几何图形初步经典测试题及解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为相对面上的两个数互为相反数,
所以
解得:
则x+y=2
故选:C
【点睛】
本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.
12.如图,在 中, ,以顶点 为圆心,适当长为半径画弧,分别交 、 于点 、 ,再分别以点 、 为圆心,大于 的长为半径画弧,两弧交于点 ,作射线 交边 于点 ,若 , ,则 的面积是()
几何图形初步经典测试题及解析
一、选择题
1.如图将两块三角板的直角顶点重叠在一起, 与 的比是 ,则 的度数为()
A. B. C. D.
【答案】C
【解析】
【分析】
设∠DOB=2x,则∠DOA=11x,可推导得到∠AOB=9x=90°,从而得到角度大小
【详解】
∵∠DOB与∠DOA的比是2:11
∴设∠DOB=2x,则∠DOA=11x
20.已知:在Rt△ABC中,∠C=90°,BC=1,AC= ,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为( )
A.2
B.
C.
D.
【答案】C
【解析】
【分析】
作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC= ,所以最小值为 .
【详解】
由折叠可得,∠ACD=∠ACE=90°,
∴∠BAC=90°,
又∵∠B=60°,
∴∠ACB=30°,
∴BC=2AB=6,
∴AD=6,
由折叠可得,∠E=∠D=∠B=60°,
∴∠DAE=60°,
∴△ADE是等边三角形,
∴△ADE的周长为6×3=18,
故选:C.
【点睛】
此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
7.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是
A. B. C. D.
【答案】C
【解析】
【分析】
分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.
【详解】
解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:
将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:
11.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则 的值为()
A.-2B.-3C.2D.1
【答案】C
【解析】
【分析】
利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x、y的值,从而得到x+y的值.
【详解】
这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.
∴∠AOB=9x
∵∠AOB=90°
∴x=10°
∴∠BOD=20°
∴∠COB=70°
故选:C
【点睛】
本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导
2.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于()
A.38°B.104°C.142°D.144°
∵AD也是中线,
∴点P是△ABC的重心,
故选:A.
【点睛】
此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.
6.如图,O是直线AB上一点,OC平分∠DOB,∠COD=55°45′,则∠AOD=()
A.68°30′B.69°30′C.68°38′D.69°38′
【答案】A
【解析】
【分析】
【解析】
根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,
19.如图,在平行四边形ABCD中,将 沿AC折叠后,点D恰好落在DC的延长线上的点E处.若 ,AB=3,则 的周长为()
A.12B.15C.18D.2
【答案】C
【解析】
【分析】
依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.
【详解】
解:作B关于AC的对称点B',连接B′D,
∵∠ACB=90°,∠BAC=30°,
∴∠ABC=60°,
∵AB=AB',
∴△ABB'为等边三角形,
∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,
∴最小值为B'到AB的距离=AC= ,
故选C.
【点睛】
本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.
∴ .
故C为答案.
【点睛】
本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.
18.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()
A.30°B.25°
C.20°D.15°
【答案】B
A.35°B.45°C.55°D.65°
【答案】A
【解析】
【分析】
【详解】
解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35°
故选:A.
【点睛】
本题考查余角、补角的计算.
4.下面四个图形中,是三棱柱的平面展开图的是()
A. B. C. D.
【答案】C
将直角三角形绕斜边所在直线旋转一周后形成的几何体为:
故选C.
【点睛】
本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.
8.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是( )
A.中B.考C.顺D.利
【答案】C
【解析】
试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,
先根据平分,求出∠COB,再利用互补求∠AOD
【详解】
∵OC平分∠DOB,∠COD=55°45′
∴∠COB=55°45′,∠DOB=55°45′+55°45′=111°30′
∴∠AOD=180-111°30′=68°30′
故选:A
【点睛】
本题考查角度的简单推理,计算过程中,设计到了分这个单位,需要注意,分与度的进率是60
【解析】
【分析】
根据三棱柱的展开图的特点作答.
【详解】
A、是三棱锥的展开图,故不是;
B、两底在同一侧,也不符合题意;
C、是三棱柱的平面展开图;
D、是四棱锥的展开图,故不是.
故选C.
【点睛】
本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.
5.在等腰 中, , 、 分别是 , 的中点,点 是线段 上的一个动点,当 的周长最小时, 点的位置在 的()
∴
故答案为:B.
【点睛】
本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.
16.用一副三角板(两块)画角,能画出的角的度数是()
A. B. C. D.
【答案】D
【解析】
【分析】
一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.
【答案】C
【解析】
∵∠AOC=76°,射线OM平分∠AOC,
∴∠AOM= ∠AOC= ×76°=38°,
∴∠BOM=180°−∠AOM=180°−38°=142°,
故选C.
点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.
3.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=()
A.25米B.84米C.42米D.21米
【答案】C
【解析】
【分析】
根据角平分线的性质可得点O到AB、AC、BC的距离为4,再根据三角形面积公式求解即可.
【详解】
连接OA
∵ , 分别平分 和 , 于 ,且
∴点O到AB、AC、BC的距离为4
∴
(米)
故答案为:C.
【点睛】
本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.
A.15B.30C.45D.60
【答案】B
【解析】
【分析】
作 于E,根据角平分线的性质得 ,再根据三角形的面积公式求解即可.
【详解】
作 于E
由尺规作图可知,AD是△ABC的角平分线
∵ ,
∴
∴△ABD的面积
故答案为:B.
【点睛】
本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.
A.重心B.内心C.外心D.不能确定
【答案】A
【解析】
【分析】
连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.
【详解】
连接BP、BE,
∵AB=AC,BD=BC,
∴AD⊥BC,
∴PB=PC,
∴PC+PE=PB+PE,
∵ ,
∴当B、P、E共线时,PC+PE的值最小,此时BE是△ABC的中线,
“祝”与“考”是相对面,
“你”与“顺”是相对面,
“中”与“立”是相对面.
故选C.
考点:正方体展开图.
9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是( )
A.AC=BCB.AB=2ACC.AC+BC=ABD.
【答案】C
【解析】
【分析】
根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点
故选D.
14.如图,点C是射线OA上一点,过C作CD⊥OB,垂足为D,作CE⊥OA,垂足为C,交OB于点E,给出下列结论:①∠1是∠DCE的余角;②∠AOB=∠DCE;③图中互余的角共有3对;④∠ACD=∠BEC,其中正确结论有( )
A.①②③B.①②④C.①③④D.②③④
【答案】B
【解析】
【分析】
根据垂直定义可得 , ,然后再根据余角定义和补角定义进行分析即可.
【详解】
解: ,
,
,
是 的余角,故 正确;
,
,
, ,
, ,
,故 正确;
,
图中互余的角共有4对,故 错误;
, ,
,
,故 正确.
正确的是 ;
故选B.
【点睛】
考查了余角和补角,关键是掌握两角之和为 时,这两个角互余,两角之和为 时,这两个角互补.
13.下列图形中,不是三棱柱的表面展开图的是()
A. B. C. D.
【答案】D
【解析】
利用棱柱及其表面展开图的特点解题.
解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.
【详解】
选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:
45°+30°=75°,45°+60°=105°,45°+90°=135°,
故选:D.
【点睛】
此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.
17.如图,直线 ,将一块含 角的直角三角尺( )按所示摆放.若 ,则 的大小是()
A. B. C. D.
【答案】C
【解析】
【分析】
先根据 得到 ,再通过对顶角的性质得到 ,最后利用三角形的内角和即可求出答案.
【详解】
解:给图中各角标上序号,如图所示:
∵
∴ (两直线平行,同位角相等),
又∵ (对顶角相等),
15.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=30°,则∠2等于()
A.40°B.60°C.50°D.70°
【答案】B
【解析】
【分析】
根据两直线平行内错角相等得 ,再根据直角三角板的性质得 ,即可求出∠2的度数.
【详解】
∵a∥b∥c
∴
∵直角三角板的直角顶点落在直线b上
∴
∵∠1=30°
【详解】
解:A、AC=BC,则点C是线段AB中点;
B、AB=2AC,则点C是线段AB中点;
C、AC+BC=AB,则C可以是线段AB上任意一点;
D、BC= AB,则点C是线段AB中点.
故选:C.
【点睛】
本题主要考查线段中点,解决此题时,能根Байду номын сангаас各选项举出一个反例即可.
10.如图,已知 的周长是21, , 分别平分 和 , 于 ,且 ,则 的面积是()
所以
解得:
则x+y=2
故选:C
【点睛】
本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.
12.如图,在 中, ,以顶点 为圆心,适当长为半径画弧,分别交 、 于点 、 ,再分别以点 、 为圆心,大于 的长为半径画弧,两弧交于点 ,作射线 交边 于点 ,若 , ,则 的面积是()
几何图形初步经典测试题及解析
一、选择题
1.如图将两块三角板的直角顶点重叠在一起, 与 的比是 ,则 的度数为()
A. B. C. D.
【答案】C
【解析】
【分析】
设∠DOB=2x,则∠DOA=11x,可推导得到∠AOB=9x=90°,从而得到角度大小
【详解】
∵∠DOB与∠DOA的比是2:11
∴设∠DOB=2x,则∠DOA=11x
20.已知:在Rt△ABC中,∠C=90°,BC=1,AC= ,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为( )
A.2
B.
C.
D.
【答案】C
【解析】
【分析】
作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC= ,所以最小值为 .
【详解】
由折叠可得,∠ACD=∠ACE=90°,
∴∠BAC=90°,
又∵∠B=60°,
∴∠ACB=30°,
∴BC=2AB=6,
∴AD=6,
由折叠可得,∠E=∠D=∠B=60°,
∴∠DAE=60°,
∴△ADE是等边三角形,
∴△ADE的周长为6×3=18,
故选:C.
【点睛】
此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
7.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是
A. B. C. D.
【答案】C
【解析】
【分析】
分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.
【详解】
解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:
将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:
11.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则 的值为()
A.-2B.-3C.2D.1
【答案】C
【解析】
【分析】
利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x、y的值,从而得到x+y的值.
【详解】
这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.
∴∠AOB=9x
∵∠AOB=90°
∴x=10°
∴∠BOD=20°
∴∠COB=70°
故选:C
【点睛】
本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导
2.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于()
A.38°B.104°C.142°D.144°
∵AD也是中线,
∴点P是△ABC的重心,
故选:A.
【点睛】
此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.
6.如图,O是直线AB上一点,OC平分∠DOB,∠COD=55°45′,则∠AOD=()
A.68°30′B.69°30′C.68°38′D.69°38′
【答案】A
【解析】
【分析】
【解析】
根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,
19.如图,在平行四边形ABCD中,将 沿AC折叠后,点D恰好落在DC的延长线上的点E处.若 ,AB=3,则 的周长为()
A.12B.15C.18D.2
【答案】C
【解析】
【分析】
依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.
【详解】
解:作B关于AC的对称点B',连接B′D,
∵∠ACB=90°,∠BAC=30°,
∴∠ABC=60°,
∵AB=AB',
∴△ABB'为等边三角形,
∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,
∴最小值为B'到AB的距离=AC= ,
故选C.
【点睛】
本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.
∴ .
故C为答案.
【点睛】
本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.
18.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()
A.30°B.25°
C.20°D.15°
【答案】B
A.35°B.45°C.55°D.65°
【答案】A
【解析】
【分析】
【详解】
解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35°
故选:A.
【点睛】
本题考查余角、补角的计算.
4.下面四个图形中,是三棱柱的平面展开图的是()
A. B. C. D.
【答案】C
将直角三角形绕斜边所在直线旋转一周后形成的几何体为:
故选C.
【点睛】
本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.
8.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是( )
A.中B.考C.顺D.利
【答案】C
【解析】
试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,
先根据平分,求出∠COB,再利用互补求∠AOD
【详解】
∵OC平分∠DOB,∠COD=55°45′
∴∠COB=55°45′,∠DOB=55°45′+55°45′=111°30′
∴∠AOD=180-111°30′=68°30′
故选:A
【点睛】
本题考查角度的简单推理,计算过程中,设计到了分这个单位,需要注意,分与度的进率是60
【解析】
【分析】
根据三棱柱的展开图的特点作答.
【详解】
A、是三棱锥的展开图,故不是;
B、两底在同一侧,也不符合题意;
C、是三棱柱的平面展开图;
D、是四棱锥的展开图,故不是.
故选C.
【点睛】
本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.
5.在等腰 中, , 、 分别是 , 的中点,点 是线段 上的一个动点,当 的周长最小时, 点的位置在 的()
∴
故答案为:B.
【点睛】
本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.
16.用一副三角板(两块)画角,能画出的角的度数是()
A. B. C. D.
【答案】D
【解析】
【分析】
一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.
【答案】C
【解析】
∵∠AOC=76°,射线OM平分∠AOC,
∴∠AOM= ∠AOC= ×76°=38°,
∴∠BOM=180°−∠AOM=180°−38°=142°,
故选C.
点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.
3.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=()
A.25米B.84米C.42米D.21米
【答案】C
【解析】
【分析】
根据角平分线的性质可得点O到AB、AC、BC的距离为4,再根据三角形面积公式求解即可.
【详解】
连接OA
∵ , 分别平分 和 , 于 ,且
∴点O到AB、AC、BC的距离为4
∴
(米)
故答案为:C.
【点睛】
本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.
A.15B.30C.45D.60
【答案】B
【解析】
【分析】
作 于E,根据角平分线的性质得 ,再根据三角形的面积公式求解即可.
【详解】
作 于E
由尺规作图可知,AD是△ABC的角平分线
∵ ,
∴
∴△ABD的面积
故答案为:B.
【点睛】
本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.
A.重心B.内心C.外心D.不能确定
【答案】A
【解析】
【分析】
连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.
【详解】
连接BP、BE,
∵AB=AC,BD=BC,
∴AD⊥BC,
∴PB=PC,
∴PC+PE=PB+PE,
∵ ,
∴当B、P、E共线时,PC+PE的值最小,此时BE是△ABC的中线,
“祝”与“考”是相对面,
“你”与“顺”是相对面,
“中”与“立”是相对面.
故选C.
考点:正方体展开图.
9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是( )
A.AC=BCB.AB=2ACC.AC+BC=ABD.
【答案】C
【解析】
【分析】
根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点
故选D.
14.如图,点C是射线OA上一点,过C作CD⊥OB,垂足为D,作CE⊥OA,垂足为C,交OB于点E,给出下列结论:①∠1是∠DCE的余角;②∠AOB=∠DCE;③图中互余的角共有3对;④∠ACD=∠BEC,其中正确结论有( )
A.①②③B.①②④C.①③④D.②③④
【答案】B
【解析】
【分析】
根据垂直定义可得 , ,然后再根据余角定义和补角定义进行分析即可.
【详解】
解: ,
,
,
是 的余角,故 正确;
,
,
, ,
, ,
,故 正确;
,
图中互余的角共有4对,故 错误;
, ,
,
,故 正确.
正确的是 ;
故选B.
【点睛】
考查了余角和补角,关键是掌握两角之和为 时,这两个角互余,两角之和为 时,这两个角互补.
13.下列图形中,不是三棱柱的表面展开图的是()
A. B. C. D.
【答案】D
【解析】
利用棱柱及其表面展开图的特点解题.
解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.
【详解】
选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:
45°+30°=75°,45°+60°=105°,45°+90°=135°,
故选:D.
【点睛】
此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.
17.如图,直线 ,将一块含 角的直角三角尺( )按所示摆放.若 ,则 的大小是()
A. B. C. D.
【答案】C
【解析】
【分析】
先根据 得到 ,再通过对顶角的性质得到 ,最后利用三角形的内角和即可求出答案.
【详解】
解:给图中各角标上序号,如图所示:
∵
∴ (两直线平行,同位角相等),
又∵ (对顶角相等),
15.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=30°,则∠2等于()
A.40°B.60°C.50°D.70°
【答案】B
【解析】
【分析】
根据两直线平行内错角相等得 ,再根据直角三角板的性质得 ,即可求出∠2的度数.
【详解】
∵a∥b∥c
∴
∵直角三角板的直角顶点落在直线b上
∴
∵∠1=30°
【详解】
解:A、AC=BC,则点C是线段AB中点;
B、AB=2AC,则点C是线段AB中点;
C、AC+BC=AB,则C可以是线段AB上任意一点;
D、BC= AB,则点C是线段AB中点.
故选:C.
【点睛】
本题主要考查线段中点,解决此题时,能根Байду номын сангаас各选项举出一个反例即可.
10.如图,已知 的周长是21, , 分别平分 和 , 于 ,且 ,则 的面积是()