数理方程典型方程与定解条件

合集下载

第一章 三类典型方程和定解条件

第一章 三类典型方程和定解条件

a 其中,ij (x), bi (x), c x , f (x)都只是 x1 , x2, , xm 的已知 函数,与未知函数无关。
若一个函数具有某偏微分方程中所需 要的各阶连续偏导数,并且代入该方程中 能使它变成恒等式,则此函数称为该方程 的解(古典解)。 初始条件和边界条件都称为定解条件。 把某个偏微分方程和相应的定解条件 结合在一起,就构成了一个定解问题。 只有初始条件,没有边界条件的定解问题 称为始值问题(或柯西问题)。反之,只 有边界条件,没有初始条件的定解问题称 为边值问题。既有初始条件又有边界条件 的定解问题,称为混合问题。
数学物理方程
第一章 三类典型方程和定解条件 第二章 分离变量法 第三章 Laplace方程的格林函数法
第四章 贝塞尔函数及勒让德多项式
第一章 三类典型方程和定解条件
数学物理方程的研究对象——定解问题。 一个定解问题是由偏微分方程和相应的定解 条件组成。我们先来介绍三类典型的方程:

三类典型方程
一、波动方程 二、热传导方程
用以说明初始状态的条件称为初始条件。 用以说明边界上的约束情况的条件称为边 界条件。
一、初始条件
比如说波动方程(1.3)其初始条件有两 个,一个是参数u,一个是u的一阶导数。 即: u u t 0 及 都已知。 t
t 0
而热传导方程(1.7)其初始条件只有一 个,就是参数u。即:
Байду номын сангаасu t 0 是已知。
一个定解问题提的是否符合实际情况,从 数学角度来看,有三方面可以加以检验:
1、解的存在性,看定解问题是否有解。
2、解的唯一性,看是否只有一个解。
3、解的稳定性,看当定解条件有微小
变动时,解是否相应地只有微小的变 动,若确实如此,则称此解是稳定的。

数理方程知识点总结

数理方程知识点总结

数理方程知识点总结数理方程是数学理论中的重要分支,其主要研究方向是解决各种类型的方程,包括一元多项式方程、二元一次方程以及各种变形形式的方程等。

数理方程的解决方法非常多元化,通常采用代数、几何、分析等多种方法进行解决,本文将对数理方程的相关知识点进行总结。

一、一元多项式方程1、一元n次多项式方程形如$f(x) = a_0x^n + a_1x^{n-1} + ... + a_{n-1}x + a_n = 0$,其中$a_0 \neq 0$, $n$为任意正整数,求出方程的根$x_1, x_2, ...,x_n$。

求解该方程的方法有以下几种:(1)牛顿迭代法牛顿迭代法的基本思想是:将一元n次多项式方程重新构造成$x = g(x)$的形式,并求该函数在曲线上的切线截距,不断通过切线截距逼近根的值。

具体算法如下:• 任选一个随机数$x_0$作为初值;• 计算$y = f(x)$在$x = x_0$处的导数$f'(x_0)$;• 根据切线公式$y = f(x_0) + f'(x_0)(x - x_0)$,计算出当$y = 0$时的$x$值$x_1$,即$x_1 = x_0 - f(x_0) / f'(x_0)$;• 重复上述过程,将$x_1$作为$x_0$,计算出$x_2$;• 重复以上步骤,直到$x_n$接近被求解的根。

(2)二分法二分法的基本思想是根据函数值的符号改变区间的端点,使函数在这个区间内单调递增或递减,从而迅速缩小待求解根所在的“搜索区间”,达到求解根的目的。

算法流程如下:• 选定区间$[a, b]$值满足$f(a)f(b) < 0$,即根在$[a, b]$区间内;• 取区间中点$c = (a + b) / 2$,计算$f(c)$;• 如果$f(c) = 0$,即找到根;• 如果$f(a)f(c) < 0$,即根在区间$[a, c]$内,则将$b$更新为$c$;• 如果$f(b)f(c) < 0$,即根在区间$[c, b]$内,则将$a$更新为$c$;• 重复以上过程,不断缩小区间,直到找到根或直到区间长度足够小时停止。

数学物理方程 第一章典型方程和定解条件

数学物理方程 第一章典型方程和定解条件

温 度 分 布 满 足2u F f k
特 别 , 如 果 f0,则2u 0
位 势 (Poisson)方 程 Laplace 方程
☆ 三种典型的数学物理方程
方程类型 方程形式
典型例子
弦振动方程
2u t 2
a2
2u x2
波动方程
2u t 2
a22u
膜的横振动方程
2u t 2
a2
(
2u x2
2u y2
我 们 就 称 其 为 齐 次 边 界 条 件 , 反 之 , 称 非 齐 次 的 。
三、定解问题的概念
1、定解问题
把某种物理现象满足的偏微分方程和其相应的定解条件 结合在一起,就构成了一个定解问题。
(1) 初值问题:只有初始条件,没有边界条件的定解问题;
(2) 边值问题:没有初始条件,只有边界条件的定解问题;
其中: u (x x d x ,t) u (x x ,t) x u (x x ,t) d x 2 u ( x x 2 ,t)d x
Tu 2(xx2,t)gdx2u(tx2,t)dx
Tu 2(xx2,t)gdx2u(tx2,t)dx
Tu2(x,t)
2u(x,t)
g
x2
t2
令: a 2 T
运动时,弦上各点的运动规律。
简化假设:
(1)柔软:弦上的任意一点的张力沿弦的切线方向; 细:与张力相比可略去重力,弦的截面直径与长度相比可忽略,弦视为曲
线 均匀:质量是均匀的,线密度为常数。
(2)横振动:振动发生在同一平面内。若弦的平衡位置为x轴,横向是指 弦上各点在同一平面内垂直于x轴的方向运动;
(3)热交换状态
(或u f) ns
第二类边界条件

数理方程总结完整版

数理方程总结完整版

此方程的特征函数和特征值分别为:
②“左一右二”齐次边界条件的齐次方程: 2 2u u 2 a , 0 x l , t 0, 2 2 t x u | x 0 0, u | x l 0, t 0, x 1 1 1 则
u ( x, t ) (Cn cos
sin
(n 1/ 2) x l
③:“左二右一”齐次边界条件的齐次方程:
2 u 2 u a , 0 x l , t 0, 2 t x 0, x
则u(x,t)= Cne
n 1
③“左二右一”的齐次边界条件的齐次方程:
2 2u 2 u a , 0 x l , t 0, 2 2 t x u | x 0 0, u | x l 0, t 0, x 1 1


2 2 ( n 1/ 2) ( n 1/ 2) 2 此方程的特征函数和特征值分别为: X ( x) cos x, = = , n 1,2,3... 2 l l
②:“左一右二”齐次边界条件的齐次方程:
2 u u 2 a , 0 x l , t 0, 2 t x u | x 0 0, u | x l 0, t 0, x
则u(x,t)= Cne
n 1

a 2 ( n1/2 )2 2 t l2
(n ) a (n ) a (n ) 2 2 2 u ( x, t ) (Cn cos t Dn sin t ) cos x l l l n 1
1
④“左二右二”的齐次边界条件的齐次方程:
2 2u 2 u a , 0 x l , t 0, 2 t 2 x u | x 0 0, u | x l 0, t 0, x x

数理方程中典型方程和定解条件的推导PPT课件

数理方程中典型方程和定解条件的推导PPT课件

P i di

Gdx v dv
x

x dx
第16页/共87页
电路准备知识 电容元件:
du
i C C
C
dt
q Cu
i dq d(Cu) C du
dt dt
dt
q idt
电感元件:
uL
L
diL dt
uL
dL dt
L Li
di uL L dt
i
1 L
udt
换路定理: 在换路瞬间,电容上的电压、电感中的电流不能突变。
a2ux x utt
第14页/共87页
一维波动方程
二. 传输线方程(电报方程)的建立
现在考虑电流一来一往的高频传输线,它被当作具有分布参数的导体, 每单位长导线所具有的电阻、电感、电容、电导分别以 R、L、C、G 表示。
对于直流电或低频的交流电,电路的基尔霍夫(Kirchhoff)定律指出, 同一支路中的电流相等。但对于较高频率的电流(指频率还未高到显著 辐射电磁波出去的程度),电路导线中的自感和电容的效应不能被忽视, 因而同一支路中电流呈现瞬态变化。
g)
②一般说来,ut t g , 将 g 略去,上式变为
T
u x
xdx T
u x
x
ds ut t
T( u x
u xdx x
x ) d x ut t
第12页/共87页
T T
T( u x
u xdx x
x ) d x ut t
T T 指出,即张力不随地点 而异,它在整根弦中取 同一数值。
“今考虑一来一往的高频传输线,每单位长一来一往所具有的电阻,电感,电容, 电漏分别记以 R,L,C,G。于是

数学物理方程:第1章 数学物理方程的定解问题

数学物理方程:第1章 数学物理方程的定解问题

第1章 数学物理方程的定解问题§1.1 数学物理方程的一般概念本节讨论:①数学物理方程的基本概念,②三类基本方程的数学表示,③一些简单解法▲数学物理方程的任务与特点 数学物理方程(亦称数理方程)在数学上为二阶偏微分方程。

它的任务有两个方面:①寻找数学定解问题的求解方法,给出解的表达式和计算方法;②通过理论分析得出问题的通解或某些特解的一般性质。

数学物理方程有如下特点:①它紧密地、直接地联系物理学、力学与工程技术中的许多问题。

②它广泛地运用数学物理中许多的技术成果。

如:数学中的复变函数、积分变换、常微分方程、泛函分析、广义函数等等,物理学中的力学、电学、磁学、热力学、原子物理学、振动与波、空气动力学等等。

⒈ 一些基本概念数学物理方程是物理过程中的一些偏微分方程。

由于物理过程是十分复杂的,故它们的数学表达式也是十分广泛的。

本书不能将众多的数学物理方程一一讨论,仅讨论一些常用的二阶线性微分方程。

一般而言,二阶线性偏微分方程可写为2,11nn ij i i j i i j i u u Lu a b cu f x x x ==∂∂=++=∂∂∂∑∑ (1.1.1) 式中:自变量),,(1n x x x ⋅⋅⋅=,系数ij a 、i b 、c 为x 的函数或为常数,并且ji ij a a =。

由于式中关于未知函数u 的导数最高为二阶导数,故方程称为二阶微分方程;同样,由于x 为n 维向量,方程也称为n 维方程;由于方程中对u 的各阶偏导数为线性的,故称为线性方程,否则就称为非线性方程。

若系数ij a 、i b 、c 均为常数,则称为常系数方程,否则称为变系数方程;若0≡f ,则称为齐次方程,反之称为非齐次方程。

▲方程的数学形式 在所有的自变量i x 中,时间变量t 常常被使用,由于它的独特性,人们常常直接用t 表示而不置于i x 之中,关于t 的导数式为:22u u L u a b t t t∂∂=+∂∂ (1.1.2) 故上述方程可改写为:f Lu u L t += (1.1.3)上述方程习惯上也称为n 维方程。

数理方程第一章典型方程与定解条件共31页文档

数理方程第一章典型方程与定解条件共31页文档
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
数学物理方程与特殊函数
☆ 数学和物理的关系 数学和物理从来是没有分开过的
☆ 数学物理方程的定义 用微分方程来描述给定的物理现象和物理规律。
☆ 课程的主要内容
三种方程、 四种求解方法、 二个特殊函数
波动方程 热传导 拉普拉斯方程
1
分离变量法 行波法 积分变换法 格林函数法
例2、时变电磁场
从麦克斯韦方程出发:
v H v E
v Jc
v B
v D t
v
t
D v
v
B 0
在自由空间:Jrc 0,v0
D E
B H
H
E
E
t H
t
E 0
H 0
15
19.05.2020
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
H
E
E
t H
t
E 0
对第一方程两边取旋度,得:
H (E )
t
根据矢量运算:
r
rr
H ( H ) 2 H
H 0
r
由此得:2H r (H)
即:
t t
2H2H
t2
2tH 2 1 ( 2 x H 2 2 yH 2 2 zH 2) ——磁场的三维波动方程
同理可得:
2E t2
1
2E
——电场的三维波动方程
其中:cos1cos'1
sin tan u(x,t)
x
T
x
M'
ds
T'
'
gds x dx x
sin ' tan ' u(x dx,t)

第一章 典型方程与定解条件

第一章 典型方程与定解条件


初始条件 边界条件
第一章 典型方程和定解条件的推导
如果薄膜上有横向外力作用,设外力面密度为 F ( x, y, t ) ,则得 2u 2 a 2 u f ( x, y , t ) 2 t 其中 f ( x, y , t ) F ( x, y , t ) , 2 2 为二维拉普拉斯算子。 2 2 2 x y

第一章 典型方程和定解条件的推导
在上述热传导方程中, 描述空间坐标的独立变量 为 x , y, z , 所以它们又称为三维热传导方程. 当考 察的物体是均匀细杆时, 如果它的侧面绝热且在同 一截面上的温度分布相同, 则可以得到一维热传导 方程 2 u u 2 a t x 2 类似, 如果考虑一个薄片的热传导, 并且薄片的 侧面绝热, 可以得到二维热传导方程
例5 静电场的势方程


x
y
z


静电学基本定律:穿过闭合曲面向外的电通量等于区
故 4E 倍,即 域内所含电量的 dV 4 dV div


E n dS 4 ( x , y , z ) dV divE 4 ( x, y, z )
第一章 典型方程和定解条件的推导
例 4. 热传导方程
如果空间某物体内各点处的温度不同,则热量就从 温度较高点处到温度较低点处流动,这种现象叫热传导。
考虑物体G 内的热传导问题。函数u(x,y,z,t) 表 示物体G 在位置 M(x,y,z) 以及时刻 t 的温度。通过 对任意一个小的体积元V内的热平衡问题的研究,建 立方程。 假设:假定物体内部没有热源,物体 的热传导系数为常数,即是各向同性 的,物体的密度以及比热是常数。
第一章 典型方程和定解条件的推导

第3章经典方程的建立和定解条件

第3章经典方程的建立和定解条件

t
的已知函数,H 为常系数.
9.2.2 热传导(或扩散)方程的定解条件
1 初始条件 热传导方程的初始条件一般为
u( x, y, z,0) ( x, y, z)
2 边界条件
(9.2.6)
第一类: 已知任意时刻 t (t 0) 边界面 上的温度分布
u ( x, y, z, t ) | f (, t )
x l ,在距离坐标原点为 b 的位置将弦沿着横向拉开距离
h
u
,如图9.5所示,然后放手任其振动,试写出初始条件。 【解】 初始时刻就是放手的那一瞬间, 按题意初始速度为零,即有
h
l x
ut ( x, t ) |t 0 ut ( x, 0) 0
初始位移如图所示
h x (0 x l ) b u ( x, 0) h (l x) (b x L) l b
(9.2.7)
直接给出函数u 在边界上的数值,所以是第一类边界条件.
2. 第二类
已知任意时刻 t (t 0) 从外部通过边界流入物体内的热量。
设单位时间内通过边界上单位面积流入的热量为 (, t ) 考虑物体内以边界上面积元 dS 为底的一个小圆柱体,
.
如图9.10所示. 物体内部通过 dS 流入小柱体的热量为
从上面的推导可知,热传导和扩散这两种不同的物理现象, 但可以用同一类方程来描述.
9.3 数学建模——稳定场方程类型的建立 9.3.1 数学建模——稳定场方程类型的建立 1 静电场的电势方程
直角坐标系中泊松方程为
2U 2U 2U x 2 y 2 z 2 0
(9.3.1)
9.4.1 定解条件和定解问题的提法 边界条件的类型 除了前面我们介绍的第一、第二、第三类边界条件之 外,还有其它边界条件,如自然边界条件,衔接条件, 周期性条件和无边界条件.

定解条件

定解条件

衔接条件:
在研究区域中出现跳变点,两边不同,两边各写
方程再加上衔接条件。
小结:
(1)边界条件是给出系统与外界“环境”的关系 问题,把握边界的含义,区分边界条件与泛定 方程中的条件; (2)边界条件的多样性与确定性,以及分类问题。 (3)无边界条件与衔接条件的问题。
定解问题的整体性与适定性
1、整体性:必须同时考虑偏微分方程和定解条 件加以联合求解(有特例);一般不能先求通解再 由定解条件求特解; 2、适定性:表现在三个方面:
u(x,t) x0 N0
u(x,t) xl
N0
第二类(Neumann边界条件):
u n
边界x0,y0,z0
f
(x0,y0,z0,t)
给出未知函数在边界外法线方向上的方向导数。 例:1、杆作纵振动,x=0或x=l端受沿法线方向的 外力f(t)
(Eun ) x0 S (Eux ) x0 S f (t)
ES
u x
x0
F0
ES u n
xl
ES u x
xl
F0
2、热传导:已知x=l端的热流f(t)
(流出为正,流入为负,这里自身取正值)
kun
xl
f
(t)
un
xl
1 k
f
(t)
若为绝热
ux (x,t) xl 0
3、扩散问题: “限定源”(即只是表层已有的杂
质向硅片深部扩散)
ux (x,t) x0 0 ux (x,t) xl 0 第三类(Robin边界条件):
(Eun ) xl S
(Eux )
S
xl
f
(t)
对于自由端 f (t) 0,则 ux(x,t) xl 0 注:杨氏模量是描述固体材料抵抗形变能力的物理

第五章 数理方程的建立,定解条件,傅里叶级数和傅里叶变换(简介),代尔塔函数的简介

第五章  数理方程的建立,定解条件,傅里叶级数和傅里叶变换(简介),代尔塔函数的简介

ut = a2uxx + f ( x,t ) (有热源) 或 ut = a2uxx (无热源)。
若用 u 代表物体内某种物质的浓度。则扩散方程与热传导方程是一样的。
(3)泊松方程和拉普拉斯方程
若温度达到了稳定分布,即温度分布不随时间变化, ut = 0 ,则由热传 导方程可得温度稳定分布满足的方程为
dv
(积分形式),
∫v ∇ ⋅
JK Edv
=
1 ε
∫v
ρ dv

∇⋅
JK E
=
ρ ε
(微分形式)。
( ) 又
v∫l
JK E

d
K l
=
0

∫∫s
JK ∇×E

K ds
=
0


×
JK E
=
0


×
JK E
=
0

JK E
=
−∇u

u
为静电势(无旋场必为梯度场)
72
∴∇2u = − ρ , 静电势满足的方程为泊松方程。
74
初始条件所反映的必须是物体上各点的初始状态,而不是仅仅某一点。
边界条件
一共有三类边界条件:
1.给定要求解的函数 u 在边界上的值 u ( x, y, z,t ) 边界上的x0 , y0 , z0
=
f
( x0, y0, z0,t ) ,称为
第一类边界条件。
例如:若研究长为 l 、两端固定的弦的振动情况,既然弦的两端 x = 0 , x = l
所满足的方程。
设弦的质量密度为 ρ ,现在研究位于 x 到 x + dx 这一段弦的运动状况。这

数理方程第一章、第二章习题全解

数理方程第一章、第二章习题全解

u( 0 , t) = u( l, t) = 0 现考虑初始条件,当冲量 k 作用于 x = c处时, 就相当于在这点 给出了一个初速度 , 我们考虑以 c点为中心 , 长为 2δ的一小段弦 ( c δ, c + δ) , 设弦是均匀的 , 其线密度为 ρ, 则这 一小段 弦的质量 为 2δρ, 受冲击时速度为 ut ( x, 0) , 由动量定理得
h c
x
l
h -
c(
l
-
x)
(0 ≤ x ≤ c) ( c < x ≤ l)
ut ( x, 0) = ψ( x ) = 0
则 u( x, t) 是下列定解问题的解 :
utt - a2 uxx = 0
( 0 < x < l, t > 0)
u( x, 0) = φ( x ) , ut ( x, 0 ) = ψ( x )
2 .4 习题全解
1. 设弦的两端固定于 x = 0 及 x = l, 弦的初始位称如图 2 2 所 示,初速度为零, 又设有外力作用, 求弦作横向振动时的位移函数 u( x, t) 。
解 如图 2 2 所示, 弦作横向振动时初始条件为
62
数学物理方程与特殊函数导教·导学·导考
图2 2
u( x, 0) = φ( x ) =
5. 若 F( z) , G( z) 是任意两个二次连续可微函数 , 验证
u = F( x + at ) + G( x - at )
满足方程
2u t2
=
a2
2x2u。
解 作自变量代换ξ= x + at,η= x - at, 由复合函数求导法则

所以 于是
u t

深圳大学数理方程du第一章

深圳大学数理方程du第一章

深圳大学电子科学与技术学院
x=0 , u=0 x=l , u=e
l
初速度 ∂u = 0
0
x
ex
u
∂t t=0 u(x,t)指的是杆上x点在时 刻t的位移,不是此时杆
的长度,而是杆的伸长
(3)边界条件
深圳大学电子科学与技术学院
由坐标系的选取知,对 于任意时刻 t (t > 0) ,在 x = 0(左端,固定端),总 是有
l
x
+ 2B ∂2 ∂x∂y
+C
∂2 ∂y 2
+
D
∂ ∂x
+
E
∂ ∂y
+
F
Lu = f (x, y)
∆ = B 2 − AC
∆>0 (双曲型)
如一维波动方程
∆=0 (抛物线型)
如一维热传导方程
∆<0 (椭圆型)
如二维拉氏方程
∂ 2u ∂t 2
=
a2
∂ 2u ∂x 2
+
f (x,t)
∂u ∂t
=
a2
∂2u ∂x 2
热流
q
高温 u 低温
为 ∂u ∂x
,q
表示在单位时间
内流经单位面积的热量,
k 是热传导系数,负号表
0
x
示热流方向与温度梯度
方向相反。
∂u
0
∂x
温度梯度:低温→高温 热流动:高温→低温
深圳大学电子科学与技术学院
数理方程:定解问题的适定性
定解问题作为一个理论模型,是否能准确无误地描述 实际过程,需要对结果进一步检验,即考察解的“适 定性”: 1. 存在性:定解问题的解是否存在 2. 唯一性:实际问题的解往往是唯一的,但数学解可 能不唯一,需要舍去没有实际意义的数学解 3. 稳定性:定解条件或驱动项的微小变化是否导致解 的性质的改变

数理方程第一章-3讲解

数理方程第一章-3讲解

a2
(
2u x2
2u y2
2u z2
)
u t
a2 k c
—— 三维热传导方程
本课程内容,只涉及线性边界条件,且仅包括以下三类。
深圳大学电子科学与技术学院
第一类边界条件:物理条件直接规定了 u 在边界上的值,如
u S
f1
第二类边界条件:物理条件并不直接规定了 u 在边界上的值,而是规定了u 的法向微商在边界上的值,如
深圳大学电子科学与技术学院
知识补充:
弹性模量是指当有力施加于物体或物质时,其弹性变 形(非永久变形)趋势的数学描述。物体的弹性模量 定义为弹性变形区的应力-应变曲线的斜率。杨氏模 量指的是受拉伸和压缩时的弹性模量。
杨氏模量(Young‘s modulus)是描述固体材料抵抗形变 能力的物理量。一条长度为L、截面积为S的金属丝在 力F作用下伸长L。F/S叫应力,其物理意义是金属丝 单位截面积所受到的力; L/L叫应变,其物理意义是 金属丝单位长度所对应的伸长量。
dx
x
不考虑垂直杆方向的形变,根据Hooke定律,应力与应变成正
比,即 P E u x
代入
P x
2u t 2
2u t2
a2
2u x2
0 xl , t0
其中
a2 E
深圳大学电子科学与技术学院
例6:一根均匀杆,原长为l,一端固定,另一端沿杆的轴线方向被拉长e而静 止。突然松手,任其纵向振动。写出定解问题。
(3)对于稳恒场,上述边界条件的两端均不含时间 t ; (4)边界条件的推导,步骤与泛定方程的推导大致相同,但微元只能在边界上选取。
x
x
S 2u d x
t2
Sdx dm(微元质量)

22讲 定解条件与方程分类解析

22讲 定解条件与方程分类解析

dy a12 只能给出一个特征线 z c(常数),即 , dx a11 z dy a 从而 x x 12 . zy y dx a11
2 又 a12 a11a22 0, 则系数:
(2)抛物型
A11 a 2a12 x y a
令z( x, y) 0, (即含x, y的隐函数)两边求导得: zx dy z z . dx dy 0, zy dx x y 2 dy dy a22 0, 将上式代入(*)得常微分方程: a11 2a12 dx dx 该方程称为偏微分方程的特征方程,其解
2 11 x
2 22 y

y2
a11
2 [a12 a11a22 ] 0,
y2 a11 x y
2a12 x a22 y
2
A12 a11 xx a12 ( x y yx ) a22 y y
uxy u x y u ( x y yx ) ux y u xy uxy .
故变换后方程变为 A11u 2 A12u A22u B1u B2u Cu F 0. 其中系数
2 A11 a11 x2 2a12 x y a22 y , 2 2 A22 a11x 2a12x y a22 y ,
x 2 x y a11 x a12 y x a22 y y y [a12 a11a22 ] 0, a11 y y 2 2 2 2 a11 x 2a12 x a22 y A22 a11x 2a12x y a22 y y y 2 2 x 2 2 x x y a11 2 a11 a22 a22 y a11 a22 . y y y 因此,只要不满足特征线,则A22≠0,从而偏微分方程变为: 1 u ( B1u B2u Cu F ). A22 该方程称为抛物型方程的标准式,输运问题即为该类方程。

数学物理方程学习指导书第3章经典方程的建立和定解条件

数学物理方程学习指导书第3章经典方程的建立和定解条件

第3章经典方程的建立和定解条件在讨论数学物理方程的解法以前,我们首先要弄清楚数学物理方程所研究的问题应该怎样提,为此,我们从两方面来讨论,一方面要将一个具体的物理、力学等自然科学问题化为数学问题,即建立描述某种物理过程的微分方程一一数学物理方程,称此方程为泛定方程;另一方面要把一个特定的物理现象本身所具有的具体条件用数学形式表达出来,即列出相应的初始条件和边界条件,两者合称为定解条件•定解条件提出具体的物理问题,泛定方程提供解决问题的依据,作为一个整体称之为定解问题3. 1经典方程的建立在本节,我们将通过几个不同的物理模型推导出数学物理方程中三种典型的方程,这些方程构成我们的主要研究对象•经典方程的导出步骤:(1)确定出所要研究的是哪一个物理量u ;(2)用数学的“微元法”从所研究的系统中分割出一小部分,再根据相应的物理(力学)规律分析邻近部分和这个小部分间的作用(抓住主要作用,略去次要因素,即高等数学中的抓主部,略去高阶无穷小),这种相互作用在一个短的时间间隔是如何影响物理量u(3)把这种关系用数学算式(方程)表达出来,经化简整理就是所需求的数学物理方程•例1弦的振动弦的振动问题,虽然是一个古典问题,但对于初学者仍然具有一定的启发性设有一根均匀柔软的细弦,平衡时沿直线拉紧,而且除受不随时间而变的张力作用及弦本身的重力外,不受外力影响,下面研究弦的微小横向振动,即假定全部运动出现在一个平面上,而且弦上的点沿垂直于x轴的方向运动(图3-1).图3-1设弦上具有横坐标为X的点,在时刻t时的位置为M,位移NM记作u .显然,在振动过程中位移u 是变量X与t的函数u(x,t) •现在来建立位移u满足的方程我们把弦上点的运动先看作小弧段的运动,然后再考虑小弧段趋于零的极限情况•在弦上任取一弧段MM •,其长为ds,设是弦的线密度,弧段MM •两端所受的张力记作T , T ,现在考虑孤段MM在t时刻的受力情况,用牛顿运动定律,作用于弧段上任一方向上的力的总和等于这段孤的质量乘以该方向上的加速度•在x轴方向弧段受力的总和为_T cos T cos,由于弦只作横向振动,所以T cos - T cos = 0 .( 3.1)如果弦的振动很小,并且在振动过程中弦上的切线倾角也很小,即:-:-0^ 0,则由2 4“ a a _ _cos -1 -2! 4!可知,当:为无穷小量时,cos与1的差量是:的高阶无穷小量,可以略去不计,因此当在u方向弧段受力的总和为-T sin驀"T Sin:「:gds,其中「是单位弧段的质量,-gds是弧段MM •的重力又因当:一0,厂0时上式左边方括号内的部分是由于x产生dx的变化而引起的u(x,t)的改变量,可用微代入(3.1)式,便可近似得到COS:1,cos: 1T T .tg:sin:J i +tg2«tg,皿),ex=tg:::u(x dx,t):u(x,t)lx dx.且小弧段在时刻t沿u方向运动的加速度为2:u(x,t)-t2小弧段的质量为'gds,所以-T sin 二"T sin : 一:gds」ds::2u(x, t):t2(3.2)T/^-晋」gds -:2u(x,t)吐2dx,:x分代替,即:x£u(x+dx,t) £u(x,t) ◎「初匕,灯[故 $u(x,t )d x—'ex 1 —x,2 2T j u(x,t) j u(x,t)2 ------- --- --------- + 、x 2:xT”g dx 「'5.x 2t 2 g. 般说来,张力较大时弧振动速度变化很快,即u 要比g 大得多,所以又可以把 g 略去•:t经过这样逐步略去一些次要的量,抓住主要的量, 最后得出u( x, t)应近似地满足方程-2:U 2 a 2 一 t x■2u (3.3)T这里的a.式(3.3)称为一维波动方程.如果在振动过程中,弦上另外还受到一个与弦的振动方向平行的外力,且假定单位长 度所受外力的F(x,t),显然,在这里(3.1)及(3.2)分别为T cos ; " -T cos :二 0, o2 u Fds-Tsin 二■ T sin : -,gds …ds —— ct利用上面的推导方法并略去弦本身的重量,可得弦的强迫振动方程为-2 -.2:U 2: U 亨=口 —-1: Xf(x,t),(3.3)'1其中 f(x,t) F(x,t).方程(3.3)与(3.3)'的差别在于(3.3)'的右端多了一个与未知函数 U 无关的项f(x,t),这个项称为自由项,包含有非零自由项的方程称为非齐次方程,自由项恒等于零的方程称为齐次方程.(3.3)为齐次一维波动方程,(3.3)'为非齐次一维波动方程. 例2传输线方程对于直流电或低频的交流电,电路的基尔霍夫定律指出同一支路中电流相等 .但对于较高频率的电流(指频率还没有高到能显著地幅射电磁波的情况),电路中导线的自感和电容的效应不可忽略,因而同一支路中电流未必相等现考虑一来一往的高频传输线,它被当作具有分布参数的导体(图3-2).在具有分布参数的导体中,电流通过的情况,可以用与电压v来描述,此处i与v都是x,t的函数,记作i(x,t)与v(x,t),以R,L,C,G分别表示下列参数:R――每一回路单位的趾串联电阻,L——每一回路单位的串联电感,C――每单位长度的分路电容,G――每单位长度的分路电导•根据基尔霍夫第二定律,在长度为x的传输线中,电压降应等于电动势之和,即v -(v :-v) = R x i L x而v x,ex故上式可写成Ri - L -(3.4)x 汀另外,由基尔霍夫第一定律,流入节点x的电流应等于流出该节点的电流,即=(i :=i) C x G x v,(3.5) 将方程(3.4)与(3.5)合并,即得i与v 应近似地满足如下方程组这两个方程称为高频传输线方程.X 2=2:V;t 2LC ft 2 , 1;:2V1若令a 2这两个方程与(3.3)完全相同.由此可见,同一个方程可以用来描述不同的LC物理现象,一维波动方程只是波动方程中最简单的情况, 在流体力学、声学及电磁场理论中,还要研究高维的波动方程. 例3电磁场方程从物理学我们知道,电磁场的特性可以用电场强度 E 与磁场强度H 以及电感应强度 D与磁感应强度B 来描述,联系这些量的麦克斯韦(Maxwell)方程组为rotH = J, ct(3.8)cB耐百,(3.9)divB 二 0,(3.10)为了确定函数i 与v ,将方程(3.5)对x 微分,同时在方程(3.4)两端乘以C 后再对t 微分, 并把两个结果相减,即得将(3.4)中的兰代入上式,得CX这就是电流i 近似满足的微分方程,采用类似的方法从( 3.4)与(3.5)中消去i 可得电压V近似满足的方程方程(3.6)或(3.7)称为传输线方程.R, L,C,G 作不同的假定,就可以得到传输线方程的各种特殊形式•例如,在高频传输的情况下,电导与电阻所产生的效应可以忽略不计,也就是 说可令G = R = 0,此时方程(3.6)与(3.7)可简化为;:2i 1;:2i2・X 2iG 兰 一 LC ;x【RC 5, ct :t 2:2i2・i —二 LG X ;t 2 (RC GL)厂 GRi, ct(3.6).2轨LGxV(RC GL)二 GRv, .t :t(3.7)根据不同的具体情况,对参数divD 「.(3.11)将(3.9)与(3.13)代入得而 rot rotH 程为rot rotHrot rotHrotE 「rotE, :t21二 grad div - ' H ,且 divH divB = 0,所以最后得到H 所满足的方同理,若消去 H 即得E 所满足的方程2E如果介质不导电(卞-0),则上面两个方程简化为2H 1 k 2Hr H , .t 二(3.15)(3.16)(3.15)与(3.佝称为三维波动方程.若将三维波动方程以标量函数的形式表示出来,则可写成其中J 为传导电流的体密度,「为电荷的体密度.这组方程还必须与下述场的物质方程D =eE,(3.13) (1.14)相联立,其中;是介质的介电常数, 」是导磁率,匚为导电率,我们假定介质是均匀而且是各向同性的,此时;,」,;「均为常数.方程(3.8)与(3.9)都同时包含有 E 与H ,从中消去一个变量,就可以得到关于另一个变 H ,在(3,8)式两端求旋度并利用(3.12)与(3.14)得(3.12) 量的微分方程,例如先消去(3.17)2 2 22- 2『召u d u & u= aJ = a — +一 +一2 , ^c x cy 氐丿 其中a_W ,u 是E 或H 的任意一个分量从方程(3.11)与(3.12)还可以推导出静电场的电位所满足的微分方程 •事实上,以(3.12)代入(3.11)得divD = div ;E = ; div E = ■,而电场强度E 与电位u 之间存在关系E = -gradu,所以可得Pdiv(gradu)= -一z或'、u = - — ,( 3.18)z这个非齐次方程称为泊松(Poisson )方程.如果静电场是无源的,即?=0,则(3.18)变成(3.19)这个方程称为拉普拉斯(Lap lace )方程. 例4热传导方程一块热的物体,如果体内每一点的温度不全一样,则在温度较高的点处的热量就要向 温度较低的点处流动,这种现象就是热传导.在工程技术上有许多传热问题都要归结为求物体内温度的分布,现在我们来推导传热过程中温度所满足的微分方程, 与上例类似,我们不是先讨论一点处的温度,而应该先考虑一个区域的温度.为此,在物体中任取一闭曲面S ,它所包围的区域记作 V (图3-3).假设在时刻t ,区域V 内点M(x,y,z)处的温度为u(x,y,z,t),n 为曲面元素 S 的外法向(从V 内指向V 夕卜).图3-3:t2由传热学可知,在lt,^ t ]时间内,从 S 流入区域V 的热量与时间At ,面积 S ,以及沿曲面的法线方向的温度变化率三者的乘积成正比,即-k(grad u ) S t.其中k 称为物体的热传导系数,当物体为均匀导热体时,k 为常数.于是,从时刻t i 到时刻t 2,通过曲面S 流入区域V 的全部热量为t 2_Q i = tkgrad u1一 S流入的热量使 V 内温度发生了变化,在厶t 时间内区域V 内各点温度从u(x,y,z,t)变化到 u(x,y,z,t+ △ t),则在△ t 内V 内温度升高所需要的热量为I I I c [u(x, y,z,t t)-u(x,y,z,t)]dVV从而从时刻t i 到时刻t 2,由于温度升高所吸收的热量为tJ ■ u二 c dV dt,飞 _ v :t其中C 为物体的比热, '为物体的密度,对均匀物体来说,它们都是常数•由于热量守恒,流入的热量应等于物体温度升高所需吸收的热量,即上2 I.t 2. .:uJ t IJJkgradudS dt= J t | JJJ c°〒dV dt.ti.S _t^V醴—此式左端的由面积分中 S 是封闭曲面,可以利用奥 -高公式将它化为三重积分,即11 kgradudS 二 kdiv(gradu)dVSV因此有由于时间间隔't,r 11及区域V 都是任意取的,并且被积函数是连续的,所以 (3.20)式左 右恒等的条件是它们的被积函数恒等,即= Q= k S = t =cnk(grad udS dt.fu(x, y,z,t)dttdV.Q 2二 k 2udV,V:k 2udVti_ Vt2u IF t 」川 cP^dV dt. V :t(3.20)3(3.21 ).u a :t或二维热传导方程如果我们考虑稳恒温度场,即在热传导方程中物体的温度趋于某种平衡状态,这时温 度u 已与时间t 无关,所以 —=0,此时方程(3.21)就变成拉普拉斯方程(3.19).由此可见稳恒Ct温度场内的温度 U 也满足拉普拉斯方程•在研究气体或液体的扩散过程时,若扩散系数是常数,则所得的扩散方程与热传导方 程完全相同•3. 2初始条件与边界条件上面所讨论的是如何将过程的物理规律用数学式子表达出来•除此以外,我们还需要把具体条件也用数学形式表达出来,这是因为任何一个具体的物理现象都是处在特定条件之下 的.例如弦振动问题,上节所推导出来的方程是一切柔软均匀的弦作微小横向振动的共同规 律,在推导这个方程时没有考虑到弦在初始时刻物状态以及弦所受的约束情况 •如果我们不是泛泛地研究弦的振动,势必就要考虑到弦所具有的特定条件 .因为任何一个具体振动现象总是在某时刻的振动状态和此时刻以前的状态有关,从而就与初始时刻的状态有关•另外,弦的两端所受的约束也会影响弦的振动, 端点所处的物理条件不同会产生不同的影响, 因而弦的振动也不同.所以对弦振动问题来说,除了建立振动方程以外,还需列出它的具体条件 对热传导方程,拉普拉斯方程也是如此.提出的条件应该恰恰能够说明某一具体物理现象的初始状态以及边界上的约束情况,其中a 2 = 2u=a 2;t2 2 2\ d u d u d u r + r + r cy cz厂■方程(3.21)称为三维热传导方程.若物体内有热源,其强度为F (x, y,z),则相应的热传导方程为:u 2 a :t2 2 2u u u +r 2" 2x : yf(x, y,z,t),如果所考虑的物体是一根细杆 作为特例, 而其中的温度u 只与x,t (或x, y,t )有关,(或一块薄板),或者即使不是细杆 (或薄板) 则方程(3.21)就变成一维热传导方程:U 2a:t-2;u-2:y 2用以说明系统的初始状态的条件称为初始条件 •用以说明边界上的约束情况的条件称为边界条件•下面具体说明初始条件和边界条件的表达形式,先谈初始条件,对于弦振动问题来说, 初始条件就是弦在开始时刻的位移及速度,若以 「(x),t (X )分别表示初位移和初速度,则 初始条件可以表达为t」= (x)-(X )t =0而对热传导方程来说,初始条件是指在开始时刻物体温度的分布情况,若以 「(M)表 示t=0时物体内任一点 M 处的温度,则热传导方程的初始条件就是u(M,t )tn 「(M).泊松方程与拉普拉斯方程都是描述稳恒状态的,与初始状态无头,所以不提初始条件 再谈边界条件•如果边界条件直接给出了未知函数 u(M ,t)在边界S 上的值,以s 表示边界S 上的动点,则这样的边界条件可表为u(M,t )M :s 「(St),或简写成(3.24)这种边界条件称为第一类边界条件,其中(s,t)表示在边界S 上给定的已知函数•例如,在杆的导热问题中,若在端点 x = a 处温度保持为常数 u 0,这时在端点x = a 的边界条件为uxn =u 0・若在端点X =a 处温度随时间的变化规律 f (t)为已知,在这点的边界条件为ux 「f (t)・又如在弦振动问题中,若弦的某端点X = a 是固定的,则在该点的位移为零,即Uxn=0・以上都是第一类边界条件的例子 •总之,第一类边界条件直接给出了未知函数u(M ,t)在边界S 上的值但在许多情况下,边界上的物理条件并不能用第一类边界条件来描述 .例如,在杆的导热问题中,若杆的一端x 二a 绝热,那末绝热这个条件就不能直接给出杆的端点处的温度变cu 丄丄化.由于从杆外通过杆端流入杆内的热量为k —— 心S^t (其中A t 为时间间隔,AS 为杆cn(3.22)(3.23)的截面积,n 为杆在端点x=a 处的外法向,若 x=a 是杆的左端点,n 的正向与x 轴正向PuQuQu Qu相反,贝厂■,若x=a 是杆的右端点,则n 的正向与x 轴正向相同,贝厂 '), cnex cn ex所以绝热这个条件可以表达为0( Ik —也S 也 t = 0,cn xy即二 0.x =a若在单位时间内通过 x=a 端单位面积流入杆内的热量是 t 的已知函数f(t),则这个条件可表示为对于弦振动问题来说, 如果弦在x=a 处是自由的,即沿着位移方向不受外力, 则此时弦在x=a 处沿位移方向的张力(参照 3.1中例1的推导) 为的形式,其中—表示函数沿边界外法向的变化率,这种边界条件称为第二类边界条件•cn除了上述两类边界条件外,有时还会遇到其他形式的边界条件 •例如在杆的导热热问题中,若杆在某个端点 x = a 自由冷却,那末自由冷却这个条件就是cuK 石=H (5 -ux =ax=a ),(其中U i 为周围介质的温度)即(加(k )u + h ———:u 1 h -1州」 X HI H 丿=f(t).x^a总之,有时边界条件必须表达为=0,(3.25)对于有界杆(0乞x 乞I ),若两端都是自由冷却,则在X = I 处,上述条件可表为-U 在x = 0处,这个条件可表为这是由于在单位时间内从周围介质传到杆的 X = a 端单位面积上的热量与介质和杆端的温度差成正比,而在单位时间内通过 考3.1中例4).x = a 端单位面积传向杆内的热量与x=acn 丿X -i 成正比般地,这种边界条件的形式为(3.26)这样的边界条件称为第三类边界条件•不论哪一种边界条件,如果它的数学表达式中的右端自由项恒为零,则这种边界条件称为齐次的.3.3定解问题的提法前面两节我们推导了三种不同类型的偏微分方程并讨论了与它们相应的初始条件与边界条件的表达方式•由于这些方程中出现的未知函数的偏导数的最高阶都是二阶,而且它们对于未知函数及其各阶偏导数来说都是线性的,所以这种方程称为二阶线性偏微分方程*)1在工程技术上二介线性偏微分方程遇到最多•如果一个函数具有所需要的各阶连续编导数,并且代入某偏微方程中能使该方程变成恒等式,则此函数称为该方程的解•由于每一个物理过程都处在特定的条件之下,所以我们的任务是要求出适合初始条件和边界条件的解•初始条件和边界条件都称为定解条件•求一个偏微方程满足定解条件的解的问题称为定解问题只有初始条件,没有边界条件的定解问题称为始值问题(或柯西问题);而没有初始条件,只有边界条件的定解问题称为边值问题;既有初始条件也有边界条件的定解问题称为混合问题•一个定解问题提得是否符合实际情况,当然必须靠实际来证实,然而从数学角度来看,可以从三方面加以检验•1)解的存在性,即看所结出来的定解问题是否有解;2)解的唯一性,即看是否只有一个解;3)解的稳定性,即看当定解条件有微小变动时,解是否相应地只有微小的变动,如果*)二阶线性编微分方程可以按它们的二阶导数的系数的代数性质进行分类,在§ 1・1中所推导的波动方程属于双曲型,拉普拉斯(或泊松)方程属于椭圆型,热传导方程属于抛物型,关于二阶线性偏微分方程的分类方法,读者可参阅复旦大学数学系编《数学物理方程》(第二版,上海科学技术岀版社岀版)第一章§5.确定如此,此解便称为稳定的,否则所得的解就无实用价值•因为定解条件通常总是利用实验方法获得的,因而所得到的结果,总有一定的误差,如果因此而解的变动很大,那末这种解显然不能符合客观实际的要求•如果一个定解问题存在唯一且稳定的解,则此问题称为适定的,在以后讨论中我们把着眼点放在讨论定解问题的解法上,而很少讨论它的适定性,这是因为讨论定解问题的适定性往往十分困难,而本书所讨论的定解问题都是古典的,它们的适定性都是经过证明了的.习题一1.长为I的均匀杆,侧面绝缘,一端温度为零,另一端有恒定热流q进入(即单位时间内通过单位截面积流入的热量为q ),杆的初始温度分布是x— x),试写出相应的定解问题22.长为I的弦两端固定,开始时在x = C受到冲量的作用,试写出相应的定解问题3.有一均匀杆,只要杆中任一小段有纵向位移或速度,必导致邻段的压缩或伸长,这种仲缩传开去,就有纵波沿着杆传播,试推导杆的纵振动方程4.一均匀杆原长为I,一端固定,另一端沿杆的轴线方向被拉长e而静止,突然放手任其振动,试建立振动方程与定解条件.5.若F(z),G(z)是任意二阶可微函数,验证u = F (x at) G(x -at)满足方程-2 -2:-U 2: U2—a 2.t x6.若函数U i(x,t), U2(x, t)JM, U n(x, t),…均为线性齐次方程-2 -2:u : u-~2 P 2~x :t的解,其中p,q, r只是x, t的函数,而且级数u k(x,t)收敛,并对x,t可以进行两次kz!逐项微分,求证级数u=:£u k(x,t)满足原方程(这个结论叫做线性齐次方程的叠加原理)k m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•通过合理的数学近似对方程进行化简
数学物理方程定解问题的提法
泛定方程(波动方程、热传导方程、拉普拉斯方程)
定解问题:
定解条件(初始条件,边界条件)
6
上午6时38分
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
一、 基本方程的建立
例1、弦的振动
条件:均匀柔软的细弦,在平衡位置附近作微小横振动。 不受外力影响。
10
上午6时38分
数学物理方程与特殊函数
弦振动的相关模拟
第1章 典型方程和定解条件的推导
11
上午6时38分
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
波的传播的相关模拟
12
上午6时38分
数学物理方程与特殊函数
弦振动的相关模拟
第1章 典型方程和定解条件的推导
13
上午6时38分
数学物理方程与特殊函数
g
dx
2u( x, t ) t 2
dx
T
u2 (x,t) x2
g
2u( x, t ) t 2
令:a 2
T
忽略重力作用:
2u t 2
a2
2u x2
--齐次方程
2u t 2
a2
2u x2
g
………一维波动方程
自由项 ------非齐次方程
15
上午6时38分
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
研究对象:u(x,t) 线上某点在 t 时刻沿纵向的位移。
7
上午6时38分
数学物理方程与特殊函数
弦振动的相关模拟
第1章 典型方程和定解条件的推导
8
上午6时38分
数学物理方程与特殊函数
弦振动的相关模拟
第1章 典型方程和定解条件的推导
9
上午6时38分
数学物理方程与特殊函数
弦振动的相关模拟
第1章 典型方程和定解条件的推导
例2、时变电磁场
从麦克斯韦方程出发:
v H
v Jc
v
v D t
v E
B
v t
D v
v
B 0
在自由空间:Jrc 0, v 0
D E
B H
H
E
E
t
H
t
E 0
H 0
16
上午6时38分
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
H
E
E
t
H
t
E 0
对第一方程两边取旋度,得:
gds
sin tan u(x,t)
x
T
x
x dx x
sin ' tan ' u(x dx,t)
m ds
T
T T'
u(x dx,t) x
x
u ( x, t ) x
gds
其中:
ma
a
2u( x, t ) t 2
ds dx
14
上午6时38分
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
☆ 数学物理方程的定义 用微分方程来描述给定的物理现象和物理规律。
☆ 课程的主要内容
三种方程、 四种求解方法、 二个特殊函数
波动方程 热传导 拉普拉斯方程
2
分离变量法 行波法 积分变换法 格林函数法
贝塞尔函数 勒让德函数
上午6时38分
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
微积分知识回顾
第1章 典型方程和定解条件的推导
第一章 一些典型方程和 定解条件的推导
一、 基本方程的建立 二、 定解条件的推导 三、 定解问题的概念
5
上午6时38分
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
常见数学物理方程的导出
•确定所要研究的物理量u,比如位移、场强、温度
•根据物理规律建立微分方程
第1章 典型方程和定解条件的推导
例3、热传导
热传导现象:当导热介质中各点的温度分布不均匀时,有
热量从高温处流向低温处。
所要研究的物理量: 温度 u(x, y, z,t)
S nv
根据热学中的傅立叶试验定律
M V
在dt时间内从dS流入V的热量为:
S
热场
dQ k u dSdt ku nˆdSdt ku dSˆdt
哈密尔顿算子或梯度算子,读作nabla
iˆ ˆj kˆ x y z
与梯度算子有关的场论运算
gradu u
divA A
rotA A
拉普拉斯算子 2 2 2 2
x2 y2 z 2
平面上的拉普拉斯算子 2u 2u 2u
x2 y 2
常微分方程的求解:常见的一阶方程、可降阶高阶方程、 二阶线性方程
第1章 典型方程和定解条件的推导
简化假设: (1)弦是柔软的,弦上的任意一点的张力沿弦的切线方向。
(2)横向振幅极小, 张力与水平方向的夹角很小。
牛顿运动定律:
y
横向: T cos T 'cos '
纵向:T sin T 'sin ' gds ma
M'
ds
T'
'
M
其中:cos 1 cos ' 1
☆拉普拉斯方程: 2u 0 空间的静电场分布;静磁场分布;稳定温度场分布
两种特殊函数
贝塞尔方程 x2 y xy (x2 n2 ) y 0 的解:贝塞尔函数 Jn (x)
勒让德方程 (1 x2 ) y 2xy n(n 1) y 0的解:勒让德函数 Pn (x)
4
上午6时38分
数学物理方程与特殊函数
傅里叶级数理论:傅里叶级数及其系数、正弦级数、 余弦级数
3
上午6时38分
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
三类偏微分方程
☆波动方程: 2u a 2 2u
t 2
琴弦的振动;杆、膜、液体、气体等的振动;电磁场的振荡等
☆热传导方程:u a22u
t
热传导中的温度分布;流体的扩散、粘性液体的流动
H
( E)
t
根据矢量运算:
r
r
r
H ( H ) 2H
H 0
r
r 由此得: 2 H
(
H )
即:
t t
2
H

2
H
t 2
2H t 2
1
(
2H x 2
2H y 2
2H z 2
)
——磁场的三维波动方程
同理可得:
2E t 2
1
2E
——电场的三维波动方程
17
上午6时38分
数学物理方程与特殊函数
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
数学物理方程与特殊函数
汤燕斌 华中科技大学数学与统计学院 tangyb@
1
上午6时38分
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
数学物理方程与特殊函数
☆ 数学和物理的关系 数学和物理从来是没有分开过的
n
从时刻t1到t2通过S流入V的热量为
T
u(x dx, x
t
)
u ( x, t ) x
gds
ma
T
u(x dx, x
t)
u( x, t ) x
gdx
2u( x, t ) t 2
dx
其中:u(x dx,t) x
u ( x, t ) x
x
u(x,t) x
dx
2u ( x, t ) x2
dx
T
u2 (x,t) x2
相关文档
最新文档