锂离子电池正极材料知识培训

合集下载

锂电池培训资料

锂电池培训资料

锂电池培训资料一、电池基础二、锂离子电池基础三、锂电池的安全四、保护板BMS具体功能介绍五、锂离子电池的储藏和运输一、电池基础1、电池的发展简史:公元前100~公元100年电池原形1780~1791发明伽尼尔电池1800年伏特发明电池1833年发现法拉第法则1836年发明丹尼尔电池1859年发明铅酸电池1868年发明干电池1899年发明Ni—Cd蓄电池1901年发明Ni/Fe电池1951年发明密封Ni—Cd电池1990年发明锂离子电池1995年发明聚合物电解质锂离子电池2、电池的要素和组成:◆电极负极:通常将电池电极中电压较低的一极称为负极正极:通常将电池电极中电压较高的一极称为正极◆隔膜:在电池中,防止正负极间电子导通,而又能让离子通过(离子传导)的隔离材料,一般为多孔薄膜材料◆电解质溶液(电液):在电池内正负极间提供离子传输作用◆其他构件:如外壳,极柱,密封件等3、电池的分类一次电池(干电池)二次电池(充电电池或蓄电池)·铅酸电池·镍-镉电池·镍-氢电池·锂离子电池·液态锂离子电池·聚合物态锂离子电池另外还有燃料电池、太阳能电池等等4、常见可充电电池性能比较:组成电池能量密度电池体系负极电解液正极环保性能电压(V) Wh/kg Wh/L 充电循环自放电率锂离子电池碳LiPF6 LiMn2O4或绿色环保 3。

6 130—150 350-400 ≥10008%LiCoO2铅酸电池 Pb H2SO4 PbO2 铅污染严重2。

0 30—50 50—80 300—500 20%镍镉电池 Cd KOH NiOOH 镉污染严重 1.2 50—60 130-150 400—600 25%镍氢电池储氢 KOH NiOOH 环保 1.2 60—70 190-200 ≥500 10%材料二、锂离子电池基础1、锂离子电池的“前世今生" :锂离子电池是20世纪90年代开发成功的新型高能电池.锂离子电池的“前世”:早期负极为金属锂的“锂电池”,但金属锂的化学活性太大,充电时产生的枝晶会使电池短路,目前尚未真正解决其安全问题.锂离子电池的“今生”:锂离子电池名称开始于日本企业,针对含金属锂负极的锂二次电池而言,1991年由索尼公司率先实现商业化。

锂离子电池基础知识培训教材全解

锂离子电池基础知识培训教材全解
▪ 锂离子电池生产流程较长,每个质量控制点 都非常重要
▪ 大家可以根据自己工作岗位性质有针对性的 进行研究、讨论
结束
电压
▪ 开路电压 电池在开路状态下的端电压称为开路电压。电
池的开路电压等于电池的正极的还原电极电势与负 极电极电势之差。 ▪ 工作电压
工作电压指电池接通负载后在放电过程中显示 的电压,又称放电电压。在电池放电初始的工作电 压称为初始电压。
电池在接通负载后,由于欧姆电阻和极化过电 位的存在,电池的工作电压低于开路电压。
正极片烘烤 正极制片
组装
负极片烘烤 负极制片
卷绕工艺流程
正、负极片
隔膜
贴底部胶纸
刷粉配片
隔膜裁剪 卷绕
调机,测试
压芯
测短路
入壳
负极极耳点焊
正极极耳超焊
离心入壳 压盖帽(板)
折极耳
套隔圈并固定
激光焊
测短路
激光焊工艺流程
调机(夹具、激光调试) 激光焊接长边 激光焊短边 全检气密
全检短路
注液
注液-化成工艺流程
内阻
▪ 电流通过电池内部时受到阻力,使电池的电压降低,此阻力 称为电池的内阻。
▪ 电池的内阻不是常数,在放电过程中随时间不断变化,因为 活性物质的组成、电解液浓度和温度都在不断地改变。
▪ 电池内阻包括欧姆内阻和极化内阻,极化内阻又包括电化学 极化与浓差极化。内阻的存在,使电池放电时的端电压低于 电池电动势和开路电压,充电时端电压高于电动势和开路电 压。
正极 泡胶 正极混干粉 正极真空搅拌 正极筛浆料
正极拉浆
负极 泡胶 负极混干粉 负极真空搅拌 负极筛浆料
负极拉浆
拉浆工艺流程
正、负极浆料 送带 上浆 烘烤 收带

锂离子电池正极材料 ppt课件

锂离子电池正极材料  ppt课件

PPT课件
7
二、锂离子电池对正、负极材料的要求
(1) 具有稳定的层状或隧道的晶体结构。
(2) 具有较高的比容量。
(3) 有平稳的电压平台。
(4) 正、负极材料具有高的电位差。
(5) 具有较高的离子和电子扩散系数。
(6) 环境友好。
PPT课件
8
锂电关键技术---正极材料
商品化锂离子电池中正极材料(LiCoO2)的比容量远远小于负 极材料,成为制约锂离子电池整体性能进一步提高的重要因素。
锂离子电池 正极材料
PPT课件
1
一、 锂离子电池回顾
* 锂离子电池工作原理
PPT课件
2
*锂离子电池电极反应
充电
正极反应: LiCoO2
放电
负极反应: 6C+xLi++xe-
Li1-xCoO2+xLi++xe-
充电
放电 LixC6
充电
电池反应: 6C+LiCoO2
放电
PPT课件
Li1-xCoO2+ LixC6
Ni-based
LiNiO2
Co-based
LiCoO2
PO4-based
LiMPO4
主要正极材料
Mn-based
LiMn2O4
容量、稳定性、制备条件
PPT课件
成本、安全、环保
9
三、锂离子电池正极材料
大多数可作为锂离子电池的活性正极材料是含锂的过渡金属化合物,而且以 氧化物为主。 目前已用于锂离子电池规模生产的正极材料为LiCoO2。PPT课件19
LiNi1yCoyO2的电化学性能与其组成密切相关,Co的 加入能够提高电化学循环稳定性。稳定性的提高; 但是

锂离子电池三元正极材料ppt

锂离子电池三元正极材料ppt

失效机制
容量衰减
明确三元正极材料的失效机制,为优化电池 的循环寿命提供理论支持。
研究三元正极材料在充放电过程中的容量衰 减机制,以为延长电池寿命提供技术支持。
08
参考文献
参考文献
文章标题:锂离子电池三元正极材料的研究进展 作者:张三、李四、王五 发表时间:2020年
THANKS
谢谢您的观看
,可以优化其晶体结构、提高电子导电性和离子扩散系数,进而提高
电池的电化学性能。
02
离子掺杂
通过引入具有特定价态的离子(如Li+、H+、Na+等)对三元正极材
料进行掺杂改性,可以调整其能带结构和电子分布,提高电化学反应
活性和稳定性。
03
共掺杂
将两种或多种元素或离子同时掺入三元正极材料中,实现多元素协同
锂离子电池的工作原理主要涉 及锂离子在正负极之间的迁移 和插入反应。在充电过程中, 锂离子从正极迁移到负极,放
电过程中则相反。
电压与能量
锂离子电池的正负极材料决定 了电池的电压和能量密度。
充放电效率
充放电效率取决于多个因素, 包括电池的化学性质、制造工
艺和使用条件等。
锂离子电池的正极材料
1 2
钴酸锂
三元正极材料是锂离子电池中的关键组成部分,直接影响电 池的性能和安全性。
研究目的和意义
研究三元正极材料的目的是为了提高锂离子电池的能量密 度、寿命和安全性,以满足日益增长的市场需求。
三元正极材料的研究对于推动电动汽车、储能系统等领域 的发展具有重要意义。
02
锂离子电池概述
锂离子电池的工作原理
电极反应
多样化储能需求
随着可再生能源的大规模并网和分布式能源的发展,储能需求多样化,而三元正极材料具 有高能量密度和良好的循环性能,适用于各种储能应用场景。

锂离子电池正极材料

锂离子电池正极材料

锂离子电池正极材料锂离子电池是一种常见的二次电池,广泛应用于手机、笔记本电脑、电动汽车等领域。

而锂离子电池的正极材料是决定电池性能的关键因素之一。

本文将对锂离子电池正极材料进行介绍和分析。

首先,我们来看一下锂离子电池正极材料的种类。

目前常见的锂离子电池正极材料包括钴酸锂、锰酸锂、三元材料(镍锰钴酸锂)、磷酸铁锂等。

这些材料各有特点,如钴酸锂具有高容量和高能量密度,但成本较高;锰酸锂价格低廉,但容量较低;三元材料综合性能较好,但成本也较高。

因此,在实际应用中,选择合适的正极材料需要综合考虑成本、性能、安全性等因素。

其次,我们需要了解锂离子电池正极材料的性能指标。

正极材料的性能直接影响着电池的能量密度、循环寿命和安全性。

常见的性能指标包括比容量、循环寿命、安全性能等。

比容量是指单位质量或单位体积的电池可以释放的电荷量,循环寿命是指电池在一定循环次数内能够保持较高的容量,安全性能则是指电池在过充、过放、高温等恶劣环境下的安全性能。

因此,选择合适的正极材料需要综合考虑这些性能指标。

最后,我们来谈一谈未来的发展方向。

随着电动汽车、储能系统等领域的快速发展,对锂离子电池正极材料的需求也在不断增加。

未来,人们对正极材料的要求将更加苛刻,需要具有更高的能量密度、更长的循环寿命、更好的安全性能等。

因此,未来的发展方向可能包括新型材料的研发、工艺技术的改进、安全性能的提升等方面。

综上所述,锂离子电池正极材料是决定电池性能的关键因素之一,选择合适的正极材料对于提高电池的能量密度、循环寿命和安全性能至关重要。

未来,随着科学技术的不断进步,相信锂离子电池正极材料的性能将会得到进一步提升,为电池应用领域带来更大的发展空间。

《锂电池培训资料》PPT课件

《锂电池培训资料》PPT课件

z
h
hì)
+
-
ì
)
放电
此时放电控制MOS打开
第四十六页,共76页。
电 压
2.3-2.5V
主流(zhǔliú)硬件保护电路原理图
主题以目前主流硬件保护IC厂家精 工(SEIKO)作为参考(cānkǎo)范例
第四十七页,共76页。
主流(zhǔliú)单节保护原理图
S-8261系列(xìliè)电路
第四十八页,共76页。
消费类电子(diànzǐ)
第十五页,共76页。
消费类电子(diànzǐ)
第十六页,共76页。
高端消费类电子(diànzǐ)
第十七页,共76页。
工业(gōngyè)工具类电子
第十八页,共76页。
新型(xīnxíng)电子产品
第十九页,共76页。
仪器仪表产品(chǎnpǐn)
第二十页,共76页。
目前广受关注的一种新兴锂离子电池材料,其突出特点是安全性非常好,不 会爆炸,循环性能非常优秀可达到2000周,这些特点使其非常适合电动汽车、 电动工具等领域。其标称电压只有3.2-3.3V,因此其保护线路部分也与常用锂离 子电池有所区别,但他的缺点也比较明显,能量密度远低于钴酸锂和三元材料。
第八页,共76页。
智能保护芯片的保护参数可以通过上位机电脑对线路板进行设定编程, 以达到最终想要的保护参数,优点是通用性强,应用范围广,缺点是 价格昂贵,软件操作稍复杂。
第三十六页,共76页。
硬件保护充电 控制 (chōng diàn)


放 控




( k

IC
(

ò n

电池正极材料知识培训

电池正极材料知识培训

电池正极材料知识培训一、电池正极材料的种类目前常见的电池正极材料主要包括以下几种:锂离子电池正极材料、镍氢电池正极材料、锂硫电池正极材料、锂钴酸锂电池正极材料和锂铁酸锂电池正极材料等。

1.锂离子电池正极材料:主要有三种,分别是钴酸锂、锰酸锂和磷酸铁锂。

钴酸锂具有高容量、高能量密度和较好的循环寿命,但价格昂贵且资源稀缺,故研究方向逐渐向锰酸锂和磷酸铁锂转移。

2.镍氢电池正极材料:一般采用镍羟化合物作为主要正极材料,具有高容量、高能量密度和较好的循环寿命。

此外,还有一些合金化合物,如镍钴锑合金、镍钴锰合金等,也被广泛应用。

3.锂硫电池正极材料:主要有石墨、聚合物和金属硫化物等。

锂硫电池正极材料具有较高的理论比能量密度和较低的成本,但存在容量衰减快、循环寿命短等问题,目前仍需要进一步研究和改进。

4.锂钴酸锂电池正极材料:具有高比能量、较好的循环寿命和较低的自放电率,被广泛应用于移动电源、笔记本电脑和电动汽车等领域。

5.锂铁酸锂电池正极材料:具有较高的安全性能、较好的循环寿命和较低的价钱,可用于电动车、电动自行车和储能系统等领域。

二、电池正极材料的特性1.容量:指单位质量或单位体积的电池正极材料可以存储和释放的电荷量,影响电池的使用时间和续航能力。

2.能量密度:指单位质量或单位体积电池正极材料所存储的电能,影响电池的整体能量储存能力。

3.循环寿命:指电池正极材料经过多次充放电后能保持的稳定性能,影响电池的使用寿命。

4.安全性:正极材料应具有较高的热稳定性和化学稳定性,能有效避免电池发生热失控或爆炸等安全问题。

5.成本:正极材料的价格对电池的成本也有直接影响,要求在性能一定的情况下尽量降低成本。

三、正极材料的研究动态随着电池技术的不断发展,人们对电池正极材料的研究也日益深入。

当前主要的研究动态包括以下几个方面:1.提升容量和能量密度:通过合成新型材料、改进电极结构和设计新型电池体系等方式,努力提高电池的容量和能量密度。

锂电池全面安全知识培训

锂电池全面安全知识培训

锂电池全面安全知识培训概述锂电池是一种高能量密度、轻便且广泛使用的电池,应用范围涵盖移动设备、电动汽车、无人机、电子烟等众多领域。

然而,锂电池也存在一定的安全隐患,例如过充、过放、过压、温度过高等现象都可能导致火灾、爆炸等危险事故。

因此,正确地使用和维护锂电池至关重要,对于常见的锂电池安全问题要有充分的认识和了解。

锂电池的基本原理锂电池是一种以锂化合物作为正、负极材料,以非水电解液为电解液的可充电电池。

锂电池的蓄电池正负极由金属锂、碳、石墨等作为主要活性材料。

锂电池最常用的电解液是有机电解液,它通常由四氟硼酸、硫酰二氟或烷基硫酸根和锂盐混合而成。

锂离子电池在放电过程中,负极的锂离子向正极迁移,在电解液中的离子移动过程中产生电流,同时正极化合物的结构发生改变,以使锂离子被结构吸收。

锂电池具有体积小、重量轻、能量密度高等特点,逐渐成为各种便携设备、电动汽车等领域的主打电池。

但同时也带来了一定的安全隐患,特别是在高温、过充、过放、撞击等条件下。

锂电池的安全问题过充与过放•过充:当充电过程中电压超过指定的上限电压时,电池内的化学反应发生异常,会产生高温、放出气体、内部压力增加等影响,长期可能会导致电池性能下降或内部热失控。

•过放:电池在工作到最低放电电压以下时,继续放电电池内化学反应达到过深,会对电池的循环寿命和容量产生不良影响。

过压•锂电池的过压是指电压超过了正常工作时对单个芯片电压最高允许水平,其会增大电池内部反应的能量,形成剧烈的热反应、爆炸和火灾等等问题。

温度过高•温度对锂电池的影响是很大的,高温环境会使锂电池内部的化学反应速度显著加快,并减小内阻,同时,电解液中的溶质会有一定的挥发性,造成压力过大,从而导致爆炸和火灾等现象。

短路和冲击•锂电池在使用过程中容易出现充放电电路短路,甚至发生针状电极的贯穿而引发火灾或爆炸等危险。

如何正确使用锂电池选择合适的锂电池•不同设备对锂电池的容量、大小、输出电压等要求可能不同。

锂电池安全现场培训

锂电池安全现场培训

锂电池安全现场培训1. 引言欢迎各位参加锂电池安全现场培训!锂电池作为一种高能量密度的电池,广泛应用于移动设备、电动车辆等领域。

然而,由于其特殊的性质,锂电池在充放电过程中存在一定的安全风险。

本次培训将帮助大家了解锂电池的基本原理和安全操作规程,提高大家在现场操作中的安全意识,确保工作场所的安全。

2. 锂电池基本原理锂电池是一种通过锂离子在正、负极之间的迁移来实现充放电的电池。

它由正极、负极、电解质和隔膜组成。

•正极:通常由氧化物材料(如锰酸锂、钴酸锂等)构成。

•负极:通常由石墨材料构成。

•电解质:通常由有机溶液构成,其中含有锂盐。

•隔膜:用于隔离正负极,防止短路。

3. 锂电池安全风险锂电池在充放电过程中存在以下安全风险:3.1 过充和过放•过充:当锂电池充电电压超过其额定电压时,电池内部会产生过多的锂离子,导致电池过热、气体生成和电解液泄漏等问题,甚至引发火灾或爆炸。

•过放:当锂电池放电至过低电压时,电池内部的锂离子会析出金属锂,导致电池容量损失和电池性能下降。

3.2 短路•短路:当正负极直接连接,电流无法通过电解质和隔膜,会导致电池过热,引发火灾或爆炸。

3.3 高温环境•高温环境:锂电池在高温环境下,电池内部的化学反应会加速,增加了发生过充、过放、短路等安全问题的风险。

4. 锂电池安全操作规程为了确保锂电池的安全使用,请大家遵守以下操作规程:4.1 充电•使用原装充电器:只使用与锂电池配套的原装充电器,避免使用劣质充电器,以防止过充和过放等问题。

•不离开充电设备:在充电过程中,不要离开充电设备,以便及时处理异常情况。

•避免过度充电:不要将电池充电超过其额定电压,避免过度充电导致安全问题。

•避免过热:在充电过程中,避免将电池放置在高温环境中,以免引发过热问题。

4.2 放电•避免过度放电:不要将电池放电至过低电压,以免导致电池性能下降。

•避免短路:在操作过程中,避免正负极直接连接,防止短路发生。

锂离子电池三元正极材料基础知识

锂离子电池三元正极材料基础知识

制备方法
• 化学共沉淀法: • 一般是把化学原料以溶液状态混合,并向溶液中加入适当的沉淀剂,使溶液中已经混
合均匀的各个组分按化学计量比共沉淀出来,或者在溶液中先反应沉淀出一种中间产 物,再把它煅烧分解制备出微细粉料。化学共沉淀法分为直接化学共沉淀法和间接化 学共沉淀法。直接化学共沉淀法是将Li、Ni、Co、Mn的盐同时共沉淀,过滤洗涤干燥 后再进行高温焙烧。间接化学共沉淀法是先合成Ni、Co、Mn三元混合共沉淀,然后 再过滤洗涤干燥后,与锂盐混合烧结;或者在生成Ni、Co、Mn三元混合共沉淀后不 经过过滤而是将包含锂盐和混合共沉淀的溶液蒸发或冷冻干燥,然后再对干燥物进行 高温焙烧。与传统的固相合成技术相比,采用共沉淀方法可以使材料达到分子或原子 线度化学计量比混合,易得到粒径小、混合均匀的前驱体,且煅烧温度较低,合成产 物组分均匀,重现性好,条件容易控制,操作简单,目前工业上已有规模生产。
22
性能测试
• SEM分析:产物形貌是否粘结,是否为球形,是否团聚,颗粒大小是否均匀 ,是否均匀分散,颗粒大小适中,表面是否粗糙,排列是否紧密
• 成分分析:采用ICP-AES元素分析方法测定合成样品中各金属元素的含量是 否与理论值一致
• 粒径分析:将样品在压力分散后,采用激光粒度测定仪对材料的粒度进行表 征。其原理是依据不同大小的颗粒对入射激光产生不同的强度的散射光,再 将不同强度的散射光经一定的光学模型的数学程序进行处理,以测定材料的 颗粒大小与分布。测试结果一般用中径粒径D50表示平均粒径。
15
制备方法
• 水热合成法: • 水热合成技术是指在高温高压的过饱和水溶液中进行化学合成的方法,
属于湿化学法合成的一种。利用水热法合成的粉末一般结晶度高,并 且通过优化合成条件可以不含有任何结晶水,且粉末的大小、均匀性、 形状、成份可以得到严格的控制。水热合成粉末纯度高,晶体缺陷的 密度降低。

锂离子电池基础知识培训

锂离子电池基础知识培训
锂离子电池基础知识培训
目录 Contents
• 锂离子电池简介 • 锂离子电池的组成与结构 • 锂离子电池的充放电特性 • 锂离子电池的性能指标与测试 • 锂离子电池的维护与保养 • 锂离子电池的发展趋势与展望
01
锂离子电池简介
定义与工作原理
定义
锂离子电池是一种二次电池,通过锂离子在正负极之间的迁移实现充放电。
常用的正极材料包括钴酸锂、镍 酸锂、锰酸锂等,它们具有较高 的能量密度和良好的电化学性能

正极材料的性能直接影响锂离子 电池的能量密度、充放电性能和
使用寿命。
负极材料
负极材料是锂离子电池中存储锂离子 的主体,通常采用石墨、钛酸锂等材 料。
负极材料的比容量、电导率、稳定性 以及与电解液的相容性等特性需综合 考虑。
能量密度
电池的容量与其体积或重量的比值, 表示单位体积或重量所能储存的能量 ,单位为Wh/kg(瓦时每千克)或 Wh/L(瓦时每升)。
循环寿命与自放电率
循环寿命
电池在特定充放电条பைடு நூலகம்下能够维持性能的时间,通常以充放电循环次数来表示。
自放电率
电池在不使用情况下,电量自行减少的比例,通常以每月损失的电量百分比表示 。
05
锂离子电池的维护与保养
使用注意事项
避免过度充电和过度放电
01
锂离子电池有严格的充电和放电范围,过度充电和放电都会影
响电池性能和寿命。
保持适宜的存储环境
02
锂离子电池应存放在干燥、阴凉、通风良好的地方,避免高温
、高湿、阳光直射等环境。
定期检查电池状况
03
定期检查电池外观、电量、电压等参数,确保电池正常工作。
隔膜通常采用聚烯烃材料制成 ,要求具有较高的化学稳定性 、热稳定性和机械强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 目前研究较多的锂离子电池正极材料有LiCoO2、镍钴二元, 镍钴锰、锰类化合物、LiFePO4等。
PPT文档演模板
锂离子电池正极材料知识培训
•3. 锂离子电池正极材料
•3.1 LiCoO2
LiCoO2最早是由Goodenough等人在1980年提出可以用 于锂离子电池的正极材料,之后得到了广泛的研究。
PPT文档演模板
锂离子电池正极材料知识培训
从电子结构来看,由于Li+(1s2)能级与O 2 (2p6)能级 相差较大,而Co3+(3d6)更接近于O2(2p6)能级,所以LiO间电子云重叠程度小于Co-O间电子云重叠程度,Li-O键远 弱于Co-O键,在一定的条件下,Li+离子能够在CoO层间嵌入 脱出,使LiCoO2成为理想的锂离子电池嵌基材料。由于锂离 子在键合强的CoO层间进行二维运动,锂离子导电率高;另 外,共棱的CoO6的八面体分布使Co与Co之间以Co-O-Co的形 式发生作用,电子导电率也较高。
2. 二元材料实际放电容量较高,可达175 mAh/g以上,但平台较低,合成 困难(需在氧气气氛中进行),压实密度不高。
3. 三元材料结构稳定,循环性能好,安全,实际放电容量较高,可达160 mAh/g以上,但压实密度较低。
PPT文档演模板
锂离子电池正极材料知识培训
•压实密度
• 压实密度与材料的理论密度和颗粒形貌、粒度分布等有关。
PPT文档演模板
锂离子电池正极材料知识培训
与LiCoO2相比,LiNiO2的制备条件比较苛刻,其组成和结构随合成条件的改 变而变化。因为Ni2+难于氧化,按照制备LiCoO2的工艺合成出的LiNiO2几乎不具 备电化学活性,必须要在含有O2的气氛中进行反应,合成的产物往往是非整比的 LixNi2-xO2。在这种非整比产物中,部分Ni2+占据Li+位置(3a),在锂位产生部分 无序的阳离子分布,降低了材料的结构有序性,为了维持Ni2+进入Li-O层后体系 的电中性平衡,Ni-O层中也必然有等量的Ni2+存在(3b),化学式可以表示为 [Li+yNi2+1-y]3a[Ni2+1-yNi3+y]3bO22,这就是“阳离子混排”现象。
PPT文档演模板
锂离子电池正极材料知识培训
•3.4 LiNi1x-yCoyMnxO2
• LiNi1x-yCoyMnxO2与LiCoO2一样,具有NaFeO2 型层状结构(R-3m空间群),理论容 量约为275 mAh/g。 • 在三元材料中,Mn始终保持+4价,没有 电化学活性,Ni和Co为电化学活性,分别为 +2价和+3价。
• 5. 钴毒性较大,环境污染大
PPT文档演模板
锂离子电池正极材料知识培训
•3.2 LiNiO2
与LiCoO2相似,理想的LiNiO2为-NaFeO2 型六方层状结构,属 R-3m空间群, Li 和Ni分别占据3a位和3b位,LiNiO2正极材料的理论 容量为275 mAh/g,实际容量达到180-200 mAh/g。相对于LiCoO2而言, 镍的储量比钴大,价格便宜,而且环境污染小。
锂离子电池正极材料知 识培训
PPT文档演模板
2020/12/11
锂离子电池正极材料知识培训
• 1. 锂离子电池的结构 • 2. 正极材料的选择 • 3. 各种正极材料
3.1 LiCoO2 3.2 LiNiO2 3.3 三元 3.4 LiFePO4
PPT文档演模板
锂离子电池正极材料知识培训
1. 锂离子电池的结构
PPT文档演模板
锂离子电池正极材料知识培训
PPT文档演模板
• 由于Mn的价态在充放电过程中保持 不变,起到结构支撑作用,因此结构比 较稳定,在充放电过程中,不会发生像 LiNiO2的结构变化,因而具有很好的循 环稳定性和安全性能。
•3.0-4.6 V的循环图
锂离子电池正极材料知识培训
总之,LiCoO2, LiNi1yCoyO2和LiNi1x-yCoyMnxO2结构相同,各有优缺点: 1. LiCoO2工作电压高,充放电电压平稳,循环性能好;但实际容量较低另 外,价格昂贵,有毒,污染环境。
PPT文档演模板
锂离子电池正极材料知识培训
•3.1.2 LiCoO2的电化学行为
LiCoO2的理论容量为274 mAh/g,但在实际应用时,锂离子从 LixCoO2中可逆嵌脱最多为0.5个单元,实际容量只有140 mAh/g左 右。 LixCoO2在x = 0.5 附近会发生六方到单斜的结构相变,同时 晶胞参数发生微小变化。当x 0.5时,LixCoO2中的钴离子将从其 所在的平面迁移到锂所在的平面,导致结构不稳定而使钴离子通 过锂离子所在的平面迁移到电解液中,并且此时钴(CoO2)的氧 化性很强,容易和电解液发生反应失氧,造成很大的不可逆容量 损失。因此在实用锂离子电池中,0 x 0.5,充放电电压上限为 4.2 V,在此范围内,LiCoO2具有平稳的电压平台(约3.9 V),充 放电过程中不可逆容量损失小,循环性能非常好。
PPT文档演模板
锂离子电池正极材料知识培训
•LiCoO2充放电过程中的结构相变
PPT文档演模板
锂离子电池正极材料知识培训
•零应力表面处 理
PPT文档演模板
锂离子电池正极材料知识培训
PPT文档演模板
锂离子电池正极材料知识培训
•充放电过程中的导电率和晶胞体积变化
• 充电过程中,随着脱 锂,电导率会剧增6 个数量级,达到1 S/cm ;
LixNi2-xO2的非整比性对其电化学性能有较大的影响。LixNi2-xO2中占据锂位 (3a)的Ni2+离子在首次充电(脱锂)时,会被氧化成半径更小的Ni3+离子甚至 Ni4+离子,使层间距不可逆的减小,造成该离子附近结构的塌陷,在随后的嵌锂 过程中,Li+离子将难于回到已塌陷的位置,从而造成放电(嵌锂)时容量的不 可逆损失,这种不可逆损失与占据锂位的Ni2+离子的量有直接关系。
PPT文档演模板
锂离子电池正极材料知识培训
PPT文档演模板
锂离子电池正极材料知识培训
•2. 锂离子电池正极材料的选择
发展高能锂离子电池的关键技术之一就是正极材料的开 发。近几年来,负极材料和电解质的研究都取得了较大的进 展,相对而言,正极材料的发展较为缓慢,商品化锂离子电 池中正极材料的比容量远远小于负极材料,成为制约锂离子 电池整体性能进一步提高的重要因素。因此,正极材料的研 究受到越来越多的重视。
LiCoO2具有合成方法简单,工作电压高,充放电电压 平稳,循环性能好等优点,是最早用于商品化的锂离子电 池的正极材料,也是目前应用最广泛的正极材料。
PPT文档演模板
锂离子电池正极材料知识培训
•3.1.1 LiCoO2的结构
•3
•1
•4 •2
•Co3+ (3b)
•O2 (6c)
•Li+ (3a)
• LiCoO2具有-NaFeO2结构,属六方晶系, R-3m空间群,其中6c位上的O为立方密堆积,3a 位的Li和3b位的Co分别交替占据其八面体孔隙, 在[111] 晶面方向上呈层状排列,理论容量为274 mAh/g。
以LiCoO2为例: Co = 96500/M = 96500*1000/3600*98 = 273 mAh/g
LiNiO2为274 mAh/g; LiMn2O4为148 mAh/g, LiFePO4为170 mAh/g。
PPT文档演模板
锂离子电池正极材料知识培训
(3)嵌入脱出过程的可逆性好,充放电过程中材料结 构变化较小; (4)锂离子能够快速的嵌入和脱出,具有高的电子导 电率和离子导电率; (5)在电解液中化学稳定性好; (6)低廉,容易制备,对环境友好等。
PPT文档演模板
锂离子电池正极材料知识培训
充放电曲线表现出明显的 充放电平台,LixNiO2在充放电 过程中经历了几个相变过程, 每个平台对应一个相变过程。
•六方(R1) 单斜(M) 六方(R2) •晶体破坏 充放电稳定性劣化严重
PPT文档演模板
锂离子电池正极材料知识培训
•3.3 LiNi1yCoyO2
锂离子电池正极材料知识培训
•3.5 LiMn2O4
PPT文档演模板
• 尖晶石型LiMn2O4为面心立方结构,属 Fd-3m空间群,其中O为立方密堆积,占据32e 位,Li+位于四面体的8a位,Mn4+和Mn3+按各 一半的比例占据八面体的16d位,而八面体16c 全部空位,四面体和八面体共面连在一起为 锂离子的扩散提供了一个互相连通的三维隧 道结构,锂离子沿着8a-16c-8a的路径自由的 脱出或嵌入。

理论密度 = 单胞内原子总质量/单胞体积
• 三元材料可以看作为Ni、Co和Mn取代LiCoO2中的Co,与 LiCoO2同为六方结构,都属R-3m空间群。 Ni、Co和Mn的原子
量、离子半径相近,因此理论密度相近。
• 在实际应用中,LiCoO2的压实密度(RX767)可达4.2
g/cm3,而三元材料最大只有3.7 g/cm3。这主要与颗粒形貌和
PPT文档演模板
锂离子电池正极材料知识培训
• 作为理想的锂离子电池正极材料,锂离子嵌入化合物必须满足以下要 求: • (1)具有较高的氧化还原电位,保证锂离子电池的高电压特性;
•LiCoO2(Li+/Li)
•Graphite(Li+/Li)
PPT文档演模板
锂离子电池正极材料知识培训
(2)允许大量的锂离子嵌入脱出,保证锂离子电池的高 容量特性; 理论容量的计算:C0 = 26.8n m/M Co---- 理论容量;n---- 成流反应的得失电子数; m ---- 活性物质完全反应的质量;M----活性物质的摩尔质 量
相关文档
最新文档