线性代数说课
线性代数教案同济版
线性代数教案同济版第一章线性代数基本概念1.1 向量空间教学目标:1. 理解向量空间的概念及其性质;2. 掌握向量空间中的线性组合和线性关系;3. 了解向量空间的基和维数。
教学内容:1. 向量空间的概念;2. 向量空间的性质;3. 线性组合和线性关系;4. 基和维数的概念及计算。
教学方法:1. 通过具体例子引入向量空间的概念,引导学生理解向量空间的基本性质;2. 通过练习题,让学生掌握线性组合和线性关系的计算方法;3. 通过案例分析,让学生了解基和维数的概念及计算方法。
教学资源:1. 教材《线性代数》(同济版);2. 教学PPT;3. 练习题及答案。
教学步骤:1. 引入向量空间的概念,讲解向量空间的基本性质;2. 讲解线性组合和线性关系的计算方法,举例说明;3. 介绍基和维数的概念,讲解计算方法,举例说明;4. 布置练习题,让学生巩固所学知识。
教学评估:1. 课堂问答,检查学生对向量空间概念的理解;2. 练习题,检查学生对线性组合和线性关系计算方法的掌握;3. 案例分析,检查学生对基和维数概念及计算方法的掌握。
1.2 线性变换教学目标:1. 理解线性变换的概念及其性质;2. 掌握线性变换的矩阵表示;3. 了解线性变换的图像和核。
教学内容:1. 线性变换的概念;2. 线性变换的性质;3. 线性变换的矩阵表示;4. 线性变换的图像和核的概念及计算。
教学方法:1. 通过具体例子引入线性变换的概念,引导学生理解线性变换的基本性质;2. 通过练习题,让学生掌握线性变换的矩阵表示方法;3. 通过案例分析,让学生了解线性变换的图像和核的概念及计算方法。
教学资源:1. 教材《线性代数》(同济版);2. 教学PPT;3. 练习题及答案。
教学步骤:1. 引入线性变换的概念,讲解线性变换的基本性质;2. 讲解线性变换的矩阵表示方法,举例说明;3. 介绍线性变换的图像和核的概念,讲解计算方法,举例说明;4. 布置练习题,让学生巩固所学知识。
《线性代数讲义》课件
在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。
线性代数讲稿
线性代数讲稿今天我给大家介绍一下线性代数的基础知识。
在这节课中,我将向同学们介绍:什么是线性代数,线性代数有哪些分支和各个分支之间有什么关系,以及线性代数研究的主要问题是什么?现在我们先看,这节课上所用的例题,以便同学们能够更好地理解并掌握线性代数的基本概念。
1。
比较矩阵A与矩阵B,设A的秩为n, B的秩为m, A与B 的转置矩阵定义为(x__a)__(y__b)。
则称A与B相似,记作A_B, A_B 与A相似等价于B_A,记作B_A。
A与B的相似关系称为矩阵A与B 的关系。
有的书上写成A与B的形式为A_B, A与B的形式是相似关系的矩阵,秩就是矩阵A的秩,形式上不做区分。
2。
矩阵的相似对角化问题。
若A、 B为n×n矩阵,并且A为n ×n对角矩阵,那么称B经过A的相似对角化可得到A经过B的相似对角化,则称A与B相似对角化。
3。
将矩阵的乘法表示成两个矩阵的乘法,这种矩阵乘法叫作线性变换。
也可以说,通过变换可以把一个矩阵的表示形式变成另一个矩阵的表示形式。
这种矩阵乘法称为线性运算。
线性运算按行(列)顺序进行运算,结果保持不变,但逆矩阵需进行反向运算。
3。
线性表示:把一个向量或一组向量映射成矩阵的乘积。
每个向量都用数值上最小的单位来度量,这种度量方法称为线性度量。
一个向量是线性表示的充分必要条件是该向量与所有其它向量线性相关,而且只有当该向量对应的矩阵的列向量线性无关时,这个向量才是线性表示的。
4。
线性表示的性质: 1)线性表示的两个向量必须线性无关; 2)两个线性表示之间的线性映射必须是可逆的; 3)线性表示之间的两个矩阵可以相等,即它们的行(列)逆阵必须相等; 4)如果两个线性表示是相似的,则它们的矩阵是相似对角化的。
5。
向量空间:定义:设a是实数集合C上的线性无关的,可测向量组成的集合,称a为X上的线性空间。
那么A就是线性空间X上的向量空间。
线性空间X上的线性变换是一个向量空间。
线性代数说课稿)
尤其离散模型中的层次分析法,与线性代数联系更为密切。
二、教学目标
1.知识目标
(1)了解: n阶行列式、矩阵、向量等一系列基本概念、性质
(2)掌握:
行列式的计算,克莱姆法则;
矩阵的线性运算,乘法运算,逆矩阵、矩阵的秩的计算方法;
求向量组的极大无关组和向量组的秩,用初等行变换求线性方程组通解
2.地位及作用
《线性代数》是参加数学建模竞赛必需的基础理论知识,其理论在物理、
化学、工程技术、国民经济、生物技术、航天、航海等领域中都有着广泛的应用。
举两个例子:
(1)美国经济学家华西里·列昂惕夫(W.Leontief于)20世纪30年代首先提出并成功地建立了研究国民经济投入产生的数学模型。他把美国的经济用500个变量的500个线性方程来描述,在1949年利用当时的计算机解出了42×42的简化模型,使他于1973年获得诺贝尔经济奖,从而大大推动了线性代数的发展。
近几年的教材改革取得了很多成果,主要有以下几条思路:
(1)(美)莱(Lay,D.C.) 著,刘深泉 等译《线性代数及其应用》,机械工业出版社。教材中选取了一些有趣的应用问题,目的是帮助学生掌握线性代数的基本概念及应用技巧。
(2)王亮等编的《基于matlab的线性代数实用教程》,科学出版社。教材在讲授课程基本内容后,应用相关专业知识对实际问题数学建模并应用软件平台求解,部分解决了数学知识的应用问题,但对相关理论知识的训练有所减弱。
所以,我们应该在"实践-理论-实践"的思想指导下,在教学中从实际问题出发,通过对数学问题的分析引入相关数学概念,再从解决实际问题的需要引入相关数学理论,
例1:通过考虑运动会成绩记录和奖金计算问题引入矩阵的概念和矩阵运算;
线性代数知识点全归纳说课讲解
1线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90o,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-g⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;22、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12s A A A A =L ;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭O; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)33、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)4⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nn n n m n m m n n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑L L ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;511. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ); ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :6若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s αααL 线性相关⇔存在一组不全为0的数12,,,s k k k L ,使得11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0ss x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;715. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-L 线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a L11b a =;1222111[,][,]b a b a b b b =-g L L L 121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B :,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)8第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。
《线性代数》教案
《线性代数》教案一、前言1. 教学目标(1)理解线性代数的基本概念和原理;(2)掌握线性代数的基本运算方法和技巧;(3)能够应用线性代数解决实际问题。
2. 教学内容(1)线性方程组;(2)矩阵及其运算;(3)线性空间和线性变换;(4)特征值和特征向量;(5)二次型。
二、第一章:线性方程组1. 教学目标(1)理解线性方程组的定义和性质;(2)掌握线性方程组的求解方法;(3)能够应用线性方程组解决实际问题。
2. 教学内容(1)线性方程组的定义和性质;(2)线性方程组的求解方法:高斯消元法、克莱姆法则;(3)线性方程组的应用:线性规划、电路方程等。
三、第二章:矩阵及其运算1. 教学目标(1)理解矩阵的定义和性质;(2)掌握矩阵的运算方法;(3)能够应用矩阵解决实际问题。
2. 教学内容(1)矩阵的定义和性质;(2)矩阵的运算:加法、数乘、乘法;(3)矩阵的逆矩阵及其求法;(4)矩阵的应用:线性方程组、线性变换等。
四、第三章:线性空间和线性变换1. 教学目标(1)理解线性空间和线性变换的定义和性质;(2)掌握线性变换的表示方法;(3)能够应用线性变换解决实际问题。
2. 教学内容(1)线性空间的定义和性质;(2)线性变换的定义和性质;(3)线性变换的表示方法:矩阵表示、坐标表示;(4)线性变换的应用:图像处理、信号处理等。
五、第四章:特征值和特征向量1. 教学目标(1)理解特征值和特征向量的定义和性质;(2)掌握特征值和特征向量的求法;(3)能够应用特征值和特征向量解决实际问题。
2. 教学内容(1)特征值和特征向量的定义和性质;(2)特征值和特征向量的求法:幂法、矩阵对角化;(3)特征值和特征向量的应用:线性变换、振动系统等。
六、第五章:二次型1. 教学目标(1)理解二次型的定义和性质;(2)掌握二次型的标准形和规范形;(3)能够应用二次型解决实际问题。
2. 教学内容(1)二次型的定义和性质;(2)二次型的标准形和规范形:配方法、矩阵的对角化;(3)二次型的应用:最小二乘法、优化问题等。
线性代数教案全(同济大学第六版)
线性代数教案第(1)次课授课时间()1.教学内容: 二、三阶行列式的定义;全排列及其逆序数;阶行列式的定义2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.基本内容备注第一节 二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组 ⎩⎨⎧=+=+22222211212111b x a x a b x a x a用消元法,当021122211≠-a a a a 时,解得211222111212112211222112121221,a a a a b a b a x a a a a b a b a x --=--=令2112221122211211a a a a a a a a -=,称为二阶行列式 ,则如果将D 中第一列的元素11a ,21a 换成常数项1b ,2b ,则可得到另一个行列式,用字母1D 表示,于是有2221211a b a b D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
同理将 中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 表示,于是有2121112b a b a D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==D D x D D x 2211 其中0≠D例1. 解线性方程组 .1212232121⎪⎩⎪⎨⎧=+=-x x x x 同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a用消元法解得定义 设有9个数排成3行3列的数表333231232221131211a a a a a a a a a 记 333231232221131211a a a a a a a a a D =322113312312332211a a a a a a a a a ++=332112322311312213a a a a a a a a a ---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆: 从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2.计算三阶行列式 .(-14) 例3.求解方程 ( ) 例4.解线性方程组 解 先计算系数行列式573411112--=D 069556371210≠-=----+-= 再计算 321,,D D D515754101121-=--=D ,315534011222=--=D ,55730112123=---=D得 23171==D D x ,69312-==D D y ,6953-==D D z第( 2 )次课授课时间()第( 3 )次课授课时间()1.教学内容: 行列式按行(列)展开;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;教学手段: 黑板讲解与多媒体演示.基本内容备注第5节 行列式按行(列)展开定义 在 阶行列式中, 把元素 所处的第 行、第 列划去, 剩下的元素按原排列构成的 阶行列式, 称为 的余子式, 记为;而 称为 的代数余子式.引理 如果 阶行列式中的第 行除 外其余元素均为零, 即: .则: .证 先证简单情形:再证一般情形:定理 行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和, 即按行: 按列: 证:(此定理称为行列式按行(列)展开定理)nnn n ini i n a a a a a a a a a D212111211000000+++++++++=nnn n in n nnn n i n nn n n i n a a a a a a a a a a a a a a a a a a a a a 21112112121121121111211000000+++=).,2,1(2211n i A a A a A a in in i i i i =+++=例1 : . 解:例2: 21122112----=n D解: 21122112----=n D 211221100121---=+++nr r)()()()()()21331122213311n n n n n n n x x x x x x x x x x x -----, 并提出因子 )()2321111--n n n x x x x x x()1-n 阶范德蒙行列式(1n x x -行列式一行(列)的各元素与另一行(列)对应各元素的代数余子式乘积之和为零第( 4 )次课授课时间()1.教学内容: 克拉默法则;2.时间安排: 2学时;教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.4.教学手段:黑板讲解与多媒体演示.基本内容备注第(5)次课授课时间()1.教学内容: 矩阵;矩阵的运算;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示。
线性代数试讲教案
线性代数试讲教案第一章:线性代数简介1.1 线性代数的定义与意义介绍线性代数的定义和基本概念解释线性代数在数学和实际应用中的重要性1.2 向量空间与线性映射介绍向量空间的概念和性质介绍线性映射的定义和性质1.3 矩阵与行列式介绍矩阵的定义和基本运算介绍行列式的定义和性质第二章:线性方程组2.1 线性方程组的定义介绍线性方程组的定义和基本概念解释线性方程组在实际应用中的重要性2.2 高斯消元法介绍高斯消元法的步骤和原理通过例子演示高斯消元法的应用2.3 矩阵的逆介绍矩阵的逆的定义和性质讲解如何通过矩阵的逆来解线性方程组第三章:线性变换3.1 线性变换的定义介绍线性变换的定义和基本概念解释线性变换在数学和实际应用中的重要性3.2 线性变换的矩阵表示介绍线性变换的矩阵表示方法解释如何通过矩阵来表示线性变换3.3 线性变换的性质介绍线性变换的性质和判定条件解释线性变换的奇偶性等概念第四章:特征值与特征向量4.1 特征值与特征向量的定义介绍特征值和特征向量的定义和基本概念解释特征值和特征向量在数学和实际应用中的重要性4.2 求解特征值和特征向量讲解如何求解矩阵的特征值和特征向量通过例子演示求解过程4.3 特征值和特征向量的应用介绍特征值和特征向量在解决问题中的应用解释特征值和特征向量在图像处理、物理等领域的作用第五章:二次型5.1 二次型的定义介绍二次型的定义和基本概念解释二次型在数学和实际应用中的重要性5.2 二次型的标准形介绍二次型的标准形的定义和性质讲解如何将一般二次型化为标准形5.3 二次型的判定定理介绍二次型的判定定理和性质解释二次型的正定性、负定性和不定性的概念第六章:线性空间与线性独立6.1 线性空间的定义与性质介绍线性空间的概念和基本性质解释线性空间在数学和实际应用中的重要性6.2 线性独立与基底介绍线性独立的概念和判定方法讲解如何找到线性空间的基底6.3 维度与秩介绍维度和秩的概念及其关系解释维度和秩在解决问题中的应用第七章:向量组的线性相关性7.1 向量组的线性相关性定义介绍向量组的线性相关性的概念和基本性质解释向量组的线性相关性在数学和实际应用中的重要性7.2 向量组的线性相关性的判定讲解如何判定向量组是否线性相关通过例子演示判定过程7.3 极大线性无关组与基底介绍极大线性无关组的概念和性质解释如何找到向量组的基底第八章:特征值与特征向量的应用8.1 特征值和特征向量的应用概述概述特征值和特征向量在数学和实际应用中的重要性解释特征值和特征向量在不同领域中的应用8.2 二次型与特征值讲解二次型与特征值的关系解释如何利用特征值和特征向量解决二次型问题8.3 线性变换与特征值介绍线性变换与特征值的关系解释如何利用特征值和特征向量研究线性变换第九章:二次型的几何意义9.1 二次型的几何意义概述概述二次型的几何意义及其在数学和实际应用中的重要性解释二次型与几何问题之间的关系9.2 二次型的标准形与几何形状讲解二次型的标准形与几何形状的关系解释如何通过标准形分析二次型的几何性质9.3 二次型的正定性及其应用介绍二次型的正定性的概念和性质解释二次型的正定性在几何中的应用第十章:线性代数在实际应用中的例子10.1 线性代数在工程中的应用介绍线性代数在工程领域中的应用例子解释线性代数在解决工程问题中的作用10.2 线性代数在计算机科学中的应用介绍线性代数在计算机科学领域中的应用例子解释线性代数在计算机图形学、机器学习等领域的应用10.3 线性代数在其他领域的应用介绍线性代数在其他领域中的应用例子解释线性代数在经济学、生物学等领域的应用第十一章:线性代数的进一步应用11.1 最小二乘法介绍最小二乘法的原理和应用解释如何利用线性代数中的矩阵和方程组解决最小二乘问题11.2 线性规划介绍线性规划的基本概念和解法解释如何将线性规划问题转化为线性代数问题求解11.3 控制理论介绍控制理论中的线性系统和状态空间表示解释线性代数在控制理论中的应用和意义第十二章:特征值和特征向量的进一步讨论12.1 特征值的扰动分析讲解特征值对参数变化的敏感性分析解释如何利用特征值分析线性系统的稳定性和动态行为12.2 特征向量的正交性介绍特征向量的正交性和施密特正交化方法解释特征向量正交性在几何和物理中的应用12.3 特征值和特征向量的谱理论介绍谱理论的基本概念和性质解释谱理论在数学物理中的重要性和应用第十三章:线性代数软件与应用13.1 MATLAB与线性代数介绍MATLAB软件在线性代数计算中的应用解释如何使用MATLAB进行矩阵运算和线性方程组求解13.2 Python与线性代数介绍Python语言在线性代数计算中的应用解释如何使用Python库(如NumPy)进行矩阵运算和线性代数问题求解13.3 线性代数在科学研究中的应用介绍线性代数在科学研究中的典型应用案例解释线性代数工具在数据分析、图像处理等领域的作用第十四章:线性代数的历史与发展14.1 线性代数的历史回顾回顾线性代数的发展历程和关键人物解释线性代数在数学发展中的地位和影响14.2 现代线性代数的研究方向介绍线性代数当前的研究热点和方向解释线性代数在现代数学和应用数学中的作用14.3 线性代数的未来展望探讨线性代数在未来可能的发展趋势解释线性代数在解决新兴问题和挑战中的潜力第十五章:综合练习与拓展阅读15.1 综合练习题提供一个线性代数综合练习题集解释如何通过练习题巩固线性代数知识和技能15.2 拓展阅读材料推荐线性代数相关的拓展阅读材料解释如何通过拓展阅读深入理解和研究线性代数15.3 线性代数的实际案例研究介绍线性代数在实际案例研究中的应用解释线性代数在解决复杂问题和创新发展中的作用重点和难点解析重点:1. 线性代数的基本概念和向量空间性质。
刘金峰线代讲义
刘金峰线代讲义摘要:1.刘金峰线代讲义概述2.线性代数的基本概念3.线性方程组的解法4.特征值与特征向量5.矩阵的谱分解6.二次型7.奇异值分解8.总结正文:一、刘金峰线代讲义概述《刘金峰线代讲义》是一本关于线性代数(又称“线代”)的教材,适用于本科生学习。
线性代数是数学的一个分支,主要研究线性方程组、向量空间、矩阵、线性变换等概念,具有广泛的应用价值。
刘金峰教授以其丰富的教学经验和深厚的学术造诣,为学生提供了一本内容详实、逻辑清晰的线代教材。
二、线性代数的基本概念线性代数的基本概念包括向量、线性方程组、矩阵、行列式等。
向量是具有大小和方向的量,可以用来表示空间中的点或者方向。
线性方程组是包含多个变量的代数方程,这些方程的解构成了一种特定的关系。
矩阵是一种特殊的数表,可以用来表示线性方程组、线性变换等。
行列式是矩阵的一种性质,可以用来判断矩阵的性质。
三、线性方程组的解法线性方程组的解法有多种,如高斯消元法、克莱姆法则等。
高斯消元法是一种基于矩阵的行变换的方法,可以将线性方程组化为简化阶梯形矩阵,从而求解方程组。
克莱姆法则是求解线性方程组中逆矩阵的一种方法,可以用来求解具有唯一解的线性方程组。
四、特征值与特征向量特征值与特征向量是矩阵理论中的重要概念。
特征值是一个标量,特征向量是一个非零向量,它们满足矩阵与特征向量的乘积等于特征值与特征向量的乘积。
特征值与特征向量可以用来描述线性变换的性质,具有重要的理论意义和实际应用价值。
五、矩阵的谱分解矩阵的谱分解是将矩阵分解为特征值对角矩阵与特征向量矩阵的乘积,可以更好地描述矩阵的结构和性质。
谱分解在很多领域有广泛的应用,如信号处理、图像处理等。
六、二次型二次型是一种特殊的线性方程组,可以用来描述空间中的曲面或者超曲面。
研究二次型的性质可以帮助我们更好地理解空间几何中的问题。
七、奇异值分解奇异值分解是一种线性代数中的分解方法,可以将矩阵分解为三个矩阵的乘积,从而揭示矩阵的内部结构。
《线性代数》教案
《线性代数》教案一、教学目标1. 知识与技能:(1)理解线性代数的基本概念,如向量、矩阵、行列式等;(2)掌握线性方程组的求解方法,如高斯消元法、矩阵的逆等;(3)熟悉线性代数在实际问题中的应用。
2. 过程与方法:(1)通过实例讲解,培养学生的空间想象能力;(2)运用数学软件或工具,提高学生解决实际问题的能力;(3)引导学生运用线性代数的知识,分析、解决身边的数学问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)感受数学在生活中的重要性,培养学生的应用意识;(3)引导学生树立正确的数学观念,克服对数学的恐惧心理。
二、教学内容1. 第一章:向量(1)向量的概念及几何表示;(2)向量的线性运算;(3)向量的数量积与向量垂直;(4)向量的坐标表示与运算。
2. 第二章:矩阵(1)矩阵的概念与运算;(2)矩阵的行列式;(3)矩阵的逆;(4)矩阵的应用。
3. 第三章:线性方程组(1)线性方程组的解法;(2)高斯消元法;(3)矩阵的逆与线性方程组的解;(4)线性方程组的应用。
4. 第四章:矩阵的特征值与特征向量(1)特征值与特征向量的概念;(2)矩阵的特征值与特征向量的求解;(3)矩阵的对角化;(4)矩阵的特征值与特征向量的应用。
5. 第五章:二次型(1)二次型的概念;(2)二次型的标准形;(3)二次型的判定;(4)二次型的应用。
三、教学方法1. 采用启发式教学,引导学生主动探索、思考;2. 结合实例讲解,培养学生的空间想象能力;3. 利用数学软件或工具,提高学生解决实际问题的能力;4. 组织课堂讨论,促进学生交流与合作;5. 注重练习与反馈,巩固所学知识。
四、教学评价1. 平时成绩:课堂表现、作业、小测验等;2. 期中考试:检测学生对线性代数知识的掌握程度;3. 期末考试:全面考察学生的线性代数知识、技能及应用能力。
五、教学资源1. 教材:《线性代数》;2. 辅助教材:《线性代数学习指导》;3. 数学软件:如MATLAB、Mathematica等;4. 网络资源:相关在线课程、教学视频、练习题等。
大学数学说课稿线性代数基础教学
大学数学说课稿线性代数基础教学大学数学说课稿:线性代数基础教学一、引言数学作为一门基础学科,对于大学生的综合素质培养具有重要作用。
而线性代数作为数学的重要分支之一,是理工科专业以及计算机科学等领域的基础课程,对学生培养抽象思维、逻辑思维和问题解决能力有着重要意义。
本次说课将结合大学线性代数教学的特点,着重介绍线性代数基础教学的流程和方法。
二、教学目标1. 知识目标:使学生掌握线性代数基础知识,包括向量、矩阵、行列式等内容;2. 能力目标:培养学生抽象思维、逻辑思维和问题解决能力;3. 情感目标:激发学生对数学的兴趣,培养学生的数学思维能力。
三、教学重点与难点1. 教学重点:向量空间的定义与性质、线性方程组的求解方法;2. 教学难点:线性空间的概念理解、线性变换的理解与应用。
四、教学内容与教学方法1. 教学内容:(1) 向量空间的定义与性质:向量的线性组合、线性相关性与线性无关性等;(2) 线性方程组的求解方法:高斯消元法、矩阵的初等变换等;2. 教学方法:(1) 讲授法:结合具体例子和图示,介绍向量空间的定义与性质;(2) 实例演练法:通过解决一些实际问题,巩固学生对线性方程组求解方法的理解与应用能力。
五、教学流程1. 导入:通过提问或引用实例,引发学生对线性代数的兴趣,了解线性代数在现实生活中的应用;2. 知识点讲解:(1) 向量空间的定义与性质:通过讲解向量的线性组合、线性相关性与线性无关性等概念,引导学生理解向量空间的概念;(2) 线性方程组的求解方法:通过讲解高斯消元法、初等变换等方法,指导学生掌握线性方程组的求解过程;3. 实例演练:(1) 向量空间实例:通过具体的向量空间实例,引导学生应用向量空间的定义与性质,进行相关练习;(2) 线性方程组实例:选择一些简单的线性方程组实例,与学生一起进行高斯消元法和初等变换的演练;4. 总结与拓展:(1) 总结本节课的教学内容,强调学生应掌握的重要概念和解题技巧;(2) 拓展教学内容,提出一些相关的数学问题,激发学生的思考和求解能力。
《线性代数》教案
《线性代数》教案一、前言1. 教学目标:使学生理解线性代数的基本概念和性质,掌握线性代数的基本运算和应用,提高学生解决实际问题的能力。
2. 教学内容:本章主要介绍线性代数的基本概念、线性方程组、矩阵及其运算、线性空间和线性变换。
3. 教学方法:采用讲解、案例分析、练习相结合的方法,引导学生主动探究、积极参与,培养学生的逻辑思维和抽象思维能力。
二、第一节线性代数的基本概念1. 教学目标:使学生了解线性代数的发展历程,理解向量、线性方程组、线性空间等基本概念。
2. 教学内容:a. 线性代数的起源和发展;b. 向量的定义和性质;c. 线性方程组的解法;d. 线性空间的定义和性质。
3. 教学方法:通过讲解和案例分析,让学生了解线性代数的历史背景,通过练习,巩固基本概念。
三、第二节线性方程组1. 教学目标:使学生掌握线性方程组的求解方法,会运用线性方程组解决实际问题。
2. 教学内容:a. 线性方程组的矩阵表示;b. 高斯消元法求解线性方程组;c. 克莱姆法则;d. 线性方程组在实际问题中的应用。
3. 教学方法:通过讲解和练习,使学生掌握线性方程组的求解方法,培养学生解决实际问题的能力。
四、第三节矩阵及其运算1. 教学目标:使学生理解矩阵的概念,掌握矩阵的运算规则,会运用矩阵解决实际问题。
2. 教学内容:a. 矩阵的定义和性质;b. 矩阵的运算(加法、数乘、乘法);c. 逆矩阵的概念和性质;d. 矩阵的应用。
3. 教学方法:通过讲解和练习,使学生掌握矩阵的基本运算,培养学生解决实际问题的能力。
五、第四节线性空间和线性变换1. 教学目标:使学生了解线性空间和线性变换的概念,理解它们在数学和其他领域的应用。
2. 教学内容:a. 线性空间的概念和性质;b. 线性变换的定义和性质;c. 线性变换的应用。
3. 教学方法:通过讲解和案例分析,使学生了解线性空间和线性变换的基本概念,培养学生的抽象思维能力。
六、第五节行列式1. 教学目标:使学生理解行列式的概念,掌握行列式的计算方法,会运用行列式解决实际问题。
《线性代数》讲稿子(1)
文档第一章 行列式本章说明与要求:行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题:(1) 行列式的定义;(2) 行列式的基本性质及计算方法;(3) 利用行列式求解线性方程组(克莱姆法则).本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式.计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法.行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 。
本章的重点:行列式性质;行列式的计算。
本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。
1.1 二阶与三阶行列式行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题.设有二元线性方程组 ⎩⎨⎧=+=+22221211112111b x a x a b x a x a(1)用加减消元法容易求出未知量x 1,x 2的值,当a 11a 22 – a 12a 21≠0 时,有⎪⎪⎩⎪⎪⎨⎧--=--=211222112112112211222112122211a a a a a b b a x a a a a b a a b x (2)这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号2112221122211211a a a a a a a a -=为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.文档根据定义,容易得知(2) 中的两个分子可分别写成222121212221a b a b b a a b =-,221111211211b a b a a b b a =-,如果记 22211211a a a a D =,2221211a b a b D =,2211112b a b a D =则当D ≠0时,方程组(1) 的解(2)可以表示成2221121122212111a a a a a b a b DD x ==, 2221121122111122a a a ab a b a DD x ==, (3)象这样用行列式来表示解,形式简便整齐,便于记忆.首先(3) 中分母的行列式是从(1) 式中的系数按其原有的相对位置而排成的.分子中的行列式,x 1的分子是把系数行列式中的第1列换成(1)的常数项得到的,而x 2的分子则是把系数行列式的第2列换成常数项而得到的.例1 用二阶行列式解线性方程组 ⎩⎨⎧=+=+231422121x x x x解:这时 0214323142≠=⨯-⨯==D , 5243132411-=⨯-⨯==D ,3112221122=⨯-⨯==D , 因此,方程组的解是 2511-==D D x ,2322==D D x ,对于三元一次线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (4)作类似的讨论,我们引入三阶行列式的概念.我们称符号312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++= (5)为三阶行列式,它有三行三列,是六项的代数和.这六项的和也可用对角线法则来记忆:从左上角到右下角三个元素的乘积取正号,从右上角到左下角三个元素的乘积取负号.例2 532134212-1062012242301325)4(123223)4(211532=-+--+==⨯⨯-⨯-⨯-⨯⨯-⨯⨯-+⨯⨯+⨯⨯=文档令 333231232221131211a a a a a aa a a D =3332323222131211a a b a a b a a b D =,3333123221131112a b a a b a a b a D =, 3323122221112113b a a b a a b a a D =. 当 D ≠0时,(4)的解可简单地表示成D D x 11=,D Dx 22=,DD x 33= (6)它的结构与前面二元一次方程组的解类似.例3 解线性方程组 ⎪⎩⎪⎨⎧=-+=-+=+-423152302321321321x x x x x x x x x解:28231523112=---=D ,132345211101=---=D ,472415131022=--=D ,214311230123=-=D .所以,281311==D D x ,284722==D D x ,43282133===D D x . 例4 已知010100=-a bb a,问a ,b 应满足什么条件?(其中a ,b 均为实数).解:2210100b a a b b a +=-,若要a 2+b 2=0,则a 与b 须同时等于零.因此,当a =0且b =0时给定行列式等于零.为了得到更为一般的线性方程组的求解公式,我们需要引入n 阶行列式的概念,为此,先介绍排列的有关知识.1.2 排列在n 阶行列式的定义中,要用到排列的某些知识,为此先介绍排列的一些基本知识. 定义1由数码1,2,…,n 组成一个有序数组称为一个n 级排列.例如,1234是一个4级排列,3412也是一个4级排列,而52341是一个5级排列.由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3!=6个.数字由小到大的n 级排列1234…n 称为自然序排列.定义2在一个n 级排列i 1i 2…i n 中,如果有较大的数 i t 排在较小的数 i s 的前面(i s <i t ), 则称i t 与i s 构成一个逆序,一个n 级排列中逆序的总数,称为这个排列的逆序数,记作N (i 1i 2…i n ).文档例如, 在4 级排列3412中, 31,32,41,42,各构成一个逆序数,所以,排列3412的逆序数为N (3412)=4.同样可计算排列52341的逆序数为N (52341)=7.容易看出, 自然序排列的逆序数为0.定义3 如果排列i 1i 2…i n 的逆序数N (i 1i 2…i n )是奇数,则称此排列为奇排列,逆序数是偶数的排列则称为偶排列.例如,排列3412是偶排列.排列52341是奇排列. 自然排列123…n 是偶排列.定义4 在一个n 级排列i 1…i s …i t …i n 中, 如果其中某两个数i s 与i t 对调位置,其余各数位置不变,就得到另一个新的n 级排列i 1…i t …i s …i n ,这样的变换称为一个对换,记作(i s ,i t ).如在排列3412中,将4与2对换, 得到新的排列3214. 并且我们看到:偶排列3412经过4与2的对换后,变成了奇排列3214. 反之,也可以说奇排列3214经过2与4的对换后,变成了偶排列3412.一般地,有以下定理:定理1 任一排列经过一次对换后,其奇偶性改变.定理2 在所有的n 级排列中(n ≥2),奇排列与偶排列的个数相等,各为2!n 个.1.3 n 阶行列式本节我们从观察二阶、三阶行列式的特征入手.引出n 阶行列式的定义. 已知二阶与三阶行列式分别为2112221122211211a a a a a a a a -=111213212223112233122331132132112332122133132231313233a a a a a a a a a a a a a a a a a a a a a a a a a a a =++--- 其中元素a ij 的第一个下标i 表示这个元素位于第i 行,称为行标,第二个下标j 表示此元素位于第j 列,称为列标.我们可以从中发现以下规律:(1) 二阶行列式是2!项的代数和,三阶行列式是3!项的代数和;(2) 二阶行列式中每一项是两个元素的乘积,它们分别取自不同的行和不同的列,三阶行列式中的每一项是三个元素的乘积,它们也是取自不同的行和不同的列;(3) 每一项的符号是:当这一项中元素的行标是按自然序排列时,如果元素的列标为偶排列,则取正号;为奇排列,则取负号.作为二、三阶行列式的推广我们给出n 阶行列式的定义.定义1 由排成n 行n 列的n 2个元素a ij (i ,j =1,2,…,n )组成的符号nnn n nn a a a a a a a a a 212222111211文档称为n 阶行列式.它是n !项的代数和,每一项是取自不同行和不同列的n 个元素的乘积,各项的符号是:每一项中各元素的行标排成自然序排列,如果列标的排列为偶排列时,则取正号;为奇排列,则取负号.于是得nnn n nn a a a a a a a a a 212222111211=∑n j j j 21n n nj j j j j j N a a a 212121)()1(- (1)其中∑nj j j 21表示对所有的n 级排列j 1j 2…j n 求和.(1)式称为n 阶行列式按行标自然顺序排列的展开式.)(21)1(n j j j N -n nj j j a a a 2121称为行列式的一般项.当n =2、3时,这样定义的二阶、三阶行列式与上面§1.1中用对角线法则定义的是一致的.当n =1时,一阶行列为|a 11|= a 11.如当n =4时,4阶行列式44342414434241333231232221131211a a a a a a a a a a a a a a a a ,表示4!=24项的代数和,因为取自不同行、不同列4个元素的乘积恰为4!项.根据n 阶行列式的定义,4阶行列式为44342414434241333231232221131211 a a a a a a a a a a a a a a a a ∑-444=j j j j j j j j j j j N a a a a 213214321321)()1( 例如a 14a 23a 31a 42行标排列为1234,元素取自不同的行;列标排列为4312,元素取自不同的列,因为N (4312)=5,所以该项取负号,即–a 14a 23a 31a 42是上述行列式中的一项.为了熟悉n 阶行列式的定义,我们来看下面几个问题. 例1 在5阶行列式中,a 12a 23a 35a 41a 54这一项应取什么符号?解:这一项各元素的行标是按自然顺序排列的,而列标的排列为23514.因 N (23514)=4 故这一项应取正号.例2 写出4阶行列式中,带负号且包含因子a 11a 23的项. 解:包含因子a 11a 23项的一般形式为44j j j j N a a a a 34332311)13()1(-,按定义,j 3可取2或4,j 4可取4或2,因此包含因子a 11a 23的项只能是a 11a 23a 32a 44或a 11a 23a 34a 42 ,但因 N (1324)=1为奇数,N (1342)=2为偶数 所以此项只能是 –a 11a 23a 32a 44.例3 计算行列式hg vu f e y x dc ba 0000文档解 这是一个四阶行列式,按行列式的定义,它应有4!=24项.但只有以下四项adeh ,adfg ,bceh ,bcfg 不为零.与这四项相对应得列标的4级排列分别为1234,1243,2134和2143,而N (1234)=0,N (1243)=1,N (2134)=1和N (2143)=2,所以第一项和第四项应取正号,第二项和第三项应取负号,即hg v u f e y x d c ba 0000= adeh –adfg –bceh +bcfg 例4 计算上三角形行列式 nnnn a a a a a a D 21221211 0=其中a ii ≠0 (i =1, 2,…, n ). 解:由n 阶行列式的定义,应有n !项,其一般项为n nj j j a a a 2121但由于D 中有许多元素为零,只需求出上述一切项中不为零的项即可.在D 中,第n 行元素除a nn 外,其余均为0.所以j n =n ;在第n –1行中,除a n–1n –1和a n –1n 外,其余元素都是零,因而j n –1只取n –1、n 这两个可能,又由于a nn 、a n –1n 位于同一列,而j n =n .所以只有j n –1 = n –1.这样逐步往上推,不难看出,在展开式中只有a 11a 22…a nn 一项不等于零.而这项的列标所组成的排列的逆序数是N (12…n )=0故取正号.因此,由行列式的定义有nnnn a a a a a a D 21221211==a 11a 22…a nn 即上三角形行列式的值等于主对角线上各元素的乘积.同理可求得下三角形行列式nnn n a a a a a a021222111=a 11a 22…a nn 特别地,对角形行列式nna a a 0002211=a 11a 22…a nn 上(下)三角形行列式及对角形行列式的值,均等于主对角线上元素的乘积.例5 计算行列式0000001121n n n a a a -解 这个行列式除了a 1n a 2n –1…a n 1这一项外,其余项均为零,现在来看这一项的符号,列标的n 级排列为n (n –1)…21,N (n (n –1)…21)= (n –1)+ (n –2)+…+2+1=2)1(-⋅n n ,所以文档0000001121n n n a a a -=11212)1()1(n n n n n a a a ---同理可计算出000112222111211n n na a a a a a a -=nnnn n nn na a a a a a 112121000-- =11212)1()1(n n n n n a a a --- 由行列式的定义,行列式中的每一项都是取自不同的行不同的列的n 个元素的乘积,所以可得出:如果行列式有一行(列)的元素全为0,则该行列式等于0.在n 阶行列式中,为了决定每一项的正负号,我们把n 个元素的行标排成自然序排列,即n nj j j a a a 2121.事实上,数的乘法是满足交换律的,因而这n 个元素的次序是可以任意写的,一般地,n 阶行列式的项可以写成n n j i j i j i a a a 2211 其中i 1i 2…i n ,j 1 j 2…j n 是两个n 阶排列,它的符号由下面的定理来决定.1.4 行列式的性质当行列式的阶数较高时,直接根据定义计算n 阶行列式的值是困难的,本节将介绍行列式的性质,以便用这些性质把复杂的行列式转化为较简单的行列式(如上三角形行列式等)来计算.将行列式D 的行列互换后得到的行列式称为行列式D 的转置行列式,记作D T,即若nnn n n n a a a a a a a a a D212222111211=, 则nnnnn n T a a a a a a a a a D212221212111=.反之,行列式D 也是行列式D T的转置行列式,即行列式D 与行列式D T互为转置行列式.性质1 行列式D 与它的转置行列式D T的值相等. 性质2 交换行列式的两行(列),行列式变号.例1 计算行列式053704008000051753603924--=D 解:将第一、二行互换,第三、五行互换,得0504008053070392417536)1(2---=D文档推论 若行列式有两行(列)的对应元素相同,则此行列式的值等于零. 性质3 行列式某一行(列)所有元素的公因子可以提到行列式符号的外面.即nnn n in i i n nnn n in i i n a a a a a a a a a k a a a ka ka ka a a a211111211211111211= 此性质也可表述为:用数k 乘行列式的某一行(列)的所有元素,等于用数k 乘此行列式. 推论:如果行列式中有两行(列)的对应元素成比例,则此行列式的值等于零.性质4 如果行列式的某一行 (列)的各元素都是两个数的和,则此行列式等于两个相应的行列式的和,即nnn n in i i n nnn n in i i n nnn n in in i i i i n a a a c c c a a a a a a b b b a a a a a a c b c b c b a a a21211121121211121121221111211+=+++ 性质5 把行列式的某一行 (列)的所有元素乘以数k 加到另一行(列)的相应元素上,行列式的值不变.即nnn n sn s s in i i n a a a a a a a a a a a a D21212111211= nnn n snin s i s i in i i n a a a a ka a ka a ka a a a a a a2122112111211+++作为行列式性质的应用,我们来看下面几个例子.例2 计算行列式 3111131111311113=D 解:这个行列式的特点是各行4个数的和都是6,我们把第2、3、4各列同时加到第1列,把公因子提出,然后把第1行×(–1)加到第2、3、4行上就成为三角形行列式.具体计算如下:i 行×k 加 到第s 行文档例3 计算行列式0112012120112110-----=D 例4 试证明:011=++++=cb a d b a dc da cb dc b a D 11例5 计算n +1阶行列式 xa a a a x a a a a x a a a a xD n n n321212121=例6 解方程0)1(11111)2(111112111111111111=------x n xn x x例7 试证明奇数阶反对称行列式 000021212112=---=nnnna a a a a a D证:D 的转置行列式为00021212112n nnn Ta a a a a a D ---=,从D T中每一行提出一个公因子(–1),于是有D a a a a a a D n nnnnnT )1(000)1(21212112-=----=,但由性质1知道D T =D文档∴ D =(–1)nD 又由n 为奇数,所以有D = –D ,即 2D =0, 因此 D =0.1.5 行列式按一行(列)展开本节我们要研究如何把较高阶的行列式转化为较低阶行列式的问题,从而得到计算行列式的另一种基本方法——降阶法.为此,先介绍代数余子式的概念.定义 在n 阶行列式中,划去元素a ij 所在的第i 行和第j 列后,余下的元素按原来的位置构成一个n –1阶行列式,称为元素a ij 的余子式,记作Mij .元素a ij 的余子式Mij 前面添上符号(–1)i+j称为元素a ij 的代数余子式,记作A ij .即A ij =(–1)i +jM ij .例如:在四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a D =中a 23的余子式是M 23=444241343231141211a a a a a a a a a 而 A 23=(–1)2+3M 23= –444241343231141211a a a a a a a a a 是a 23的代数余子式. 定理1 n 阶行列式D 等于它的任意一行(列)的元素与其对应的代数余子式的乘积之和,即D =a i 1A i 1+a i 2A i 2+…+a in A in (i =1,2,…,n )或 D =a 1j A 1j +a 2j A 2j +…+a nj A nj (j=1,2,…,n ).定理2 n 阶行列式D 中某一行(列)的各元素与另一行(列)对应元素的代数余子式的乘积之和等于零,即:a i 1A s 1+a i 2A s 2+…+a in A sn =0 (i ≠s )或 a 1j A 1t +a 2j A 2t +…+a nj A nt =0 (j ≠t ).定理1表明,n 阶行列式可以用n –1阶行列式来表示,因此该定理又称行列式的降阶展开定理.利用它并结合行列式的性质,可以大大简化行列式的计算.计算行列式时,一般利用性质将某一行(列)化简为仅有一个非零元素,再按定理1展开,变为低一阶行列式,如此继续下去,直到将行列式化为三阶或二阶.这在行列式的计算中是一种常用的方法.例1 计算行列式 5101242170131312-----=D文档例3 计算yy x x D -+-+=1111111111111111,其中 xy ≠0.例4 试证 ∏≤<≤-----=ni j j in nn n n n n a aa a a a a a a a a a a a 111312112232221321)(1111(1)式中左端叫范德蒙行列式.结论说明,n 阶范德蒙行列式之值等于a 1, a 2, …, a n ,这n 个数的所有可能的差a i –a j (1≤j<i ≤n )的乘积.例5 计算n 阶行列式1232110000010000010000001n nn n n x x x D x a a a a a a x------=-+例6 证明22211211222112112221222112111211222112110000b b b b a a a a b b c c b b c c a a a a ⋅=(拉普拉斯展开) 本例题的结论对一般情况也是成立的,即mmm m mk m m mk kk k k k b b b c c c b b b c c c a a a a a a212111211112112111211000000mmm m m kk k k k b b b b b b a a a a a a21112112111211⋅=文档1.6 克莱姆法则前面我们已经介绍了n 阶行列式的定义和计算方法,作为行列式的应用,本节介绍用行列式解n 元线性方程组的方法——克莱姆法则.它是§1中二、三元线性方程组求解公式的推广.设含有n 个未知量n 个方程的线性方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********(1)它的系数a ij 构成的行列式 nnn n nna a a a a a a a a D212222111211=称为方程组(1)的系数行列式.定理1 (克莱姆法则) 如果线性方程组(1)的系数行列式D ≠0,则方程组(1)有唯一解:, , , ,2211DD x D Dx D D x n n ===(2) 其中D j (j=1,2,…,n ,)是D 中第j 列换成常数项b 1,b 2,…,b n ,其余各列不变而得到的行列式.这个法则包含着两个结论:方程组(1)有解,解唯一.下面分两步来证明. 第一步:在D ≠0的条件下,方程组(1)有解,我们将验证由(2)式给出的数组 , , ,21DD D D D D n 确实是方程组(1)的解.第二步:若方程组有解,必由(2)式给出,从而解是唯一的.例1 解线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=-++-=+-+=+-+24664284333521234321432143214321x x x x x x x x x x x x x x x x解:因为0172130011500011012312619012130011012314616284323521231≠=----=----=------=D所以方程组有唯一解,又,04626284323321211 ,34461228442353123121=-----=-=-----=D D852616484333521231 ,17421624432352113143=-----==---=D D .文档即得唯一解:51785,11717 ,0170 ,217344321======-=-=x x x x . 注意:用克莱姆法则解线性方程组时,必须满足两个条件:一是方程的个数与未知量的个数相等;二是系数行列式D ≠0.当方程组(1)中的常数项都等于0时,称为齐次线性方程组.即⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a称为齐次线性方程组.显然,齐次线性方程组(3)总是有解的,因为x 1=0, x 2=0,…, x n =0必定满足(3),这组解称为零解,也就是说:齐次线性方程组必有零解.在解x 1=k 1, x 2=k 2,…, x n =k n 不全为零时,称这组解为方程组(3)的非零解. 定理2 如果齐次线性方程组(3)的系数行列式D ≠0,则它只有零解. 推论 如果齐次线性方程组(3)有非零解,那么它的系数行列式D =0.例2 若方程组:⎪⎩⎪⎨⎧=++=++=++02003213213211x bx x x bx x x x x a 只有零解,则a 、b 应取何值?解:由定理2知,当系数行列式D ≠0时,方程组只有零解,)1(1211111a b bb aD -==所以,当a ≠1且b ≠0时,方程组只有零解.第二章矩阵说明与要求:矩阵是一个表格,作为表格的运算与数的运算既有联系又有区别.要熟练掌握矩阵的加法、乘法与数量乘法的运算规则,并熟练掌握矩阵行列式的有关性质.线性方程组的一些重要性质都反映在它的系数矩阵和增广矩阵上,所以我们可以通过矩阵来求解线性方程组,通过矩阵来判断解的情况等.但是矩阵的应用不仅限于线性方程组,而是多方面的.因此矩阵在线性代数中是一个重要而且应用广泛的概念正确理解逆矩阵的概念,掌握逆矩阵的性质及矩阵可逆的充要条件.会用伴随矩阵求矩阵的逆.熟练掌握用初等变换求逆矩阵的方法.。
线性代数大学生公开课教案
课程名称:线性代数授课对象:本科生课时:1课时教学目标:1. 了解线性代数的基本概念和基本运算。
2. 掌握矩阵、向量、线性方程组等基本内容。
3. 培养学生运用线性代数知识解决实际问题的能力。
教学重点:1. 矩阵、向量、线性方程组的基本概念和运算。
2. 矩阵的秩、逆矩阵、特征值和特征向量等概念。
教学难点:1. 矩阵运算的技巧和性质。
2. 线性方程组的解法。
教学过程:一、导入1. 引入线性代数的实际应用背景,如工程、物理、经济等领域。
2. 强调线性代数在各个学科中的重要性。
二、教学内容1. 矩阵的基本概念和运算- 矩阵的定义、表示方法- 矩阵的加法、数乘、乘法- 矩阵的转置、共轭转置- 矩阵的行列式、逆矩阵- 矩阵的秩、性质2. 向量的基本概念和运算- 向量的定义、表示方法- 向量的加法、数乘- 向量的长度、单位向量- 向量的线性相关性、线性无关性3. 线性方程组- 线性方程组的定义、表示方法- 线性方程组的解法(高斯消元法、克莱姆法则)- 线性方程组的解的性质三、课堂练习1. 学生独立完成以下练习题:- 计算矩阵的逆矩阵。
- 判断矩阵的秩。
- 求解线性方程组。
2. 教师巡视指导,解答学生在练习过程中遇到的问题。
四、总结与反馈1. 教师总结本节课的主要内容,强调重点和难点。
2. 学生反馈学习过程中的收获和困惑,教师进行解答和指导。
教学评价:1. 课堂练习的正确率。
2. 学生对线性代数基本概念和运算的掌握程度。
3. 学生运用线性代数知识解决实际问题的能力。
教学反思:1. 教师应根据学生的实际情况调整教学内容和进度。
2. 注重培养学生的逻辑思维能力和解决问题的能力。
3. 加强与学生的互动,提高课堂氛围。
(完整word版)线性代数教案
二次型是一个二次齐次多项式,其一般形式为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n}sum_{ j=1}^{n}a_{ij}x_ix_j$,其中$a_{ij}$是常数,$x_i$是变量。
标准型表示方法
通过正交变换,二次型可以化为标准型$f = lambda_1y_1^2 + lambda_2y_2^2 + ... + lambda_ny_n^2$,其中$lambda_i$是二次型的特征值。
03 向量空间与线性变换
向量空间概念及性质
向量空间定义
设V是一个非空集合,P是一个数域,若对V中任意两个元素α与β,总有唯一元素γ∈V与之对应,称为α与β的和 ,记为γ=α+β,且在加法运算下V封闭;又对P中任意数与V中任意元素α,总有唯一元素δ∈V与之对应,称为该 数与α的积,记为δ=kα(k∈P),且在数乘运算下V封闭,则称V是数域P上的线性空间,或向量空间。
向量空间维数
设V是数域P上的线性空间,若V中存在一个由n个向量组成的 基,且任意n+1个向量都线性相关,则称n为V的维数,记为 dimV=n。若V中不存在由有限个向量组成的基,则称V为无 限维的。
04 方程组求解与矩阵秩
齐次线性方程组求解方法
01
02
03
高斯消元法
通过消元将系数矩阵化为 上三角矩阵,然后回代求 解未知数。
向量空间性质
向量空间具有8条基本性质,包括加法交换律、加法结合律、零元存在性、负元存在性、数乘分配律、数乘结合 律、数乘单位元存在性以及数乘零元存在性。
线性变换定义及性质
线性变换定义
设V和W是数域P上的两个线性空间,σ是V到W的一个映射,若对V中任意元素α 、β和P中任意数k,都有σ(α+β)=σ(α)+σ(β),σ(kα)=kσ(α),则称σ是V到W的 一个线性映射或线性变换。
线性代数说课(课堂PPT)
[U0,r]=rref(U)
计算结果为
U0=
r= 1 2 4 5 7
1010000
从最简行阶梯型U0中可以看
0120030
出,R(U)=5,向量组线性
0001010
相关,一个最大无关组为
0000110
u1,u2,u4,u5,u7,
0000001
u3=u1+2u2
四个零行
u6=3u2+u4+u5 故可以配制新药
33
LO五GO 教学程序设计
【项目】药方配制问题
问题:某中药厂用9种中草药(A-I),根据不同的比例配制成了7种特效药, 各用量成分见表1(单位:克)
(1)某医院要购买这7种特效药,但药厂的第3号药和第6号药已经卖完, 请问能否用其他特效药配制出这两种脱销的药品。 (2)现在该医院想用这7种草药配制三种新的特效药,表2给出了三种新的 特效药的成分,请问能否配制?如何配制?
教材缺点: 教材内与专业相结合的应用 实例较少。
12
LO三GO 课程与行业间的契合度
线性代数
行业用
专业课程
《线性代数》作为工程数学体系和经济数学体系中的重要组成部分,是理工科学生的 一门重要基础课,与机械、电气、计算机专业有着密切联系。例如,在机械工程的绘图 中,MATLAB能提供多个函数用于绘制图形,以向量或矩阵作为输入参数,来绘制图像。
• 对策:用学生感兴趣的实际项目激发其主动性,用教师启发引导和 组织学生讨论的教学方法,使学生带着真实的任务,由浅入深,层 层递进的完成课堂学习
21
LO五GO 教学程序设计
3、教学重难点的处理
教学重点
线性组合、线性相关性、极大无关组
处理办法:借助初等几何平面直角坐标系及二维向量,帮助构建相关概念的认知
小学三年级数学说课稿认识并运用简单的线性代数
小学三年级数学说课稿认识并运用简单的线性代数小学三年级数学说课稿:认识并运用简单的线性代数引言:数学是一门抽象而又实际的学科,它贯穿着现实生活的方方面面。
而线性代数则是数学中重要的一个分支,它与我们的日常生活息息相关。
在小学三年级的数学课程中,线性代数也可被引入其中,帮助学生认识并运用简单的线性代数知识。
本次说课将围绕着“认识并运用简单的线性代数”展开。
第一部分:认识线性代数的基本概念(400字)1. 线性代数的定义与作用线性代数是研究向量空间及其线性变换的数学分支。
它有助于培养学生逻辑思维和抽象思维能力,提高解决数学问题的能力。
2. 向量的认识向量是线性代数的基本概念之一。
通过生活中的例子,如力的合成、速度的合成等,让学生理解向量的概念并能使用向量表示量的大小和方向。
3. 向量的运算介绍向量的加法、减法和数量乘法,鼓励学生通过简单的实际例子运用向量的运算法则。
例如,用向量解决“一船两舵”的问题。
第二部分:从线段到线性代数的引入(400字)1. 线段的认识通过观察生活中各种线段的例子,如铅笔、书本等,让学生认识线段的概念,并能运用线段进行测量。
2. 线段的加法引导学生从生活中找出线段的加法例子,如将两根线段连接、绳子的延长等,加深学生对线段加法的理解,并引出线段加法与向量加法的联系。
3. 探索二维坐标系通过一些实际问题,如小明与小李两人在操场上相遇的问题,引导学生绘制简单的二维坐标系,并灵活运用线段加法解决问题。
第三部分:引入矩阵与矩阵的运算(400字)1. 了解矩阵引入矩阵的概念,通过生活中常见的表格、游戏等例子,让学生认识矩阵的具体形式与应用。
2. 矩阵的加法和减法介绍矩阵的加法和减法运算法则,并通过实际问题,如小明和小李两人一起完成作业的问题,让学生灵活应用矩阵的加法和减法。
3. 矩阵的数量乘法引导学生了解矩阵与实数的乘法运算,通过简单的实际问题,如两人购买商品的问题,让学生体会矩阵数量乘法的实际应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础部:周喜华
说课内容
1
课程设置
2
教学设置
3
ቤተ መጻሕፍቲ ባይዱ
课程实施
4
课程评价
1、课程设置
1.1
1.2
1.3
1.4
课程 课程定 课
使
基本 位、性 程
用
信息 质与作 目
教
用
标
材
1.1课程基本信息
课程名称 授课对象
《线性代数》
工程测量与监理 专业 一年级学生
学时数 学分数
32学时 2学分
1.2课程的定位、性质与作用
线上教学
教学资源上网
多媒体教学 黑板加粉笔
3.4教学过程实施
12
3
4
5
6
问
历
概例
课
归
布
题
史
念题
堂
纳
置
提
介
介讲
练
总
作
出
绍
绍解
习
结
业
3.4.6布置作业
作业是课堂教学中不可缺少的环节
作
,配合每次课的教学内容,布置相 应的作业,通过作业反馈本节课知
业 识掌握的情况,以便下节课查陋补 缺,这符合教学论中的程序原则和
熟练的运算能力和综合运用所学知识去分析和解决
问题的能力,特别是运用矩阵的方法分析测量工程
中出现的问题。它在培养学生的综合素质和创新意
识方面起着十分重要的作用,并且在以后的专业课
学习中发挥着工具的作用。
1.4使用教材
使用教材: 教育部高职高专推荐教
材黄焕福等编著,高等教育 出版社出版。
使用理由: 这本教材力求贯彻少而 精的原则,注意学生基本运算 能力和运算方法的训练,内 容通俗易懂,比较符合我校 学生的实际情况。
教材缺点: 教材内关于工程测量类 专业的应用实例较少。
2、教学设置
教
教
教
学
学
学
学
法
内
重
设
设
容
难
计
计
点
2.1教学内容
教学内容 第一章 行列式 第二章 矩阵 第三章 n维向量和线性方程组
第四章 特征值与特征向量 第五章 二次型
合计
学时分配 6 8 8
4 6 32
2.2教学重、难点及解决办法
教学重点
为度”的指导思想,一方面通过线性代数的教学,不
仅使学生掌握线性代数的相关的基础知识、基本理
课 论,有较熟练的运算技能一方面使学生获得该课程的
程
基本概念、基本理论和基本运算技能,为学习有关 专业课程和扩大数学知识面提供必要的数学基础,
目 另一方面通过各个教学环节,逐步培养学生的抽象
标 思维能力、逻辑推理能力和自学能力,并具有比较
学习态度不端正 水平参差不齐
符合学生实际情况
教学方法
3.2制订大纲
学情分析
必须
够用
实用
教学大纲
3.3教学手段
目前来说,线性代 数的教学方式还是以黑 板加粉笔为主,在今后 的教学中要逐步加入多 媒体教学、网上共享教 学资源或线上教学,这 是教学发展的一个趋势, 但是也要注意网络化教 学手段与传统教学的衔 接过度,以达到最佳教 学效果为依据进行改革 创新。
反馈原则。
4、课程评价
课程评价
肯定性评价
学生的闪光点, 及时地给与鼓励, 加以肯定,帮助 学生认识自我, 建立自信
形成性评价
同一专业统一试 卷,统一评卷, 试卷占60%, 作业及课堂上的 表现占40%,
说课总结
1.课程信息 2.课程定位性 质与作用 3.课程目标 4.使用教材
课程设置
课程实施 课程评价 教学设置
1.教学内容
2.教学重、难 点
3.教学设计
4.学法设计
说课结束,欢迎大家批评指正,谢谢!
2013年9月
2.3教学设计
启发式
讲授法
谈话式
教学方法
演示法
练习法
实验法
2.4学法设计
学情分析:水平参差不齐
学法
学会设疑 学会发现 学会尝试 学会联想 学会总结
3、课程实施
学
制
情
订
分
大
析
纲
教 学 手 段
教 学 过 程 实
施
3.1学情分析
高职高专学生虽然都经历过高 考,但是除少数同学因高考发 挥失常外,大多学生在高中阶 段学习成绩差,学习态度不端 正,有的甚至自暴自弃。
数学课程对于高职学生来说,往往困难很大,我们在设计教学 时,力求体现以“必需、够用”为原则,淡化系统性和严密性,加 强实践环节,运用现代技术的理念。所谓淡化系统性,是指不强调 教学内容的连贯与衔接;所谓淡化严密性,就是针对学生抽象能力 的薄弱,不追求逐字逐句的严格描述;强调思维性,就是关注数学 的思维方式,体现数学素质的修养。(1)在介绍各种概念的时候, 以实例引入,使概念尽可能不以严格“定义”的形式出现,而是结 合自然的叙述,辅以各种背景材料,顺势引入减少数学形式的抽象 感。(2)在介绍基本定理的时候,不拘泥于“定理——证明”的单 一模式,也不是简单地删去证明了事,而是尽可能地在通俗易懂的 叙述中渐入主题,既交代了来龙去脉,又冲淡了抽象成分,让学生 有一种“水到渠成”之感。(3)在讲解运算规则和规律时设计了一 些精简易记的文字语言解读数学公式,对抽象内容作形象化处理, 避免了记号复杂、下标林立的局面,使学生加强了对数学公式的理 解。(4)对于抽象性比较强的内容,注重精选典型的例子引入,并 通过例子逐步展开理论,引导学生思考得出相关结论。
矩阵的概念与初等变换,向量组的线 性相关性与非齐次线性方程组的结 构,方阵的特征值、特征向量的求 法以及方阵的对角化等。
教学难点
抽象概念的引入及定理的理解和应用; 贯穿线性代数课程始终的思想
----初等变换。
实例引入概念,以问题驱动,淡化理论,
解决办法 借助多媒体,遵循循序渐进的认知规律。
2.3教学设计
课程 定位 性质 作用
线性代数是大学代数课程的
基本内容,是理论性较强,又具 有广泛的应用性的学科,它是工 程测量与监理专业必修的一门重 要专业基础理论课,它是学生掌 握数学工具的主要课程,它是处 理和解决工程技术中一些实际问 题不可缺少的有力工具。
1.3课程目标
本着“基础理论以应用为目的,以必需够用