人教B版高中数学-选修2-3教学案-正态分布(Word)

合集下载

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.4 正态分布》5

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.4 正态分布》5

正态分布第一课时
隆德县高级中学
姬彩霞
由德国10马克纸币谈高斯的科学贡献,引出课题
绍与动态演示
教师提问:
(1)X是一个随机变量吗?
(2)X是一个什么类型的随机变量?(3)X落在区间a,b]的概率如何计算?
生:结合频率分布直方图中小矩形的面积的求法,思考并回答
师:(追问)
1
σ2π
师:如何求随机变量X 落在区间(μ-a ,μa 】内的概率?
生:
思考:对于固定的μ和a 而言,该面积随着σ的减少怎样变化? 生:该面积随着σ的减少而增大 师:这说明了什么?
师生总结:σ的越小,随机变量X
落在区间(μ-a ,μa 】内的概率越大,即X 集中在μ周围的概率越大 师:特别的,有以下特殊区间的概率
(教师利用几何画板验证这三个区间的概率)
师:利用上述所得概率,解释原则,感受原则在生产中的应用
,()()≤a a
P a X a x dx
μμσμμμϕ+--<+=⎰
(2) 求考试成绩 X 位于区

内的概率;
(]
500,600
教师之为教,不在全盘授予,而在相机诱导.
陶行知。

人教版高中选修2-3《正态分布》教案

人教版高中选修2-3《正态分布》教案

人教版高中选修2-3《正态分布》教案一、教学目标1.知识与技能:–能够通过计算、观察与分析进行正态分布的基本参数估计与计算;–能够根据数据特征确定正态分布的使用条件,并运用正态分布解决实际问题。

2.过程与方法:–提高学生数理思维能力及运用计算机软件进行数据统计和分析的能力;–提高学生观察、归纳、分析问题及解决问题的能力。

3.情感态度与价值观:–培养学生科学态度,认识正态分布的重要性和应用价值,拓宽学生科学视野。

二、教学重、难点1.教学重点:–正态分布的基本概念与相关参数的计算;–正态分布的性质及模型的应用;–正态分布与假设检验。

2.教学难点:–正态分布在实际中的广泛应用。

三、教学内容1. 正态分布的基本概念与参数1.正态分布的定义–介绍正态分布的基本特征和概念。

2.正态分布的概率密度函数和分布函数–掌握正态分布的概率密度函数和分布函数的定义;–画出正态分布的概率密度函数和分布函数的图像。

3.正态分布的标准化–掌握正态分布的标准化转化法,以及标准正态分布表的使用方法。

2. 正态分布的参数估计与计算1.正态分布的基本形式–介绍正态分布的基本形式,以及参数的含义;–学习如何通过样本来估计总体的参数。

2.样本均值和样本标准差–掌握样本均值和样本标准差的定义和计算方法;–从样本中估计总体的均值和标准差。

3.抽样分布–掌握样本均值和样本标准差的概率分布,以及如何计算抽样分布。

3. 正态分布的应用1.正态分布的性质及模型的应用–描述正态分布的各种统计特征;–掌握利用正态分布进行概率估计的方法;–了解正态分布在实际问题中的应用,如质量控制、投资、风险评估等。

2.正态分布与假设检验–了解假设检验的基本内容及步骤;–学习如何从正态分布的角度来诠释假设检验。

四、教学方法1.授课讲解:对正态分布相关概念和公式进行讲解,以期解决学生对于正态分布不熟悉的情况。

2.讲解示范法:用实例向学生呈现正态分布的应用场景及应用方法,以期加深学生对于正态分布在实践中的应用认识。

人教B版选修2-3高中数学2.4《正态分布》ppt课件1

人教B版选修2-3高中数学2.4《正态分布》ppt课件1

单侧95%正常值范围: X 1.64S (上限)
X 1.64S (下限)
12
2. 百分位数法
双侧95%正常值范围: P2.5~P97.5 单侧95%正常值范围: < P95(上限)
或 > P5(下限) 适用于偏态分布资料
13
第三节 计数资料的统计描述
一、计数资料的数据整理 二、常用相对数指标 三、应用注意事项
如:治愈率、病死率、阳性率、人群患病率等
17
2.构成比(proportion):
说明某一事物内部,各组成部分所占的 比重。也叫百分比。
构成比=(某部分观察单位数/各组成部分 观察单位总数)×100%
如:教研室16人高级职称有4人,占 25%;中级职称有8人,占50%;初级 职称有4人,占25%。
18
正态曲线(normal curve)
2
二、正态曲线( normal curve )
f(X)

图形特点:
1. 钟型 2. 中间高 3. 两头低 4. 左右对称 5. 最高处对应
于X轴的值 就是均数
X 6. 曲线下面积 为1
7. 标准差决定 曲线的形状
3
N (1,0.82 )
0.6 f (X )
0.5
22
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的 问题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。

高中数学选修2-3精品教案2:2.4 正态分布教学设计

高中数学选修2-3精品教案2:2.4 正态分布教学设计

2.4正态分布教学目标1.知识与技能①通过高尔顿板试验,了解正态分布密度曲线的来源②通过借助几何画板,理解正态分布的概念及其曲线特点,掌握利用σ3原则解决一些简单的与正态分布有关的概率计算问题2.过程与方法①通过试验、频率分布直方图、折线图认识正态曲线,体验从有限到无限的思想方法②通过观察正态曲线研究正态曲线的性质,体会数形结合的方法,增强观察、分析和归纳的能力3、情感态度与价值观①通过经历直观动态的高尔顿试验,提高学习数学的兴趣②通过σ3原则的学习,充分感受数学的对称美教学重点、难点重点:正态分布密度曲线的特点,利用σ3原则解决一些简单的与正态分布有关的概率计算问题难点:正态分布密度曲线的特点教法与学法学情分析在必修三的学习中,学生已经掌握了统计等知识,这为学生理解利用频率分布直方图来研究小球的分布规律奠定了基础.但正态分布的密度函数表达式较为复杂抽象,学生理解比较困难. 根据以上学情,我采取了如下的教学方法:1、教法本节课是概念课教学,应该有一个让学生参与讨论、发现规律、总结特点的探索过程,所以在教学中我采取了直观教学法、探究教学法和多媒体辅助教学法.通过“观察—探究—再观察—再探究”等思维途径完成整个教学过程.而多媒体的辅助教学,不仅激发学生的学习兴趣,还有利于培养学生动向观察、抽象概括、分析归纳的逻辑思维能力,提高了课堂教学的有效性.2、学法纵观整堂课的设计,我注重培养学生以下学习方法:⑴观察探究:观察探究有助于学生初步了解数学概念和结论产生的过程,培养学生发现、提出、解决数学问题的能力.(如利用高尔顿板探究正态曲线的来源)⑵归纳分析:引导学生观察归纳,能缩短解决问题的时间,锻炼数学思维.(如通过几何画板的观察,归纳分析参数μ、σ对图像的影响)⑶理解应用在应用中体会到数学来源于生活又服务于生活,让学生感受到数学的价值,提高学习数学的兴趣.(如例题2及作业B组题的设置)教学过程教学环节教学内容师生互动设计意图以境激情通过对高尔顿板试验进行演示. 教师创设情境,为导入新知做准备.学生感悟体验,对试验的结果进行定向思考.学生经过观察发现:下落的小球在槽中的分布是有规律的.教师利用多媒体进行动态演示,能提高学生的学习积极性,提高学习数学的兴趣.研探论证1.用频率分布直方图从频率角度研究小球的分布规律⑴将球槽编号,算出各个球槽内的小球个数,做出频率分布表.⑵以球槽的编号为横坐标,以小球落入各个球槽内的频率与组距的比值为纵坐标,画出频率分布直方图.连接各个长方形上端的中点得到频率分布折线图.⑶将高尔顿板下面的球槽去掉,试验次数增多,频率分布直方图无限分割,于是折线图就越来越接近于一条光滑的曲线.引导学生思考回顾,教师通过课件演示作图过程.在这里引导学生回忆得到,此处的纵坐标为频率除以组距.教师提出问题:这里每个长方形的面积的含义是什么?学生经过回忆,容易得到:长方形的面积代表的是相应区间内数据的频率教师引导学生得到:此时小球与底部接触时的横坐标X是一个连续型随机变量.通过把与新内容有关的旧知识抽出来作为新知识的“生长点”,为引入新知搭桥铺路,形成正迁移.通过这里的思考回忆,加深了对频率分布直方图的理解.这个步骤实现了由离散型随机变量到连续型随机变量的过渡.教师通过课件动态演示频率分布直方图无限分割的过程. 通过几何画板让学生直观感受正态曲线的形成过程.教学环节教学内容师生互动设计意图研探论证2.正态曲线:曲线中任意的一个x均对应着唯一的一个y值,经过拟合,这条曲线是(或近似地是)下列函数的图像:()()()+∞∞-∈⋅=--,,21222,xexxσμσμσπϕ,其中π是圆周率,e是自然对数的底,实数μ和σ(σ>0)为参数.我们称()xσμϕ,的图像为正态分布密度曲线,简称正态曲线.μ与σ分别反映的是均值与标准差.教师提出课题并板书:正态分布教师分析正态分布密度曲线表达式的特点,并指出两个参数的实际意义.与旧教材不同的是,该处在学生从形的角度直观认识了正态曲线之后才给出曲线对应的表达式,这样处理能更直观演示正态曲线来源.3.正态曲线对应的解析式中含有两个参数μ和σ.下面结合函数解析式研究曲线特点,并分析参数μ和σ对曲线的影响:⑴固定σ的值,观察μ对图像的影响学生研探新知,并进行推理论证.其中教师对学生进行学法指导,优化学生思维.教师利用几何画板,先后固定参数σ和μ,通过变化参数μ和σ的值得到一系列正态曲线,学生观察图像,分组讨论并派代表发言.学生通过观察得到:当σ一定时,曲线随着μ的变化而沿x轴平移;结合解析式分析知=μ时它是个偶函数,于是参数μ决定了正态曲线的对称轴,0≠μ时的图像可由0=μ时的图像平移得到.(教师板书:曲线是单峰的,它针对解析式中含有两个参数,学生较难独立分析,教师通过固定一个参数,讨论另一个参数对图像的影响,这样的处理大大降低了难度.该环节教师利用多媒体引导学生归纳正态曲线的特点,既加强了学生的直观理解,也增强了学生观察归纳的能力.关于直线μ=x 对称) 同时得到:曲线在μ=x 时达到峰值πσ21(教师板书).教学环节 教学内容 师生互动 设计意图 研 探 论 证⑵固定μ的值,观察σ对图像的影响⑶综合以上图像,你还能得到正态曲线的哪些特点?学生通过观察并结合参数μ与σ的意义可以分析得到:当μ一定时,σ影响了曲线的形状.即:σ越小,偏离均值的程度越小,则曲线越瘦高;σ越大,偏离均值的程度越大,则曲线越矮胖(教师板书).综合以上的图像并结合解析式分析得到:曲线位于x 轴上方,与x 轴不相交.(教师板书). 最后引导学生由概率知识知:曲线与x 轴之间的面积为1(教师板书).该环节通过几何画板呈现了教学中难以呈现的课程内容,很好地锻炼了学生观察归纳的能力,体现了归纳分类、化难为易、数形结合的思想. 这样的处理很好地突出了重点,突破了难点这为接下来提出问题,引入正态分布的定义做铺垫.4.曲线与x 轴之间的面积为1.根据对称性知,随机变量X 落在对称轴μ=x 两侧的概率都是21.请思考:对于任意一个随机变量X ,如何求出落在给定区间(]b a ,内的概率?引导学生回忆得到:X 落在区间(]b a ,的概率的近似值其实就是在(]b a ,上的阴影部分即曲边梯形的面积,曲边梯形面积等于函数()x ϕ在区间(]b a ,上的定积分.即:通过设疑,引起学生对问题的深入思考,通过复习、巩固原有知识,以确保新内容的自然引入,同时加深了对定积分几何意义的理解.()()dxx b X a P b a σμϕ,⎰≈≤<教学环节 教学内容师生互动设计意图研 探 论 证5. 正态分布概念:一般地,如果对于任何实数a <b ,随机变量X 满足()()dx x b X a P b a σμϕ,⎰=≤<,则称X的分布为正态分布,常记作()2,σμN .如果随机变量X 服从正态分布,则记作()2,~σμN X .教师在前面分析的基础上引出正态分布的概念,并说明记法.引导学生分析得到,X 所落区间的端点是否能够取值,均不影响变量落在该区间内的概率.以旧引新,虽然概念较抽象,但这样的处理过程学生不会觉得太突兀,易于接受新知识.同时培养了学生把前后知识联系起来进行思维的习惯.6.3σ原则几何画板演示3σ原则:()6826.0=+≤-σμσμX P <()9544.022=+≤-σμσμX P <引导学生分析,求定积分,通常需要求出原函数.根据现有知识,无法求()x σμϕ,原函数.得寻求别的方法求概率.教师通过利用几何画板演示随机变量X 落在区间(]σμσμ+-,, (]2,2σμσμ+-与(,3σμ-]3σμ+这三个区间内的概率,引入3σ原则的内容,并指出:在()σμσμ3,3+-区间以外取值的概率只有0.0026,通常认为这种情况在一次试验中几乎不可能发生. 所以,在实际应用中,我们通常认为服从于正态分布的随机变量只取 ()σμσμ3,3+-之间的值,简称σ3原则.我们可以利用3σ原则解决一些简单的与正态分布有关的概率计算问题.(教师板书3σ原则的内容)学生发现了所学知识无法解决的问题,从而引起了他们的疑问,激发了他们要解决问题的欲望,变“要我学”为“我要学”.新知识的直接给出,学生接受或多或少会有点困难.教师利用几何画板,从数与形上体现了3σ原则的内容,能很好加深学生的印象便于理解.这为后面3σ原则的应用作了铺垫. Oyx ab()9974.033=+≤-σμσμX P <教学环节 教学内容师生互动设计意图 反 馈 矫 正例题1 把一条正态曲线a 沿着横轴方向向右移动2个单位,得到新的一条曲线b ,下列说法不正确的是() A .曲线b 仍然是正态曲线 B .曲线a 和b 的最高点的纵坐标相等 C .以曲线b 为正态分布的总体的方差比以曲线a 为正态分布的总体的方差大2 D .以曲线b 为正态分布的总体的期望比以曲线a 为正态分布的总体的期望大2学生独立分析,并学生间互问互检,质疑答辩.教师排难解惑,帮助学生巩固深化所学知识.学生易分析知:正态曲线a 经过平移仍是正态曲线,峰值不变.而曲线的左右平移与μ即均值(期望)有关.故C 选项的说法不正确.通过该例的设置,深化了学生对正态曲线的特点及正态分布密度函数表达式中参数μ与σ的理解.例题 2 某地区数学考试的成绩X 服从正态分布,其密度函数曲线如下图: ① 写出X 的分布密度函数; ②求成绩X 位于区间(]68,52的概率是多少? ③求成绩X 位于区间(]68,60的概率是多少? ④若该地区有10000名学生参加考试,从理论上讲成绩在76分以上的考生有多少人? 学生相互讨论,根据对称轴可知60=μ,根据峰值可知8=σ,代入正态曲线表达式可得:()()12860,2281--⋅=x e x πϕσμ由8,60==σμ知: ()6852≤X P < ()σμσμ+≤-=X P < 6826.0=()6860≤X P <()685221≤=X P < 3413.0=()()4476<>X P X P =()[]7644121≤≤-=X P ()9544.0121-=0228.0=通过一个贴近生活的实例,学生体会到了数学在实际问题中的应用,培养学生应用所学知识解决问题的能力,激发学习热情.本例是由课本74页练习2进行变式处理,做到了一题多用. 该环节设置的②③④这三个小问,分别要求学生根据σ3原则直接求出对称区间概率,利用对称性及结合概率为1,求不对称区间的概率.体现了数形结合的思想,同时问题的设置由易到难,形成坡度.20 40 60 80100 y π281x O例3 设正态总体落在区间()1,-∞-和区间()+∞,3内的概率相等,落在区间()4,2-内的概率为%74.99,求该正态总体对应的正态曲线的最高点的坐标.学生分析易知:落在()1,-∞-和()+∞,3内概率相等知1=μ,由区间()4,2-概率为99.74%,知431=+σ,231-=-σ, 即1=σ,代入正态分布密度函数解析式知最高点的坐标为⎪⎪⎭⎫⎝⎛π21,1.要求学生能根据题意画出草图,分析已有条件得到两个参数的解,利用解析式求出结果.再一次强化了数形结合的解题思想.教学环节教学内容师生互动设计意图 应用评价1. 正态曲线有哪些具体的特点?2.σ3原则是什么?它对μ、σ取任何数,数据落到相对区间内的概率是不变的吗? 3.思想方法:数形结合等.4.生活中的正态分布教师引导学生进行课堂小结,自我评价. 学生可以展示自己的所悟所得,与同伴分享成功的喜悦;还可以提出自己的困惑,师生共同探讨.将课堂小结作为自我评价的主阵地.教师结合例子对正态分布进行介绍.通过学生提出学习本节内容中的困惑和与同伴分享学习成果,引导学生进行反思与自我评价.教师不仅引导学生反思学习知识,还反思思想方法.通过教师的介绍,学生能够体会到生活中处处有正态分布,感受到数学的实际应用.思维创新 A 组课本75页 A 组第1题B 组第2题B 组在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布()100,70N ,已知成绩在90分以上(含90分)的学生有12名.试问此次参赛的学生总数约有多少人?课外思考:请尝试从解析式角度分析正态曲线的对称性与最值.学生通过作业进行课外反思,通过思考发散思维,发现创新.教师通过布置作业,进行自我评价,更新教法.学生通过作业,及时反馈,巩固所学知识;教师通过分层次布置作业,提高了学生的学习效率,同时能在作业中发现教学的不足.板书设计正态分布1.解析式2.曲线性质⑴⑵⑶⑷⑸3.3 原则例1.例2①②③④例3多媒体投影。

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.4 正态分布》8

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.4 正态分布》8

《§2.4正态分布》教学设计§2.4正态分布一、教材分析正态分布是人教A版选修2-3第二章第四节的内容,该内容共一课时。

之前,学生已经学习了频率分布直方图、离散型随机变量等相关知识,这为本节课学习奠定了基础,而正态分布研究是连续型随机变量,既是对前面内容的补充、拓展,又为学生初步应用正态分布知识解决实际问题提供了理论依据。

二、学情分析学生已在必修三中学习过频率分布直方图、总体密度曲线,有一定的基础,但间隔时间较长,有些遗忘,可能会影响课堂进度。

正态曲线的特征较多,证明也较为复杂,需要学生敏锐的观察能力与动手动脑能力。

三、教学目标分析(1)从数据分析的角度,建立数据分布的概念,理解正态曲线的来源,建立钟形曲线的直观印象,从钟形曲线的形态角度理解数据分布。

(2)理解正态分布密度曲线的特点,借助直观图形对比不同参数的正态密度函数的图像,理解两个参数μ,σ的含义。

会根据对称性进行简单的正态分布的相关概率的计算,并能解决一些简单的实际问题。

(3)通过教学中一系列探索过程,使学生体验发现的快乐,形成积极的情感,培养学生的进取意识和科学精神。

四、教学重点、难点分析【教学重点】正态分布密度曲线的特点和性质【教学难点】正态分布密度曲线的特点和性质的推导五、教法、学法分析教学模式:本课采用“探究——发现”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识线(二)过程线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.六、教学过程1.高尔顿版实验。

建构概念用频率分布直方图从频率角度研究小球的分布规律.⑴将球槽编号,算出各个球槽内的小球个数,作出频率分布表.⑵以球槽的编号为横坐标,以小球落入各个球槽内的频率与组距的比值为纵坐标,画出频率分布直方图。

连接各个长方形上端的中点得到频率分布折线图.引导学生思考回顾,教师通过课件演示作图过程.在这里引导学生回忆得到,此处的纵坐标为频率除以组距.教师提出问题:这里每个长方形的面积的含义是什么?学生经过回忆,易得:长方形面积代表相应区间内数据的频率.师生互动通过把与新内容有关的旧知识抽出来作为新知识的“生长点”,为引入新知搭桥铺路,形成正迁移.通过这里的思考回忆,加深对频率分布直方图的理解.设计意图教学内容建构概念(3)随着试验次数增多,折线图就越来越接近于一条光滑的曲线.从描述曲线形状的角度自然引入了正态密度函数的表达式:()()()+∞∞-∈⋅=--,,21222,xexxσμσμσπϕ解析式中前有一个系数σπ21,后面是一个以e为底数的指数形式,幂指数为222)(σμ--x,解析式中含两个常数π和e,还含有两个参数μ和σ,分别指总体随机变量的平均数和标准差,可用样本平均数和标准差去估计.在学生从形的角度直观认识了正态曲线之后才给出曲线对应的表达式,这样处理能更直观,学生更易理解正态曲线的来源.定义导出1.正态曲线:2.正态分布:一般地,如果对于任何实数a<b,随机变量X满足:()()dxxbXaP baσμϕ,⎰=≤<,则称X的分布为正态分布,常记作()2,σμN.如果随机变量X服从正态分布,则记作()2,~σμNX.教师在前面分析的基础上引出正态分布的概念,并说明记法。

人教版选修2-3《正态分布》教案

人教版选修2-3《正态分布》教案
通过对生活中大量的实际例子进行分析,借助先进的计算机技术,从学生原有的知识结构出发,让学生更顺畅、直观地感受到正态曲线,这一特殊总体密度曲线的魅力。并引出研究的主题,逐步揭开了正态分布的神秘面纱。
“博古通今”
师:幻灯展示正态分布定义。
生:朗读定义。
师:结合实例对定义做出解释。
生:展示课前搜集并整理的有关正态分布的历史资料,并进行讲解。
生:小组讨论,而后由学生代表展示研讨成果,并由其他小组补充完善。
师:总结学生发言并板书,给出标准正态分布。
通过小组的合作探究,让学生的思维得以碰撞,在养成分析总结的习惯的同时,也体会到解决问题的快乐,感受到与他人合作交流的重要性。
“天生我学必有用”
师:回顾引例中身高的正态分布曲线,引导学生分析其实际意义及应用。另举一例:“两次标准化考试的数学成绩的概率密度曲线图,且两次成绩都服从正态分布”,引导学生对比分析。
生答
师:回顾“钢管尺寸”的实际例子,给出正态分布的原则,并作出解释。
回归到实际生活之中,通过对几个实际问题的分析与解决,让学生充分体会“数学源于生活,而又服务于生活”。
“喜庆丰收”
师:以上就是我们今天的内容,哪位同学愿意与大家分享自己在本节课的收获?
生:(小结)
课堂小结由学生来完成,让学生自己归纳、总结本节课内容,不仅利于学生对知识的系统理解,也让学生学会反思,更为他们提供了更多的展示自我的机会。
教材分析
正态分布是人教A版选修2—3第二章第四节的内容,在这之前学生已经学习了离散型随机变量,正态分布的随机变量是连续型随机变量,因此正态分布既是对前面内容的一种补充,也是必修三第二章概率知识的后续。
教学目标
1.知识目标:理解并掌握正态分布和正态曲线的概念及性质,能简单应用。

高中数学选修2-32.4正态分布教学设计

高中数学选修2-32.4正态分布教学设计

《正态分布》教学案【教学目标】一、知识与技能1、结合正态曲线,加深对正态密度函数的理解;2、通过正态分布的图形特征,归纳正态曲线的性质.二、过程与方法讲授法与引导发现法.通过教师先讲,师生再共同探究的方式,让学生深刻理解相关概念,领会数形结合的数学思想方法,体会数学知识的形成.三、情感态度与价值观通过教学中一系列的探究过程使学生体验发现的快乐,形成积极的情感,培养学生的进取意识和科学精神.【教学重难点】重点:正态分布曲线的特点及其所表示的意义;难点:了解在实际中什么样的随机变量服从正态分布,并掌握正态分布曲线所表示的意义.【教学方法】讲授法与引导发现法【教学过程设计】(一)复习准备1、总体密度曲线:在频率分布直方图中,随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,这条光滑曲线为总体密度曲线,a b2、图中阴影部分的面积,就是总体在区间内取值的百分比,即概率(二)创设情境计算机模拟演示高尔顿板试验学生经过观察小球在槽中的堆积形状发现:下落的小球在槽中的分布是有规律的.设计意图:提高学生的学习积极性,提高学习数学的兴趣.让学生体验“正态分布曲线“的生成和发现历程.(二)构建概念1.用频率分布直方图从频率角度研究小球的分布规律.师生互动:引导学生思考回顾,教师通过课件演示作图过程.(1)将球槽编号,算出各个球槽内的小球个数,作出频率分布表.师生互动:在这里引导学生回忆得到,此处的纵坐标为频率除以组距.设计意图:通过把与新内容有关的旧知识抽出来作为新知识的“生长点”,为引入新知搭桥铺路,形成正迁移.(2)以球槽的编号为横坐标,以小球落入各个球槽内的频率与组距的比值为纵坐标,画出频率分布直方图。

连接各个长方形上端的中点得到频率分布折线图.师生互动:教师提出问题:这里每个长方形的面积的含义是什么?学生经过回忆,易得:长方形面积代表相应区间内数据的频率设计意图:通过这里的思考回忆,加深对频率分布直方图的理解.师生互动:分析表达式特点:解析式中前有一个系数,后面是一个以为底数的指数形式,幂指数为,解析式中含两个常数和,还含有两个参数和,分别指总体随机变量的平均数和标准差,可用样本平均数和标准差去估计.师生互动:学生感悟体验,对试验的结果进行定向思考.(3)随着试验次数增多,折线图就越来越接近于一条光滑的曲线.师生互动:增大试验次数,让学生观察并总结折线图的变化规律(4)从描述曲线形状的角度自然引入了正态密度函数的表达式:设计意图:与旧教材不同的是,该处在学生从形的角度直观认识了正态曲线之后才给出曲线对应的表达式,这样处理能更直观,学生更易理解正态曲线的来源.(5)例1、下列函数是正态密度函数的是( B )都是实数师生互动:学生通过观察解析式的结构特征可知只有B选项符合正态密度函数解析式的特点.设计意图:设计这一题主要为了加强学生对正态密度函数的理解.2.(1)继续探究:当我们去掉高尔顿板试验最下边的球槽,并沿其底部建立一个水平坐标轴,其刻度单位为球槽的宽度,用表示落下的小球第一次与高尔顿板底部接触时的坐标.师生互动:引导学生得到:此时小球与底部接触时的坐标是一个连续型随机变量.设计意图:这个步骤实现了由离散型随机变量到连续型随机变量的过渡.(2)提出问题:图中阴影部分面积有什么意义?师生互动:启发学生回忆:频率分布直方图中面积对应频率,不难理解,图中阴影部分的面积,就可以看成多个矩形面积的和,也就是落在区间的频率;再结合定积分的意义,阴影部分面积就是正态密度函数在该区间上的积分值,这样,概率与积分间就建立了一个等量关系.设计意图:通过设疑,引起学生对问题的深入思考,加深对定积分几何意义的理解.直接问落在区间上的概率,学生不容易反应过来,改为问面积的意义后,便于学生理解该问题.(3)在前面分析的基础上,引出正态分布概念:一般地,如果对于任何实数<,随机变量满足:,则称的分布为正态分布,常记作.如果随机变量服从正态分布,则记作.(三)列举实例请学生结合高尔顿板试验讨论提出的问题,并尝试归纳服从或近似服从正态分布的随机变量所具有的特征:1.小球落下的位置是随机的吗?2.若没有上部的小木块,小球会落在哪里?是什么影响了小球落下的位置?3.前一个小球对下一个小球落下的位置有影响吗?哪个小球对结果的影响大?4.你能事先确定某个小球下落时会与哪些小木块发生碰撞吗?师生互动:学生通过讨论,教师引导学生得出问题的结果:1.它是随机的.2.竖直落下.受众多次碰撞的影响3.互不相干、不分主次.4.不能,具有偶然性.然后归纳出特征:一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用之和,它就服从或近似服从正态分布.教师列举实例分析,帮助学生更加透彻的理解.设计意图:“什么样的随机变量服从(或近似服从)正态分布?”是本节课的难点,采用设置问题串的方式,将复杂的问题分解成几个容易解决的问题,能有效突破难点.通过举例,让学生体会到生活中处处有正态分布,感受到数学的实际应用.(四)深入探究1.引导学生结合三幅图像及高尔顿板试验,根据问题归纳正态曲线的性质:(1)曲线在轴的上方,与轴不相交;(2)曲线是单峰的,图像关于直线对称;(3)曲线在处达峰值;(4)曲线与轴之间的面积为1;师生互动:引导学生联系三幅图像,结合高尔顿板试验思考以下问题:(1)曲线在坐标平面的什么位置?曲线为什么与x轴不相交?(2)曲线有没有对称轴?(3) 曲线有没有最高点?坐标是?(4)曲线与轴围成的面积是多少?结合解析式及概率的性质,分析正态曲线的特点。

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.4 正态分布》2

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.4 正态分布》2

《人教B版选修2-3第2章正态分布》教学设计1教学内容解析:正态分布是高中新教材人教B版选修2-3的第二章的最后一节内容,在学习了离散型随机变量之后,正态分布作为连续型随机变量,在这里既是对前面内容的一种补充,也是对前面知识的一种拓展,是必修3频率分布直方图和概率知识的后续。

该节内容通过研究频率分布直方图、频率分布折线图、总体密度曲线,引出拟合的函数式,进而得到正态分布的概念、分析正态曲线的特点,最后研究了它的应用。

2.教学目标分析在上次教材改革中增加了正态分布,此次新课程标准中理科选修2-3仍然保留了正态分布的内容,只是在内容上作了一些调整,课本删除了标准正态分布和正态分布函数表,只要求利用对称性和“3σ”原则分析实际问题,从而考查难度有所降低,注重考查阅读理解能力。

正态分布在概率和统计中占有重要的地位,如现今德国10A.0.6试问该厂生产的这批零件是否合格?例3设在一次数学考试中,某班学生的分数X~N110,2021且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格即90分以上的人数和130分以上的人数解:μ=110,σ=2021X≥90=PX-110≥-2021X-μ≥-σ,∵PX-μ≤-σ+P-σ≤X-μ≤σ+PX-μ≥σ=2PX-μ≤-σ+=1,∴PX-μ≤-σ=5,∴PX≥90=1-PX-μ≤-σ=1-5=∴54×≈45人,即及格人数约为45人∵PX≥130=PX-110≥2021X-μ≥σ,∴PX-μ≤-σ+P-σ≤X-μ≤σ+PX-μ≥σ=6+2PX-μ≥σ=1,∴PX-μ≥σ=5,即PX≥130=5∴54× 5=9人,即130分以上的人数约为9人[再练一题]3某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间X单位:分近似服从正态分布X~N50,102,求他在30,60]分内赶到火车站的概率解:∵X~N50,102,∴μ=50,σ=10∴P301>σ2>σ3>0σ2>1>σ3>0 <σ1<σ2=1<σ3~Nμ,σ2,则PX≤μ=________2,σ2,且PX<4=,则PX≤0___答案:C D 错误!作业教材70第7题,71第6题。

高二数学(选修2-3人教B版)-正态分布

高二数学(选修2-3人教B版)-正态分布

例:当 0, 1 时,正态变量(这时称它为标准正态变量)
(2,2) ,(3,3) 内取值的概率分别是 68.3%,95.4%,
在区间 (1,1) ,
99.7%.
典型例题
练习:设有一正态变量,它的概率密度曲线是函数
的图象,且
,则这个正态变量的均值与
标准差分别是(
A.10与8
答案: B
典型例题
例:某工厂生产的圆柱形零件的外直径 X (单位:mm)
2
服从正态分布 N (4,0.5 ),质检人员从该厂生产的1000个
零件中随机抽查一件,测得它的外直径为5.7mm,试判
断该厂生产的这批零件是否合格?
典型例题
分析:
解题一定要将所求问题向 P( , ) ,P( 2 , 2 )
( 3 , 3 ) 这三个区间进行转化;
(3)利用上述区间求出相应的概率.
典型例题
例:某年级的一次信息技术测验成绩近似服从正态分
2
布N (70,10 ),该年级有2000名学生,如果规定低于60分
为不及格,求成绩不及格的学生约有多少人?
2
解:设学生的得分为随机变量 X ,
X N (70,10 ) ,则
的概率只有0.0026,而 5.7 (2.5,5.5) ,这说明在一次试
验中,出现了几乎不可能发生的小概率事件,所以可以
认为该批零件是不合格的.
典型例题
规律方法总结:
求正态变量 X 在某区间内取值的概率的基本方法:
(1)根据题目中给出的条件确定 , 的值;
(2)将待求问题向( , ), ( 2 , 2 ),
(1)曲线在 x轴的上方,与x 轴不相交.

高中数学 2.4正态分布课件 新人教B版选修2-3

高中数学 2.4正态分布课件 新人教B版选修2-3

三、正态曲线的性质
正态曲线f(x)= 21πσe-x-2σμ22 ,x∈R有以下性质:
(1)由线位于x轴上方. (2)曲线是单峰的,它关于直线x=μ对称. (3)曲线在x=μ时处于最高点. (4)曲线与x轴之间区域的面积为1. (5)当σ一定时,曲线随着μ的变化而沿x轴平移,如图(1).
(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“高 瘦”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表 示总体的分布越分散,如图(2)
线及 x 轴所围成的平面图形的面积,就是 X 落在区间(a,b)内
的概率的近似值.
下列函数的图象是正态曲线的是( )
A.f(x)=
1
x-μ2
2πσe 2σ2
B.f(x)=
22ππe-
2
2
C.f(x)=2
1
x-12
2πe 4
D.f(x)=
12 2πe 2
[答案] [解析]
B 对照正态变量的概率密度函数f(x)=
图1
图2
在理解正态曲线的性质时,可以结合函数的性质进行理 解:
性质(1)说明函数的值域为正实数集的子集,且以x轴为渐 近线;性质(2)是曲线的对称性,关于直线x=μ对称;性质(3) 说明函数在x=μ时取得最大值;性质(4)说明正态变量在(- ∞,+∞)内取值的概率为1.
设两个正态分布N(μ1σ21)(σ1>0)和N(μ2,σ22)(σ2>0)的密度函 数图象如图所示,则有( )
2.1
一、正态曲线的理解 正态变量概率密度曲线的函数表达式为 f(x)= 21π·σe-x-2σμ22 , x∈R,其中 μ,σ 为参数,且 σ>0,-∞<μ<+∞. 正态变量的概率密度函数的图象叫做正态曲线.

【B版】人教课标版高中数学选修2-3《正态分布》教案1

【B版】人教课标版高中数学选修2-3《正态分布》教案1

2.4 正态分布【教学目标】①了解什么叫正态曲线和正态分布认识正态曲线的特点及曲线所表示的意义; ②会根据正态曲线的性质求随机变量在某一范围内的概率。

【教学重点】正态曲线的性质。

【教学难点】对正态分布的理解及应用。

一、课前预习1.正态变量:服从_______的_________叫做正态随机变量,简称________。

2.正态曲线:(1)概念:正态变量的概率密度函数的图象叫做____________,它与x 轴一起围成的面积是______。

其函数表达式为R x e x f x ∈⋅=--,21)(222)(σμσπ其中σμ,是参数,且0,σμ>-∞<<+∞。

μ和σ分别为正态变量的________和______。

正态分布通常记作:______。

其中1,0==σμ的正态分布叫做______。

(2)性质:①曲线在x 轴的______,并且关于直线_____对称;②曲线在______时处于最高点,并且由此出向左右两边延伸时,曲线逐渐_______,呈现_________________的形状;③曲线的形状由参数σ确定,σ越大,曲线越______,σ越小,曲线越_______。

3.正态变量在三个特殊区间)3,3(),2,2(),,(σμσμσμσμσμσμ+-+-+-内取值的概率值分别为:__________________________。

二、课上学习例1、已知随机变量X 服从正态分布)1,3(N ,且6826.0)42(=≤≤X P ,则(4)_____P X >=。

例2、在某次数学考试中,考生的成绩X 服从一个正态分布,及)100,90(~N X 。

(1)试求考试成绩X 位于区间(70,110)上的概率是多少?(2)若这次考试共有2000名考生试估计考试成绩在(80,100)间的考生大约有多少人?三、课后练习1.已知正态总体的数据落在区间(-3,-1)里的概率和落在区间(3,5)里的概率相等,那么这个正态总体的数学期望为__________。

正态分布示范教案

正态分布示范教案

正态分布示范教案【教案】一、教学目标1.知识目标:学生掌握正态分布的基本概念、标准正态分布的性质和正态分布的标准化方法。

2.能力目标:学生能够根据给定的正态分布的参数,计算相应的概率和区间。

3.情感目标:培养学生对数理统计的兴趣,增强数学思维和计算能力。

二、教学内容1.正态分布的基本概念及性质2.标准正态分布3.正态分布的标准化方法三、教学过程1.导入(10分钟)通过一个问题引入正态分布的概念,例子:“班级100名同学的数学考试成绩呈正态分布,平均成绩为70分,标准差为8分,问有多少学生的成绩在60分到80分之间?”引导学生思考并预测。

2.普及正态分布的概念(20分钟)简述正态分布的定义和性质,并引导学生理解正态分布的特点和应用,如图形呈钟形对称,均值、中位数和众数相等,标准差决定了曲线的陡缓程度等。

3.标准正态分布的引入(15分钟)引导学生了解标准正态分布的概念及特性,如均值为0,标准差为1,曲线在x轴两边分别为无穷远。

引导学生思考标准正态分布与一般正态分布的关系。

4.标准化方法的介绍(20分钟)通过具体的例子,教师示范如何将一般正态分布标准化为标准正态分布。

引导学生理解标准化的意义和方法,并进行实际操作练习。

5.应用计算(25分钟)通过多个实际问题,让学生应用所学的知识计算正态分布概率和区间。

如计算一些数值对应的标准分数,计算一段区间内的概率等。

6.总结与拓展(10分钟)总结正态分布的基本概念、标准正态分布的性质和正态分布的标准化方法,引导学生思考正态分布的实际应用领域,拓展学生的思维。

四、教学资源与评价教学资源:教材、白板、标准化表格等。

评价方式:课堂练习、小组讨论、个人作业等。

五、教学反思。

最新人教版高中数学选修2-3《正态分布》示范教案

最新人教版高中数学选修2-3《正态分布》示范教案

最新人教版高中数学选修2-3《正态分布》示范教案2.4 正态分布整体设计:正态分布是高中数学新增内容之一,也是统计学中的重要内容。

它是学生进一步应用正态分布解决实际问题的理论依据,同时也是许多分布的近似描述。

因此,正态分布在理论研究中占有很重要的地位。

教材分析:本章节的课时分配为1课时,教学目标包括掌握正态分布在实际生活中的意义和作用,加深对正态密度函数和正态曲线的理解,以及归纳正态曲线的性质。

教学方法主要是通过观察并探究规律,提高分析问题和解决问题的能力,同时培养数形结合、函数与方程等数学思想方法。

情感、态度与价值观方面,通过教学中的探究过程,使学生体验发现的快乐,培养学生的进取意识和科学精神。

重点难点:教学重点为正态曲线的性质和标准正态曲线N(0,1);教学难点为通过正态分布的图形特征,归纳正态曲线的性质。

教学过程:复旧知:回顾曲边梯形的面积S=∫bf(x)dx的意义,以及频率分布直方图和频率分布折线图的作法和意义。

这一部分的设计意图是通过学过的知识来探究新问题,驱动学生思维的自觉性和主动性,让学生亲身感受知识的发生过程,既反映了数学的发展规律,又符合学生的思维特征和认知规律。

探究新知:教师提出问题:同学们知道高尔顿板试验吗?通过小球落入各个小槽中的频率分布情况来认识正态分布。

活动设计包括教师板书课题和学生阅读课本中关于高尔顿板的内容。

接着,教师提出问题:(1)运用多媒体画出频率分布直方图。

(2)当n由1,000增至2,000时,观察频率分布直方图的变化。

(3)请问当样本容量n无限增大时,频率分布直方图变化的情况如何?(频率分布就会无限接近一条光滑曲线——总体密度曲线)。

(4)样本容量越大,总体估计就越精确。

改写后的文章:2.4 正态分布整体设计:正态分布是高中数学新增内容之一,也是统计学中的重要内容。

它是学生进一步应用正态分布解决实际问题的理论依据,同时也是许多分布的近似描述。

因此,正态分布在理论研究中占有很重要的地位。

人教课标版高中数学选修2-3《正态分布》教学设计

人教课标版高中数学选修2-3《正态分布》教学设计

2.4 正态分布一、教学目标1.核心素养:学习正态分布的过程中,更进一步的体会数形结合思想的作用.培养了学生们直观想象和数学建模的能力.2.学习目标(1)通过道尔顿板重复实验,画出正态分布密度曲线.(2)随机变量取值的概率与面积的关系.(3)3σ原则的探索3.学习重点正态分布曲线的定义及其曲线特点,利用标准正态分布表求得标准正态总体在某一区间内取值的概率.4.学习难点正态分布的概念及其实际应用.二、教学设计(一)课前设计1.预习任务任务1阅读教材P70-P75,思考:正态分布密度曲线的概念?正态分布的概念?任务2思考正态分布密度曲线与x轴之间的面积为多少?2.预习自测1.若随机变量满足正态分布N(μ,σ2),则关于正态曲线性质的叙述正确的是() A.σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”B.σ越大,曲线越“瘦高”,σ越小,曲线越“矮胖”C.σ的大小,和曲线的“瘦高”、“矮胖”没有关系D.曲线的“瘦高”、“矮胖”受到μ的影响答案 A2.已知随机变量ξ服从正态分布N(4,σ2),则P(ξ>4)=()A.15 B.14 C.13 D.12答案 D解析由正态分布图像可知,μ=4是该图像的对称轴,∴P(ξ<4)=P(ξ>4)=1 2.3.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=()A.12+p B.12-p C.1-2p D.1-p答案 B解析P(-1<ξ<0)=12P(-1<ξ<1)=12[1-2P(ξ>1)]=12-P(ξ>1)=12-p.(二)课堂设计1.知识回顾(1)几何分布.(2)频率分布直方图、折线图.2.问题探究问题探究一重复操作高尔顿板实验,探索正态分布密度曲线●活动一通过道尔顿板重复实验,并画出小球在球槽内的分布曲线.问题探究二随机变量取值的概率与面积的关系.★▲●活动一探讨随机变量取值与面积的关系如果随机变量ξ服从正态分布N(μ,σ2),那么对于任意实数a、b(a<b),当随机变量ξ在区间(a,b]上取值时,其取值的概率与正态曲线与直线x=a,x=b以及x轴所围成的图形的面积相等.如图(1)中的阴影部分的面积就是随机变量ξ在区间(a,b]上取值的概率.一般地,当随机变量在区间(-∞,a )上取值时,其取值的概率是正态曲线在x =a 左侧以及x 轴围成图形的面积,如图(2).随机变量在(a ,+∞)上取值的概率是正态曲线在x =a 右侧以及x 轴围成图形的面积,如图(3).根据以上概率与面积的关系,在有关概率的计算中,可借助与面积的关系进行求解. ●活动二 在实际例子中的应用例题1 若随机变量X ~N (μ,σ2),则P (X ≤μ)=________. 【知识点:正态分布;数学思想:数形结合】详解: 若X ~N (μ,σ2),则其密度曲线关于X =μ对称,则P (X ≤μ)=12. 点拨:随机变量取值的概率与面积的关系 问题探究三 3σ原则★▲ ●活动一 3σ原则含义的理解由于正态变量在(-∞,+∞)内取值的概率是1,由上所述,容易推出,它在区间(μ-2σ,μ+2σ)之外取值的概率是4.56%,在区间(μ-3σ,μ+3σ)之外取值的概率是0.26%.于是,正态变量的取值几乎都在距x =μ三倍标准差之内,这就是正态分布的3σ原则. ●活动二 3σ原则的实际应用设X ~N (1,32),试求(1)P (-2<X ≤4);(2)P (4<X ≤7). 【知识点:正态分布的3σ原则;数学思想:数形结合】 详解:因为X ~N (1,32),所以μ=1,σ=3. (1)P (-2<X ≤4)=P (1-3<X ≤1+3)=P (μ-σ<X ≤μ+σ)=0.682 6.(2)因为P (4<X ≤7)=12[P (-5<X ≤7)-P (-2<X ≤4)]=12[P (1-6<X ≤1+6)-P (1-3<X ≤1+3)] =12[P (μ-2σ<X ≤μ+2σ)-P (μ-σ<X ≤μ+σ)]=12(0.954 4-0.682 6)=0.135 9. 点拨:正态分布的3σ原则的反复使用. 3.课堂总结【知识梳理】(1)正态分布与正态曲线:如果随机变量ξ的概率密度为:.(σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.(2)正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . (3)标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .(4)正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.(5)“3σ”原则. 【重难点突破】(1)正态分布求概率有时候转化为标准正态分布来解决. (2)用“3σ”原则解题时,有时需要数形结合来解决. 4.随堂检测1.正态总体N (0,49),数值落在(-∞,-2)∪(2,+∞)的概率为( ) A .0.46 B .0.997 4 C .0.03 D .0.002 6 【知识点:正态分布;数学思想:数形结合】 答案 D解:P (-2<ξ≤2)=P (0-3×23<ξ≤0+3×23)=P (μ-3σ<ξ≤μ+3σ)=0.997 4, ∴数值落在(-∞,2)∪(2,+∞)的概率为1-0.997 4=0.002 6.2.若随机变量η服从标准正态分布N (0,1),则η在区间(-3,3]上取值的概率等于( ) A .0.682 6 B .0.954 4 C .0.997 4 D .0.317 4 【知识点:正态分布;数学思想:数形结合】答案 C解:μ=0,σ=1,∴(-3,3]内概率就是(μ-3σ,μ+3σ)内的概率0.997 4.4.若随机变量ξ~N(2,100),若ξ落在区间(-∞,k)和(k,+∞)内的概率是相等的,则k 等于()A.2 B.10 C. 2 D.可以是任意实数【知识点:正态分布;数学思想:数形结合】答案 A5.已知正态分布落在区间(0.2,+∞)上的概率为0.5,那么相应的正态曲线f(x)在x=________时,达到最高点.【知识点:正态分布;数学思想:数形结合】答案0.2解:由于正态曲线关于直线x=μ对称和其落在区间(0.2,+∞)上的概率为0.5,得μ=0.2.6.已知X~N(2.5,0.12),求X落在区间(2.4,2.6]中的概率.【知识点:正态分布;数学思想:数形结合】解:∵X~N(2.5,0.12),∴μ=2.5,σ=0.1.∴X落在区间(2.4,2.6]中的概率为P(2.5-0.1<X≤2.5+0.1)=0.682 6.(三)课后作业基础型自主突破1.ξ的概率密度函数f(x)=12πe-x-122,下列错误的是()A.P(ξ<1)=P(ξ>1) B.P(-1≤ξ≤1)=P(-1<ξ<1) C.f(x)的渐近线是x=0 D.η=ξ-1~N(0,1)答案 C2.正态曲线φμ,σ(x)=12πσe-x-μ22σ2,x∈R,其中μ<0的图像是()【知识点:正态分布;数学思想:数形结合】答案 A解析因为μ<0,所以对称轴x=μ位于y轴左侧.3.下列说法不正确的是()A.若X~N(0,9),则其正态曲线的对称轴为y轴B.正态分布N(μ,σ2)的图像位于x轴上方C.所有的随机现象都服从或近似服从正态分布D.函数f(x)=12πe-x22(x∈R)的图像是一条两头低、中间高、关于y轴对称的曲线答案 C解析并不是所有的随机现象都服从或近似服从正态分布,还有些其他分布.4.如下图是正态分布N1(μ,σ21),N2(μ,σ22),N3(μ,σ23)相应的曲线,则有()A.σ1>σ2>σ3B.σ3>σ2>σ1 C.σ1>σ3>σ2D.σ2>σ1>σ3【知识点:正态分布;数学思想:数形结合】答案 A解析σ反映了随机变量取值的离散程度,σ越小,波动越小,取值越集中,图像越“瘦高”.5.正态曲线关于y轴对称,当且仅当它所对应的正态总体的均值为()A.1 B.-1 C.0 D.与标准差有关6.设随机变量ξ~N (2,4),则D (12ξ)的值等于( )A .1B .2 C.12 D .4 【知识点:正态分布】 答案 A解析 ∵ξ~N (2,4),∴D (ξ)=4. ∴D (12ξ)=14D (ξ)=14×4=1. 能力型 师生共研7.在正态分布总体服从N (μ,σ2)中,其参数μ,σ分别是这个总体的( ) A .方差与标准差 B .期望与方差 C .平均数与标准差 D .标准差与期望 答案 C解析 由正态分布概念可知C 正确.8.若随机变量ξ的密度函数为f (x )=12πe -x 22,ξ在(-2,-1)和(1,2)内取值的概率分别为P 1,P 2,则P 1,P 2的关系为( )A .P 1>P 2B .P 1<P 2C .P 1=P 2D .不确定 【知识点:正态分布;数学思想:数形结合】 答案 C解析 由题意知,μ=0,σ=1,所以曲线关于x =0对称,根据正态曲线的对称性,可知P 1=P 2.9.设随机变量ξ~N (μ,σ2),且P (ξ≤C )=P (ξ>C )=P ,则P 的值为( ) A .0 B .1 C.12 D .不确定与σ无关 答案 C解析 ∵P (ξ≤C )=P (ξ>C )=P ,∴C =μ,且P =12.10.已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ) A .0.477 B .0.628 C .0.954 D .0.977解析 因为随机变量ξ服从正态分布N (0,σ2),所以正态曲线关于直线x =0对称,又P (ξ>2)=0.023,所以P (ξ<-2)=0.023,所以P (-2≤ξ≤2)=1-P (ξ>2)-P (ξ<-2)=1-2×0.023=0.954,故选C. 探究型 多维突破13.随机变量X ~N (μ,σ2),则Y =aX +b 服从( ) A .N (aμ,σ2) B .N (0,1) C .N (μa ,σ2a ) D .N (aμ+b ,a 2σ2) 【知识点:正态分布】 答案 D14.某中学共有210名学生,从中取60名学生成绩如下:成绩 1 2 3 4 5 6 7 8 9 10 人数615211233【知识点:正态分布】解析 因为x =160(4×6+5×15+6×21+7×12+8×3+9×3)=6,s 2=160[6×(4-6)2+15×(5-6)2+21×(6-6)2+12×(7-6)2+3×(8-6)2+3×(9-6)2]=1.5, 以x =6,s ≈1.22作为总体预计平均成绩和标准差的估计值,即μ=6,σ=1.22, 则总体服从正态分布N (6,1.222),所以,正态分布的概率密度函数式:μμ,σ(x )=11.222πe -x -622×1.222 .自助餐1.若ξ~N (1,14),η=6ξ,则E (η)等于( )A .1 B.32 C .6 D .36 答案 C解析 ∵ξ~N (1,14),∴E (ξ)=1,∴E (η)=6E (ξ)=6.2.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ≤0)=( ) A .0.16 B .0.32 C .0.68 D .0.84【知识点:正态分布;数学思想:数形结合】答案 A解析利用正态分布图像的对称性,P(ξ≤0)=1-P(ξ≤4)=1-0.84=0.16.3.已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)=() A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 5【知识点:正态分布;数学思想:数形结合】答案 B解析由正态密度函数的对称性知P(X>4)=1-P2≤X≤42=1-0.682 62=0.158 7,故选B.4.若随机变量ξ~N(0,1),则P(|ξ|>3)等于()A.0.997 4 B.0.498 7 C.0.974 4 D.0.002 6【知识点:正态分布;数学思想:数形结合】答案 D5.已知ξ~N(0,62),且P(-2≤ξ≤0)=0.4,则P(ξ>2)等于()A.0.1 B.0.2 C.0.6 D.0.8【知识点:正态分布;数学思想:数形结合】答案 A6.已知一次考试共有60名同学参加,考生的成绩X~N(110,52),据此估计,大约应有57人的分数在下列哪个区间内?()A.(90,110] B.(95,125] C.(100,120] D.(105,115]【知识点:正态分布;数学思想:数形结合】答案 C解析由于X~N(110,52),所以μ=110,σ=5,因此考试成绩在区间(105,115],(100,120],(95,125]上的概率分别应是0.682 6,0.954 4,0.997 4,由于一共有60人参加考试,∴成绩位于上述三个区间的人数分别是:60×0.682 6=41人,60×0.954 4=57人,60×0.997 4=60人.7.设离散型随机变量ξ~N(0,1),则P(ξ≤0)=________;P(-2<ξ<2)=________.【知识点:正态分布;数学思想:数形结合】答案12,0.954 4解析因为标准正态曲线的对称轴为x=0,所以P(ξ≤0)=P(ξ>0)=12.而P(-2<ξ<2)=P(-2σ<ξ<2σ)=0.954 4.8.某种零件的尺寸X(cm)服从正态分布N(3,1),则不属于区间(1,5)这个尺寸范围的零件约占总数的________.【知识点:正态分布;数学思想:数形结合】答案 4.56%解析属于区间(μ-2σ,μ+2σ)即区间(1,5)的取值概率约为95.44%,故不属于区间(1,5)这个尺寸范围的零件数约占总数的1-95.44%=4.56%.9.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________.【知识点:正态分布;数学思想:数形结合】答案0.810.设随机变量ξ~N(3,4),若P(ξ>c+2)=P(ξ<c-2),求c的值.【知识点:正态分布;数学思想:数形结合】解析由ξ~N(3,4)可知,密度函数关于直线x=3对称(如下图所示),又P(ξ>c+2)=P(ξ<c-2),故有3-(c-2)=(c+2)-3,∴c=3.11.若在一次数学考试中,某班学生的分数为X,且X~N(110,202),满分为150分,这个班的学生共有54人,求这个班在这次数学考试中及格(不小于90分)的人数和130分以上(不包括130分)的人数.【知识点:正态分布;数学思想:数形结合】解析∵X~N(110,202),∴μ=110,σ=20.∴P(110-20<X≤110+20)=0.682 6.∴X>130的概率为12×(1-0.682 6)=0.158 7.∴X≥90的概率为0.682 6+0.158 7=0.841 3. ∴及格的人数为54×0.841 3≈45(人),130分以上的人数为54×0.158 7≈9(人).12.设随机变量X服从正态分布X~N(8,1),求P(5<X≤6).【知识点:正态分布;数学思想:数形结合】解析由已知得μ=8,σ=1,∵P(6<X≤10)=0.954 4,P(5<X≤11)=0.997 4,∴P(5<X≤6)+P(10<X≤11)=0.997 4-0.954 4=0.043.如图,由正态曲线分布的对称性,得P(5<X≤6)=P(10<X≤11)=0.0432=0.021 5.11/ 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
_2.4 正态分布
1.正态曲线
正态变量概率密度曲线的函数表达式为f(x)= ,x∈R,其中参数μ为正态分布变量的数学期望,μ∈(-∞,+∞);σ为正态分布变量的标准差,σ∈(0,+∞).正态变量的概率密度函数(即f(x))的图象叫做正态曲线.
期望为μ,标准差为σ的正态分布通常记作N(μ,σ2),μ=0,σ=1的正态分布叫标准正态分布.
A.σ1>σ2>σ3B.σ3>σ2>σ1
C.σ1>σ3>σ2D.σ2>σ1>σ3
解析:由σ的意义可知,图象越瘦高,数据越集中,σ2越小,故有σ1>σ2>σ3.
答案:A
正态分布中的概率计算
[例2]在某项测量中,测量结果服从正态分布N(1,4),求正态总体X在(-1,1)内取值的概率.
[思路点拨]解答本题可先求出X在(-1,3)内取值的概率,然后由正态曲线关于x=1对称知,X在(-1,1)内取值的概率就等于在(-1,3)内取值的概率的一半.
[精解详析]从给出的正态曲线可知,该正态曲线关 ,得σ= .
于是概率密度函数的解析式是
f(x)= · ,x∈(-∞,+∞),
总体随机变量的期望是μ=20,方差是σ2=( )2=2.
[一点通]
利用正态曲线的性质可以求参数μ,σ,具体方法如下:
(1)正态曲线是单峰的,它关于直线x=μ对称,由此性质结合图象求μ.
故该市高二男生身高在(174,180)范围内的人数是
3 000×0.477 2≈1 432(人).
[一点通]
解决此类问题一定要灵活把握3σ原则,将所求概率向P(μ-σ<X<μ+σ),P(μ-2σ<X<μ+2σ),P(μ-3σ<X<μ+3σ)进行转化,然后利用特定值求出相应的概率.同时要充分利用好曲线的对称性和曲线与x轴之间的面积为1这一特殊性质.
6.某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间(单位:分)服从X~N(50,102),则他在时间段(30,70)内赶到火车站的概率为________.
解析:∵X~N(50,102),∴μ=50,σ=10.
∴P(30<X<70)=P(μ-2σ<X<μ+2σ)=0.954 4.
答案:0.954 4
[精解详析]由题意得μ=1,σ=2,
所以P(-1<X<3)=P(1-2<X<1+2)=0.682 6.
又因为正态曲线关于x=1对称,
所以P(-1<X<1)=P(1<X<3)= P(-1<X<3)=0.341 3.
[一点通]
解答此类问题的关键在于充分利用正态曲线的对称性,把待求区间内的概率向已知区间内的概率进行转化,在此过程中注意数形结合思想的运用.
∴ =2,解得c=2.
答案:2
5.若X~N(5,1),求P(5<X<7).
解:∵X~N(5,1),∴μ=5,σ=1.
因为该正态曲线关于x=5对称,
所以P(5<X<7)= P(3<X<7)= ×0.954 4=0.477 2.
正态分布在实际生活中的应用
[例3](10分)据调查统计,某市高二学生中男生的身高X(单位:cm)服从正态分布N(174,9).若该市共有高二男生3 000人,试估计该市高二男生身高在(174,180)范围内的人数.
2.正态曲线的性质
(1)曲线在x轴的上方,并且关于直线x=μ对称;
(2)曲线在x=μ时处于最高点,并由此处向左右两边延伸时,曲线逐渐降低,呈现“中间高,两边低”的形状;
(3)曲线的形状由参数σ确定,σ越大,曲线“矮胖”;σ越小,曲线越“高瘦”.
3.正态分布的3σ原则
P(μ-σ<X<μ+σ)=68.3%;
[思路点拨]因为μ=174,σ=3,所以可利用正态分布的性质可以求解.
[精解详析]因为身高X~N(174,9),
所以μ=174,σ=3,
所以μ-2σ=174-2×3=168,
μ+2σ=174+2×3=180,
所以身高在(168,180]范围内的概率为0.954 4.
又因为μ=174.
所以身高在(168,174)和(174,180)范围内的概率相等,均为0.477 2,
7.灯泡厂生产的白炽灯泡的寿命为X(单位:小时),已知X~N(1 000,302),要使灯泡的平均寿命为1000小时的概率约为99.7%,则灯泡的最低寿命应控制在多少小时以上?
解:因为灯泡的使用寿命X~N(1 000,302),
故X在(1 000-3×30,1 000+3×30)的概率为99.7%,
即X在(910,1 090)内取值的概率约为99.7%,
P(μ-2σ<X<μ+2σ)=95.4%;
P(μ-3σ<X<μ+2σ)=99.7%.
可知正态变量的取值几乎都在距x=μ三倍标准差之内,这就是正态分布的3σ原则.
1.正态分布密度函数及正态曲线完全由变量μ和σ确定.参数μ是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.
2.对于正态曲线的性质,应结合正态曲线的特点去理解、记忆.
正态分布的概念及正态曲线的性质
[例1]如图所示是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机变量的期望和方差.
[思路点拨]给出了一个正态曲线,就给出了该曲线的对称轴和最大值,从而就能求出总体随机变量的期望、标准差及解析式.
(2)正态曲线在x=μ处达到峰值,由此性质结合图象可求σ.
1.设有一正态总体,它的概率密度曲线是函数f(x)的图象,且f(x)= ,则这个正态总体的均值与标准差分别是()
A.10与8B.10与2
C.8与10D.2与10
解析:由正态曲线f(x)= 知,
即μ=10,σ=2.
答案:B
2.如图是正态分布N(μ,σ ),N(μ,σ ),N(μ,σ )(σ1,σ2,σ3>0)相应的曲线,那么σ1,σ2,σ3的大小关系是()
3.若随机变量X~N(μ,σ2),则P(X≤μ)=________.
解析:若随机变量X~N(μ,σ2),则其正态密度曲线关于x=μ对称,故P(X≤μ)= .
答案:
4.设随机变量X服从正态分布N(2,9),若P(X>c+1)=P(X<c-1),则c=________.
解析:∵μ=2,P(X>c+1)=P(X<c-1),
相关文档
最新文档