2、3、4、5、6、7、8、9、11、13、17、19、23、29的倍数特征

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、3、4、5、6、7、8、9、11、13、17、19、23、

29的倍数特征

2的倍数:若一个整数的个位数字是0、2、4、6或8,则这个数就能被2整除。

3的倍数:若一个整数的各位数字的和能被3整除,则这个整数就能被3整除。

4的倍数:若一个整数的末尾两位数能被4整除,则这个数就能被4整除。

5的倍数:若一个整数的末位是0或5,则这个数就能被5整除。

6的倍数:若一个整数能被2和3整除,则这个数能被6整除。

7的倍数:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

8的倍数:若一个整数的未尾三位数能被8整除,则这个数能被8整除。

9的倍数:若一个整数的数字和能被9整除,则这个整数能被9整除。

11的倍数:两种方法:①若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

②若一个整数的个位数字截去,再从余下的数中,减去个位数,如果差是11的倍数,则原数能被11整除。如果差太大或心算不易看出是否11的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断165是否11的倍数的过程如下:16-5=11,所以165是11的倍数;又例如判断2112是否11的倍数的过程如下:211-2=209 , 20-9=11,所以2112是11的倍数,余类推。

13的倍数:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。例如,判断247是否13的倍数的过程如下:24+7×4=52,所以247是13的倍数;又例如判断2496是否13的倍数的过程如下:249+6×4=273 , 27+3×4=39,所以2496是13的倍数,余类推。

17的倍数:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断221是否17的倍数的过程如下:22-1×5=17,所以221是17的倍数;又例如判

断4318是否17的倍数的过程如下:431-8×5=391 ,39-1×5=34,所以4318是17的倍数,余类推。

19的倍数:①若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。例如,判断646是否19的倍数的过程如下:64+6×2=76,所以646是19的倍数;又例如判断1691是否19的倍数的过程如下:169+1×2=171 ,17+1×2=19,所以1691是19的倍数,余类推。

②若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。(注:隔出数,就是一个数扣除末三位后剩下的数字。例如5012的隔出数就是5;12590的隔出数就是12。)例如:判断21128是否19的倍数的过程如下:21×7-128=19,所以21128是19的倍数。

23的倍数:若一个整数的末四位与前面5倍的隔出数的差能被23整除,则这个数能被23整除。(注:这里的隔出数,是一个数扣除末四位后剩下的数字。)例如:判断2271595是否23的倍数的过程如下:1595-227×5=460,460是23的倍数,所以2271595是23的倍数。

29的倍数:若一个整数的末四位与前面5倍的隔出数的差能被29整除,则这个数能被29整除。例如:判断32625是否29的倍数的过程如下:2625-3×5=2610,2610是23的倍数,所以32625是29的倍

数。

另外,其他数的倍数的特征可综合起来考虑:如:15的倍数就是3的倍数和5的倍数的综合。26的倍数就是13的倍数和2的倍数的综合。

1001=7*11*13

111111=3*7*11*13*37,由此得出:各个数位均相同的六位数为以上数的倍数。

1+2+3+4+...+(n-2)+(n-1)+n=n(1+n)/2

如果数字较大,可用以下方法

下面研究被7、11、13整除的数的特征。有一关键性式子:7×11×13=1001。

表述为:判定某数能否被7或11或13整除,只要把这个数的末三位与前面隔开,分成两个独立的数,取它们的差(大减小),看它是否被7或11或13整除。此法则可以连续使用。

下面研究可否被17、19整除的简易判别法.

判定一个数可否被17整除,只要将其末三位与前面隔开,看末三位数与前面隔出数的3倍的差(大减小)是否被17整除。

判定一个数可否被19整除,只要将其末三位与前面隔开,看末三位与前面隔出数的7倍的差(大减小)是否被19整除。

1000以内质数[总共168个]

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,8 9,97,

101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181, 191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277, 281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383, 389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487, 491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,

相关文档
最新文档