
M
h
N
C
A
B
l/2
l
38
设跷板是匀质的,长度为l,质量为m',
6mv0
(M 3m)l
v0 m
31
例3 摩擦离合器 飞轮1:J1、 w1 摩擦轮2: J2 静止,两轮沿轴向结合,结合后两轮达到 的共同角速度。 解:两轮对共同转轴的角动量守恒
21
试与下例的齿轮啮合过程比较。
32
例4 两圆盘形齿轮半径r1 、 r2 ,对通过盘心
垂轮直以于0 盘转面动转,轴然的后转两动轮惯正量交为啮J1合、,J2求,啮开合始后1
点o的矢径为 r ,动量为 p ,如下图。在计算其
角动量时,注意有两个特点:
(1) o点到 p 方向的垂直距离 r sin 不变;
(2) L 方向不变;
p2
假如 p 的大小也不变, 显然L 的大小不变。这表
明,自由质点对任意参考 点的角动量保持不变。
p1
1 r1
2
r2
r sin o
5
1.5.2 质点角动量定理
必须指明是对哪个点而言的
注意两点:
(1) 质点的角动量是相对某一参考点而言的,因此
对不同的参考点,角动量 L 不同;
(2) L 的大小在0~ rp 之间变化,如果把动量分解
为径向分量 pcos 和横向分量 psin ,则仅横
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学补充知识:
点积
abba
aaa2
叉积
a b b a
a a 0
c ( a b ) a ( b c ) b ( a c )
点积的微商 叉积的微商
c ( a b ) a ( b c ) b ( c a )
d(a b )a db da b
L
Or v
(对圆心的)角动量:
m
L r p r ( m v ) m r v (r v )
大小:
L mrv
方向:满足右手关系,向上。
2.行星在绕太阳公转时的椭圆轨道运动
对定点(太阳)的角动量:
v
L r p m (r v)
大小: Lmvsrin
v
r
r
Sun
方向: 满足右手关系,向上。
L dm trv m ( a c o ti s b si t jn )
( asit in bco t j) s
m m ( a a k c bb (2 恒矢o t k 量 ) a ss b 2 i t k ) n
M
dL
0
!
dt
或由 M rF 直接计算力矩
r a co ti s b sit j n
(1)对C点的角动量是否守恒?
(2)对O点的角动量是否守恒?
C T
O
mg C'
(3)对竖直轴CC'的角动量是否守恒?
请同学思考!
质点系的角动量定理和角动量守恒定律
1.一对作用力、反作用力对定点(定轴)的合力
矩等于零。
证明:
M 1r1f1
M 2r2f2
r2
f2
r
M 1 M 2 r 1 f 1 r 2 f 2
m
力心
r
F
2m12rrsin2mS
t
t
——开普勒第二定律
行星的动量时刻在变,但其角动量可维持不变.
在研究质点受有心力作用的运动时,角动量将代替动量
起着重要的作用.
质点在有心力场中,它对力心的角动量守恒。
为了巩固质点角动量守恒的概念 判断下列情况角动量是否守恒:
圆锥摆运动中,做水平匀速圆周运 动的小球m。
O
r1
f1
f1 f 2 r f2
M 1 M 2 r 1 f 1 r 2 f 2
(r 2r 1)f 2 rf 2 0
质点系角动量
Pi ·
o
L ri Pi
Fi
i
dL d[ dt dt i
ri Pi]
i
d ri dt Pi
·i · ·
r·i f·ij r·j fji
r
MrFsin
X
方向由右手螺旋法则确定。
Y
说明:1. 力矩是改变质点系转动状态的
原因;力是改变质点系平动状态的原因。
2. 同一力对空间不同点的力矩是不同的;
中学的表达式:对O点力矩M
M F d Fsrin
M
正是前面定义的力 矩的大小。
r
O
d
力矩的方向由右手螺旋法则 来确定才有矢量的确切含义。
F
v
dr
asitin bco tjs
a
ddtv
a 2 c o ti b s 2 s itjn
dt
M r F m r a m 2rr 0!
二、角动量守恒定律
质点角动量守恒
当
M 0,
L r (m v )=恒矢量
当质点所受对参考点O的合力矩为零时,质点
3.质点直线运动对某定点的角动量:
L r p m r v 等于零吗???
v
大小:Lmv sirnmvd
方向:
思考:如何使L=0?
m
d r
O
Z
质点的角动量总结:
定义:对L O 点r 的 角p 动 量m :r v 说明: 1.角动量是矢量(kg·m2·s-1)
O X
v
L
r
Y
2.角动量对不同点是不同的。
1.角动量守恒条件:合外力矩为零. 合外力为零,合外力矩不一定为零,反之亦然.
2.守恒指过程中任意时刻。
3.角动量守恒定律是独立于牛顿定律的自然界 中更普适的定律之一.
4.角动量守恒定律只适用于惯性系。
角动量守恒的几种可能情况:
1.孤立系.
2.有心力场,对力心角动量守恒.
3.角动量的方向:
L m r v m r ( r ) m 2 r L与 同方向
例:一r 质 量a 为cm的o t质i 点s b 沿s 一条i二t j n 维其曲中线a运,b动, 为常数
试解求::该v质点dr对 原 点a 的s 角动i量ti n 矢 量b 和c 力矩o .t js
定义角动量
dt
L r p m r v
tt12M dtL L 12dL L 2L 1
t2
M dt为
质点 t内在 O 对 点
的
冲
量
矩
t1
质点的角动量
力是物体平动运动状态(用动量来描述)发生改变
的原因。力矩是引起物体转动状态(用角动量来描
述)改变的原因。
1. 质点的圆周运动 动量:pmv
dt
dt dt
d(a b )a d b d a b
d t
d t d t
质点的角动量定理:
仿照平动:F dp
M r F d t r d p d ( r p ) d r p
Md(r d d tLp ) —v —质m d t 点v的v 角 v d 动d t ( 量rd 0 t定p 理)d tddL t
·
j
ri F外i fij(内)
一dL
dt
i
ri F外i M
用力对定点(定轴) 的合力矩等于零。
一个质点系所受的合外力矩等于该质点系总角动量
对时间的变化率——质点系的角动量定理。
说明:
dL
M
——质点系的角动量定理
dt
一个质点系所受的合外力矩等于该质点系总角动量 对时间的变化率。
对该参考点O的角动量为一恒矢量。
例:
L
v
r m
行星对太阳的径矢在相等的时间内扫过相等的面积. —–开普勒第二定律 Kepler laws
讨论:行星受力方向与矢径在一条直线(中心力),
永远与矢径是反平行的。故对力心质点所受的力矩为
零。则对力心角动量守恒!
r
注意
L
v
Lmsvir nm rsin t
本讲内容: 一、质点的角动量 二、角动量守恒
开普勒三大定律
Kepler laws
实例:
行星对太阳的径矢在相等的时间内扫过相等的面积. —–开普勒第二定律 Kepler laws
除了动量,机械能守恒量以外一定还有另外一个守恒 量存在!
一、质点的角动量
Z
力矩
力F对o点的力矩表达式:
M rF
F
M rF