物理第十章静电场中的导体和电介质
大学物理标准答案第10章
第十章 静电场中的导体与电介质10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A )升高 (B )降低(C )不会发生变化 (D )无法确定分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ).10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地题 10-2 图分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ).10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0==(B )dεqV d εq E 020π4,π4== (C )0,0==V E (D )RεqV d εq E 020π4,π4==题 10-3 图分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( )(A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍(C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有()∑⎰⎰=⋅=⋅+ii S S εχq 01d d 1S E S E 即E =E 0/εr,因而正确答案为(A ).10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.题 10-6 图分析与解根据导体静电平衡时电荷分布的规律,空腔内点电荷的电场线终止于空腔内表面感应电荷;导体球A 外表面的感应电荷近似均匀分布,因而近似可看作均匀带电球对点电荷q d 的作用力.()20π4rεq q q F dc bd +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.10-7一真空二极管,其主要构件是一个半径R 1=5.0×10-4m 的圆柱形阴极和一个套在阴极外、半径R 2=4.5×10-3m 的同轴圆筒形阳极.阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L =2.5×10-2 m .假设电子从阴极射出时的速度为零.求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.题 10-7 图分析 (1)由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率. (2)计算阳极表面附近的电场强度,由F =q E 求出电子在阴极表面所受的电场力. 解 (1)电子到达阳极时,势能的减少量为J 108.4Δ17ep -⨯-=-=eV E由于电子的初始速度为零,故J 108.4ΔΔ17ep ek ek -⨯-=-==E E E因此电子到达阳极的速率为1-7ek s m 1003.122⋅⨯===meVm E v (2)两极间的电场强度为r rελe E 0π2-= 两极间的电势差1200ln π2d π2d 2121R R r r V R R R R ελελ-=-=⋅=⎰⎰r E负号表示阳极电势高于阴极电势.阴极表面电场强度r r R R R V R ελe e E 12110ln π2=-=电子在阴极表面受力r e e E F N)1037.414-⨯=-=(这个力尽管很小,但作用在质量为9.11×10-31kg 的电子上,电子获得的加速度可达重力加速度的5×1015倍.10-8一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0.求此系统的电势和电场的分布. 分析若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=pp V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E rr E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时,()01=r E R 1<r <R 2时,()202π4rεqr E =r >R 2时,()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3也可以从球面电势的叠加求电势的分布:在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2)2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +==得Q R R V R q 21010π4==ε 于是可求得各处的电场强度和电势的分布: r <R 1时,01=E ;01V V =R 1<r <R 2时,22012012π4r R εQR r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2时,220122013π4)(r R Q R R r V R E ε-+=;rR QR R r V R V 2012013π4)(ε-+= 10-9地球和电离层可当作球形电容器,它们之间相距约为100 km ,试估算地球-电离层系统的电容.设地球与电离层之间为真空.解由于地球半径R 1=6.37×106m ;电离层半径R 2=1.00×105m +R 1=6.47×106m ,根据球形电容器的电容公式,可得F 1058.4π4212210-⨯=-=R R R R εC10-10两线输电线,其导线半径为3.26mm ,两线中心相距0.50m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.分析 假设两根导线带等量异号电荷,电荷在导线上均匀分布,则由长直带电线的电场叠加,可以求出两根带电导线间的电场分布,-++=E E E再由电势差的定义求出两根导线之间的电势差,就可根据电容器电容的定义,求出两线输电线单位长度的电容解建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为)11(π20xd x E --=ελ 电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为x xd x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελ 上式积分得RR d ελU -=ln π0 因此,输电线单位长度的电容Rd εR R d εU λC ln /πln /π00≈-==代入数据F 1052.512-⨯=C题 10-10 图10-11电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0mm 2,两金属片之间的距离是0.600mm .如果电路能检测出的电容变化量是0.250pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=SC d Cd d d d ε10-12一片二氧化钛晶片,其面积为1.0cm 2,厚度为0.10mm .把平行平板电容器的两极板紧贴在晶片两侧.(1)求电容器的电容;(2)当在电容器的两极间加上12V 电压时,极板上的电荷为多少?此时自由电荷和极化电荷的面密度各为多少?(3)求电容器内的电场强度. 解 (1)查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容F 1053.190-⨯==dSεεC r (2)电容器加上U =12V 的电压时,极板上的电荷C 1084.18-⨯==CU Q极板上自由电荷面密度为2-80m C 1084.1⋅⨯==-SQσ晶片表面极化电荷密度2-400m C 1083.111⋅⨯=⎥⎦⎤⎢⎣⎡-='-σεσr (3)晶片内的电场强度为1-5m V 102.1⋅⨯==dUE 10-13如图所示,半径R =0.10m 的导体球带有电荷Q =1.0×10-8C ,导体外有两层均匀介质,一层介质的εr =5.0,厚度d =0.10m ,另一层介质为空气,充满其余空间.求:(1)离球心为r =5cm 、15cm 、25cm 处的D 和E ;(2)离球心为r =5cm 、15cm 、25cm 处的V ;(3)极化电荷面密度σ′.题 10-13 图分析 带电球上的自由电荷均匀分布在导体球表面,电介质的极化电荷也均匀分布在介质的球形界面上,因而介质中的电场是球对称分布的.任取同心球面为高斯面,电位移矢量D 的通量与自由电荷分布有关,因此,在高斯面上D 呈均匀对称分布,由高斯定理⎰∑=⋅0d qS D 可得D (r ).再由r εε0/D E =可得E (r ).介质内电势的分布,可由电势和电场强度的积分关系⎰∞⋅=rV l E d 求得,或者由电势叠加原理求得.极化电荷分布在均匀介质的表面,其极化电荷面密度n P ='σ.解 (1)取半径为r 的同心球面为高斯面,由高斯定理得r <R 0π421=⋅r D01=D ;01=ER <r <R +d Q r D =⋅22π422π4r QD =;202π4r εεQ E r= r >R +d Q r D =⋅23π423π4r QD =;203π4r Q E ε= 将不同的r 值代入上述关系式,可得r =5cm 、15cm 和25cm 时的电位移和电场强度的大小,其方向均沿径向朝外.r 1=5cm ,该点在导体球内,则01=r D ;01=r Er 2=15cm ,该点在介质层内,εr=5.0,则2822m C 105.3π42--⋅⨯==r QD r 12220m V 100.8π42-⋅⨯==r εεQ E r r r 3=25cm ,该点在空气层内,空气中ε≈ε0,则2823m C 103.1π43--⋅⨯==r QD r ; 13220m V 104.1π43-⋅⨯==r Q E r ε (2)取无穷远处电势为零,由电势与电场强度的积分关系得 r 3=25cm ,V 360π4d 0r 331==⋅=⎰∞rεQV r E r 2=15cm ,()()V480π4π4π4d d 0020r3222=+++-=⋅+⋅=⎰⎰+∞+d R Qd R Q r Q V r r dR d R εεεεεrE r E r 1=5cm ,()()V540π4π4π4d d 000321=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ R εεQ V r r dR RdR rE r E(3)均匀介质的极化电荷分布在介质界面上,因空气的电容率ε=ε0,极化电荷可忽略.故在介质外表面;()()()20π411d R εQ εE εεP r r n r n +-=-=()()282m C 106.1π41--⋅⨯=+-==d R εQεP σr r n在介质内表面:()()20π411R εQ εE εεP r r n r n -=-=()282m C 104.6π41--⋅⨯-=-=-='R εQ εP σr r n介质球壳内、外表面的极化电荷面密度虽然不同,但是两表面极化电荷的总量还是等量异号. 10-14人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2×10-9m ,两表面所带面电荷密度为±5.2×10-3C /m 2,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1)细胞壁内的电场强度;(2)细胞壁两表面间的电势差. 解 (1)细胞壁内的电场强度V /m 108.960⨯==rεεσE ;方向指向细胞外. (2)细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-15如图(a )所示,有两块相距为0.50的薄金属板A 、B 构成的空气平板电容器被屏蔽在一金属盒K内,金属盒上、下两壁与A 、B 分别相距0.25mm ,金属板面积为30mm ×40mm .求(1)被屏蔽后电容器的电容变为原来的几倍;(2)若电容器的一个引脚不慎与金属屏蔽盒相碰,问此时的电容又为原来的几倍?题 10-15 图分析薄金属板A 、B 与金属盒一起构成三个电容器,其等效电路图如图(b)所示,由于两导体间距离较小,电容器可视为平板电容器,通过分析等效电路图可以求得A 、B 间的电容. 解 (1)由等效电路图可知13232123C C C C C C C C ++⋅=+=由于电容器可以视作平板电容器,且32122d d d ==,故1322C C C ==,因此A 、B 间的总电容12C C =(2)若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于2C (或者3C )极板短接,其电容为零,则总电容13C C =10-16在A 点和B 点之间有5个电容器,其连接如图所示.(1)求A 、B 两点之间的等效电容;(2)若A 、B 之间的电势差为12V ,求U A C 、U CD 和U D B .题 10-16 图解 (1)由电容器的串、并联,有μF 1221=+=C C C ACμF 843=+=C C C CD51111C C C C CD AC AB ++= 求得等效电容C AB =4μF .(2)由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACABAC U C C U V 6==AB CDABCD U C C U V 2==AB DBABDB U C C U 10-17如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1)充足电后;(2)然后平行插入一块面积相同、厚度为δ(δ<d )、相对电容率为εr的电介质板;(3)将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQU r 00+-=相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQU -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷 均会增加,而电势差保持不变. 解 (1)空气平板电容器的电容dSεC 00=充电后,极板上的电荷和极板间的电场强度为U dS εQ 00=d U E /0=(2)插入电介质后,电容器的电容C 1为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSUεεU C C r r -+==011介质内电场强度()δd εδUS εεQ E r r -+=='011 空气中电场强度()δd εδU εS εQ E r r -+==011 (3)插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02 U δd S εQ -=02导体中电场强度02='E 空气中电场强度δd UE -=2无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.10-18为了实时检测纺织品、纸张等材料的厚度(待测材料可视作相对电容率为εr的电介质),通常在生产流水线上设置如图所示的传感装置,其中A ,B 为平板电容器的导体极板,d 0为两极板间的距离.试说明检测原理,并推出直接测量量电容C 与间接测量量厚度d 之间的函数关系.如果要检测钢板等金属材料的厚度,结果又将如何?题 10-18 图分析导体极板A 、B 和待测物体构成一有介质的平板电容器,关于电容C 与材料的厚度的关系,可参见题10-17的分析. 解由分析可知,该装置的电容为()d d d SC r r -+=00εεε则介质的厚度为()()C εSεεd εεC εS εεC d εd r r r r r r r 1110000---=--=如果待测材料是金属导体,其等效电容为dd SεC -=00导体材料的厚度CSεd d 00=-= 实时地测量A 、B 间的电容量C ,根据上述关系式就可以间接地测出材料的厚度.通常智能化的仪表可以实时地显示出待测材料的厚度.10-19有一电容为0.50μF 的平行平板电容器,两极板间被厚度为0.01mm 的聚四氟乙烯薄膜所隔开,(1)求该电容器的额定电压;(2)求电容器存贮的最大能量.分析通过查表可知聚四氟乙烯的击穿电场强度E b =1.9×107V /m ,电容器中的电场强度E ≤E b ,由此可以求得电容器的最大电势差和电容器存贮的最大能量. 解 (1)电容器两极板间的电势差V 190b max ==d E U(2)电容器存贮的最大能量J 1003.92132max e -⨯=CU W10-20半径为0.10cm 的长直导线,外面套有内半径为1.0cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1)导线表面最大电荷面密度;(2)沿轴线单位长度的最大电场能量.分析如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度0π2εσR ελE ==查表可以得知空气的击穿电场强度E b =3.0×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1)导线表面最大电荷面密度250max m C 1066.2--⋅⨯==b E εσ显然导线表面最大电荷面密度与导线半径无关.(2)由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为()1210m π2R r R rR r E <<==ελ0=E (其他)222102m 0m 2121rE R E w b εε==沿轴线单位长度的最大电场能量r rER r r w W R Rb d 1πd π2212210m ⎰⎰⎰⎰Ω=⋅=ε14122210m m J 1076.5lnπ--⋅⨯==R R E R W b ε 10-21一空气平板电容器,空气层厚1.5cm ,两极间电压为40k V ,该电容器会被击穿吗?现将一厚度为0.30cm 的玻璃板插入此电容器,并与两极平行,若该玻璃的相对电容率为7.0,击穿电场强度为10MV· m -1.则此时电容器会被击穿吗?分析在未插入玻璃板时,不难求出空气中的电场强度小于空气的击穿电场强度,电容器不会被击穿.插入玻璃后,由习题10-17可知,若电容器与电源相连,则极板间的电势差维持不变,电容器将会从电源获取电荷.此时空气间隙中的电场强度将会增大.若它大于空气的击穿电场强度,则电容器的空气层将首先被击穿.此时40k V 电压全部加在玻璃板两侧,玻璃内的电场强度如也大于玻璃击穿电场强度的值,则玻璃也将被击穿.整个电容器被击穿. 解未插入玻璃时,电容器内的电场强度为16m V 107.2/-⋅⨯==d U E因空气的击穿电场强度16m V 100.3-⋅⨯=b E ,b E E <,故电容器不会被击穿.插入玻璃后,由习题6-26可知,空气间隙中的电场强度()16m V 102.3-⋅⨯=+-=δδd εVεE r r此时,因b E E >,空气层被击穿,击穿后40k V 电压全部加在玻璃板两侧,此时玻璃板内的电场强度17m V 103.1/-⋅⨯==δV E由于玻璃的击穿电场强度1bm MV 10-⋅='E ,b E E '>,故玻璃也将相继被击穿,电容器完全被击穿.10-22某介质的相对电容率 2.8r ε=,击穿电场强度为611810V m -⨯⋅,如果用它来作平板电容器的电介质,要制作电容为0.047 μF ,而耐压为4.0 k V 的电容器,它的极板面积至少要多大.解介质内电场强度16m V 1018-⋅⨯=≤b E E电容耐压U m =4.0k V ,因而电容器极板间最小距离m 1022.2/4-⨯==b m E U d要制作电容为0.047μF 的平板电容器,其极板面积210m 42.0==εεCdS 显然,这么大的面积平铺开来所占据的空间太大了,通常将平板电容器卷叠成筒状后再封装. 10-23一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极板间距拉开到2d .求:(1)电容器能量的改变;(2)此过程中外力所作的功,并讨论此过程中的功能转换关系.分析在将电容器两极板拉开的过程中,由于导体极板上的电荷保持不变,极板间的电场强度亦不变,但电场所占有的空间增大,系统总的电场能量增加了.根据功能原理,所增加的能量应该等于拉开过程中外力克服两极板间的静电引力所作的功. 解 (1)极板间的电场为均匀场,且电场强度保持不变,因此,电场的能量密度为20220221S εQ E εw e == 在外力作用下极板间距从d 被拉开到2d ,电场占有空间的体积,也由V 增加到2V ,此时电场能量增加SεdQ V w W e e 022ΔΔ== (2)两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F =-F e ,则外力所作的功为SεdQ QEd 02e 2ΔA ==⋅-=r F 外力克服静电引力所作的功等于静电场能量的增加.。
静电场中的导体和电介质
静电场中的导体和电介质静电平衡时导体是个等势体,导体表面是等势面,大前提是整个导体都是一样的,不要因为单独说导体表面是个等势面就误以为导体表面和内部不是等势的。
(证明省略)由此公式得出:导体表面电荷密度大的地方场强大,面电荷密度小的地方场强小。
导体表面电荷分布规律①与导体形状有关②与附近有什么样的带电体有关。
定性分析来说,孤立导体面电荷密度与表面的曲率有关,但是并不是单一的函数关系。
拓展知识(尖端放电的原理以及应用;避雷针的原理)这是一个从带电体上吸取全部电荷的有效方法。
测量电量时,要在静电计上安装法拉第圆筒,并将带电体接触圆筒的内表面,就是为了吸取带电体的全部电量,使测量更准确。
库仑平方反比定律推出高斯定理,高斯定理推出静电平衡时电荷只能分布导体外表面。
所以可以由实验精确测定导体内部没有电荷,就证明了高斯定理的正确,进而就证明了库仑平方反比定律的正确。
所以说这是精确的,因为通过实验测定数据是一定会存在误差的,而通过实验测定导体内部没有电荷是不会存在误差的,所以是很精确的。
以上是库仑平方反比定律验证的发展历史。
见图2-1,导体壳内部没有电荷时,导体的电荷只是分布在外表面上,为了满足电荷守恒定理,见图2-1c,就要一边是正电荷,而另一边是负电荷,其实空腔内没有电场的说法是对于结果而言的,并不能看出本质,本质是外电场和感应电荷的电场在导体腔的内部总的场强为0。
使带电体不影响外界,则要求将带电体置于接地的金属壳或者金属网内,必须接地才能将金属壳或者金属网外表面感应电荷流入地下。
则外界不受带电体场强的作用,而本质上也是带电体的场强和内表面感应电荷的场强叠加作用使外界总场强为0。
孤立导体的电容:电容C与导体的尺寸和形状有关,与q,U无关,它的物理意义是使导体每升高单位电位所需要的电量。
电容器及其电容:对电容的理解要升高一个层次:电容是导体的一个基本属性,就好像水桶的容量一样,C=U/q。
然而导体A的附近有其他导体时,导体的电位不仅与自己的q 有关,还受到其他导体的影响。
第十章 静电场中的导体和电介质习题解答
10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。
试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。
习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。
(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。
试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。
习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。
第十章静电场中的导体和电介质
第⼗章静电场中的导体和电介质第⼗章静电场中的导体和电介质在上⼀章中,我们讨论了真空中的静电场。
实际上,在静电场中总有导体或电介质存在,⽽且在静电的应⽤中也都要涉及导体和电介质的影响,因此,本章主要讨论静电场中的导体和电介质。
本章所讨论的问题,不仅在理论上有重⼤意义,使我们对静电场的认识更加深⼊,⽽且在应⽤上也有重⼤作⽤。
§10-1 静电场中的导体⼀、静电平衡条件1、导体与电介质的区别:(1)宏观上,它们的电导率数量级相差很⼤(相差10多个数量级,⽽不同导体间电导率数量级最多就相差⼏个数量级)。
(2)微观上导体内部存在⼤量的⾃由电⼦,在外电场下会发⽣定向移动,产⽣宏观上的电流⽽电介质内部的电⼦处于束缚状态,在外场下不会发⽣定向移动(电介质被击穿除外)。
2、导体的静电平衡条件(1)导体内部任何⼀点处的电场强度为零;(2)导体表⾯处的电场强度的⽅向,都与导体表⾯垂直.导体处于静电平衡状态的必要条件:0=i E(当导体处于静电平衡状态时,导体内部不再有⾃由电⼦定向移动,导体内电荷宏观分布不再随时间变化,⾃然其内部电场(指外场与感应电荷产⽣的电场相叠加的总电场)必为0。
⼆、静电平衡时导体上的电荷分布1、导体内部没有净电荷,电荷(包括感应电荷和导体本⾝带的电荷)只分布在导体表⾯。
这个可以由⾼斯定理推得:ii sq E ds ε?=,S 是导体内“紧贴”表⾯的⾼斯⾯,所以0i q =。
2、导体是等势体,导体表⾯是等势⾯。
显然()()0b a b i a V V E dl -=?=?,a,b 为导体内或导体表⾯的任意两点,只需将积分路径取在导体内部即可。
3、导体表⾯以处附近空间的场强为:0E n δε=,δ为邻近场点的导体表⾯⾯元处的电荷密度,?n 为该⾯元的处法向。
简单的证明下:以导体表⾯⾯元为中截⾯作⼀穿过导体的⾼斯柱⾯,柱⾯的处底⾯过场点,下底⾯处于导体内部。
由⾼斯定理可得:12i s s dsE ds E ds δε?+?=,1s ,2s 分别为⾼斯柱⾯的上、下底⾯。
大学物理第十章导体和电介质中的静电场讲义
电介质是能够承受电场作用,但对电 流具有较高阻抗的材料。常见的电介 质有陶瓷、玻璃、橡胶等。
导体的导电机制
金属导体的导电机制
金属导体中的自由电子在电场作用下定向移动,形成电流。 金属的导电性能主要取决于其电子结构和晶体结构。
半导体导体的导电机制
半导体的导电性能介于金属和绝缘体之间。在半导体中,电 子不是自由电子,而是在能级结构中占据一定的状态。在电 场作用下,电子可跃迁到较高能级,形成电流。
1 2
电位移矢量
描述电场中电介质内部电荷分布的特征,其大小 和方向与电场强度和极化程度有关。
电位移矢量与电场强度的关系
在均匀电介质中,电位移矢量与电场强度平行, 但在非均匀电介质中,两者可能存在一定角度。
3
电位移矢量的物理意义
表示电场中某点电介质内部单位面积上的电场线 数。
电介质中的电容与电容器
电容定义
静电力
静电力是指静止带电体之间的相互作用力,它是由库仑定 律描述的。
电场力与库仑力的关系
在静电场中,带电体受到的电场力就是库仑力,它是电场 对带电体的作用力。
电场对带电粒子的作用力
电场对带电粒子的作用
在静电场中,带电粒子会受到电场的作用力,该力的大小与粒子的电量和粒子在电场中的 位置有关。
带电粒子在电场中的运动
单位
在国际单位制中,电势的单位 是伏[特](V)。
性质
电势也是一个矢量,具有方 向,其方向与电场强度的方 向一致。
电场线
定义
电场线是用来形象地描述电场分布的 曲线,曲线上每一点的切线方向表示 该点的电场强度的方向。
性质
电场线越密集的地方,电场强度越大; 反之,越稀疏的地方,电场强度越小。
川师大学物理第十章 静电场中的导体和电介质习题解
第十章 静电场中的导体和电介质10–1 如图10-1所示,有两块平行无限大导体平板,两板间距远小于平板的线度,设板面积为S ,两板分别带正电Q a 和Q b ,每板表面电荷面密度σ1= ,σ2= ,σ3= ,σ4= 。
解:建立如图10-2所示坐标系,设两导体平板上的面电荷密度分别为σ1,σ2,σ3,σ4。
由电荷守恒定律得12a S S Q σσ+= (1)34b S S Q σσ+= (2)设P ,Q 是分别位于二导体板内的两点,如图10-2所示,由于P ,Q 位于导板内,由静电平衡条件知,其场强为零,即3124000002222P E σσσσεεεε=---= (3)3124000002222Q E σσσσεεεε=++-= (4) 由方程(1)~(4)式得142abQ Q Sσσ+== (5) 232a bQ Q Sσσ-=-= (6) 由此可见,金属平板在相向的两面上(面2,3),带等量异号电荷,背向的两面上(面1,4),带等量同号电荷。
10–2 如图10-3所示,在半径为R 的金属球外距球心为a 的D 处放置点电荷+Q ,球内一点P 到球心的距离为r ,OP 与OD 夹角为θ,感应电荷在P 点产生的场强大小为 ,方向 ;P 点的电势为 。
解:(1)由于点电荷+Q 的存在,在金属球外表面将感应出等量的正负电荷,距+Q 的近端金属球外表面带负电,远端带正电,如图10-4所示。
P 点的场强是点电荷+Q 在P 点产生的场强E 1,与感应电荷在P 点产生的场强E 2的叠加,即E P =E 1+E 2,当静电平衡时,E P =E 1+E 2=0,由此可得21r 2204π(2cos )Qa r ar εθ=-=-+-E E e其中e r 是由D 指向P 点。
因此,感应电荷在P 点产生的场强E 2的大小为图10–4xσ2 4σQQ aQ b 图10-2σ1σ2 σ4σ3 Q a Q b图10-1图10-322204π(2cos )QE a r ar εθ=+-方向是从P 点指向D 点。
静电场中的导体和电介质
第十章静电场中的导体和电介质§10-1 静电场中的导体一、导体的静电平衡1、金属导体的电结构及静电感应(1)金属导体:由带正电的晶格和带负电的自由电子组成.带电导体:总电量不为零的导体;中性导体:总电量为零的导体;孤立导体:与其他物体距离足够远的导体.“足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略.(2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程.(3)静电平衡状态:导体中自由电荷没有定向移动的状态.2、导体静电平衡条件(1)从场强角度看:①导体内任一点,场强;②导体表面上任一点与表面垂直.证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直.说明:①静电平衡与导体的形状和类别无关.②“表面”包括内、外表面;(2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体.①导体内各点电势相等;②导体表面为等势面.证明:在导体上任取两点A,B,.由于=0,所以.(插话:空间电场线的画法.由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.)二、静电平衡时导体上的电荷分布1、导体内无空腔时电荷分布如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为:导体静电平衡时其内,, 即.S面是任意的,导体内无净电荷存在.结论:静电平衡时,净电荷都分布在导体外表面上.2、导体内有空腔时电荷分布(1)腔内无其它电荷情况如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:由于静电平衡时,导体内因此,即S内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷空腔内表面上的净电荷为0.讨论:在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A点附近出现+q,B点附近出现-q,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,,但静电平衡时,导体为等势体,即,因此,假设不成立.结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同).(2)空腔内有点电荷情况如图所示,导体电量为Q,其内腔中有点电荷+q,在导体内作一高斯面S,高斯定理为静电平衡时 , .又因为此时导体内部无净电荷,而腔内有电荷+q,腔内表面必有感应电荷-q.结论:静电平衡时,腔内表面有感应电荷-q,外表面有感应电荷+q. 3、导体表面附近的电场强度和电荷面密度的关系(1)导体表面上电荷分布设在导体表面上某一面积元(很小)上,电荷分布如图所示 ,过边界作一闭合柱面,S上下底、均与平行,S侧面与垂直,柱面的高很小,即与非常接近,此柱面并且是关于对称的.S作为高斯面,高斯定理为(注意与无限大带电平面的区别).结论:导体表面附近,.(2)导体表面曲率对电荷分布影响理论证明某些规则形状的孤立导体带电后,在表面上曲率越大的地方场强越强, 必大,所以曲率大的地方电荷面密度大;导体曲率较小处,表面电荷面密度也较小;在表面凹进去的地方(曲率为负),电荷密度更小.但不是绝对结论.(3)、尖端放电尖端附近场强较大,该处的空气可能被电离成导体而出现尖端放电现象.如图,BC相对AC更容易放电.“电晕”:离子撞击空气分子时,有时能量较小不能使分子电离,但能使分子获得高能量而跃迁到高能级,返回基态时就会发出光子,在尖端出现暗淡的光环.夜晚高压线周围笼罩的绿色光晕.“电风”:金属针接起电机,针尖紧贴蜡烛焰.假设金属针带足量正电荷,针尖附近场强足够大,电离空气分子,吸引负电荷离子,排斥正电荷离子,则正电荷离子吹向蜡烛焰,形成“电风”.4、静电屏蔽(1)空腔内无带电体.由于空腔中的场强处处为零,放在空腔中的物体,就不会受到外电场的影响,所以空心金属球体对于放在它的空腔内的物体有保护作用,使物体不受外电场影响.(2)空腔导体接地.由于空腔外表面电荷因接地而与大地中和,所以腔内物体带电不影响腔外物体.静电屏蔽现象:空腔导体可以保护腔内物体不受腔外电荷和电场的影响,或接地的空腔导体可以保护外部物体不受腔内电荷和电场的影响.应用:如电话线从高压线下经过,为了防止高压线对电话线的影响,在高压线与电话线之间装一金属网等.例10-1:在电荷+q的电场中,放一不带电的金属球,从球心 到点电荷所在距离处的矢径为,试问(1)金属球上净感应电荷?(2)这些感应电荷在球心处产生的场强?解:(1)0(2)球心处场强(静电平衡要求),即+q在处产生的场强与感应电荷在处产生场强的矢量和=0.方向指向+q.(感应电荷在处产生电势=?球电势=?选无穷远处电势=0.)P49.课本例题例10.1;10.2§10-2 电介质的电极化和有介质时的高斯定理一、电介质的电结构1、结构电介质:通常所说的绝缘体,常温下电阻率在108-1018Ω•m范围内.主要特征:它的分子中电子被原子核束缚的很紧,介质内几乎没有自由电子,其导电性能很差.与导体的主要区别:在外电场作用下达静电平衡时,电介质内部的场强不为零.2、电介质分类(2类)(1)无极分子电介质:无外电场时,分子正负电荷中心重合(如等).其固有电矩为零,对外不显电性.(2)有极分子电介质:即使无外电场时,分子的正负电荷中心也不重合(如:等).由于分子热运动的无规则性,在物理小体积内的平均电偶极矩仍为零,因而也没有宏观电偶极矩分布(对外不显电性).分子正负电荷中心不重合时相当于一电偶极子.二、电介质的极化1、电极化现象实验表明,将电容器充电后,再去掉电源,然后将某种电介质(如:玻璃,硬橡胶等)插入电容器之间,会发现极板间电压减小了.由知,E减小了.那么E是如何减少的呢?从平板电容场强公式知,E的减小,意味着电介质与极板的近邻处的电荷面密度减小了.但是,极板上的电荷没变,即电荷面密度没变,这种改变只能是电介质上的两个表面出现了如图所示的正、负电荷.电介质在外电场作用下,其表面或体内出现净电荷的现象称为电介质的极化.电极化时电介质表面处出现的净电荷称为极化电荷(属于束缚电荷范畴),称为自由电荷.可见,电荷面密度(自由电荷面密度)-(极化电荷面密度),即减小了.(束缚电荷受到限制,束缚电荷量比自由电荷少的多,故比少的多.)E减小.更直观的解释是,产生的场强与产生的场强相反,所以它的场强为,即减小了,这也可以解释实验结果.2、两类电介质的极化(1)无极分子的位移极化无极分子在没有受到外电场作用时,它的正负电荷的中心是重合的,因而没有电偶极矩,如图a所示,但当外电场存在时,它的正负电荷的中心发生相对位移,形成一个电偶极子,其偶极矩方向沿外电场方向,如图b所示.对一块介质整体来说,由于电介质中每一个分子都成为电偶极子,所以,它们在电介质中排列如图,在电介质内部,相邻电偶极子正负电荷相互靠近,因而对于均匀电介质来说,其内部仍是电中性的,但在和外电场垂直的两个端面上就不同了.由于电偶极子的负端朝向电介质一面,正端朝向另一面,所以电介质的一面出现负电荷,一面出现正电荷,显然这种正负电荷是不能分离的,故为束缚电荷.结论:无极分子的电极化是由于分子的正负电荷的中心在外电场的作用下发生相对位移的结果,这种电极化称为位移电极化.(2)有极分子的取向极化有极分子本身就相当于一个电偶极子,在没有外电场时,由于分子做不规则热运动,这些分子偶极子的排列是杂乱无章的,如图d所示,所以电介质内部呈电中性.当有外电场时,每一个分子都受到一个电力矩作用,如图所示,这个力矩要使分子偶极子转到外电场方向,只是由于分子的热运动,各分子偶极子不能完全转到外电场的方向,只是部分地转到外电场的方向,即所有分子偶极子不是很整齐地沿着外电场方向排列起来,如图f所示.但随着外电场的增强,排列整齐的程度要增大.无论排列整齐的程度如何,在垂直外电场的两个端面上都产生了束缚电荷.结论:有极分子的电极化是由于分子偶极子在外电场的作用下发生转向的结果,故这种电极化称为转向电极化.说明:在静电场中,两种电介质电极化的微观机理显然不同,但是宏观结果即在电介质中出现束缚电荷的效果时确是一样的,故在宏观讨论中不必区分它们.(3)附加电场由于电介质极化后出现极化电荷,介质内空间一点的场强:.:介质外的电荷产生的电场,即外电场;:介质上的极化电荷产生的电场.对均匀电介质,外场为匀强电场时,介质内的与方向严格相反,大小||<||.作用是减小介质内电场的,..(插话:1、对电介质的要求对于均匀电介质,极化电荷只出现在电介质表面;对于不均匀电介质,极化电荷出现在表面和内部.一般考虑均匀电介质.均匀电介质:电介质的物理和化学性质各处一致.比如,密度均匀,力学、热学、光学、电磁效应各处一致.2、极化电荷与自由电荷极化电荷:电介质因极化而出现在电介质表面(或体内)的宏观电荷;自由电荷:在外场作用下可以自由运动的宏观电荷.(1)极化电荷是束缚电荷的宏观表现,是束缚在晶格上的分子中的电子作的微小位移,或者整个分子作微小旋转所引起的.因此,极化电荷的运动范围不能超出分子线度;而自由电荷是由于原子或分子的电离或者金属中自由电子的重新分布引起的,它的活动范围可以是整个物体或物体之间;(2)极化电荷不能转移,自由电荷可以转移;可略(3)极化电荷可以吸附导体中自由电荷,但不能被中和掉,而自由电荷可以被中和.3、静电场中的电介质与静电场中的导体(1)它们都会因受电场的作用而出现宏观电荷;这些电荷反过来又会影响电场,这种影响都削弱了原电场;(比较微观本质的不同)(2)都会达到稳定状态——电介质的稳定极化状态和导体的静电平衡状态.(比较微观本质的不同)导体处于静电平衡状态时,表面的感应电荷在导体内产生的感应电场能把外电场完全抵消,导体内场强处处为零;而电介质被极化后,表面出现的极化电荷在介质内产生的电场不能完全抵消外电场,介质内存在电场.)3、电偶极子在外场受到的力和力矩均匀外场下,电偶极子所受总静电力:;总力矩: (10.3)虽然=0,但不为0. 的效果将使电偶极矩旋转到与外电场方向一致,使趋于0,形成稳定状态.三、电极化强度、极化电荷与极化强度的关系1、定义.电极化强度矢量定义为(10.4)即电极化强度矢量是单位体积内分子电矩的矢量和.当外电场越强时,极化现象越显著,单位体积内的分子电矩矢量和就越大,极化强度就越大.反之,外电场越弱,极化现象不显著,单位体积内的分子电矩矢量和就越小.可见,电极化强度矢量可以用来描述电介质的极化程度.上式给出的极化强度是点的函数,一般来说,介质中不同点的电极化强度矢量不同.但对于均匀的无极分子电介质处在均匀的外电场中,,其中n是分子数密度(单位体积的分子数),p是极化后电介质每个分子的电矩矢量.在国际单位制中,电极化强度矢量的单位为库仑/米2(C/m2).2、电极化强度与束缚电荷的关系由于束缚电荷是电介质极化的结果,所以束缚电荷与电极化强度之间一定存在某种定量关系.为方便讨论,现以无极分子电介质为例来讨论,考虑电介质内某一小面元dS,设其电场E的方向(因而P的方向)与dS的法线方向成θ角(如图6.7所示),由于E的作用,分子的正负电荷中心将沿电场方向拉开距离l.为简化分析,假定负电荷不动,而正电荷沿E 的方向发生位移l.在面元dS后侧取一斜高为l,底面积为dS的体元dV.由于电场E的作用,此体元内所有分子的正电荷中心将穿过dS面到前侧去.以q表示每个分子的正电荷量,则由于电极化而越过dS面元的总电荷为(1)介质表面处dS是电介质的表面,由于电介质极化(10.5)是其外法向单位矢.讨论:(2)封闭曲面处由于极化穿过有限面积S的电荷为,若dS是封闭曲面,则穿过整个封闭曲面的电荷为.因为电介质是电中性的,据电荷守恒定律,则得由电介质极化而在封闭面内净余的束缚电荷为(10.6)(10.6)可称为“极化强度的高斯定理”.从闭合面内向外的极化强度的通量,等于从闭合面内移出去的极化电荷的量.结论:式(10.5)和式(10.6)就是由于介质极化而产生的束缚电荷与电极化强度的关系.从(10.6)可以看出,在均匀外电场中,均匀电介质内部的任何体元内都不会有净余束缚电荷,束缚电荷只能出现在均匀电介质的表面,即:.对非均匀电介质,电介质内部也有束缚电荷分布.四、电极化强度与场强的关系电介质的极化状态通过极化强度来描述,由于电介质的极化是电场对电介质作用的结果,因此,电介质内任意一点的极化强度应由该点总电场()决定.与的关系与电介质的性质有关,对各向同性电介质:. (10.7):各向同性均匀电介质的电极化率.电场不太强时,由电介质性质决定,是无量纲量.该式是一个经验定律.课程中讨论的都是各向同性的均匀电介质.五、有介质时的高斯定理1、有介质时的高斯定理(1)定理推导根据真空中的高斯定理,通过闭合曲面S的电场强度通量为所给面包围的电荷除以,即此处, 应理解为闭合面内一切正、负电荷的代数和,在无电介质存在时,;在有介质存在时,S内既有自由电荷,又有极化电荷,应是S内一切自由电荷与极化电荷的代数和,即、分别表示自由电荷和极化电荷.由于难以测量和计算,应消除.根据.上式变换为令.得(2)定理形式(10.8)其中,称为电位移矢量.利用经验规律(10.9)其中,称为相对介电常数,称为绝对介电常数(也叫电容率).(10.9)式称为各向同性经验电介质的性能方程.(10.8)式称为“高斯定理的普遍形式”——“有介质时的高斯定理”.表明通过任意曲面的电位移通量,等于该封闭曲面内包围的自由电荷的代数和.说明:(1)上式为电介质中的高斯定理,是高斯定理的普遍形式.(2)是辅助量,无真正的物理意义,是为了回避难以量化的极化电荷而引入的辅助量.算出后,可求.(3)如同引进电力线一样,为描述方便,可引进电位移线,并规定电位移线的切线方向即为的方向,电位移线的密度(通过与电位移线垂直的单位面积上的电位移线条数)等于该处的大小.所以,通过任一曲面上电位移线条数为,称此为通过S的电位移通量;对闭合曲面,此通量为.(4)根据,以平行板电容器产生的线、线和线说明其区别.①电位移线总是始于正的自由电荷,止于负的自由电荷,与极化电荷无关.因而线在电介质和真空中一致;②电力线是可始于一切正电荷和止于一切负电荷(包括自由电荷与极化电荷).真空中,线与线一致,而在极化电荷内部,由于与反向,减弱了,如图.③电极化强度线起于极化负电荷,终于极化正电荷,只存在于极化电介质内,真空中=0,电介质内,.2、定理的应用例10-2:平行板电容器,板间有二种各向同性的均匀介质,分界面平行板面,介电常数分别为、,厚度为、,自由电荷面密度为.求(1)、=?(2)电容C=?解:(1) 设二种介质中电位移矢量分别为、,在左极板处做高斯面S,一对面平行板面,面积均为A,侧面垂直板面,由高斯定理有其中,左底面=0,侧面上.又,,即 ,方向垂直板面向右.同样在右极板处做高斯面,一对面平行极板面,面积均为,侧面与板面垂直,由高斯定理有:,即,方向向右.可见,,即两种介质中法向不变.方向向右.(2)例10-3:在半径为R的金属球外,有一外半径为的同心均匀电介质层,其相对介电常数为,金属球电量为Q,试求:(1)场强空间分布;(2)电势空间分布.解:(1)由题意知,均是球对称的,取球形高斯面S,由有Q>0:沿半径向外;Q<0:沿半径向内.(2)介质外任一点P电势介质内任一点Q电势球为等势体,电势为例10-4:有一个带电为+q半径为的导体球,与内外半径分别为、 带电量为-q的导体球壳同心,二者之间有两层均匀电介质,内层和外层电介质的介电常数分别为、,且二电介质分界面也是与导体球同心的半径为的球面.试求:(1)电位移矢量分布;(2)场强分布;(3)导体球与导体空间电势差;(4)导体球壳构成电容器的电容.解:(1)由题意知,场是球对称的,选球形高斯面S, 由有得 ,沿半径向外.(2)与同向,即沿半径向外.(3)(4)根据自由电荷分布利用高斯定理求解,和前面一样,必须满足对称性:第一,自由电荷的分布和电介质的分布同时满足三种对称性之一,即平面对称、轴对称、球对称,概括为“电介质的表面为等势面”;第二,电介质充满整个电场.在满足上述对称性后,可以利用高斯定理唯一地求解电场问题,此时电位移矢量与极化电荷无关.§10-3 电容 电容器一、孤立导体的电容在真空中设有一半径为R的孤立的球形导体,它的电量为q,那么它的电势为(取无限远处电势=0)对于给定的导体球,即R一定,当变大时,V也变大;变小时,V也变小,但是却不变.此结论虽然是对球形孤立导体而言的,但对一定形状的其它导体也是如此,仅与导体大小和形状等有关,因而有下面定义.定义:孤立导体的电量q与其电势V之比称为孤立导体电容,用C表示,记作:(10.11)对于孤立导体球,其电容为.C的单位为:F(法),1F=1C/1V.在实用中F太大,常用或,他们之间换算关系:.(电容与电量的存在与否无关)二、电容器及其电容实际上,孤立的导体是不存在的,周围总会有别的导体.当有其它导体存在时,则必然因静电感应而改变原来的电场分布,进而影响导体电容.下面我们具体讨论电容器的电容.1、电容器:两个带有等值而异号电荷的导体所组成的带电系统称为电容器.电容器可以储存电荷,也可以储存能量.2、电容器电容:如图所示,两个导体A、B放在真空中,它们所带的电量分别为+q,-q,如果A、B电势分别为、,那么A、B电势差为,电容器的电容定义为:(10.12)由上可知,如将B移至无限远处,=0.所以,上式就是孤立导体的电容.所以,孤立导体的电势相当于孤立导体与无限远处导体之间的电势差.所以,孤立导体电容是B放在无限远处时的特例.导体A、B常称电容器的两个电极.3、电容器电容的计算①极间分别带有+Q,-Q电量,利用高斯定理,计算极间电场强度分布;②根据电场去分布,求出极间电势差;③将极板电量和极间电势差代入电容器电容定义式,计算出电容.(1)、平行板电容器的电容设A、B二极板平行,面积均为S,相距为d,电量为+q,-q,极板线度比d大得多,且不计边缘效应.所以A、B间为均匀电场.板间充满电介质,介电常数为ε.由高斯定理知,A、B间场强大小为.则 (10.13)为该电容器极板间真空时的电容值.(2)、球形电容器设二均匀带电同心球面A、B,半径、,电荷为+q,-q. 板间充满电介质,介电常数为ε.A、B间任一点场强大小为:,.为该电容器极板间真空时的电容值.讨论:①当时,有,令,为平行板电容器电容.②当为孤立球形电容器电容.A为导体球或A、B均为导体球壳结果如何?(3)、圆柱形电容器圆柱形电容器是两个同轴柱面极板构成的,如图所示,设A、B半径为、,电荷为+q,-q,板间充满电介质,介电常数为ε.除边缘外,电荷均匀分布在内外两圆柱面上,单位长柱面带电量,是柱高.由高斯定理知,A、B内任一点P处的大小为则 (10.15)(可知:在计算电容器时主要是计算两极间的电势差).(插话:4、电介质对电容器电容的影响以上所得电容是极间为真空情况,若极间充满电介质(不导电的物质),实际表明,此时电容C要比真空情况电容大,可表示,或.与介质有关,称为相对介电系数 .以上各情况若充满电介质(极间),有:球形: ;平板:;柱形:.称为介质的介电常数.())下面以平行板电容器为例求:(1)电介质中场强 E由电容器定义,有(无介质) 为电压,为电量.(有介质) 为电压,为电量.(2)极化电荷面密度介质内电场:.即: (极化电荷面密度)三、电容器的串联与并联在实际应用中,现成的电容器不一定能适合实际的要求,如电容大小不合适,或者电容器的耐压程度不合要求有可能被击穿等原因.因此有必要根据需要把若干电容器适当地连接起来.若干个电容器连接成电容器的组合,各种组合所容的电量和两端电压之比,称为该电容器组合的等值电容.1、 串联:几个电容器的极板首尾相接(特点:各电容的电量相同).设A、B间的电压为,两端极板电荷分别为+q,-q,由于静电感应,其它极板电量情况如图,.由电容定义有(10.16a)2、并联:每个电容器的一端接在一起,另一端也接在一起.(特点:每个电容器两端的电压相同,均为,但每个电容器上电量不一定相等)等效电量为:,由电容定义有:(10.16b)例10-5:平行板电容器,极板宽、长分别为a和b,间距为d,今将厚度t,宽为a的金属板平行电容器极板插入电容器中,不计边缘效应,求电容与金属板插入深度x的关系(板宽方向垂直底面).解:由题意知,等效电容如左下图所示,电容为:说明:C大小与金属板插入位置(距极板距离)无关;注意:(1)掌握串并联公式;(2)掌握平行板电容器电容公式.例8-3:半径为a的二平行长直导线相距为d(d>>a),二者电荷线密度为,,试求(1)二导线间电势差;(2)此导线组单位长度的电容.解:(1)如图所取坐标,P点场强大小为:(2)注意:(1)公式.(2)此题的积分限,即明确导体静电平衡的条件.§10.4 电场的能量一、电容器储存的静电能一个电中性的物体,周围没有电场,当把电中性物体的正、负电荷分开时,外力作了功,这时该物体周围建立了电场.所以,通过外力做功可以把其它形式能量转变为电能,贮藏在电场中.。
大学物理下册第10章课后题答案
习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。
10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M移到不带电的导体N附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N,或导体N的负电荷入地。
故正确答案为(A)。
10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d。
设无穷远处为零电势,则在导体球球心O点有[ ](A)0E,4πε=qVd(B)24πε=qEd,4πε=qVd(C) 0E,0V(D)24πε=qEd,4πε=qVR答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E。
导体球球心O点的电势为点电荷q及感应电荷所产生的电势叠加。
感应电荷分布于导体球表面,至球心O的距离皆为半径R,并且感应电荷量代数和q∑为0,因此4qVRπε==∑感应电荷。
静电场中的导体和电介质
静电场中的导体和电介质引言在物理学中,静电场是指当电荷处于静止状态时周围存在的电场。
导体和电介质是静电场中两种常见的物质类型。
理解导体和电介质在静电场中的行为对于理解静电现象和应用静电学原理具有重要意义。
本文将介绍导体和电介质在静电场中的特性和行为,包括导体的电荷分布和电场分布、导体内部电场为零的原因,以及电介质的电极化和电介质的介电常数。
导体导体的电荷分布在静电场中,导体具有特殊的电荷分布特性。
由于导体中的自由电子可以在导体内自由移动,一旦一个导体与其他带电体接触,自由电子将重新分布以达到平衡。
导体的外部表面电荷会分散在整个表面上,使得导体表面的电场强度为零。
这意味着在静电平衡条件下,导体表面任意一点的电势相等。
导体内部的电场分布特性在导体内部,电场强度为零。
这是由于自由电子可以在导体内自由移动,当导体中存在电场时,自由电子会沿着电场方向移动,直到达到平衡。
这种现象称为电荷迁移。
因此,导体内部的自由电子的运动将产生一个等量但相反方向的电场,导致导体内部的电场强度为零。
这也是为什么导体内部没有电场线存在的原因。
电介质电极化现象电介质是一种不易导电的物质,而其在静电场中的行为与导体有着显著不同。
当一个电介质暴露在静电场中时,电介质分子会发生电极化现象。
电极化是指电介质分子在电场作用下产生偶极矩。
在电场的作用下,电介质分子会发生形状变化,正负电荷分离,产生一个平均不为零的电偶极矩。
这种电极化现象可以分为两种类型:取向极化和感应极化。
取向极化是指电介质分子的取向方向在电场的作用下发生变化,而感应极化是指电场作用下导致电介质分子内部正负电荷的相对移动。
电介质的介电常数电介质的介电常数是描述电介质在电场中的响应特性的重要参数。
介电常数是一个比值,代表了电介质在电场力下的相对表现。
介电常数决定了电介质的极化程度和电场中的电场强度。
电介质的介电常数大于1,意味着电介质对电场的屏蔽效果更明显。
在实际应用中,通过选择合适的电介质和调整电场强度,可以改变静电场的分布和效果,用于电容器、绝缘材料等相关领域。
第十章静电场中的导体与电介质
本章主要内容: 本章主要内容:
1、导体的对电容率的物理意义 4、有电介质时的高斯定理 5、电场的能量等。 电场的能量等。
2
基本要求: 基本要求:
1.掌握导体静电平衡条件, 1.掌握导体静电平衡条件,能用该条件分析带 掌握导体静电平衡条件 电导体在静电场中的电荷分布; 电导体在静电场中的电荷分布;运用前章知 求解有导体存在时场强与电势的分布; 识,求解有导体存在时场强与电势的分布; 2.了解电介质的极化机理, 2.了解电介质的极化机理,了解电位移矢量 了解电介质的极化机理 的物理意义及有电解质时的高斯定理; 的物理意义及有电解质时的高斯定理; 3.理解电容的定义, 3.理解电容的定义,能计算形状简单的电容器 理解电容的定义 的电容; 的电容; 4.理解静电场是电场能量的负载者, 4.理解静电场是电场能量的负载者,能计算 理解静电场是电场能量的负载者 简单对称情况下的电场能量. 简单对称情况下的电场能量.
其次: 其次:应注意
Q0 只是闭合曲面内所
含的自由电荷,不包括极化电 含的自由电荷, 荷。
一平板电容器充满两层电介质,板面 例、一平板电容器充满两层电介质 板面 积为S. 积为
S1
+ + + + + + + + σ0
d1
求:
(1)电容器电容; (1)电容器电容; 电容器电容
d2
+ + + v+ + v Dε E2 r2 + + + + +
(2)、有极分子电介质的取向极化 (2)、有极分子电介质的取向极化 综述: 综述:
这种在外场作用下, 这种在外场作用下,电介质表面产生 极化电荷的现象, 极化电荷的现象,叫电介质的极化现象 虽然不同电介质的极化机理不同, 虽然不同电介质的极化机理不同, 但宏观上都表现为电介质表面或内部 出现极化电荷。 出现极化电荷。
第10章静电场中的导体电介质
ln
d
由于感应电荷都分布在导体球表面,由电势迭加原理, 有
2l d u0 dq ln 4 0 R S 4 0 d
1
2l d Q dq 4 0 Ru 0 R ln S d
上一内容
下一内容 回主目录 返回
2019/3/30 33
例2.已知:导体板A,面积为S、带电量Q,在其旁边 放入导体板B。 求:(1)A、B上的电荷分布及空间的电场分布 (2)将B板接地,求电荷分布 A B 1 2 3 4 1 2 3 4 解(1)a点 2 2 2 2 0 a 0 0 0 0
E u
上一内容
下一内容 回主目录 返回
2019/3/30 30
例1:如图所示,长为2l的均匀带电直线,电荷线密度 为,旁边有一导体球,球心在带电直线的延长线上,距 直线近端为d,d大于导体球的半径R,(1)用电势叠 加原理求导体球的电势;(2)把导体球接地后再断开, 求导体球上的感应电量. d
S
尖端放电 尖端场强特别强,足以使周围空气分子电离 而使空气被击穿,导致“尖端放电”。 ——形成“电风”
上一内容
下一内容 回主目录 返回
2019/3/30 24
内容回顾
处于静电平衡状态的导体的性质:
1、导体内部任意点的场强为零,导体是等势体,导 体表面是等势面。 2、导体内部处处没有未被抵消的净电荷,净电荷只 分布在导体的表面上。 3、导体表面上的面电荷密度分布情况与导体表面曲 率有关,且成正比 1 。
R
上一内容
下一内容
回主目录
返回
2019/3/30
31
解:1)考虑导体球上感应电荷分布满足电荷守恒定律及 分布在表面距离球心等距的关系,感应电荷在球心处的
第十章电荷和静电场(导体和电介质)
导体
证明: 设有两个相距很远的带电导体球,如图: 证明: 设有两个相距很远的带电导体球,如图: 用很长的细导线连接两导体球, 用很长的细导线连接两导体球, 忽略两球间的静电感应, 导体球上的电荷仍均匀分布。 忽略两球间的静电感应, 导体球上的电荷仍均匀分布。 Q 整个导体系统是等势体。 整个导体系统是等势体。 R 1 Q σA R q A 球:UA = = 4π ε0 R ε0 r A B 1 q σB r = B 球: UB = q + + ε 4π ε r
σ1 σ2σ3 σ4
σ1 σ2 σ3 σ4 r r r r a点 − − − =0 E4 E3 E2 E 1 2ε0 2ε0 2ε0 2ε0
a
σ1 σ2 σ3 σ4 + + − =0 b点 σ1 σ2σ3 σ4 2ε0 2ε0 2ε0 2ε0
由电荷守恒定律: 由电荷守恒定律:
A板 B板
σ1S +σ2S = Q
导体球表面: q 导体球表面: 内表面: 内表面:−q 电荷守恒) (电荷守恒) 导体球壳: 导体球壳: 外表面:Q+ q + (2) 先用高斯定理求场强分布,再用积分求电势。 先用高斯定理求场强分布,再用积分求电势。
q
q
R3
R1
Q +q
R2
0 q
由高斯定理: 由高斯定理:
(r < R ) 1
2
E = 4π ε0r
0
0
Q UA =UB , ∴
结论: ★ 结论:
第十章静电场中的导体与电介质(标准答案)
一、选择题[ B ]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0,静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得:022202010=-+εσεσεσ联立解得: 1222σσσσ=-=,[ C ]2(基础训练4)、三个半径相同的金属小球,其中甲、乙两球带有等量同号电荷,丙球不带电。
已知甲、乙两球间距离远大于本身直径,它们之间的静电力为F ;现用带绝缘柄的丙球先与甲球接触,再与乙球接触,然后移去,则此后甲、乙两球间的静电力为:(A) 3F / 4. (B) F / 2. (C) 3F / 8. (D) F / 4. 【提示】设原来甲乙两球各自所带的电量为q ,则2204q F rπε=;丙球与它们接触后,甲带电2q ,乙带电34q ,两球间的静电力为:203324'48q q F F r πε⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭==[ C ]3(基础训练6)半径为R 的金属球与地连接。
在与球心O 相距d =2R 处有一电荷为q 的点电荷。
如图所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B)2q . (C) -2q. (D) -q . 【提示】静电平衡时金属球是等势体。
金属球接地,球心电势为零。
球心电势可用电势叠加法求得:000'044q dq q R d πεπε'+=⎰, 00'01'44q q dq R d πεπε=-⎰, 'q q R d =-,其中d = 2R ,'2qq ∴=-[ C ]4(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差为:A+σ2(A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V【提示】反接,正负电荷抵消后的净电量为661212(82)101000610Q Q Q C U C U C --=-=-=-⨯⨯=⨯这些电荷重新分布,最后两个电容器的电压相等,相当于并联。
第十章静电场中的导体和电介质(精)
可见大球所带电償小球所带电量召•
两球的电荷密度分别为
Q
J=>J=2
4开刀Z4;rr-^
可见电荷面密度和半径成反比.即曲率半径 愈小(或曲率食大),电荷面密度念大-
9-1,2静电场中的导体第九章静电场中的导体与电介*
第九章
lb.'
9-1,2静电场中的导体第九章静电场中的导体与电介厦
一理解静电场中导体处于静电平衡时的条 件,并能从静电平術条件来分析带电导体在静电场 中的电荷分布.
二了解电介质的极化及其微观机理,了解电 位移矢量力W概念,以及在各向同性介质中,b和电场强度g的关系•H它*
尖端放电:带电导体尖対 附近的电场特别大,可何 尖端附近的空气发生电闽 而成为导体产生放电现到
9-1,2静电场中的导体第九章*电坊中的导体与电介厦
例题1两个半径分别为加尸的球形导体 5“■用 一根很长的细导找连接起来(如图),使这个导体组带 电,电势为X求两球表面电荷面密度与曲率的关系.
解:两个导体所组成的整体可看成是一个孤立导 体系,在静电平衡时有一定的电势值.设这两个 球相距很远,使每个球面上的电荷分布在另一球 所《发的电场可忽略不计.细线的作用是使两球 保持等电势.因此,每个球又可近似的看作为孤 立导体,在两球表面上的电荷分布各自都是均匀 的.设大球所带电荷量为0小球所带电荷量为0则两球的电势为
(二)电荷的大小分布(即:面密度0的大小)
一般情况:面密度O既与导体自瘡的带电量和形状有 关,又与其它带电体的电量看分布有关.
孤立导体:面密度O只与导体自療的带电*和形状有
关,曲率大处电荷面密度O大.
结论:尖凸处。最大,平坦处。较小,凹陷处0最小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
l RB
-+ -+ -+ -+
Q 1 ( 2) E 2 π 0 r r 2 π 0 r l r
( 3) U
RA
RB
退出
R
RB
A
dr Q RB ln 2π 0 r r 2π 0 r l RA
章目录 上一页 下一页 返回
Q RB (4)电容 C 2π 0 r l / ln U RA
例 常用的圆柱形电容器,是由半径为 R1 的长 直圆柱导体和同轴的半径为 R 的薄导体圆筒组成, 2 并在直导体与导体圆筒之间充以相对电容率为 r 的 电介质.设直导体和圆筒单位长度上的电荷分别为 和 . 求(1)电介质中的电场强度和电位移; (2)电介质内、外表面的极化电荷面密度.
章目录 上一页 下一页 返回 退出
击穿场强
Eb :电容器中的电介质能承受的最大电
场强度.
击穿电压
U b:
U0 Eb d
(平行板电容器)
电容器电容的计算
步骤
1)设两极板分别带电 Q
2)求 E
;
;
3)求 U ; 求 .
4)
C
章目录 上一页 下一页 返回 退出
电介质对电场的影响
相对电容率
, E ; E
+ +
+
+ ++ ++
+
E 0
注意 导体表面电荷分布与导体形状以及周围环境有关.
章目录 上一页 下一页 返回 退出
尖端放电现象
E
带电导体尖端附近电场最强
带电导体尖端附近的电场特 别大,可使尖端附近的空气发生 电离而成为导体产生放电现象, 即尖端放电 . 尖端放电现象的利与弊
(r R1 )
(r R2 )
(2)由上题可知
E 0 r 2π 0 r r
D
1 ' ( r 1) 0 E1 ( r 1) 2π r R1 2 ' ( r 1) 0 E2 ( r 1) 2π r R2
第10章 静电场中的导体和电介质
本章要求: 1.了解导体的静电平衡条件,静电场中导体的电学性 质; 2. 了解电介质的极化现象和相对电容量的物理意义; 3.了解有电介质时的高斯定理; 4.掌握电容器及其联接。
章目录 上一页 下一页 返回
退出
内容提要
一 静电场中的导体 1. 导体的静电平衡条件 2. 静电屏蔽
q 0
q E dS 0
S
+
+ + + +
+
S
+
0
+
+ +
有空腔导体
空腔内无电荷
结论 导体内部无电荷
E dS 0, qi 0
S
电荷分布在表面上
S
章目录 上一页 下一页 返回 退出
问 内表面上有电荷吗?
E dS , qi 0
S1
空腔内有电荷
电荷分布在表面上
E dS 0, qi 0
S2
问 内表面上有电荷吗?
S2
q
q
q内 q
S1
结论 当空腔内有电荷 q 时, 内表面因静电感应 出现等值异号的电荷 q ,外表面增加感应电荷 q . (电荷守恒)
章目录 上一页 下一页 返回 退出
r r 1 E' E0 r r 1 ' 0 r
r 1 Q' Q0 r
E0
- - - - - r d E0 E ' E
+ + +
+++++++++++
-----------
+ + +
0 0 E0
E E0 / r
章目录 上一页 下一页 返回 退出
S
若内表面带电 矛 盾
+
+
U AB
AB
E dl 0
S
+
A
+ +
+
+
B+ +
+ +
+
导体是等势体
U AB
AB
所以内表面不带电 E dl 0
结论 电荷分布在外表面上(内表面无电荷)
章目录 上一页 下一页 返回 退出
E dS 0, qi 0
2
屏蔽腔内电场
接地空腔导体
将使外部空间不受 空腔内的电场影响.
+
+ + +
q
+
接地导体电势为零 问:空间各部
分的电场强度如何
q
+
+
q
+
分布 ?
章目录 上一页 下一页 返回 退出
10.2 静电场中的电介质
一 电介质对电场的影响
+++++++++++
相对电容率
E ------0 ----
+++++++++++ E ----------
尖端放电会损耗电能, 还会干扰精密测量和对通 讯产生危害 . 然而尖端放电也有很广泛的应用 .
章目录 上一页 下一页 返回 退出
三
静电屏蔽 1 屏蔽外电场
E
E
外电场
空腔导体屏蔽外电场
空腔导体可以屏蔽外电场, 使空腔内物体不受外电 场影响.这时,整个空腔导体和腔内的电势也必处处相等.
章目录 上一页 下一页 返回 退出
We we dV
V
其中,电场能量密度
2 1 1 D 2 we E D E 2 2 2
章目录 上一页 下一页 返回 退出
10.1 静电场中的导体
一 静电平衡条件
+
++ + ++ +
+
+
感应电荷
章目录 上一页 下一页 返回
退出
+ + + +
+ + + +
+ + + +
(孤立导体球电容)
章目录 上一页 下一页 返回 退出
R2 , r 1, C 4π 0 R1
*P
+
r
R1
+
+ +
二 电容器的串联和并联 +Q1 -Q 1 1、并联
UA +Q2 -Q2
C2
等效电容 UB
C1
UB
UA
C
+ Q2 C2 U A U B
3. 电容
Q Q (1)定义 C VA VB U
(2)电容器电容的求解方法 设电容器极板带有正、负电荷Q 确定极板间场强的分布 由 U VA VB
B
A
E dl 求出极板间电势差
章目录 上一页 下一页 返回 退出
由电容器定义式求出电容
1.
2.
介质中的场强 E E0 E ' 有介质时的高斯定理 D dS Q0i
解 设内球带正电( Q) 外球带负电( Q )
2
4 π 0 r r U E dl
E
Q
er
( R1 r R2 )
+
R2
+
+
+
R2 dr Q 2 l R 1 4 π 0 r r Q 1 1 ( ) 4 π 0 r R1 R2 R1 R2 Q C 4π 0 r U R2 R1
讨论:当
l RB
-+ -+ -+ -+
d RB RA RA 时
RB RA d d ln ln RA RA RA
2 π 0 r lRA 0 r S C d d
l
RA
RB
平行板电 容器电容
章目录 上一页 下一页 返回 退出
R2 例3 球形电容器. 球形电容器是由半径分别为R1 和 的两同心金属球壳所组成,两球壳间充以相对电容率 为 r的电介质.
导 体 是 等 势 体
E dl U E dl 0
导体内部电势相等
+ +
导体表面是等势面
en
+
+
E
d+ l
+
eτ
U AB
AB
E dl 0
A
B
章目录 上一页 下一页 返回 退出
二
E 0
2
静电平衡时导体上电荷的分布 1 实心导体
S i
二
静电场中的介质
注意
对均匀的各向同性电介质
电位移矢量
D E 0 r E
E dS
S
Q0i
i
高斯定理
章目录 上一页 下一页 返回
退出
三
静电场的能量
2 1 1 Q 2 W QU CU 2 2 2C