初中数学解直角三角形测试题
解直角三角形大题及答案
解直角三角形大题及答案直角三角形是初中数学中比较基础而重要的知识点,下面给出几道解直角三角形的大题及答案。
大题一已知直角三角形的一条直角边为6cm,另一条直角边为8cm,求斜边长。
解析:根据勾股定理可以求出斜边长,即$c=\sqrt{a^2+b^2}$。
带入数据得$c=\sqrt{6^2+8^2}=10$,所以斜边长为10cm。
答案:10cm大题二如图,直角边AC长为12cm,BC长为16cm,连接AB并延长线段交CD于点D,且CE垂直于BD,求CE的长。
解析:首先要求出BD的长度。
由$AC^2+BC^2=BD^2$可得$BD=\sqrt{12^2+16^2}=20$。
然后根据相似三角形CC’E、B’BD可以列出比例$\frac{CE}{BD}=\frac{BC}{B'D}$,即$\frac{CE}{20}=\frac{16}{28}$,解之得$CE=\frac{80}{7}$。
答案:$\frac{80}{7}$cm大题三已知一艘轮船从岸边出发,航向为东北偏东,速度为20km/h,船行了300km到达目的地。
试画出向量图,并求出船行的时间。
解析:如图所示,$\vec{v}=(20\cos45\degree,20\sin45\degree)=(10\sqrt{2},10\sqrt{2})$。
由船行了300km可得船行时间为$\frac{300}{\|\vec{v}\|}=\frac{300}{20}=15$小时。
答案:15小时大题四如图,正方形ABCD中,P点在BC边上,$\anglePAD=45\degree$,PD=2,BP=4,则AP长为多少?解析:如图所示,由正方形ABCD的对称性可得$\angle PAD=\angle BCA=45\degree$,则$\triangle PAD$与$\triangle PBC$相似。
设$AP=x$,则$\frac{x}{4}=\frac{2}{x}$,解之得$x=2\sqrt{2}$。
初中数学解直角三角形练习题及答案
初中数学解直角三角形练习题及答案直角三角形是初中数学中的重要内容,解直角三角形的练习题能够帮助学生巩固知识并提高解题能力。
以下是一些常见的直角三角形练习题及答案供参考:1. 问题:已知直角三角形ABC中,∠C为直角,∠A=30°,斜边AB的长度为10单位。
求∠B和边BC的长度。
解答:由直角三角形的性质可知,∠A + ∠B + ∠C = 180°,且∠C = 90°。
代入已知条件可得∠B + 30° + 90° = 180°,化简得∠B = 60°。
根据正弦定理,可以得出sin 30°/10 = sin 60°/BC。
化简运算可得BC = 10√3 单位。
答案:∠B = 60°,BC = 10√3 单位。
2. 问题:在直角三角形ABC中,∠C为直角,AB = 5单位,AC = 12单位。
求∠A和∠B的大小。
解答:根据勾股定理可得 AC^2 = AB^2 + BC^2,代入已知条件可得 12^2 = 5^2 + BC^2。
化简运算可得BC = √119 单位。
由正弦定理可得 sin A/5 = sin 90°/12,化简运算可得 sin A = 5/12。
通过查表或计算器可以得到∠A 的近似值为 24.6°。
∠B = 90° - ∠A - ∠C = 90° - 24.6° - 90° = 65.4°。
答案:∠A 约等于 24.6°,∠B 约等于 65.4°。
3. 问题:在直角三角形ABC中,AC = 8单位,BC = 15单位。
求∠A和边AB的长度。
解答:根据勾股定理可得 AC^2 + BC^2 = AB^2,代入已知条件可得 8^2 + 15^2 = AB^2。
化简运算可得AB = √289 = 17 单位。
由正弦定理可得 sin A/8 = sin 90°/15,化简运算可得 sin A = 8/15。
初三数学解直角三角形试题
初三数学解直角三角形试题1.如下图,表示甲、乙两山坡的情况, _____坡更陡。
(填“甲”“乙”)【答案】乙【解析】根据题中已知条件求出各自的坡度比进行比较即可.甲的垂直距离为:,坡度为:乙的坡度为:∵∴乙坡更陡.【考点】解直角三角形的应用点评:勾股定理的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.2.在△ABC中,AB=AC=10,BC=16,则tanB=_____。
【答案】【解析】根据题意画出图形,由等腰三角形的性质求出BD的长,根据勾股定理求出AD的长,再根据锐角三角函数的定义即可求出tanB的值.如图,等腰△ABC中,AB=AC=10,BC=16,过A作AD⊥BC于D,则BD=8,在Rt△ABD中,AB=10,BD=8,则所以【考点】锐角三角函数的定义、等腰三角形的性质及勾股定理点评:辅助线问题是初中数学的难点,能否根据题意准确作出适当的辅助线很能反映一个学生的对图形的理解能力,因而是中考的热点,尤其在压轴题中比较常见,需特别注意.3.升国旗时,某同学站在离旗杆底部24米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若双眼离地面1.5米,则旗杆的高度为______米。
(用含根号的式子表示)【答案】8+1.5【解析】先根据仰角的正切函数求得旗杆超过该同学双眼的高度,再加上双眼离地面的高度即可. 由题意得旗杆的高度米.【考点】解直角三角形的应用点评:解直角三角形的应用是初中数学平面图形中极为重要的知识点,是中考的热点,在各种题型中均有出现,需特别注意.4.李红同学遇到了这样一道题:tan(α+20°)=1,你猜想锐角α的度数应是()A.40°B.30°C.20°D.10°【答案】D【解析】由tan(α+20°)=1可得tan(α+20°),根据特殊角的锐角三角函数值即可得到α+20°=30°,从而求得结果.∵tan(α+20°)=1∴tan(α+20°)∴α+20°=30°∴α=10°故选D.【考点】特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.5.如图,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8m,要在窗子外面上方安装水平挡光板AC,使午间光线不能直接射入室内,那么挡光板的宽度AC为( )A.1.8tan80°m B.1.8cos80°m C.1.8sin 80°m D.m【答案】D【解析】根据三角函数的定义结合图形的特征即可求得结果.由题意得∠ACB=80°则挡光板的宽度AC=m故选D.【考点】解直角三角形的应用点评:解直角三角形的应用是初中数学平面图形中极为重要的知识点,是中考的热点,在各种题型中均有出现,需特别注意.6.计算:cos30°+sin45°;【答案】【解析】根据特殊角的锐角三角函数值即可求得结果.原式【考点】特殊角的锐角三角函数值点评:计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.7.根据下列条件,求出Rt△ABC(∠C=90°)中未知的边和锐角.(1)BC=8,∠B=60°;(2)AC=,AB=2.【答案】(1)∠A=30°,AB=16,AC=8;(2)∠A=∠B=45°,BC=【解析】根据特殊角的锐角三角函数值及勾股定理即可求得结果.(1)∵∠B=60°,∠C=90°∴∠A=30°∵,即∴AC=8∴;(2)∵AC=,AB=2∴∴∠A=∠B=45°.【考点】解直角三角形点评:计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.8.如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=,求∠B的度数及边BC、AB的长.【答案】16,8【解析】在Rt△ACD中,根据∠CAD的余弦函数即可求得∠CAD=30°,∠BAD=∠CAD=30°,从而得到∠CAB=60°,∠B=90°-∠CAB=30°,再根据∠B的正弦函数即可求得AB的长,从而求得BC的长.在Rt△ACD中,∵cos∠CAD===,∠CAD为锐角.∴∠CAD=30°,∠BAD=∠CAD=30°,即∠CAB=60°.∴∠B=90°-∠CAB=30°.∵sinB=,∴AB===16.又∵cosB=,∴BC=AB·cosB=16·=8.【考点】解直角三角形点评:解直角三角形的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.9.同学们对公园的滑梯很熟悉吧!如图是某公园在“六•一”前新增设的一台滑梯,该滑梯高度AC=2m,滑梯着地点B与梯架之间的距离BC=4m。
数学单元测试题[解直角三角形]-初中三年级数学试题练习、期中期末试卷-初中数学试卷
数学单元测试题[解直角三角形]-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载数学单元测试题[解直角三角形]一.选择题:(3´×12=36´)题号123456789101112选项1.当锐角A>300时,sinA的值为______A.小于B.大于C. 小于D. 大于2.下列等式成立的是_______A.B.C. D.3.在中,如果各边的长度同时扩大2倍,那么锐角A的正弦值和余弦值______A.都扩大2倍B.都缩小2倍C.都不变D.不能确定4.在中,AB=AC,AB=2BC,那么sinB=_______A.B.C.D.5. 在中, ::=1:2:3,那么sinA:sinB:sinC=_________A.1:2:3B.1: :2C. : :D.1: :6.已知α为锐角且,则α的度数为_______A.B.C.D.7.的值等于________A.2B.0C.2D.18.下式成立的是________A.B.C.D.9.若A、B、C为任意三角形的三个内角,下列各式能成立的是______A. B. C. D.10.边长为a的等边三角形的面积为________A.B.C.D.11.在中,,如果,那么的值为________A.B.C.D.12.一般情况下,测量楼高的最佳方法是_______A.站在楼顶望地面两点,测得这两点的俯角,再量得这两点的距离,进行计算.B.在地面上任取两点,测得这两点向上望的仰角,再测得这两点的距离,进行计算.C.在地面上选适当的一点,使它与楼顶的仰角为300,再测量该点到楼底的距离,利用特殊值进行计算.D.在地面上选适当的一点,使它与楼顶的仰角为450,只需测量该点到楼底的距离便求出楼高.二.填空题:(2´×10=20´)13.已知,则=__________,=_________.14.已知,则cosA=_________,tanA=___________.15.已知tanB·tan360=1,则锐角B=_________.16.已知:如图, RtΔABC中,则BC=_________.17.已知等边三角形的两边分别为4㎝,5㎝,则此等腰三角形底角的正切值为__________.18.在RtΔABC中,b+c=6,则b=_________.19.如图,△ABC中,AD△BC于D,CE△AB于E,且BE=2AE,已知AD=, tan△BCE=,那么CE=.20.化简:=________________三.计算题:(5´×4=20´)21.求值:+2sin30°-tan60°+cot45022. 计算:23. 计算:24. 计算:+四.解答下列各题:(6´×4=24´)23、如图,一飞机于空中A处探测到地面目标C,此时飞行高度AC=1300米,从飞机上看地平面控制点B的俯角α=17°,求飞机A到控制点B的距离?(精确到0.1米,参考数据:sin17°=0.29,cos17°=0.96,tg17°=0.31,ctg17°=3.3)23.如图,河对岸有铁塔AB.在C处测得塔顶A的仰角为30°,向塔前进14米到达D,在D 处测得A的仰角为45°,求铁塔AB的高.20、下图为住宅区内的两幢楼,它们的高AB=CD=30m,现需了解甲楼对乙楼的采光的影响情况。
解直角三角形测试题-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载
解直角三角形测试题-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------解直角三角形测试题一. 选择题:(每小题2分,共20分)1. 在△EFG中,△G=90°,EG=6,EF=10,则cotE=()A.B.C.D.2. 在△ABC中,△A=105°,△B=45°,tanC的值是()A.B. C.1 D.3. 在△ABC中,若,,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4. 如图18,在△EFG中,△EFG=90°,FH△EG,下面等式中,错误的是()A.B.C.D.5. sin65°与cos26°之间的关系为()A.sin65°<cos26°B. sin65°>cos26°C.sin65°=cos26°D. sin65°+cos26°=16. 已知30°<α<60°,下列各式正确的是()A. B.C. D.7. 在△ABC中,△C=90°,,则sinB的值是()A.B.C.D.8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是()米2A.150 B.C. 9D. 79. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2△3,顶宽是3米,路基高是4米,则路基的下底宽是()A. 7米B. 9米C. 12米D. 15米10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()A.B.C. D. 1二. 填空题:(每小题2分,共10分)11. 已知0°<α<90°,当α=__________时,,当α=__________时,。
初二数学解直角三角形试题
初二数学解直角三角形试题1.如图,某河堤的横断面是梯形ABCD,BC∥AD,已知背水坡CD的坡度i=1:2.4,CD长为13米,则河堤的高BE为米.【答案】5【解析】过点C作CF⊥AD于点F,由背水坡CD的坡度i=1:2.4可设CF=x,DF=2.4x,再由CD长为13米根据勾股定理即可列方程求得结果.解:过点C作CF⊥AD于点F∵CD长为13米∴,解得∴米.【考点】解直角三角形的应用点评:解直角三角形的应用是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.2.为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图。
按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入。
(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE。
(精确到0.1m)(参考数值,,)【答案】2.3m【解析】根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值.解:在Rt△ABD中,∠BAD=18°,AB=9m,∴BD=AB×tan18°≈2.92m,∴CD=BD-BC=2.92-0.5=2.42m,在Rt△CDE中,∠CDE=72°,CD≈2.42m,∴CE=CD×sin72°≈2.3m.答:CE的高为2.3m.【考点】解直角三角形的应用点评:解直角三角形的应用是中考必考题,一般难度不大,正确作出辅助线构造直角三角形是解题关键.3.如图,由于台风的影响,一棵树在离地面处折断,树顶落在离树干底部处,则这棵树在折断前(不包括树根)长度是 m.【答案】16【解析】由题意分析可知,折断后的上面树的高度是,所以折断前的树德高度是16【考点】勾股定理点评:本题属于对勾股定理的基本知识的理解和运用4.有一块四边形地ABCD,如图,∠B="90°,AB=4" m,BC="3" m,CD="12" m,DA="13" m,求该四边形地ABCD的面积。
初中数学专题《解直角三角形》测试题
初中数学专题《解直角三角形》测试题1.在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦 ( ) (A ) 都扩大2倍 (B ) 都扩大4倍 (C ) 没有变化 (D ) 都缩小一半2.在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( )A .53 B. 54 C. 43 D. 553.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( ) A .12 BCD4、sin65°与cos26°之间的关系为( )A. sin65°<cos26°B. sin65°>cos26°C. sin65°=cos26°D. sin65°+cos26°=15.等腰三角形底边与底边上的高的比是3:2,则顶角为 ( )(A ) 600(B ) 900(C ) 1200(D ) 15006.身高相等的三名同学甲、乙、丙参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设A 7..如图,一渔船上的渔民在A 处看见灯塔M 在北偏东60O方向,这艘渔船以28km/时的速度向正东航行,半小时到B 处,在B 处看见灯塔M在北偏东15O方向,此时,灯塔M 与渔船的距离是( ) A.km 27 B.km 214C.km 7 D.km 148.在Rt ∆ABC 中,∠C=90º,∠A=15º,AB 的垂直平分线与AC 相交于M 点,则CM :MB 等于( )(A )2:3 (B )3:2 (C )3:1 (D )1:39.如图,铁路MN 和公路PQ 在点O处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为( )A .12秒.B .16秒.C .20秒.D .24秒.10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( )A.αsin 1 B. αcos 1 C. αsin D. 1 二、填空11.04sin 45(3)4︒+-π+-= 12. 已知:tanx=2 ,则sinx+2cosx2sinx -cosx=____________.13.锐角A 满足2 sin(A-150则∠A= .14. 当x = 时,xx xx cos sin cos sin -+无意义.(00<x <900 )15. 在Rt △ABC 中,∠C=90°,53s i n =A ,36=++c b a ,则a=__________,b=__________,c=__________,cotA=__________。
第一章 解直角三角形单元测试卷(困难 含解析)
浙教版初中数学九年级下册第一单元《解直角三角形》(困难)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,已知△ABC中,∠B=90°,D,E分别为BC,AC的中点,连结DE,过D作AC的平行线与∠CAB的角平分线交于点F,连结EF,若EF⊥DF,AC=2,则∠DEF的正弦值为( )A. √5−12B. √5+14C. √5−14D. 3+√542. 在△ABC中,已知tanA=tanB,则下列说法不正确的是( )A. 边AB上任意一点P到边AC、BC的距离之和等于点B到AC的距离B. 边AB的垂直平分线是△ABC的对称轴C. △ABC的外心可能在△ABC内部、边上或外部D. 如果△ABC的周长是l,那么BC=l−2AB3. 如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点M处,折痕为AP,再将△PCM,△ADM分别沿PM,AM折叠,此时点C,D落在AP上的同一点N处.给出以下结论:①M是CD的中点;②AD//BC;③∠DAM+∠CPM=90∘;④当AD=CP时,ABCD =√32.其中正确的个数为( )A. 1B. 2C. 3D. 44. 在Rt△ABC中,∠C=90°,cosB=12,则sinA的值为( )A. 12B. √22C. √32D. √35. 如图,AB⏜是半径为1的半圆弧,△AOC 为等边三角形,点D 是BC ⏜上的一动点、则△COD 的面积S 的最大值是 ( )A. √34B. √33C. √32D. 126. 如图,Rt △ABC 中,∠BAC =90∘,cosB =14,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使∠ADE =∠B ,连接CE ,则CEAD的值为( )A. 32B. √3C. √152D. 27. 已知圆内接正三角形的面积为√3,则该圆的内接正六边形的边心距是( ) A. 2B. 1C. √3D. √328. 如图,在正方形ABCD 中,AB =2,点E 是BC 边的中点,连接DE ,延长EC 至点F ,使得EF =DE ,过点F 作FG ⊥DE ,分别交CD 、AB 于N 、G 两点,连接CM 、EG 、EN ,下列正确的是:①tan∠GFB =12;②MN =NC ;③CMEG =12;④S 四边形GBEM =√5+12( )A. 4B. 3C. 2D. 19. 四巧板是一种类似七巧板的传统智力玩具,它是由一个长方形按如图1分割而成,这几个多边形的内角除了有直角外,还有45°、135°、270°角.小明发现可以将四巧板拼搭成如图2的T字形和V字形,那么T字形图中高与宽的比值ℎl为( )A. √2B. √2+12C. 4+√24D. 3√2210. 如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于( )A. 12B. 13C. 14D. 2311. 如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②△OAP∽△EAC;③四边形OECF的面积是正方形ABCD面积的14;④AP−BP=√2OP;⑤若BE:CE=2:3,则tan∠CAE=47.其中正确的结论有( )个A. 2个B. 3个C. 4个D. 5个12. 如图,建筑工地划出了三角形安全区(△ABC),一人从A点出发,沿北偏东53°方向走50m 到达C点,另一人从B点出发,沿北偏西53°方向走100m到达C点,则点A与点B相距(tan53°=43)( )A. 30√15mB. 30√17mC. 40√10mD. 130m第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有______.14. 如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为______.,BE=2,则该菱形的面积是______.15.如图,在菱形ABCD中,DE⊥AB,cosA=3516.如图,在矩形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,若AH:AE=4:3,四边形EFGH的周长是40cm,则矩形ABCD的面积是______cm2.三、解答题(本大题共9小题,共72分。
解直角三角形练习题
解直角三角形练习题解直角三角形练习题直角三角形是初中数学中的一个重要概念,也是几何学中的基础知识之一。
解直角三角形的练习题可以帮助我们巩固和应用所学的知识,提高解题能力和思维逻辑。
在本文中,我将为大家介绍一些常见的直角三角形练习题,并给出详细的解答过程。
1. 已知直角三角形的斜边长为5,一条直角边长为3,求另一条直角边的长。
解答:根据勾股定理,直角三角形的斜边的平方等于两条直角边的平方和。
设另一条直角边的长为x,则有3² + x² = 5²。
化简得x² = 25 - 9,即x² = 16。
两边开平方根得x = 4。
所以另一条直角边的长为4。
2. 已知直角三角形的斜边长为10,一条直角边长为6,求另一条直角边的长。
解答:同样根据勾股定理,设另一条直角边的长为x,则有6² + x² = 10²。
化简得x² = 100 - 36,即x² = 64。
两边开平方根得x = 8。
所以另一条直角边的长为8。
3. 已知直角三角形的斜边长为13,一条直角边长为5,求另一条直角边的长。
解答:同样应用勾股定理,设另一条直角边的长为x,则有5² + x² = 13²。
化简得x² = 169 - 25,即x² = 144。
两边开平方根得x = 12。
所以另一条直角边的长为12。
通过以上的例题,我们可以看到解直角三角形的关键在于应用勾股定理。
勾股定理是直角三角形的基本定理,它揭示了直角三角形三条边之间的关系。
利用这个定理,我们可以在已知两条边的情况下求解第三条边的长度。
除了应用勾股定理,我们还可以利用正弦定理和余弦定理来解直角三角形的问题。
正弦定理和余弦定理是三角形中的重要定理,它们可以用来求解任意三角形的边长和角度。
正弦定理可以用于解决已知一个角和两条边的情况下求解第三条边的长度。
【精品】初中数学中考专题《解直角三角形》真题汇编
专题16 解直角三角形真题汇编1总分数 100分时长:不限题型单选题填空题简答题综合题题量 2 3 15 4总分 4 6 60 441(2分)(2017怀化中考)如图,在平面直角坐标系中,点A的坐标为(3,4),那么的值是()A.B.C.D.2(2分)(2017常德中考)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加.其和是定值.则方阵中第三行三列的“数”是()-3 -2 0|-5| 64A. 5B. 6C. 7D. 83(2分)(2017岳阳中考)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r的圆内接正n边形的周长为L,圆的直径为d.如图所示,当n=6时,,那么当n=12时,____1____(结果精确到0.01,参考数据:si n15°=cos75°≈0.259).4(2分)(2017张家界中考)如图,在正方形ABCD中,,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为____1____.5(2分)(2017邵阳中考)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40 km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是____1____km.6(3分)(2017长沙中考)计算:|-3|+(π-2017)0-2sin30°+.7(3分)(2017株洲中考)计算:.8(3分)(2017益阳中考)计算:.9(3分)(2017岳阳中考)计算:10(3分)(2017邵阳中考)计算:.11(3分)(2017永州中考)计算:.12(3分)(2017娄底中考)计算:.13(3分)(2017怀化中考)计算:. 14(3分)(2017张家界中考)计算:.15(3分)(2017湘西土家族苗族自治州中考)计算:16(8分)(2017长沙中考)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)(4分)求∠APB的度数;(2)(4分)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?17(6分)(2017衡阳中考)衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图,为了测量来雁塔的高度,在E处用高为1.5米的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4米,又测得塔顶C的仰角为60°.求来雁塔的高度.(结果精确到0.1米)18(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.19(6分)(2017郴州中考)如图所示,C城市在A城市正东方向.现计划在A,C两城市问修建一条高速铁路(即线段AC).经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P 为圆心,100 km为半径的圆形区域.请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.73)20(6分)(2017常德中考)图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,)21(6分)(2017娄底中考)数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度.李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶曰的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1∶0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8).22(6分)(2017张家界中考)位于张家界核心景区内的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在中,∠ABC=70.5°,在中,∠DBC=45°,且CD=2.3米,求像体AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)23(8分)(2017湘潭中考)某游乐场部分平面图如图所示,C,E,A在同一直线上,D,E,B在同一直线上.测得A处与E处的距离为80米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(,)(1)(4分)求旋转木马E处到出口B处的距离;(2)(4分)求海洋球D处到出口B处的距离(结果保留整数).24(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.专题16 解直角三角形真题汇编1参考答案与试题解析1(2分)(2017怀化中考)如图,在平面直角坐标系中,点A的坐标为(3,4),那么的值是()A.B.C.D.【解析】本题考查坐标网格中的三角函数计算,作AB⊥x轴于点B,由勾股定理得OA=5,D 在Rt△AOB中,利用正弦函数的定义得出,故选C.【答案】C2(2分)(2017常德中考)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加.其和是定值.则方阵中第三行三列的“数”是()-3 -2 0|-5| 64A. 5B. 6C. 7D. 8【解析】本题考查实数的运算.分别选取第一行一列,第二行二列,第三行四列,第四行三列的四个“数”,求其和为.设第三行三列,第四行二列的四个“数”,求其和为,解得x=7,故选C.【答案】C3(2分)(2017岳阳中考)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r的圆内接正n边形的周长为L,圆的直径为d.如图所示,当n=6时,,那么当n=12时,____1____(结果精确到0.01,参考数据:sin15°=cos75°≈0.259).【解析】本题考查圆周率的近似值的计算.当n=12时,如图所示,由题意可知,作OC⊥AB,则∠AOC=15°.在直角三角形AOC中,,所以AC≈0.259r,AB=2AC≈0.518r,L=AB≈6.216r,所以.【答案】3.114(2分)(2017张家界中考)如图,在正方形ABCD中,,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为____1____.【解析】本题考查正方形的性质、等边三角形的性质、三角形面积的计算.∵四边形ABCD 是正方形,∴AB=BC,∠ABC=90°,又BC=BP,∠CBP=30°,∴AB=BP,∠ABP=60°.∴是等边三角形,∴,∠DAE=30°.,AE=2DE=2×2=4,,.过点P作PF⊥CD,垂足为F,则∠EPF=∠DAE=30°,,∴.【答案】5(2分)(2017邵阳中考)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40 km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是____1____km.【解析】本题考查利用特殊的角解直角三角形,在Rt△ALR中,由∠ARL=30°,AR=40 km,得AL=20 km,,所以.【答案】6(3分)(2017长沙中考)计算:|-3|+(π-2017)0-2sin30°+.【解析】【名师指导】本题考查绝对值、零次幂、负指数幂的运算法则、特殊角的正弦值.根据去绝对值符号法则、零次幂、负指数幂的运算法则、特殊角的正弦值分别计算求解.【答案】解:原式=3+1-2×+3=6.7(3分)(2017株洲中考)计算:.【解析】【名师指导】本题考查有理数运算的化简与求值.【答案】解:原式.(其中:)8(3分)(2017益阳中考)计算:.【解析】【名师指导】本题考查绝对值、特殊角的三角函数值、零指数幂的计算.【答案】解:原式==-5.9(3分)(2017岳阳中考)计算:【解析】【名师指导】本题考查实数的相关计算、三角函数、负指数、零指数、绝对值. 【答案】解:原式===2.10(3分)(2017邵阳中考)计算:.【解析】【名师指导】本题考查二次根式、特殊角三角函数值的计算、负指数的计算. 【答案】解:原式===-211(3分)(2017永州中考)计算:.【解析】【名师指导】本题考查二次根式、零指数幂、特殊角的三角函数值的混合运算. 根据运算法则计算即可.【答案】解:==-1.12(3分)(2017娄底中考)计算:.【解析】【名师指导】本题考查实数的综合运算.先化简二次根式,计算负指数幂,求特殊角的三角函数值,计算零指数幂,然后进行综合运算,求出算式的结果即可.【答案】解:原式===-2.13(3分)(2017怀化中考)计算:.【解析】【名师指导】本题考查实数的计算,涉及绝对值、零指数、负指数、特殊角的三角函数值及立方根的运算.【答案】解:原式==-2.14(3分)(2017张家界中考)计算:.【解析】【名师指导】本题考查整数指数幂、三角函数值、绝对值的意义.【答案】解:原式==2.15(3分)(2017湘西土家族苗族自治州中考)计算:【解析】【名师指导】本题考查实数的相关计算、二次根式、指数幂、三角函数.【答案】解:原式=.(其中)16(8分)(2017长沙中考)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)(4分)求∠APB的度数;(2)(4分)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【解析】(1)本题考查解直角三角形的应用.根据方位角的概念得到三角形中角的度数,进而求解;(2)根据含特殊角的直角三角形的边的关系求解相关线段的长度,进而求解.【答案】(1)解:依题意得,∠PAB=30°,∠PBE=60°,∵∠PBE=∠PAB+∠APB,∴∠APB=∠PBE-∠PAB=60°-30°=30°.(2)由(1)知∠PAB=∠APB=30°,∴PB=AB=50(海里),如图,过点P作PC⊥AB于点C,在中,PC=PB·sin60°=(海里).∵>25,∴海监船继续向正东方向航行是安全的.17(6分)(2017衡阳中考)衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图,为了测量来雁塔的高度,在E处用高为1.5米的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4米,又测得塔顶C的仰角为60°.求来雁塔的高度.(结果精确到0.1米)【解析】【名师指导】本题考查利用解直角三角形解决实际问题.根据已知条件可得等腰三角形ABC,从而得AB=BC,再在直角三角形中利用锐角三角函数求解或设CD为x米,锐角三角函数表示出BD,找到等量关系,建立方程求解.【答案】解法一:∵∠CAB=30°,∠CBD=60°,∴∠ACB=30°,∴AB=BC=10.4.又∵∠CDA=90°∴CD=BC·sin∠CBD=10.4×sin60°=10.4×≈9.0064,9.006 4+1.5≈10.5答:来雁塔高约10.5米.解法二:设CD为x米.∵∠CBD=60°,∠CDA=90°,∴.又∵∠CAB=30°,∴.∴10.4+x,x≈9.0064,9.006 4+1.5≈10.5(米).答:来雁塔高约10.5米.18(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.【解析】(1)【名师指导】本题考查解直角三角形的应用.将角α转化到直角三角形APH中,由三角函数求解即可;(2)解法一:作BT⊥HQ于点T,由AB=HT=HP+PQ-TQ计算;解法二:延长QB,HA交于点M,由三角函数建立方程求得AB的长既可.【答案】(1)解:依题意可知,∠HPA=a,在中,,因为,所以,解得HP=250(米).所以点H到桥左端点P的距离为250米.(2)解法一:作BT⊥HQ于点T,由题意可知,在中,.所以AB=HT=HP+PQ-TQ=250+1255-1500=5(米)所以这架无人机的长度为5米.解法二:延长QB,HA交于点M,由题意可知,∠BQH=30°在中,∠MBA=30°,设AB=x,则,由(1)知HP=250,且PQ=1255,所以HQ=HP+PQ=1505,中,,即,解得x=5.所以这架无人机的长度为5米.19(6分)(2017郴州中考)如图所示,C城市在A城市正东方向.现计划在A,C两城市问修建一条高速铁路(即线段AC).经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P 为圆心,100 km为半径的圆形区域.请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.73)【解析】【名师指导】本题考查解直角三角形的实际应用.解题的关键在于将实际问题转化到直角三角形中求解.【答案】解:过点P作PH⊥AC垂足为点H,由题意可知∠EAP=60°,∠FBP=30°,∴PAB=30°,∠PBH=60°,∴∠APB=30°,∴AB=PB=120.在,∵,∴,∵103.80>100,∴要修建的这条高速铁路不会穿越森林保护区.20(6分)(2017常德中考)图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,)【解析】【名师指导】本题考查解直角三角形的实际应用.解题的关键在于添加辅助线构造直角三角形求解.【答案】解:过点E作EP⊥BC,交CB的延长线于点P,过点A作AQ⊥FP于点Q,在Rt△ABC中,,∴AB=CB·tan75°≈0.60×3.732≈2.239,∴四边形ABPQ是矩形,∴PQ≈2.239,又∵HE⊥FP,AQ⊥FP’∴,∴∠FAQ=∠FHE=60°,在中,,∴,∴DQ=FQ-FD≈2.165-1.35=0.815,∴DP=DQ+QP≈0.815+2.239=3.054≈3.05.答:篮筐D到地面的距离约为3.05米.21(6分)(2017娄底中考)数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度.李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶曰的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1∶0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8).【解析】【名师指导】本题考查解直角三角形的应用.作垂线构造直角三角形,根据锐角三角函数求出相关线段的长度,再根据线段间的数量关系求出仙女峰的高度.【答案】解:过点B作AC的垂线,交AC的延长线于点D.设BD=x米,在中,,在中,,∵AD-CD=AC,∴,解得x=580.答:仙女峰的高度是580米.22(6分)(2017张家界中考)位于张家界核心景区内的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在中,∠ABC=70.5°,在中,∠DBC=45°,且CD=2.3米,求像体AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【解析】【名师指导】本题考查应用解直角三角形的知识解决实际问题.【答案】解:在中,∵∠DBC=45°,∴BC=DC=2.3米,在中,AC=BC·tan70.5°≈6.5米,则AD=AC-DC≈6.5-2.3=4.2(米).23(8分)(2017湘潭中考)某游乐场部分平面图如图所示,C,E,A在同一直线上,D,E,B在同一直线上.测得A处与E处的距离为80米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(,)(1)(4分)求旋转木马E处到出口B处的距离;(2)(4分)求海洋球D处到出口B处的距离(结果保留整数).【解析】(1)【名师指导】本题考查解直角三角形.利用在直角三角形中,30°角所对的直角边等于斜边的一半求解;(2)根据特殊角的正弦值求解相关线段的长度,进而得到结论.【答案】(1)解:在中,∵∠ABE=90°,∠BAE=30°,AE=80,∴∠AEB=60°,.答:旋转木马E处到出口B处的距离为40米.(2)在中,∵∠C=90°,∴∠CED=∠AEB=60°∵,CD=34,∴(或者).∴DB=DE+BE=40+40=80(慊蛘逥B=DE+BE=40+39=79).答:海洋球D处到出口B处的距离为80(或者79)米(其他方法参照给分).24(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.【解析】(1)【名师指导】本题考查解直角三角形的应用.将角α转化到直角三角形APH中,由三角函数求解即可;(2)解法一:作BT⊥HQ于点T,由AB=HT=HP+PQ-TQ计算;解法二:延长QB,HA交于点M,由三角函数建立方程求得AB的长既可.【答案】(1)解:依题意可知,∠HPA=a,在中,,因为,所以,解得HP=250(米).所以点H到桥左端点P的距离为250米.(2)解法一:作BT⊥HQ于点T,由题意可知,在中,.所以AB=HT=HP+PQ-TQ=250+1255-1500=5(米)所以这架无人机的长度为5米.解法二:延长QB,HA交于点M,由题意可知,∠BQH=30°在中,∠MBA=30°,设AB=x,则,由(1)知HP=250,且PQ=1255,所以HQ=HP+PQ=1505,中,,即,解得x=5. 所以这架无人机的长度为5米.。
第一章 解直角三角形单元测试卷(标准难度 含答案)
浙教版初中数学九年级下册第一单元《解直角三角形》(标准难度)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A. sinA=√32B. tanA=12C. cosB=√32D. tanB=√32. 如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )A. 8B. 10C. 12D. 163. 如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tan B=53,则tan∠CAD的值为( )A. √33B. √35C. 13D. 154. 在实数π,13,√2,sin30°中,无理数的个数为( )A. 1B. 2C. 3D. 45. 如图,△ABC的三个顶点分别在正方形网格的格点上,下列三角函数值错误的是( )A. sinB=35B. cosB=45C. tanB=34D. tanA=436. 如图,CD是平面镜,光线从点A出发,经CD上点E反射后照射到点B.若入射角为α,AC⊥CD,BD⊥CD,垂足分别为点C,D,且AC=3,BD=6,CD=11,则tanα的值为( )A. 113B. 311C. 911D. 1197. 在Rt△ABC中,∠C=90∘,cosA=√32,∠B的平分线BD交AC于点D,若AD=16,则BC的长为( )A. 6B. 8C. 8√3D. 128. 如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )A. ①②;B. ②③;C. ①②③;D. ①③;9. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )A. 95sinα米B. 95cosα米C. 59sinα米D. 59cosα米10. 如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为( )A. √33B. √32C. 1D. √6211. 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=α,则点A到OC的距离等于( )A. a⋅sinα+b⋅sinαB. a⋅cosα+b⋅cosαC. a⋅sinα+b⋅cosαD. a⋅cosα+b⋅sinα12. 如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45∘方向然后向西走80米到达C点,测得点B在点C的北偏东60∘方向,则这段河的宽度为( )A. 80(√3+1)米B. 40(√3+1)米C. (120−40√3)米D. 40(√3−1)米第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是.14. 在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sin A=3,则菱形ABCD的周长是.515. 若锐角α满足cosα<√2且tanα<√3,则α的范围是.216. 如图,在△ABC中,AB=AC=5cm,cosB=3.如果⊙O的半径为√10cm,且经过点B,5C,那么线段AO=cm.三、解答题(本大题共9小题,共72分。
解直角三角形的应用-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载
解直角三角形的应用-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------解直角三角形的应用一.判断题:1.在直角三角形中,∠C=90°,siA=,则斜边AB的长为3。
()2.在Rt∠ABC中,∠C=90°,如果sinA=sinB,则∠A=∠B=45°。
()3.在∠ABC中,∠A:∠B:∠C=1:2:3,则BC:AC:AB=1:2:3。
()4.在Rt∠ABC中,∠C=90°,sinA=,则AC大于BC。
()5.在Rt∠ABC中,如果已知一边和一锐角,则∠ABC可解。
()二.选择题:6.在Rt∠ABC中,∠C=90°,∠A≠∠B,则下列等式中正确的是()(A)sinA-sinB=0 (B)cotA-tanb=0(C)cosA-cosB=0 (D)sinA+sinB=07.已知∠A+∠B=90°,且cosA=,则cosB的值为()(A).(B).(C).(D).8.化简的结果为()(A)tan500-sin500(B)sin500-tan500. (C)2-sin500-tan500.(D)-sin500-tan500.9.已知直角三角形的两直角边的比为3:7,则最小角的正弦值为()(A).(B).(C).(D).10.在Rt∠ABC中,∠C=90°,tanA=3,AC等于10,则S∠等于()(A)3 (B)300 (C)(D)15011.在Rt∠ABC中,∠C=90°,sinA:sinB=4:5,则cotA的值是()(A).(B).(C).(D).12.如果直角三角形斜边长为4,一条直角边的长为2,那么斜边上的高为()(A)2(B)(C)(D)213.在Rt∠ABC中,∠C=90°,已知α和A,则下列关系式中正确的是()(A)c=a·sinA(B)c=(C)c=a·cosA(D)c=14.在Rt∠ABC中,∠C=90°,如果cotB=,则下列式子中正确的是()(A)00<B<300.(B) 600<B<900.(C)300<B<450. (D)450<B<600.15.已知:如右图,在∠ABC中,AD是BC边上的中线,∠B=30°,∠C=450,AC=4,求AB和tan∠ADC。
初中数学解直角三角形测试题
解直角三角形测试题1 姓名
1. 在△EFG 中,∠G=90°,EG=6,EF=10,则tanE=( ) A.
43 B. 34 C. 53 D. 3
5 2. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( )
A. 21
B. 3
3 C. 1
D. 3. 若某人沿坡度i =3:4的斜坡前进10米,则AC=__ _米.
4.
5. 已知30°<α<60°,下列各式正确的是( )
A.
B.
C.
D.
6. 已知0°<α<90°,当α=__________时,2
1sin =α, 7. 小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:o o o o 33711sin37tan37sin 48tan48541010
≈≈≈≈,,,
) 解:
8. 如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)
9. 如图,太阳光线与地面成60°角,一棵大树倾斜后与地面成30°角, 这时测得大树在地面上的影长约为10米,求大树的长.
B
37° 48° D
C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
米
A B C
a
α
直角三角形边角关系测试题
1.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,
AB 为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是( )
A .
32
)m B .
(32)m C .3
m D .4m
2.小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了( )
A .5200m
B .500m
C .3500m
D .1000m
3.如图,在等腰Rt △ABC 中,∠C =90o
,AC =6,D 是AC 上一点,若tan ∠DBA =
5
1,则AD 的长为
(A ) 2 (B )3 (C )2 (D )1
4.在△ABC 中,∠C =90°,sinA =45
,则tanB =( )
A .43
B .
34
C .
35
D .45
5.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB
=α,那么AB 等于 ( ) A 、a ·sin α B 、a ·tan α C 、a ·cos α D 、α
tan a
6.如图,在Rt △ABC 中,∠C =90°, AM 是BC 边上的中线,
5
3sin =
∠CAM ,则B ∠tan 的值为 .
7. 如图,先锋村准备在坡角为0
30=α山坡上栽树,要求相邻两树
之间的水平距离为5米,那么这两树在坡面上的距离AB 为
__________米.
8、如图,某河道要建造一座公路桥,要求桥面离地面高度AC 为3米,引桥的坡角ABC
∠为︒15,则引桥的水平距离BC 的长是_________米(精确到0.1米)。
9. 如图所示,小明在家里楼顶上的点A 处,测量建在与
小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:414.12≈ 732.13≈)
10.如图,在一次数学课外实践活动中,要求测教学楼的高度AB .小刚在D 处用高1.5m 的测角仪CD ,测得教学楼顶端A 的仰角为30°,然后向教学楼前进40m 到达E ,又测得
教学楼顶端A 的仰角为60°
.则这幢教学楼的高度AB
11.小明在某风景区的观景台O 处观测到北偏东
50的P 处有一艘货船,该船正向南匀速航行,30分钟后再观察时,该船已航行到O 的南偏东40 ,且与O 相距2km 的Q 处.如图所示.
求: (1)∠OPQ 和∠OQP 的度数;
(2)货船的航行速度是多少km/h?
(结果精确到0.1km/h, 已知sin
50=cos
40=0.7660,
cos
50=sin
40=0.6428, tan
50=1.1918, tan
40=0.8391, 供选用.)
A
B
C
12.已知:如图,在Rt△ABC中,∠C=90°,AC= 3 .点D为BC边上一点,且BD=2AD,∠AD C=60°求△ABC的周长(结果保留根号)
13.如图,小敏、小亮从A,B两地观测空中C处一个气球,分
别测得仰角为30°和60°,A,B两地相距100 m.当气球
球的仰角为45°.
(1)求气球的高度(结果精确到0.1m);
(2)求气球飘移的平均速度(结果保留3个有效数字).
14.庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同
时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度3
i,山坡长为240
1∶
米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)
15.如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传
送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米
的通道,试判断距离B点4米的货物MNQP是
否需要挪走,并说明理由.(说明:⑴⑵的计
算结果精确到0.1米,参考数据:2≈1.41,
3≈1.73,5≈2.24,6≈2.45)。