数字基带传输常用码型
基带传输之码型编码
基带传输之码型编码常见的传输码型有NRZ码、RZ码、AMI码、HDB3码及CMI码,其中最适合基带传输的码型是HDB3码。
另外,AMI码也是CCITT建议采用的基带传输码型,但其缺点是当长连0过多时对定时信号提取不利。
CMI码一般作为四次群的接口码型。
1、什么是基带传输?基带传输指的是基带信号的传输。
先看看什么是基带信号?数字通信系统所传输的原始数字信号,如计算机输出的数字码流,各种文字、图像的二进制代码,由数字电话终端送出的PCM脉冲编码信号等。
这些信号具有较低的频谱分量,所占据的频谱通常是从直流式低频段开始的,其带宽是有限的,所以称为数字基带信号。
下面讲讲基带传输;在传输距离不太远的情况下,数字基带信号可以不经过调制,如直接在有线市话电缆中传输,利用中继方式也可以实现长距离的直接传输。
实际上,基带传输不如频带传输那样广泛,但是在基带传输中要讨论的问题在频带传输中也必须考虑,因此掌握好基带传输原理很有必要。
2、基带传输讨论的问题?主要涉及两个问题,一个是码型问题,另一个是无失真传输条件。
3、引入码型编码;如何确定二进制码组的位数,采用怎样的码型非常重要二进制码组的位数决定了它能表示的状态的多少;而确定应该采用怎样的码型,即采用怎样的电脉冲形式来表述这些二进制码组。
下面专门讨论这个问题:对于码型问题,通常会自然而然的认为,“1”就用高电平,“0”就用低电平或零表示。
但实际上没那么简单。
通常由信源编码输出的数字信号多为经自然编码的电脉冲序列,正如人们通常认为的,高电平表示1,低电平表示0,此信号虽然是名副其实的数字信号,却不适合在信道中传输。
数字通信系统一般并不采用这样的数字信号进行基带传输,因此就需要通过码型编码或码型变换将数字信号用合适的电脉冲表示。
1)、为什么信源编码输出的数字信号不适合基带传输?这种数字基带信号常常包含直流分量或低频分量,因此对于低频受限的信道,信号可能传不过去,比如说有线信道的低频特性就很差,很难传输零频率附近的分量,并且经过自然编码后,有可能出现连“0”或连“1”数据,这是的数字信号会出现长时间不变的低电平或高电平,以致接收端在确定各个码元的位置时会遇到困难。
数字基带信号
数字信号基带传输
3. 双极性不归零信号 双极性是指用正、负两个极性来表示数据信号的“1”或“0”;在“1”和
“0”等概率出现的情况下双极性序列中不含有直流分量,对传输信道的直 流特性没有要求;如图4.1(c)所示。 4. 双极性归零信号
“1”码和“0”码在一个码元周期Tb内,高电位只维持一段时间就返回零 位;如图4.1(d)所示。这种波形的每一个码元最后都要回到零电位。由于 正负极性均归零,所以包含有比单极性归零波形更多的同步信息,无论是 连续的1还是连续的0,均可以方便地在接收端识别出来。 5. 伪三元信号
AMI码对应的基带信号是正负极性交替的脉冲序列,而0电位持不变的规律。 AMI码的优点是,由于+1与-1 交替, AMI码的功率谱中不含直流成分,高、低频 分量少,能量集中在频率为1/2码速处。此外,AMI码的编译码电路简单,便于利 用传号极性交替规律观察误码情况。鉴于这些优点,AMI码是CCITT建议采用的 传输码性之一。
AMI码的不足是,当原信码出现连“0”串时,信号的电平长时间不跳变,造成 提取定时信号的困难。解决连“0”码问题的有效方法之一是采用HDB3码。
2. HDB3码 HDB3码的全称是3阶高密度双极性码,它是AMI码的一种改进型, 其目的是为
了保持AMI码的优点而克服其缺点, 使连“0”个数不超过3个。其编码规则如下:
数字信号基带传输
图4.1 常用数字序列电信号形式
数字信号基带传输
1.2 数字基带信号的常用码型
在实际的基带传输系统中,并不是所有代码的电波形都能在信道中传输。 例如,前面介绍的含有直流分量和较丰富低频分量的单极性基带波形就不适 宜在低频传输特性差的信道中传输,因为它有可能造成信号严重畸变。又如, 当消息代码中包含长串的连续“1”或“0”符号时,非归零波形呈现出连续的固 定电平,因而无法获取定时信息。单极性归零码在传送连“0”时,存在同样 的问题。因此,对传输用的基带信号主要有下面几个方面的要求: (1) 线路传输码型的频谱应不含直流分量; (2)便于从线路内传输码型中提取定时信息; (3)线路传输码型具有一定的检错能力; (4)尽量减少基带信号频谱中的高频分量,以节省传输频带并减少串扰; (5)编码效率高。
基带传输的常用码型
常见的线路码型有以下几种:
信息代码: 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1
AMI码
(Bipolar RZ)
HDB3码
+V
&码)
编码规则: 遇数字‘1’ 正负电平交替;遇数字‘0’ 为0电平。 实际上是把二进制脉冲序列变为三电平的符号序列。
优点:极性交替反转,所以无直流分量(包括在“1”、“0” 码不等概率情况下)。
缺点:可能出现长的连0串,会造成提取定时信号的困难。
2. 三阶高密度双极性码(HDB3)
HDB3码是在AMI码基础上为克服长连“0”码而改进 的一种码型。
编码规则:
(1)先把信息代码变成AMI码;
(2)当出现4个或4个以上连0码时,则在第4个0码处添 加脉冲,称为破坏脉冲,用V表示。
(3)为保证无直流,V脉冲应正负交替插入;为此当相 邻V码间有偶数个“1”时,将后面的连“0”串中的第1 个“0”编码为B符号,B符号的极性与前一非“0”码的 极性相反,而B符号后的V码与B符号的极性相同.
3. CMI码
编码规则: “1”码交替用“00”和“11”表示;“0”码用“01”
表示。
4. 数字双相码( Manchester)码
每个码元用两个连续极性相反的脉冲来表示。如 “1”码用正、负脉冲表示,“0”码用负、正脉冲表示。
现代通信原理
现代通信原理
基带传输的常用码型
数字基带信号通常是在电缆线路中传输,为了克服传 输损耗,对传输码型的选择主要考虑以下几点: (1) 码型中无直流分量; 低频、高频分量尽量少; (2) 码型中应包含定时信息, 以便定时提取; (3) 码型变换设备要简单可靠; (4) 码型具有一定检错能力; (5)尽可能提高线路码的编码效率,即提高传输效率。
基带传输码型的基本要求
基带传输码型的基本要求一、引言基带传输码型是数字通信中广泛使用的一种传输编码方式。
它将数字数据转换为相应的基带信号,通过传输媒介传输,并在接收端进行解码还原成原始数据。
本文将详细介绍基带传输码型的基本要求和相关技术。
二、基带传输码型的定义基带传输码型,简称基带码,是指用来表示数字信号的一种编码方式,通常将数字信号映射到不同的基带信号上。
基带码需要满足以下几个基本要求:2.1 易于识别基带码的编解码器需要具备高度可靠的性能,能够在噪声环境下正确识别传输的数字信号。
对于无线通信系统而言,基带码应该能够在各种信道条件下稳定地传输。
2.2 高效传输基带码应该能够高效地传输数据,即在给定的传输带宽和传输功率条件下,能够实现较高的数据传输速率。
高效的传输可以提高频谱利用率,降低通信成本。
2.3 具备良好的抗干扰性能基带码应该具备较好的抗干扰性能,能够在存在信道干扰和多径效应的情况下保持数据传输的可靠性。
常见的抗干扰技术包括前向纠错编码和自适应调制等。
2.4 低误码率基带码的译码器应该能够实现低误码率的传输。
误码率是衡量数字通信系统性能的重要指标之一,低误码率可以提高通信质量和可靠性。
三、常见的基带传输码型在数字通信领域,常见的基带传输码型有以下几种:3.1 非归零编码(NRZ)非归零编码(Non-Return-to-Zero)是最简单的基带传输码型之一,它将逻辑“1”映射为正脉冲,将逻辑“0”映射为负脉冲。
NRZ码具备较好的抗噪声和抗干扰性能,但是在连续传输长时间的“0”或“1”时会出现定时漂移的问题。
3.2 非归零-反转编码(NRZI)非归零-反转编码(Non-Return-to-Zero Inverted)是在NRZ码的基础上进行改进的一种传输码型。
NRZI码将逻辑“0”的信号保持不变,将逻辑“1”的信号进行反转。
NRZI码能够解决NRZ码存在的定时漂移问题,但对高频噪声和干扰较为敏感。
3.3 曼彻斯特编码曼彻斯特编码(Manchester coding)是一种差分编码方式,将逻辑“0”映射为高电平后低电平,将逻辑“1”映射为低电平后高电平。
数字基带信号的码型
4.1.1 数字基带信号的码型设计原则所谓数字基带信号,就是消息代码的电脉冲表示――电波形。
在实际基带传输系统中,并非所有的原始数字基带信号都能在信道中传输,例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变;再例如,一般基带传输系统都是从接收到的基带信号中提取位同步信号,而位同步信号却又依赖于代码的码型,如果代码出现长时间的连“0” 符号,则基带信号可能会长时间出现0 电位,从而使位同步恢复系统难以保证位同步信号的准确性。
实际的基带传输系统还可能提出其它要求,从而导致对基带信号也存在各种可能的要求。
归纳起来,对传输用的基带信号的要求主要有两点:(1 )对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;(2 )对所选的码型的电波形的要求,期望电波形适宜于在信道中传输。
前一问题称为传输码型的选择,后一问题称为基带脉冲的选择。
这是两个既彼此独立又相互联系的问题,也是基带传输原理中十分重要的两个问题。
本节讨论前一问题,后一问题将在下面几节中讨论。
传输码(常称为线路码)的结构将取决于实际信道的特性和系统工作的条件。
概括起来,在设计数字基带信号码型时应考虑以下原则:(1)码型中应不含直流分量,低频分量尽量少。
(2)码型中高频分量尽量少。
这样既可以节省传输频带,提高信道的频带利用率,还可以减少串扰。
串扰是指同一电缆内不同线对之间的相互干扰,基带信号的高频分量越大,则对邻近线对产生的干扰就越严重。
(3)码型中应包含定时信息。
(4)码型具有一定检错能力。
若传输码型有一定的规律性,则就可根据这一规律性来检测传输质量,以便做到自动监测。
(5)编码方案对发送消息类型不应有任何限制,即能适用于信源变化。
这种与信源的统计特性无关的性质称为对信源具有透明性。
(6)低误码增殖。
对于某些基带传输码型,信道中产生的单个误码会扰乱一段译码过程,从而导致译码输出信息中出现多个错误,这种现象称为误码增殖。
数字基带信号及常用的编码
数字基带信号1.1 基带信号的基本概念数字基带信号可以来字计算机、电传机等终端数据的各种数字代码,也可以来自模拟信号经数字化处理后的脉冲编码(PCM)信号等,是未经载波信号调制而直接传输的信号,所占据的频谱从零频或很低频开始。
1.2 几种数字基带信号的基本波形1.2.1 单极性波形这是一种最简单的基带信号波形,用正电平和零电平分别表示对应二进制“1”和“0”,极性单一,易于用TTL 和CMOS 电路产生。
缺点是有直流分量,要求传输线路具有直流传输能力,因而不适用有交流耦合的远距离传输,只适用于计算机内部或者极进距离的传输,信号波形图如图1-1所示。
1 011100+E图1-1 单极性波1.2.2 双极性波形这种波形用正、负电平的脉冲分别表示二进制代码“1”和“0”,其正负电平的幅度相等、极性相反,当“1”和“0”等概率出现时无直流分量,有利于在信道中传输,并且在接受端恢复信号的判决电平为零,因而不熟信道特性的变化的影响,扛干扰能力也叫强,信号波形图如图1-2所示。
1 011100+E-E图1-2 双极性波1.2.3 单极性归零波形这种波形是指它的有电脉冲宽度τ小于码元Ts ,即信号电压在一个码元终止时刻前总要回到零电平,通常归零波使用半占空码,即占空比(τ/Ts )为50%,从单极性波可以直接提取定时信息,是其他码型提取位同步信息时常采用的一种过渡波形。
1 011100+E+E图1-3 单极性归零波1.2.4 双极性归零波形这种波形兼有双极性和归零波形的特点,由于其相邻脉冲之间存在零电位的间隔,是的接受端很容易识别出每个码元的起止时间,从而使收发双方能保持位的同步。
波形如图1-4所示。
1 011100+E-E+E-E图1-4 双极性归零波1.2.5 差分波形这种波形是用相邻码元的电平的跳变和不变来表示消息代码,而与码元本身的点位或极性无关,电平跳变表示“1”,电平的不变表示“0”,当然这种规定也可以反过来,也称为相对码波形,而相应地称前面的单极性或双极性波形为绝对码波形,这种波形传输代码可以消除设备初始状态的影响。
第五章数字信号的基带传输
第五章 数字信号的基带传输基带传输系统频带传输系统(调制传输系统)数字基带信号:没有经过调制的原始数字信号。
(如各种二进制码PCM 码,M ∆码等)数字调制信号:数字基带信号对载波进行调制形成的带通信号。
5.1、基带信号的码型一、数字基带信号的码型设计原则:1. 对传输频带低端受限的信道,线路传输的码型的频谱中应该不含有直流分量;2.信号的抗噪声能力强;3.便于从信号中提取位定时信息;4.尽量减少基带信号频谱中的高频分量,节省传输频带、减小串扰; 5.编译码设备应尽量简单。
二、数字基带信号的常用码型。
1、单极性不归零码NRZ (Non Return Zero )脉冲宽度τ等于码元宽度T特点:(1)有直流,零频附近的低频分量一般信道难传输。
(2)收端判决门限与信号功率有关,不方便。
(3)要求传输线一端接地。
(4)不能用滤波法直接提取位定时信号。
2、双极性非归零码(BNRZ )T =τ,有正负电平特点:不能用滤波直接提取位定时信号。
⎩⎨⎧数字通信系统3、单极性归零码(RZ)τ<T特点:(1)可用滤波法提取位同步信号(2)NRZ的缺点都存在4、双极性归零码(BRZ)特点:(1)整流后可用滤波提取位同步信号(2)NRZ的缺点都不存在5、差分码电平跳变表1,电平不变表0 称传号差分码电平跳变表0,电平不变表1 称空号差分码特点:反映相邻代码的码元变化。
6、传号交替反转码(AMI)τ)归零码表0用零电平表示,1交替地用+1和-1半占空(T5.0=示。
优点:(1)“0”、“1”不等概时也无直流(2)零频附近低频分量小(3)整流后即为RZ码。
缺点:连0码多时,AMI整流后的RZ码连零也多,不利于提取高质量的位同步信号(位同频道抖动大)应用:μ律一、二、三次群接口码型:AMI加随机化。
7、三阶高密度双极性码()3HDBHDB3码编码步骤如下。
①取代变换:将信码中4个连0码用取代节000V或B00V代替,当两个相邻的V码中间有奇数个1码时用000V代替4个连0码,有偶数个1码时用B00V代替4个连0码。
第5章 数字信号的基带传输系统
HDB3码: -1000 -V +1000 +V -1 +1 -B00 -V +1 —1
虽然HDB3码的编码规则比较复杂,但译码比较简单。从上述 原理看出,每一个破坏符号V总是与前一非“0”符号同极性(包括
B符号在内),故从收到的符号序列中可以容易地找到破坏点V,
从而断定V符号及其前面的3个符号必是连“0”符号,然后恢复4个
一、单极性不归0二进制脉冲序列的功率谱密度数字 基带信号单个波形的频谱:
(设“1”、“0”码等概率出现,码元宽度)。
19
天津电子信息职业技术学院
20
天津电子信息职业技术学院
二、单极性归零二进制码序列的功率谱密度:
g1(t)
g2 (t )
A
Ts 2 Ts
2Ts 3Ts t
(a) 单极性归0二进制序列
6
天津电子信息职业技术学院
占空比指的是脉冲宽度τ与码元宽度Tb之比τ/Tb。单极性RZ码 的占空比为50%。
4.双极性归零(RZ)码 双极性归零码的构成原理与单极性归零码相同,如图5-1d)。 每一个码元被分成两个相等的间隔,“1”码是在前一个间隔为正 电平而后一个间隔回到零电平,而“0”码则是在前一个间隔内为 负电平而后一个间隔回到零电平。
1
1…
AMI码: +100 —1 +1000 -1 +1 -1 …
数字基带信号的码型
5.数字双相码
编码规则:用一个周期的方波表示二进制信号“1”,
而用它的反相波形表示“0” 。 特点:频谱中存在很强的定时分量,不受信源统计特 性的影响,而且不存在直流分量。这些优点是用频带 加倍来换取的。
6.传号反转码(CMI)
编码规则:二进制信号中的“1” 交替地用“11”和“00”
表示;“0”码则固定地用“01”表示。
HDB3码的编码虽然比较复杂,但译码却比较简单。 从收到的符号序列中可以容易地找到破坏点V,于是也断 定V符号及其前面的3个符号必是连0符号,从而恢复4个连 0码,再将所有-1变成+1后便得到原消息代码。 代码: 1 000 0 1 AMI码: -1 0 0 0 0 +1 -1 0 0 0 -V +1 HDB3码:-1 0 0 0 -V +1 000 0 1 0 0 0 0 -l 0 0 0 +V -1 0 0 0 +V -1 1 000 0 1 1 +l 0 0 0 0 -1 +1 +l 0 0 0+V -1 +1 +l -B 0 0-V +1 -1
特点:没有直流分量;有频繁出现的波形跳变,便于恢复
定时信号;而且具有检错能力。
7.密勒码
编码规则:用码元周期中点出现跳变表示“1”,否
则表示“0”;但当出现连续“0”时,则在前一个 “0”结束(后一个“0”开始)时出现电平跳变。 特点:Miller码脉冲宽度最大为两个码元周期,最 小为一个码元周期,可以检测传输误码或线路故障。
3、不具备内在的检测错误能力。
4.差分码
编码规则:二进制信号“1”、“0”分别用电平跳变或不
变表示。以电平跳变表示“1”,则称为传号差分码。以电 平跳变表示“0”,则称为空号差分码。 由于差分码中只具有相对意义,所以又称相对码。 特点:可以消除设备初始状态的影响,在相位调制系统中 可用于解决载波相位模糊问题。
基带传输的常用码型
基带传输的常用码型有:
1. 双极性不归零码:“1”码和“0”码都有电流,“1”为正电流,“0”为负电流,正和负的幅度相等,判决门限为零电平。
其优点是抗噪能力强一些,缺点是生成电路需要正负双电源供电。
2. 单极性不归零码:无电压表示“0”,恒定正电压表示“1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。
单极性的优点是可以采用单电源供电,缺点是具有直流分量,只能在直流耦合的电路中使用。
3. 双极性归零码:在每一码元时间间隔内,当发“1”时,发出正向窄脉冲;当发“0”时,则发出负向窄脉冲。
两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。
4. 单极性归零码:在每一码元时间间隔内,有一半的时间发出正电流,而另一半时间则不发出电流表示二进制数“1”。
整个码元时间间隔内无电流发出表示二进制数“0”。
5. 曼彻斯特编码:在曼彻斯特编码中,每个二进制位(码元)的中间都有电压跳变。
用电压的正跳变表示“0”,电压的负跳变表示“1”。
此外,还有差分码、密勒码、CMI码、AMI码、HDB3码等基带传输的常用码型。
您可以咨询专业人士获取详细信息。
数字基带信号及常用的编码
数字基带信号1.1 基带信号的基本概念数字基带信号可以来字计算机、电传机等终端数据的各种数字代码,也可以来自模拟信号经数字化处理后的脉冲编码(PCM)信号等,是未经载波信号调制而直接传输的信号,所占据的频谱从零频或很低频开始。
1.2 几种数字基带信号的基本波形1.2.1 单极性波形这是一种最简单的基带信号波形,用正电平和零电平分别表示对应二进制“1”和“0”,极性单一,易于用TTL和CMOS电路产生。
缺点是有直流分量,要求传输线路具有直流传输能力,因而不适用有交流耦合的远距离传输,只适用于计算机内部或者极进距离的传输,信号波形图如图1-1所示。
图1-1 单极性波1.2.2 双极性波形这种波形用正、负电平的脉冲分别表示二进制代码“1”和“0”,其正负电平的幅度相等、极性相反,当“1”和“0”等概率出现时无直流分量,有利于在信道中传输,并且在接受端恢复信号的判决电平为零,因而不熟信道特性的变化的影响,扛干扰能力也叫强,信号波形图如图1-2所示。
图1-2 双极性波1.2.3 单极性归零波形这种波形是指它的有电脉冲宽度τ小于码元Ts,即信号电压在一个码元终止时刻前总要回到零电平,通常归零波使用半占空码,即占空比(τ/Ts)为50%,从单极性波可以直接提取定时信息,是其他码型提取位同步信息时常采用的一种过渡波形。
图1-3 单极性归零波1.2.4 双极性归零波形这种波形兼有双极性和归零波形的特点,由于其相邻脉冲之间存在零电位的间隔,是的接受端很容易识别出每个码元的起止时间,从而使收发双方能保持位的同步。
波形如图1-4所示。
图1-4 双极性归零波1.2.5 差分波形这种波形是用相邻码元的电平的跳变和不变来表示消息代码,而与码元本身的点位或极性无关,电平跳变表示“1”,电平的不变表示“0”,当然这种规定也可以反过来,也称为相对码波形,而相应地称前面的单极性或双极性波形为绝对码波形,这种波形传输代码可以消除设备初始状态的影响。
《通信原理》第六章 数字基带传输常用规律和技巧
1第一部分AMI码与HDB3码对传输用的基带信号的主要要求:对代码的要求:原始消息代码必须编成适合于传输用的码型;对所选码型的电波形要求:电波形应适合于基带系统的传输。
1. AMI码(传号交替反转码)编码规则:传号(“1”)极性交替,空号(“0”)不变。
例:信码{an}: 1 0 1 0 0 1 0 0 0 0 0 1 0 1 AMI: +1 0 -1 0 0 +1 0 0 0 0 0 -1 0 +1特点:(1)无直流分量和仅有小的低频分量;(2)二电平→三电平--1B/1T码(一个二进制符号变换成一个三进制符号所构成的码);(3)易于检错;(4)编、译码简单;(5)当出现长的连0串时,不利于定时信息的提取。
1.00.5s2. HDB3码编码规则:(1)当连“0”个数不超过3时,仍按AMI码的规则编,即传号极性交替;(2)当连“0”个数超过3时,4个连“0”为一组,当该组四连“0”与其前一组四连“0”之间有奇数个传号码,用000V取代该组四连“0”。
V 极性与其前非零码极性一致,V本身满足极性交替;(3)当该组四连“0”与其前一组四连“0”之间有偶数个(包括0个)传号码,用B00V取代该组四连“0”。
B极性与其前一非零码极性相反,V极性与B极性一致,V本身满足极性交替;例如:1 1 0 0 0 0 1 1 1 0 0 0 0 0 1HDB3 +V -1 +1 -B 0 0 -V +1 -1 +1 0 0 0 +v 0 +1 译码:凡遇到-1 0 0 0 -1+1 0 0 0 +1+1 0 0 +1-1 0 0 -1译成:*0 0 0 0例:HDB3:0 +1 0 0 0 +1 -1+1 -1 0 0 -1 0 +1 0 -1代码:0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1特点:1)无直流分量、低频分量小;2)连0串不会超过3个,对定时信号的恢复十分有利;3)编码复杂,译码简单。
对数字基带传输常用码型HDB3码的编码规则的理解[技巧]
00000对数字基带传输常用码型HDB3码的编码规则的理解00000作者:黄小胜00000HDB3码的编码规则:00000(1)检查消息码中“0”的个数。
当连“0”数目小于等于3时,HDB3码与AMI码一致,+1与-1交替;00000(2)当连“0”数目超过3时,将每4个连“0”化作一小节,定义为B00V,称为破坏节,其中V称为破坏脉冲,而B称为调节脉冲;000000(3)V与前一个相邻的非“0”脉冲的极性相同(这破坏了极性交替的规则,所以V称为破坏脉冲),并且要求与相邻的V码之间必须交替。
V的取值为+1或-1;00000(4)B的取值可为0、+1或-1,以使V同时满足(3)中的两个要求;00000(5)V码后面的传号码极性也要交替。
000000例如:00000注:每一个破坏脉冲V总是与前一个非“0”脉冲极性相同。
其中非“0”脉冲包括B在内。
00000接下来我再写一串二进制码大家来写出它的HBD3码。
如下:0 00000步骤一:写成AMI码00000步骤二:将每4个连“0”化作一小节,定义为B00V000000步骤三:观察B00V两端的非“0”脉冲的极性。
(若有多个B00V相连在一起,就将它们看做一个整体,观察这个整体两端的非“0”脉冲的极性)步骤一、二都很容易,接下来就是要确定B、V的值了。
这恰恰就是难点,也是我要同大家探讨的。
我们知道B有“+、-、0”三种取值,V有“+、-”两种取值。
那么我们应该怎样确定它们的值呢?000000由上面的图表,已知:00000(1)3号取“负”、14号取“正”;00000由极性交替原则与V的同前性,所以,11号V取“负”,7号V与11号V相邻,所以7号V取“正”。
00000由前同性,7号V取“正”则4号B也取“正”。
7~11为+B00+V;0000011号V取“负”则8号B也取“负”。
8~11为-B00-V。
00000(2)18号取“正”、25号取“负”;00000由(1)同理可知,22号V取“正”。
数字基带传输常用码型
差分码:不是用脉冲的绝对电平来表示“0” 码和“1”码,而是利用相邻前后码元电平的 相对变化来传送信息。分为“1”差分码和 “0”差分码两种。 特点:当传输系统中某些环节引起基带信 号反相时,也不会影响接收的结果,多用 于数字相位调制。
双极性不归零码:用正电平表示“1”码,用 负电平表示“0”码,正和负的幅值相等 。 特点:不含直流分量;抗干扰性能好;但 不能直接提取同步信息。
单双极性归零码:使用了正、负和零三个电平, 信号本身携带同步信息,解决了同步问题。缺点 是编码一个比特,需要两次信号变化,增加了占 用带宽,且线路上的平均电压值还不为零。
三元码
三元码是指利用信号幅度的三种取值+1、0、 -1来表示二进制数“1”和“0”。
AMI码(传号交替反转码)
编码规则: (0称为空号,1称为传号) 0变为传输码0 1交替变为传输码+1、-1、+1、-1 例:1001100011→ +100-1+1000-1+1 特点: 1) 统计上无直流(+1-1交替)、低频成分小 2) 进行了二进制→三进制变化,即1B/1T码型 3) 编/译码电路简单 4) 便于观察误码(+1、-1不交替) 5) 缺点:可能出现长的0串,提取定时信号困难
编码: “1”用码元持续中心点跃变表示, 即:01或10,但保持边沿不跃变 单个0:不跃变,且相邻码元边界也不跃变 “0” 00 例: 两个0:第2个0边界跃变,即: 或11
二进制
1
10 01
1
10 10
0
01 00
1
10 01
0
01 11
移动通信入门 第五章 数字基带传输及扩频通信
5.2 扩频通信技术
图 5-11 Gold 序列生成原理示意图
5.2 扩频通信技术
Gold 序列具有与 m 序列优选对类似的相关性,而且构造简单,数量大,在码分多址系 统中获得广泛应用。Gold 序列的特性主要有以下三点:
(1)Gold 序列的数量 周期 P=2n-1 的 m 序列优选对产生的 Gold 序列,由于其中一个 m 序列的不同移位都会 产生新的 Gold 序列,有 P=2n-1 个不同的相对移位。加上原来两个 m 序列本身,共有 2n+1 个 Gold 序列。随着 n 的增加,Gold 序列以 2 的 n 次幂增长,远远超过同级数 m 序列的数 量,并且具有优良的相关性,便于扩频多址的应用。
(3)m 序列具有良好的自相关性,均满足双值特性。自相关系数如下式:
Rx τ
1 = −1
P
τ =0 τ ≠ 0,τ = 1,2, ⋯ ,P − 1
(5-1)
但互相关特性有很大差异,只有少数 m 序列间满足三值互相关,且随着 n 的增大,相
关值会不断的减小。 互相关系数如下式:
������������������
1、m序列
5.2 扩频通信技术
5.2 扩频通信技术
m 序列是一种典型的伪随机序列,具有伪序列的 3 个特性。 (1)对于任何周期的 m 序列,1 个周期内所含的 1 与 0 位数的比例是一定的,若采
用的移位寄存器为 n 级,1 的位数为 2n-1,0 的位数为(2n-1)-1,1 和 0 位数仅相差 1 位, 即可粗略地认为 1 与 0 的位数接近相等。
5.1.2数字基带系统的组成
图5-3 基带传输系统各点的波形
图5-4 码间串扰示意图
5.2 扩频通信技术
四种常用的基带传输码型matlab仿真的实验原理
四种常用的基带传输码型matlab仿真的实验原理基带传输码型是数字信号传输中的重要概念,主要用于在信道中传输数字信号。
在基带传输中,信号的频谱很宽,为了有效地传输信号,通常需要将信号的频谱限制在一定的范围内。
常用的基带传输码型有矩形脉冲、升余弦脉冲、高斯脉冲和多相码等。
在四种常用的基带传输码型的 MATLAB 仿真实验中,实验原理如下:
1. 矩形脉冲:矩形脉冲是一种简单的基带传输码型,其频谱为无限宽。
为了限制信号的频谱,通常将矩形脉冲通过一个低通滤波器,以得到一个具有一定带宽的信号。
在 MATLAB 中,可以使用 `rectpuls` 函数生成矩形脉冲信号。
2. 升余弦脉冲:升余弦脉冲是一种常用的基带传输码型,其频谱具有一定的带宽。
在 MATLAB 中,可以使用 `rcosine` 函数生成升余弦脉冲信号。
3. 高斯脉冲:高斯脉冲是一种具有较窄带宽的基带传输码型,其频谱密度较低。
在 MATLAB 中,可以使用 `gausswin` 函数生成高斯脉冲信号。
4. 多相码:多相码是一种通过相位调制实现的基带传输码型。
在 MATLAB 中,可以使用 `square` 函数生成方波信号,然后通过调整方波的相位得到多相码信号。
在 MATLAB 仿真实验中,可以通过生成各种基带传输码型信号,并对其频谱进行分析,以了解不同码型对信号频谱的影响。
此外,还可以通过改变码型参数(如脉冲宽度、相位等),观察信号频谱的变化情况,从而深入理解基带传输码型的工作原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编辑ppt
1
二元码
NRZ编码(单极性不归零编码 ):单极性不归零编码只 使用一个电压值,用高电平表示1,没电压表示0。该类型 的编码比较简单。在用数字信号传输数字数据时,信号的 电平是根据它所代表的二进制数值决定的。一个正电压值 代表“1”码,而一个负电压值代表“0”码,因而信号的电 平依赖于它所代表的数值。在FSK或PSK调制中几乎仅仅 使用NRZ编码。
特点:当出现长串连“1”时,归零码仍有明显 的码元间隔,有利于提取同步信息。
编辑ppt
4
差分码:不是用脉冲的绝对电平来表示“0” 码和“1”码,而是利用相邻前后码元电平的 相对变化来传送信息。分为“1”差分码和 “0”差分码两种。
特点:当传输系统中某些环节引起基带信 号反相时,也不会影响接收的结果,多用 于数字相位调制。
编辑ppt
10
HDB3码——AMI改进码
三阶高密度双极性码
编码规则:
1) 先进行AMI编码
2) 出现4个连0串,把第4个0变为于前一个非0符号(±1)
同号的符号,称为破坏码V(破坏交替)
3) 同时为保证±V交替(奇数个0可以,偶数个不能)把第一
个0变成±B(B与前一个非0符号相反)
例:
基带二进制:1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1
编辑ppt
5
双相码:又称为分相码或曼彻斯特码。在 曼彻斯特编码中,每个比特中间引入跳变 来同时代表不同数值和同步信息。一个负 电平到正电平的跳变代表0,而一个正电平 到负电平的跳变则代表1。通过这种跳变使 曼彻斯特编码获得了同步信息和数字编码。
特点:只有两个电平;有足够的定时信息、 无直流、编码简单;缺点是带宽大
编辑ppt
6
CMI——反转码
编码:
“1”交替用“11”和“00” “0”用“01” 例:
1 1 0 100 1 0 11 00 01 11 01 01 00 01 特点:
1) 有较多的电平跃变,定时信息丰富 2) 具有一定的检错能力 3) 是CCITT推荐的PCM接口码型
编辑ppt
7
Miller(密勒码/延迟调制码)
数字基带信号传输系统常用码型
数字基带信号是用数字信息的电脉冲表示, 通常把数字信息的电脉冲的表示形式称为码 型。基带传输信号码型设计应考虑以下原则:
对于频带低端受限的信道传输,线路码型中不含 有直流分量和较少的低频分量;
便于从相应的基带信号中提取比特同步信息; 尽量减小码型频谱中的高频分量; 所选码型应具有纠错、检错能力; 码型变换设备要简单,易于实现。
特点:含有直流分量,但不能提取同步信息。
编辑ppt
2
双极性不归零码:用正电平表示“1”码,用 负电平表示“0”码,正和负的幅值相等 。
特点:不含直流分量;抗干扰性能好;但 不能直接提取同步信息。
编辑ppt
3
单双极性归零码:使用了正、负 和零三个电平,
信号本身携带同步信息,解决了同步问题。缺点 是编码一个比特,需要两次信号变化,增加了占 用带宽,且线路上的平均电压值还不为零。
AMI码: -1 0 0 0 0+1 0 0 0 0 -1+1 0 0 0 0-1+1
HDB3码: -1 0 0 0-V+1 0 0 0+V -1+1-B 0 0-V+1-1
特点:
(1)编码复杂、译码简单
(V和前一个非0符号同号,∴破坏码容易找出,V前面3个必
然是0,B不影响译码)
编辑ppt
11
(2)是CCITT推荐的码型
4B3T码
该码是把4个二元码变换成3个三元码。其 编码方式为:
将二元码按4位划分为一组; 每一个二元码组对应一个三元码组; 三元码组按其数字和大于0和小于0分为正模式和
负模式两类; 模式。
编辑ppt
12
编码:
“1”用码元持续中心点跃变表示, 即:01或10,但保持边沿不跃变
例:“0” 单两 个 0:个 0: 不第 跃 2个0变 边, 界且 跃边 相 变界 0邻 , 0或 也 码 1即 1不 元 :跃变
二进制 1
1
0
1
0
0
1
0
双相码 10 10 01 10 01 01 10 01
密勒码 01 10 00 01 11 00 01 11
双相码
密勒码
编辑ppt
8
三元码
三元码是指利用信号幅度的三种取值+1、0、 -1来表示二进制数“1”和“0”。
编辑ppt
9
AMI码(传号交替反转码)
编码规则: (0称为空号,1称为传号) 0变为传输码0 1交替变为传输码+1、-1、+1、-1
例:1001100011→
+100-1+1000-1+1 特点: 1) 统计上无直流(+1-1交替)、低频成分小 2) 进行了二进制→三进制变化,即1B/1T码型 3) 编/译码电路简单 4) 便于观察误码(+1、-1不交替) 5) 缺点:可能出现长的0串,提取定时信号困难