人口增长模型的确定
数学建模在人口增长中的应用
数学建模在人口增长中的应用人口增长一直是全球面临的重要问题之一。
面对人口的迅速增加,我们需要寻找有效的方法来预测和控制人口的增长趋势。
数学建模作为一种重要的工具,可以帮助我们分析和理解人口增长的规律,并提供科学的解决方案。
1. 人口增长模型人口增长可以使用不同的数学模型来描述和预测。
其中,最常用的人口增长模型之一是指数增长模型。
指数增长模型假设人口增长的速度与当前人口数量成正比。
简单来说,人口数量每过一段时间就会翻倍。
这种模型可以用以下公式表示:N(t) = N(0) * e^(rt)其中,N(t)是时间t时刻的人口数量,N(0)是初始人口数量,r是人口增长率,e是自然对数的底数。
2. 人口增长趋势预测利用指数增长模型,我们可以根据过去的人口数据来预测未来的人口增长趋势。
通过对已有数据进行拟合和分析,可以确定合适的增长率,并利用该增长率来预测未来的人口数量。
除了指数增长模型,还有其他一些常用的人口增长模型,如Logistic模型和Gompertz模型。
这些模型考虑了人口增长的上限和减缓因素,更符合实际情况。
3. 人口政策制定数学建模不仅可以帮助我们预测人口增长趋势,还可以为人口政策的制定提供支持。
通过建立人口增长模型,我们可以模拟不同的政策措施对人口增长的影响。
例如,我们可以模拟采取计划生育政策后的人口增长情况,评估政策的有效性和可行性。
此外,数学建模还可以用于评估不同人口政策的长期影响。
通过引入更多因素,如医疗水平、经济发展和教育水平等,我们可以建立更为复杂的人口增长模型,从而更全面地评估政策的效果和潜在风险。
4. 人口分布和迁移模型除了人口增长模型,数学建模还可以用于研究人口分布和迁移的模型。
通过建立人口分布模型,我们可以分析不同地区人口的分布规律和变化趋势。
这些模型可以为城市规划、资源配置和社会发展提供重要参考。
在人口迁移方面,数学建模可以帮助我们研究人口的流动和迁移规律。
例如,我们可以建立迁移网络模型来描述不同地区之间的人口流动情况,从而预测人口迁移的趋势和影响因素。
数学建模 之 人口模型
数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。
首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。
对两种模型的求解,我们引入了微分方程。
其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。
先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。
一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。
然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。
附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。
故假设等价于:单位时间人口增长量与当时人口成正比。
设人口增长率为常数r 。
时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。
美国人口增长预测模型
2016年数学建模论文第一套论文题目:人口增长模型的确定组别:第35组姓名:耿晨闫思娜王强提交日期:2016年7月4日题目:美国人口增长预测模型摘要本文根据近两个世纪美国每十年一次的人口统计数据,建立了指数增长模型,即Malthus模型,并通过1790-1890年的数据验证了它的准确性。
但是,随着时间的推移,拟合函数与统计数据误差逐渐增大,所以,又建立了阻滞增长模型,即Logistic模型,这个模型的拟合函数与统计数据误差较小,并用该模型对美国未来几年的人口做出了预测。
总体来说,阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。
关键词:指数增长模型,阻滞增长模型,人口预测一、问题重述1790-1980年间美国每隔10年的人口记录如下表所示。
表1:人口记录表1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。
2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。
3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。
二、问题分析影响人口增长的因素很多,其中最主要的两个因素是出生率和死亡率。
出生率受到婴儿死亡率、对避孕的态度及措施效果、对堕胎的态度、怀孕期间的健康护理等因素的影响;死亡率则受到卫生设施与公共卫生状况、战争、污染、医疗水平、饮食习惯、心理压力和焦虑等因素的影响。
此外,影响人口在一个地区增长的因素还有迁入和迁出、生存空间的限制、水和食物、疾病等。
在这些因素中,有些是常态的或者有规律的,这些因素对人口的增长是恒定的;而有些因素是随机的,对人口的增长是没有规律的。
因此,当大范围、长时期研究人口增长问题时,对人口增长产生影响的随机因素就不在考虑了。
建立该模型的目的是要能通过模型预测美国后来每十年的人口数具体变化,并与实际的数据进行对比,看误差的大小。
人口指数增长模型
《数学模型》实验报告实验名称:如何预报人口的增长成绩:___________实验日期:2009 年 4 月22 日实验报告日期:2009 年 4 月 26 日人类文明发展到今天,人们越来越意识到地球资源的有限性,我们感受到"地球在变小",人口与资源之间的矛盾日渐突出,人口问题已成为当前世界上被最普遍关注的问题之一,当然人口增长规律的发现以及人口增长的预测对一个国家制定比较长远的发展规划有着非常重要的意义.本节介绍几个经典的人口模型.模型I:人口指数增长模型(马尔萨斯Malthus,1766--1834)1) 模型假设时刻t人口增长的速率,即单位时间人口的增长量,与当时人口数成正比,即人口增长率为常数r.以P(t)表示时刻t某地区(或国家)的人口数,设人口数P(t)足够大,可以视做连续函数处理,且P(t)关于t连续可微.2) 模型建立及求解据模型假设,在t到时间内人口数的增长量为,两端除以,得到,即,单位时间人口的增长量与当时的人口数成正比.令,就可以写出下面的微分方程:,如果设时刻的人口数为,则满足初值问题:(1)下面进行求解,重新整理模型方程(1)的第一个表达式,可得,两端积分,并结合初值条件得.显然,当时,此时人口数随时间指数地增长,故模型称为指数增长模型(或Malthus模型).如下图3-2所示.3) 模型检验19世纪以前欧洲一些地区的人口统计数据可以很好的吻合.19世纪以后的许多国家,模型遇到了很大的挑战.注意到,而我们的地球是有限的,故指数增长模型(Malthus模型)对未来人口总数预测非常荒谬,不合常理,应该予以修正.图3-24) 模型讨论为了做进一步的讨论,阐明此模型组建过程中所做的假设和限制是非常必要的.我们把人口数仅仅看成是时间的函数,忽略了个体间的差异(如年龄,性别,大小等)对人口增长的影响.假定是连续可微的.这对于人口数量足够大,而生育和死亡现象的发生在整个时间段内是随机的,可认为是近似成立的.人口增长率是常数,意味着人处于一种不随时间改变的定常的环境当中.模型所描述的人群应该是在一定的空间范围内封闭的,即在所研究的时间范围内不存在有迁移(迁入或迁出)现象的发生.不难看出,这些假设是苛刻的,不现实的,所以模型只符合人口的过去结果而不能用于预测未来人口.模型II:阻滞增长模型(Logistic)一个模型的缺陷,通常可以在模型假设当中找到其症结所在——或者说,模型假设在数学建模过程中起着至关重要的作用,它决定了一个模型究竟可以走多远.在指数增长模型中,我们只考虑了人口数本身一个因素影响人口的增长速率,事实上影响人口增长的另外一个因素就是资源(包括自然资源,环境条件等因素).随着人口的增长,资源量对人口开始起阻滞作用,因而人口增长率会逐渐下降.许多国家的实际情况都是如此.定性的分析,人口数与资源量对人口增长的贡献均应当是正向的.1) 模型假设地球上的资源有限,不妨设为1;而一个人的正常生存需要占用资源(这里事实上也内在的假定了地球的极限承载人口数为);在时刻t,人口增长的速率与当时人口数成正比,为简单起见也假设与当时剩余资源成正比;比例系数表示人口的固有增长率;设人口数P(t)足够大,可以视做连续变量处理,且P(t)关于t连续可微.2) 模型建立及求解由模型假设,可将人口数的净增长率视为人口数P(t)的函数,由于资源对人口增长的限制,应是P(t) 的减函数,特别是当P(t) 达到极限承载人口数时,应有净增长率,当人口数P(t)超过时,应当发生负增长.基于如上想法,可令.用代替指数增长模型中的导出如下微分方程模型:(2)这是一个Bernoulli方程的初值问题,其解为.在这个模型中,我们考虑了资源量对人口增长率的阻滞作用,因而称为阻滞增长模型(或Logistic模型).其图形如图3-3所示.图3-33) 模型检验从图3-3可以看出,人口总数具有如下规律:当人口数的初始值时,人口曲线(虚线)单调递减,而当人口数的初始值时,人口曲线(实线)单调递增;无论人口初值如何,当,它们皆趋于极限值.4) 模型讨论阻滞增长模型从一定程度上克服了指数增长模型的不足,可以被用来做相对较长时期的人口预测,而指数增长模型在做人口的短期预测时因为其形式的相对简单性也常被采用.不论是指数增长模型曲线,还是阻滞增长模型曲线,它们有一个共同的特点,即均为单调曲线.但我们可以从一些有关我国人口预测的资料发现这样的预测结果:在直到2030年这一段时期内,我国的人口一直将保持增加的势头,到2030年前后我国人口将达到最大峰值16亿,之后,将进入缓慢减少的过程——这是一条非单调的曲线,即说明其预测方法不是本节提到的两种方法的任何一种.还有比指数增长模型,阻滞增长模型更好的人口预测方法吗[FS:PAGE]事实上,人口的预测是一个相当复杂的问题,影响人口增长的因素除了人口基数与可利用资源量外,还和医药卫生条件的改善,人们生育观念的变化等因素有关,特别在做中短期预测时,我们希望得到满足一定预测精度的结果,比如在刚刚经历过战争或是由于在特定的历史条件下采纳了特殊的人口政策等,这些因素本身以及由此而引起的人口年龄结构的变动就会变的相当重要,进而需要必须予以考虑.一、实验目的预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。
人口增长目标
人口增长目标
人口增长目标是指一个国家或地区在一定时期内预期达到的人口数量增长的目标。
这个目标通常是由政府、规划机构或其他相关部门制定的,旨在指导人口政策和社会发展规划。
人口增长目标的设定通常考虑以下因素:
1. 经济发展:人口增长与经济发展之间存在相互关系。
适当的人口增长可以为经济提供劳动力和市场需求,促进经济增长。
2. 资源环境承载能力:人口增长需要与资源环境的承载能力相适应。
确保资源的可持续利用和环境的保护是制定人口增长目标的重要考虑因素。
3. 社会福利和公共服务:人口增长会对教育、医疗、住房、就业等社会福利和公共服务产生影响。
目标的设定需要考虑到提供足够的基础设施和服务以满足人口的需求。
4. 人口结构和老龄化:人口增长目标可能还涉及到调整人口结构,如应对老龄化问题,通过生育率的调整来维持适当的人口年龄比例。
人口增长问题数学模型
人口增长问题数学模型人口增长问题是一个复杂的社会现象,它涉及到众多因素,如生育率、死亡率、移民、出生性别比等。
为了更好地理解和预测人口增长趋势,人们常常建立数学模型来描述人口变化的规律。
下面是一个简单的人口增长问题数学模型的示例。
假设人口数量为P(t),时间t为以年为单位。
则人口增长可以用以下微分方程表示:dP(t)/dt = rP(t)其中,r是人口自然增长率,是一个常数。
这个微分方程描述了人口数量随着时间的变化情况,即人口数量呈指数增长。
然而,实际情况要复杂得多。
以下是一个更复杂的人口增长模型,考虑到生育率、死亡率和移民等因素:dP(t)/dt = (b - d)P(t) + I其中,b是每单位时间的出生率,d是每单位时间的死亡率,I是每单位时间的移民人数。
这个模型可以更好地描述人口增长的趋势,特别是当存在外部干扰(如战争、自然灾害等)时。
除了以上两个模型,还有其他更复杂的模型,如Logistic增长模型、Malthusian模型等。
这些模型考虑的因素更加全面,可以更准确地描述人口增长的趋势。
例如,Logistic增长模型考虑了环境承载能力对人口增长的限制,而Malthusian 模型则考虑了人口增长与资源供给之间的关系。
建立数学模型有助于我们更好地理解和预测人口增长趋势。
这些模型可以帮助我们评估不同政策对人口增长的影响,如计划生育政策、移民政策等。
此外,这些模型还可以帮助我们预测未来人口数量和结构的变化情况,从而为社会发展规划提供科学依据。
然而,需要注意的是,数学模型只是对现实世界的近似描述,它可能无法完全准确地预测未来情况。
因此,在使用数学模型进行人口增长预测时,需要结合实际情况和专家意见进行综合分析。
总之,数学模型是研究人口增长问题的重要工具之一。
通过建立数学模型,我们可以更好地理解和预测人口增长的规律和趋势。
这些模型可以帮助我们评估不同政策对人口增长的影响,为社会发展规划提供科学依据。
人口增长的Logistic模型分析及其应用
人口增长的Logistic模型分析及其应用本文运用迭代的方法计算出人口极限值xm和人口增长率r,用Logistic模型预测了我国人口未来的发展趋势,并根据预测的结果提出了相应的对策与建议。
关键词:人口Logistic模型迭代人口增长问题相关研究最早注意人口问题的是英国经济学家马尔萨斯,他在1798 年提出了人口指数增长模型。
这个模型的基本假设是:人口的增长率是一个常数。
记t时刻的人口总数为x(t)。
初始时刻t=0时的人口为x0。
人口增长率为r,r表示单位时间内x(t)的增量与x(t)的比例系数。
那么,时刻t到时刻t+Δt内人口的增量为x(t+Δt)-x(t)=rx(t)Δt。
于是x(t)满足下列微分方程的初值问题,他的解为x(t)=x0ert。
在r>0时,人口将按指数规律增长。
但是不管生物是按算术级数、几何级数还是按指数曲线变化,随着时间增长生物数量将趋于无穷大。
然而,实际情况却不然,实验指出在有限的空间内,一开始生物以较快速度增长,到一定时期生物增长量就会减缓,生物数量趋于稳定。
历史上的人口统计数据也表明,当一个国家的社会稳定时,一定时期内马尔萨斯模型是符合实际的,但是如果时间比较长或社会发生动荡时,马尔萨斯模型就不能令人满意了。
原因是随着人口的增加,自然资源、环境条件等因素对人口增长开始起阻滞作用,因而人口增长率不断下降。
基于以上考虑荷兰生物学家Verhaust对原人口发展模型进行了改造,于1838 年提出了以昆虫数量为基础的Logistic 人口增长模型。
这个模型假设增长率r是人口的函数,它随着x的增加而减少。
最简单的假定是r是x的线性函数,其中r称为固有增长率,表示x→0时的增长率。
由r(x)的表达式可知,x=xm时r=0。
xm表示自然资源条件能容纳的最大人口数。
因此就有,这个模型就是Logistic 模型。
为表达方便,Logistic方程常被改写成:由于Logistic模型综合考虑了环境等因素对人口增长产生的影响,因此是一种被广泛应用的比较好的模型。
人口增长模型
一、 人口增长模型: 1. 问题下表列出了中国1982—1998年的人口统计数据,取1982年为起始年(t=0),…人口自然增长率14%,以36亿作为我国的人口容纳量,是建立一个较好的数学模型并给出相从图中我们可以看到人口数在1982—1998年是呈增长趋势的,而且我们很容易发现上述图像和我们学过指数函数的图像有很大的相似性,所以我们很自然想到建立指数模型,但是指数模型有个不妥之处就是没有考虑社会因素的,即资源的有限性,也就是人口不可能无限制的增长,所以有必要改进模型,这里我们假设人口增长率随人口增加而呈线性递减,从而建立起比较优越阻滞增长模型 模型一:指数增长模型(马尔萨斯模型)1.假设:人口增长率r 是常数.2.建立模型:记时刻t=0时人口数为0X ,时刻t 的人口为X (t ),由于量大,X (t )可以视为连续、可微函数,t 到t+t ∆时间段人口的增量为:)()()(t rX tt X t t X =∆-∆+于是X (t )满足微分方程:)1()0(0⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==X X rX dt dx3.模型求解:解得微分方程(1)得: X (t )=0X )(0t t r e- (2)表明:t ∞−→−时,t X )0.(>∞−→−r . 4.模型的参数估计要用模型2对人口进行预报,必须对其中的参数r 进行估计,这可以用表1通过Matlab 拟合: 程序:x=[1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 19971998]';X=[ones(17,1),x]Y=[101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124810]';[b,bint,r,rint,stats]=regress(Y,X); %回归分析b,bint,stats%输出这些值rcoplot(r,rint);%画出残差及其置信区间z=b(1)+b(2)*x;plot(x,Y,'k+',x,z,'r'),%预测及作图运行结果:b =1.0e+006 *-2.84470.0015bint =1.0e+006 *-2.9381 -2.75130.0014 0.0015stats =1.0e+005 *0.0000 0.0455 0 1.9800图1各数据点及回归方程的图形 即回归模型为:y=-2844700+1500x从上图可用看出拟和得效果比较好。
我国人口数的逻辑斯蒂增长模型
我国人口数的逻辑斯蒂增长模型
逻辑斯蒂增长模型是一种常用的人口增长模型,它可以描述人口数量随时间变化的曲线。
在我国,人口数量的增长受到多种因素的影响,包括出生率、死亡率、迁移率等。
下
面是一份描述我国人口数的逻辑斯蒂增长模型:
假设当前时间为t,人口数量为P(t)。
根据逻辑斯蒂增长模型的表达式,人口增长速率可以表示为:
dP(t)/dt = r * P(t) * (1 - P(t)/K)
r表示人口的增长率,K为人口数量的饱和值。
根据我国的具体情况,人口增长率r可能随时间发生变化。
在我国近几十年的数据中,人口增长率呈现出微弱下降的趋势。
这可能是由于人口政策的调整以及社会经济发展的影响。
而人口数量的饱和值K取决于我国的资源状况、经济水平、人口政策等因素。
在实际
应用中,我们可以结合历史数据进行估计并进行调整。
通过利用逻辑斯蒂增长模型,我们可以对未来的人口变化进行预测。
通过设定不同的
参数值、观察历史数据的趋势,我们可以对我国人口未来的增长进行合理的预测和估计。
需要注意的是,以上仅为一份模型描述,实际的人口增长模型需要根据大量的数据和
严格的实证分析进行构建和验证。
中国人口增长预测模型
中国人口增长模型预测
一、摘要 二、问题的重述 三、问题的假设 四、符号约定 五、问题的分析 六、模型的建立 七、模型的优化方向 八、模型的评价与推广 九、参考文献 十、附录
一、摘要
本文针对人口增长及预测这一热点问题展开了详细讨论,围绕“每年人口的 增加量=该年出生的人口总数-该年死亡的人口总数”,不考虑机械增长率(如国 际人口的迁入迁出)对我国总人口的影响;不考虑双胞胎、疾病等对生育率的影 响,建立模型,共建立了以下四个模型:
图4显示2003年生育率明显低于其它几年,可能数据有问题或是特殊情况,如非 典影响,在考虑一般情况时应将此年剔除。这两个图不同年份(图4不考虑2003年) 的变化趋势基本一致,故可以以2001年的数据为例拟合出死亡率随年龄分布密度函数 h(r)和生育率随年龄分布密度函数f(r),这里用到了1stopt软件,该软件的拟合功能很强, 输入2001年的数据,拟合出的图形见图5 、图6
中国人口增长模型预测一摘要二问题的重述三问题的假设四符号约定五问题的分析六模型的建立七模型的优化方向八模型的评价与推广九参考文献十附录本文针对人口增长及预测这一热点问题展开了详细讨论围绕每年人口的增加量该年出生的人口总数该年死亡的人口总数不考虑机械增长率如国际人口的迁入迁出对我国总人口的影响
郑州大学 李兰 徐云辉 宋晓磊
F(r,t)
j 1 3
[ j (r, t) j (r, t)] Aj (t) Nt
j 1
上面式子中的 Nt 可约去。画出各年死亡率— 年龄及生育率— 年龄散点图,
见图3和图4。
观察图3,可发现0岁死亡率较高,这可能是婴儿抵抗力低的原因;老年人死 亡率随年龄增高而加速增长;总体来看死亡率有逐年降低的趋势,但变化较小, 所以在进行中短期预测时,可以看作死亡率是不随时间变化的。
中国人口增长模型(灰色预测模型)
中国人口增长模型论文摘要:人口问题涉及人口质量和人口结构等因素,是一个复杂的系统工程,稳定的人口发展直接关系到我国社会、经济的可持续发展。
如何从数量上准确的预测人口数量以及各种人口指标,对我国制定与社会经济发展协调的健康人口发展计划有着决定性的意义。
近年来我国的人口发展出现了许多新的特点,这些都影响着我国人口的增长。
鉴此,本文依据灰色预测方法和年龄移算理论,基于人口普查统计数据,从人口系统发展机理上展开讨论。
首先根据灰色预测理论,建立了一级的灰色预测模型,再将近几年我国的人口数量带入模型,便得到未来较短时间内我国的人口数量。
所得结果为我国总人口将于2006年、2007,2008,2009,2010年分别达到13.1495,13.2212,13.2909,13.3587,13.4246亿人。
然后分析人口发展方程中按年龄死亡率及生育模式等参数函数的内在变化规律,及其对总人口的影响,建立了莱斯利主模型,并在此基础上针对各参数函数的不同特点,建立了生育模型和死亡模型等子模型。
在将所得子模型和主模型结合,依据当前人口结构现状对我国的人口做了长期的预测。
所得结果是我国总人口将于2010年、2020年、2030年分别达到13.51058,14.38295,14.78661亿人与国家发展战略报告数据一致。
最后对所建模型的优缺点进行了客观的评价。
一、问题的提出1.1 问题:中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。
近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。
2007年初发布的《国家人口发展战略研究报告》还做出了进一步的分析。
关于中国人口问题已有多方面的研究,并积累了大量数据资料。
试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测。
人口增长的微分方程模型
人口增长的微分方程模型通常基于Malthusian或Logistic增长模型。
以下是这两种常见的人口增长模型:
1. **Malthusian模型**:
Malthusian模型是人口增长的最简单模型之一,它基于以下假设:
- 人口的增长率与当前人口数量成正比。
- 增长率是恒定的,不受其他因素的影响。
用数学符号表示,Malthusian模型可以写成如下的微分方程:
\(\frac{dP}{dt} = rP\)
其中,\(P\) 表示人口数量,\(t\) 表示时间,\(r\) 表示增长率。
这个方程的解是指数函数,人口数量会随时间指数增长。
2. **Logistic模型**:
Logistic模型更贴近实际情况,考虑了人口增长的有限性。
它基于以下假设:- 人口的增长率与当前人口数量成正比,但随着人口接近一个上限,增长率会减小。
- 人口增长率的减小是受到资源限制或竞争的影响。
Logistic模型的微分方程如下:
\(\frac{dP}{dt} = rP(1 - \frac{P}{K})\)
其中,\(P\) 表示人口数量,\(t\) 表示时间,\(r\) 表示初始增长率,\(K\) 表示人口的上限或最大承载能力。
这个方程的解是S形曲线,人口数量会在接近\(K\) 时趋于稳定。
需要注意的是,实际的人口增长受到多种复杂因素的影响,包括出生率、死亡率、移民等。
因此,上述模型是简化的描述,用于理论分析和初步估算。
实际人口增长的模拟需要更复杂的模型和更多的参数考虑。
此外,这些模型还可以扩展,以包括更多的因素,如年龄结构、性别比例和社会因素等。
数学建模-人口增长模型
数学建模-人口增长模型人口增长模型是一种基于数理统计学方法的计算机模型,用于描绘全球各地的人口增长情况。
人口增长模型能够预测人口数量、年龄分布、死亡率、出生率、移民等方面的变化趋势,为社会规划带来指导性的建议,具有很高的实用价值。
本文将从多个方面来探究人口增长模型。
一、人口增长的三个阶段第一阶段:原始社会阶段,这个时期的人口增长缓慢。
由于食物水平低下和医疗条件落后,死亡率非常高,而出生率仍然很高。
第二阶段:传统社会阶段,人口增长迅速。
由于改进了农业技术、医疗技术以及水、电、煤等基础设施建设的改善,死亡率降低,但出生率仍然很高。
第三阶段:现代社会阶段,人口增长开始放缓。
由于生育规律的改变,人们生育晚、生育次数减少,导致出生率下降。
另一方面,医疗技术和生活水平的提高,使得人们的寿命增加,死亡率下降。
人口增长模型是一种以数学为基础、能够预测人口增长变化趋势的计算机模型。
它解决了传统的统计分析方法难以预测未来人口增长趋势的问题,方便了研究人口增长对于社会经济发展的影响。
目前,常用的人口模型有四种:1.经验模型:该模型主要是针对已有数据进行平衡分析,所以只能反映人口变动的历史趋势,难以预测未来人口变化。
2. 非参数回归模型:它又称为核回归模型,它是一种无参数模型,可以从数据本身中学习出应该如何比较好地去拟合数据,因此预测效果相较于经验模型提高了不少。
3. 参数回归模型:这种模型较为复杂,它基于特定的模型,通过拟合已有的数据,建立一个完整的模型,目的是预测新的数据变化趋势。
4. 知识驱动模型:该模型结合了经验模型和参数回归模型的基本特点,它将专家的知识与历史数据相结合,通过精细化的调整,建立能够反映人口增长趋势的模型。
该模型可广泛应用于国家人口预测、社会福利计划等领域。
人口增长有其基本的规律,这些规律可以帮助我们更好地了解和解决人口问题。
1.现代社会阶段的人口增长趋势是死亡率下降,而出生率下降,且死亡率的下降速度比出生率的下降速度快。
中国人口增长预测模型
中国人口增长预测模型中国是全球人口最多的国家之一,人口增长对社会经济发展和资源分配产生重大影响。
因此,准确预测中国的人口增长对于政府决策和社会规划至关重要。
本文将介绍一个基于趋势分析和数学模型的中国人口增长预测模型。
首先,分析历史数据是了解人口增长趋势的关键。
我们可以通过查阅官方统计数据来获得中国过去几十年的人口数量。
这些数据可以反映出不同年代的人口变化情况。
通过对这些数据进行趋势分析,我们可以更好地了解人口增长的规律。
其次,我们可以使用数学模型来预测未来的人口增长。
常用的人口增长模型包括线性增长模型、指数增长模型和Logistic增长模型。
线性增长模型假设人口每年以相同的速度增长,而指数增长模型则假设人口增长的速度与当前的人口数量成正比。
Logistic增长模型则考虑到了环境容量的限制,即人口增长速度会随着人口密度的增大而减缓。
在选择模型时,我们需要考虑人口增长的影响因素。
例如,出生率、死亡率和迁徙率等因素都会对人口增长产生影响。
因此,在构建预测模型时,我们需要综合考虑这些因素,并基于历史数据进行参数估计。
在模型构建完成后,我们可以利用计算机软件进行模拟和预测。
这些软件可以根据历史数据和模型参数,预测未来的人口数量和变化趋势。
通过不断调整模型参数,我们可以提高预测准确度,从而使我们的预测结果更具有可信度。
然而,人口增长预测也存在一定的不确定性。
例如,社会政策的改变、科技进步和自然灾害等都可能对人口增长产生重大影响。
因此,我们在使用预测模型时应该意识到这些不确定性,并将其考虑在内。
此外,随着社会的发展和科技的进步,我们可以探索更加精细化的人口增长预测模型。
例如,可以考虑区域差异和人口组成的变化,利用更多的经济、社会和环境因素来对人口增长进行建模。
这样的模型可以更好地适应中国复杂多变的人口情况。
综上所述,中国人口增长预测模型是一种重要工具,可以帮助我们了解和预测中国人口的发展趋势。
通过分析历史数据、构建数学模型并利用计算机软件进行模拟和预测,我们可以提高预测的准确性,并为政府决策和社会规划提供有力的支持。
马尔萨斯定律与人口增长模型
马尔萨斯生物定律与人口增长模型马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数)(t N 的变化率与生物总数成正比,其数学模型为⎪⎩⎪⎨⎧==00)()()(N t N t rN dt t dN (1) 其中r 为常数. 方程(1)的解为)(00)(t t r e N t N -=(2)因此,遵循马尔萨斯生物总数增长定律得任何生物都是随时间按指数方式增长,在此意义下,马尔萨斯方程(1)又称指数增长模型。
人作为特殊的生物总群,人口的增长也应满足马尔萨斯生物总数增长定律,此时的(1)式称为马尔萨斯人口方程。
英国人口学家马尔萨斯根据百余年的人口统计资料,于1798年提出了人口指数增长模型。
根据国家统计局1990年10月30日发布的公告,1990年7月1日我国人口总数为11.3368亿,今年的人口平均增长率为14.8‰. 假设人口的增长率保持不变,那么2000年我国的人口数量将达到13.45亿。
事实上,将 0148.0,2000,19900===r t t 代入到(2)式得45.133368.11)()19902000(0148.0==-e t N (亿)显然根据马尔萨斯人口方程预测2000年我国人口数量与全国第五次人口普查公报公布的12.9533亿,相差较大。
造成误差过大的主要原因是人口的增长率r 不是常数,它是随时间而变化的,很多试验和事实也证明r 是时变的。
为此修改马尔萨斯人口方程为⎪⎩⎪⎨⎧=--=000)()())(()(N t N t N t t B A dt t dN (3) 其中)()(0t t B A t r r --==为时变人口增长率,B A ,为定常参数。
求解微分方程(3),得其特解为200)(21)(0)(t t B t t A e N t N ---=(4)要利用(4)式对人口进行预测,首先应估计参数B A ,。
第三次人口普查结果(1982年):我国人口总数为10.3188亿,人口增长率为2.10%;第四次人口普查结果(1990年):我国人口总数为11.3368亿,人口增长率为1.48%;第五次人口普查结果(2000年):我国人口总数12.9533亿,人口增长率为1.07%。
人口增长的Logistic模型分析及其应用资料讲解
人口增长的L o g i s t i c模型分析及其应用人口增长的Logistic模型分析及其应用作者:熊波来源:《商业时代》2008年第27期◆中图分类号:C923 文献标识码:A内容摘要:本文运用迭代的方法计算出人口极限值xm和人口增长率r,用 Logistic模型预测了我国人口未来的发展趋势,并根据预测的结果提出了相应的对策与建议。
关键词:人口 Logistic模型迭代人口增长问题相关研究最早注意人口问题的是英国经济学家马尔萨斯,他在1798 年提出了人口指数增长模型。
这个模型的基本假设是:人口的增长率是一个常数。
记t时刻的人口总数为x(t)。
初始时刻t=0时的人口为x0。
人口增长率为r,r表示单位时间内x(t)的增量与x(t)的比例系数。
那么,时刻t到时刻t+Δt内人口的增量为x(t+Δt)-x(t)=rx(t)Δt。
于是x(t)满足下列微分方程的初值问题,他的解为x(t)=x0ert。
在r>0时,人口将按指数规律增长。
但是不管生物是按算术级数、几何级数还是按指数曲线变化,随着时间增长生物数量将趋于无穷大。
然而,实际情况却不然,实验指出在有限的空间内,一开始生物以较快速度增长,到一定时期生物增长量就会减缓,生物数量趋于稳定。
历史上的人口统计数据也表明,当一个国家的社会稳定时,一定时期内马尔萨斯模型是符合实际的,但是如果时间比较长或社会发生动荡时,马尔萨斯模型就不能令人满意了。
原因是随着人口的增加,自然资源、环境条件等因素对人口增长开始起阻滞作用,因而人口增长率不断下降。
基于以上考虑荷兰生物学家Verhaust对原人口发展模型进行了改造,于1838 年提出了以昆虫数量为基础的Logistic 人口增长模型。
这个模型假设增长率r是人口的函数,它随着x的增加而减少。
最简单的假定是r是x的线性函数,其中r称为固有增长率,表示x→0时的增长率。
由r(x)的表达式可知,x=xm时r=0。
xm表示自然资源条件能容纳的最大人口数。
人口统计学中的人口增长与衰退模型
人口统计学中的人口增长与衰退模型人口统计学是研究人口变化规律、数量结构和特征的学科。
人口增长与衰退是其中的一个重要方面。
人口增长模型和衰退模型针对的是不同的人口现象,在研究时需要有相应的数据支撑,下面将介绍其基本定义以及一些常见的模型。
一、人口增长模型人口增长是指人口数量随时间的增加,包括自然增长和外部因素的影响。
自然增长是指出生率与死亡率的差异,外部因素则包括移民、战争和疾病等。
人口增长模型主要用来描述人口数量的变化规律,下文将介绍两种常见的模型。
1.1 指数增长模型指数增长模型认为,人口数量增长的速度与当前人口数量成正比,若人口数量为N,增长速度为r,则有:dN/dt = rN其中,dN/dt是人口数量随时间的变化率。
该模型的特点是,随着人口数量的增加,增长速度越来越快,最终可能会造成人口过剩和资源匮乏的问题。
1.2 Logistic增长模型Logistic增长模型是为了避免人口增长过快而提出的模型。
它假设人口数量增长的速度不仅与当前人口数量有关,还与最大承载能力K有关,若人口数量为N,增长速度为r,则有:dN/dt = rN(1-N/K)其中,1-N/K表示剩余生育空间的比例。
随着人口数量的增加,增长速度逐渐减缓,最终趋向于一个稳定的数量。
二、人口衰退模型人口衰退是指人口数量相对稳定或减少的过程,它涉及到出生率、死亡率、迁移率等因素。
人口衰退模型主要用来描述人口数量在长期内的变化趋势,下文将介绍两种常见的模型。
2.1 指数衰退模型指数衰退模型认为,人口数量随时间的减少速度与当前人口数量成正比,若人口数量为N,衰退速度为r,则有:dN/dt = -rN其中,符号“-”表示人口数量减少。
该模型的特点是,随着时间的推移,人口数量减少的速度越来越快,最终可能导致人口不足的问题。
2.2 Logistic衰退模型Logistic衰退模型则是为了避免人口数量减少过快而提出的模型。
它和Logistic增长模型类似,假设人口数量减少的速度不仅与当前人口数量有关,还与最低承载能力K有关,若人口数量为N,衰退速度为r,则有:dN/dt = -rN(N/K-1)其中,N/K-1表示剩余存活空间的比例。
中国人口增长预测数学模型
中国人口增长预测数学模型
中国人口增长可以用人口增长率来描述。
人口增长率是指一个国家的出生率、死亡率和移民率产生的净人口变化的比率。
一般来说,一个国家的人口增长率越高,其人口增长速度越快,反之亦然。
由于中国的出生率和死亡率一直在变化,因此需要建立一个数学模型来预测中国的人口增长。
常见的模型有以下几种:
1. 指数模型
指数模型假设人口增长率是一个恒定值,因此未来的人口数量可以通过不断累乘现有人口数量和人口增长率来预测。
这种模型适用于人口增长迅速的情况,但并不适用于中国的情况,因为中国的人口增长率不是恒定的。
2. Logistic 模型
Logistic 模型假设人口增长率随着人口数量的变化而变化,即当人口数量增加到某一点时,人口增长率会逐渐降低。
这种模型适用于人口数量增长迅速的情况,适用于中国的情况。
3. 随机游走模型
随机游走模型假设人口增长率是一个随机变量,可以根据历史发展趋势来预测未来的变化。
这种模型适用于人口数量变化不规律的情况,但对于中国这样的大国而言,其复杂性较高,难以建立准确的模型。
总之,预测中国的人口增长需要考虑许多因素,例如出生率、死亡率、移民率等等,而且这些因素也会受到其它因素的干扰,例如经济、社会政治等因素。
因此,建立准确的模型需要大量的数据和正确的假设。
人口增长模型的确定
人口增长模型的确定 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT题目:人口增长模型的确定摘要人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。
本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。
通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。
关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测一、问题重述问题背景1790-1980年间美国每隔10年的人口记录如下表所示。
表1 人口记录表问题提出我们需要解决以下问题:1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。
2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。
3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。
二、问题分析首先,我们运用Matlab软件绘制出1790到1980年的美国人口数据图,如图1。
图1 1790到1980年的美国人口数据图从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想到建立指数模型。
因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。
三、问题假设为简化问题,我们做出如下假设:(1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响;(2)所给出的数据具有代表性,能够反映普遍情况;(3)一段时间内我国人口死亡率不发生大的波动;(4)在查阅的资料与文献中,所得数据可信;(5)假设人口净增长率为常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人口增长模型的确定
摘要
人口增长模型对于人口的预测、环境评估、经济评价等方面有着很重要的作用,本文通过matlab对已有的数据进行拟合,分析,统计学计算,在前人的基础上做出马尔萨斯指数增长模型、logistic阻滞增长模型,再对这些模型进行对比分析,从而确定了我们所使用的logistic阻滞增长模型。
关键词:人口增长模型matlab 马尔萨斯指数增长模型logistic阻滞增长模型cftool 工具箱
一、问题重述
1790-1980年间美国每隔10年的人口记录如下表所示。
试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。
如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测。
二、问题假设
1.假设随着时间的增长,人口数量是增加的。
2.假设在此期间,无重大自然灾害,传染病及战争因素影响。
3.假设每年影响人口数量的因素相同。
4.假设每年影响人口数量的作用强度和相同。
5.假设无迁入迁出影响。
三、符号说明
四、问题分析
根据所给的数据和题目要求建立马尔萨斯(Malthus)人口指数增长模型,那么我们直接建立马尔萨斯增长模型进行求解的结果与实际值相近,则说明所建立的模型是可行的。
否则进一步改进所给模型,寻找更优秀的模型。
(一)五、模型建立
马尔萨斯增长数学模型:马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N(t)的变化率与生物总数成正比。
[1]其数学模型为
(1)
方程的解为
(2)
其中
用matlab 中cftool 工具箱进行指数拟合得到下图
图一
00()()d N rN dt
N t N ==⎧⎨⎩
0()
0()r t t N t N e -=001790, 3.9
t N ==
结果为: General model:
f(x) = 3.9*exp(b*(x-1790))
Coefficients (with 95% confidence bounds): b = 0.02222 (0.02163, 0.02281)
Goodness of fit: SSE: 8966 R-square: 0.9062
Adjusted R-square: 0.9062 RMSE: 21.72
可以看出,在95%的置信区间内我们得到的拟合方程参数b ,其R 相关系数为0.9062,拟合曲线基本吻合,整理之后可得马尔萨斯指数增长方程为
(2)
六、模型求解
将时间1990 2000 2010 2020 2030 分别带入方程中可得到预测值 经我们预测可得1990 2000 2010 2020 2030年的人口数量分别是 331.9474 414.5429 517.6900 646.5022 807.3656
1780
1800182018401860
188019001920194019601980
050
100
150
200
250
300
时间
人口数量
马尔萨斯指数增长拟合曲线
0.02222(1790)() 3.9t N t e -=
七、结果分析
我们将已经知道的1990 2000 2010 年的数据和预测数据进行对比在图上可以直观的看出两者偏差过大,经过进一步分析我们对模型进行进一步改进,原来的模型为指数增长模型,没有考虑到自然资源、环境条件等因素对人口的增长的阻力,人口增长率r 不应该是一个常数,而是一个随时间增长而减小的一个变量。
r 随着人口数量N 的增加而下降,这也就是logistics 模型由此我们建立第二个模型
(二)五、模型建立
对r(N)的一个最简单的假定是,设r(N)为N 的线性函数,即
(3)
设自然资源和环境条件所能容纳的最大人口数量
,当增长率,代入(3)式得
,
于是(3)式为
(4)
根据马尔萨斯建立的模型,我们可以得到(5)式:
(5)
将(4)带入(5)得:
(6) 即为logistic 阻滞增长模型[2] 解方程(6)可得:
(7)
()(0,0)r N r sN r s =->>m N m N N =()0
m r N =m
r
s N =
()(1)m
N r N r N =-
0(),(0)dN
r N N N N dt ==00(1)()m
dN
N rN dt N N t N ⎧=-⎪⎪⎨
=⎪⎪⎩
0()0
()1(
1)m
r t t m
N N t N e N --=
+-
此时我们知道
,只需求出,和r,
我们知道我们所做出的模型为‘S ’型分布,因此图像的最大斜率点即为中心对称点,我们确定了这个点之后,设这点的人口数量为就可以计算出:
(8)
我们用matlab 做出斜率变化图
图二
见附录
程序1:
001790, 3.9t N ==m N t N m N 0()
m t t N N N N =+-1800
1820184018601880
19001920194019601980
00.5
1
1.5
2
2.5
3
年
斜率
人口斜率变化曲线
从图中我们可以看出斜率最大为1960年,则有 由(8)式可得;
然后我们用matlab 中的lsqcurvefit 进行特定方程拟合求参数r ,见附录程序2: 可得到,r=0.0270,
此时可得到logistic 人口时间函数:
(9)
六、求解
将时间1990 2000 2010 2020 2030 分别带入方程中可得到预测值 经我们预测可得1990 2000 2010 2020 2030年的人口数量分别是 218.90705.0939 249.2931 261.4570 271.6675
七、结果分析
我们将两个模型和原始数据以及我们得到的1990 2000 2010年的数据绘在用一个坐标系上来观察模型效果见下图,matlab 程序见附录程序3:
179.3t N =354.7
m N =0.027(1790)
354.7
()189.9487t N t e --=
+
由上图我们可以明显看出logistic 阻滞增长模型要优于马尔萨斯指数增长模型,我们再计算出对两个模型与实际人口数量的和方差如下表:
表二:人口增长模型数据列表
0100
200
300
400500
600
年
人口数量
人口增长模型比较
(表中1990 2000 2010年人口数据来自美国普查局)
可以看出logistic模型和方差远远小于马尔萨斯模型,再次说明logistic模型要优于马尔萨斯模型。
八、参考文献
[1]. 刘焕彬,库在强,廖小勇,陈文略,张忠诚.数学建模与实验[M].科学出版社,2008:39
[2]. 王延臣,段俊生,王彦. 人口预报与LOGISTIC模型的改进[J]. 统计与决策.2006(22):136.
九、附录
程序1:
t=1790:10:1980;
N=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92 106.5 123.2 131.7 150.7 179.3 204 226.5];
for i=1:length(t)-1
k(i) = (N(i+1)-N(i))/(t(i+1)-t(i));
end
x=1800:10:1980;
plot(x,k)
xlabel('年')
ylabel('斜率')
title('人口斜率变化曲线')
grid on
程序2:
t=1790:10:1980;
N=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92 106.5 123.2 131.7 150.7 179.3 204 226.5];
f=@(r,t)354.7./(1+(354.7/3.9-1)*exp(-r.*(t-1790)));
lsqcurvefit(f,r,t,N)
程序3:
t=1790:10:2010;
N=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92 106.5 123.2 131.7 150.7 179.3 204 226.5 249.5 282.2 308.7];
N1=3.9*exp(0.02222*(t-1790));
N2=354.7./(1+(354.7/3.9-1)*exp(-0.027.*(t-1790)));
plot(t,N,'r*',t,N1,'--',t,N2);
xlabel('年')
ylabel('人口数量')
title('人口增长模型比较')
legend('已知数据','马尔萨斯增长模型','logistic阻滞增长模型') grid on。