高数 集合

合集下载

高数高等数学1.1映射与函数

高数高等数学1.1映射与函数
1 2 1 O 1 1 2 x
说明 (1) 分段函数对应不同的区间,函数有不同的表达式. (2) 分段函数表示一个函数,不是几个函数. (3) 分段函数的定义域是各分区间的定义域的并集.
1 例6 设 f ( x ) 2 1 解 f ( x) 2
0 x1
求 f ( x 2) .

2( x 2) 1, 0 x 2 1 f ( x 2) 4 ( x 2), 1 x 2 2
2 x 5, 2 x,
2 x 1 1 x 0
.
几个特殊的函数举例 (1)常函数
开区间
( a , b ) { x a x b}
o
闭区间
a
b
x
[a , b ] { x a x b }
o
a
b
x
半开区间
[a , b ) { x a x b}
( a , b] { x a x b }
无限区间
有限区间
称a, b为区间的端点, 称b-a为这些区间的长度.
1, 当 x > 0 0, 当x = 0
1 ,
1
当x<0
y4
3 2 1
o
-1
x
x sgn x x
(4)取整函数 y x
[x]表示不超过x 的最大整数
-4 -3 -2 -1 o -1 1 -2 -3 -4
2 3 4
x
(5)狄利克雷函数
y
1 1 当x是有理数时 • y D( x ) o• 0 当x是无理数时 无理数点
f (sin x ) (sin x )3 1

高数课件(同济第五版)D1_1映射与函数

高数课件(同济第五版)D1_1映射与函数
2
解: 当 1≤ x < 0 时, y = x ∈( 0, 1] , 则 x = y , y ∈( 0, 1] 当 0 < x ≤1 时, y = ln x ∈( ∞, 0] , 则 x = e , y ∈( ∞, 0]
y
2e
2
1 1 o 1 2x
当 1< x ≤ 2 时, y = 2ex1∈( 2, 2e] , y 则 x =1+ ln 2 , y ∈( 2, 2e] 反函数 y =
o 1
y = th x x
机动
目录
上页
下页
返回
结束
(4) 周期性
x ∈D, l > 0, 且 x ± l ∈D, 若
则称 f (x)为周期函数 , 称 l 为周期 ( 一般指最小正周期 ).
y
π 2π
o π 2π x
周期为 注: 周期函数不一定存在最小正周期 . 例如, 常量函数 f (x) = C 狄里克雷函数
( 自学, P17 – P21 )
机动 目录 上页 下页 返回 结束
非初等函数举例: 符号函数 当x>0 当x=0 当x<0 取整函数 当
y
2 1o 1 2 3 4
y
1
o
1
x
x
机动
目录
上页
下页
返回
结束
例5. 求 y =
x2 , 1≤ x < 0 ln x , 0 < x ≤1 的反函数及其定义域. x1 2e , 1< x ≤ 2 y
* M 表示 M 中排除 0 的集 ;
M 表示 M 中排除 0 与负数的集 .
机动 目录 上页 下页 返回 结束
+

高数-集合与映射

高数-集合与映射

并集:A B { x | x A或x B} 集合的运算: 交集 : A B { x | x A且x B}
差集 : A \ B { x | x A且x B}.
文式图:
AB
AB
AB
AB
AB
A\ B
特 别 , 若B A,则 称 差A \ B为B关 于A的 余 ( 或 补 ) 集 , 记 为C AB, 若 全 集 记为X, 则 称X \ A为A的 余 ( 或 补 ) 集 ,
记 为AC。 若A B , 称A与B不 相 交 , 若A B , 称A与B相 交 。
运算律: 交换律: A B B A, A B B A 结合律: ( A B) C A (B C ),
(A B)C A(B C) 分配律: ( A B) C ( A C ) (B C ),
解 : 及 大 于 的 一 切 数 都 是2 上 界 ,
6
6
及 小 于 的 一 切 数 都 是 下 界 。
2
2
一个数集若有上(下)界则有无穷个上(下)界, 其中最重要的是最小(大)的上(下)界,此即 为上(下)确界。
定义1.2 设A R,且A ,若 R,满足: (1)x A,有x , (2) 0,x0 A, 使x0
邻域
N ( x0 , ) { x | | x x0 | }
x0 的 邻域
N( x0 , ) { x | 0 | x x0 | }
x0 的去心 邻域
简记: N ( x0 ) N ( x0 )
有限集 集合的类型: 空集:
无限集
集合间的关系
A是B的子集:A B或B A A是B的真子集:A B或B A A与B相等 : A B A B且B A
第一章 一元函数的极限与连续

人教版高数必修一第1课:集合的含义与表示(教师版)

人教版高数必修一第1课:集合的含义与表示(教师版)

集合的含义与表示1、 通过实例了解集合的含义,并掌握集合中元素的三个特性。

2、 掌握元素与集合的关系,并能用符号“∈”或“∉”来表示。

3、 掌握列举法和描述法,会选择不同的方法来表示集合,记住常用数集的符号。

一、集合与元素的概念:一般地,一定范围内某些确定的,不同的对象的全体构成一个集合,简称集。

集合中每一个对 象称为该集合的元素。

如所有的三角形可以组成集合,每个三角形都是这个集合的元素;所有的直角三角形也可以组成集合,每个直角三角形都是集合的元素;由1,2,3,4组成的集合{1,2,3,4}。

1,2,3,4就是这个集合的元素 。

类似“与2非常接近的全体实数”,“高个子”这样模糊的说法就不能确定集合。

特别提醒:1、集合是一个“整体”。

一些对象一旦组成了集合,那么这个集合就是这些对象的全体,而非个别对象。

2、集合具有两个方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件。

3、集合通常用大写的字母表示,如A B C 、、、……;元素通常用小写的字母表示,如a b c d 、、、……。

二、集合中元素的特性:1、确定性:设A 是一个给定的集合,x 是某一具体的对象,则x 或者是A 的元素,或者不是A 的元素,二者必居其一,不能模棱两可.2、互异性: 对于一个给定的集合,它的任意两个元素是不能相同的。

集合中相同的元素只能算是一个。

如方程0122=+-x x 有两个重根121==x x ,其解集只能记为{}1,而不能记为{}1,1。

3、无序性:集合中的元素是不分顺序的.如{},a b 和{},b a 表示同一个集合.特别提醒:集合和点的坐标是不同的概念,在平面直角坐标系中,点(l ,0)和点(0,l )表示不同的两个点,而集合{1,0}和{0,1}表示同一个集合。

三、元素与集合的关系:一般地,如果a 是集合A 的元素,就说a 属于A ,记作a A ∈;如果a 不是集合的元素,就说a 不属于A ,记作A a ∉。

高数公式集合

高数公式集合

等差数列求和公式等差数列{an}:通项公式an=a1+(n-1)d 首项a1,公差d, 项数为nan第n项数【an=a1+(n-1)d】an=ak+(n-k)d ak为第k项数若a,A,b构成等差数列则A=(a+b)/22.等差数列前n项和:设等差数列{an}的前n项和为Sn即Sn=a1+a2+...+an;那么Sn=na1+n(n-1)d/2=dn^2(即n的2次方) /2+(a1-d/2)n 【sn=na1+n(n-1)d/2】还有以下的求和方法: 1,不完全归纳法2 累加法 3 倒序相加法等比数列求和公式(1)等比数列:a(n+1)/an=q, n为自然数。

(2)通项公式:an=a1*q^(n-1);推广式:an=am·q^(n-m);(3)求和公式:Sn=n*a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-a1q^n)/(1-q)=a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)(前提:q不等于1)(4)性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;②在等比数列中,依次每k项之和仍成等比数列.(5)“G是a、b的等比中项”“G^2=ab(G≠0)”.(6)在等比数列中,首项A1与公比q都不为零.注意:上述公式中A^n表示A的n次方。

等差数列求和公式Sn=n(a1+an)/2=na1+n(n-1) d /2等比数列求和公式q≠1时Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)q=1时Sn=na1(a1为首项,an为第n项,d为公差,q 为公比)sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)−sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的)a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中tan(c)=baa⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中tan(c)=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2sec在三角函数中表示正割直角三角形斜边与某个锐角的邻边的比,叫做该锐角的正割,用sec(角)表示。

大学数学高数微积分专题一第1讲集合常用逻辑用语不等式课堂讲解

大学数学高数微积分专题一第1讲集合常用逻辑用语不等式课堂讲解

围,还可以考虑从集合的角度来思考,将问题转化为集合间
的运算.
热点分类突破
(1)(2013·课标全国Ⅰ)已知命题p:∀x∈R,2x<3x;命 题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是( )
A.p∧q B.綈p∧q C.p∧綈q D.綈p∧綈q

讲 栏
(2)已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:
目 开
C.存在一个有理数,它的平方是有理数
关 D.存在一个无理数,它的平方不是有理数
(B )
解析 (1)通过否定原命题得出结论.
原命题的否定是“任意一个无理数,它的平方不是有理数”.
热点分类突破
(2)已知命题p:抛物线y=2x2的准线方程为y=-
1 2
;命题q:
若函数f(x+1)为偶函数,则f(x)关于x=1对称.则下列命题是
大学数学高数微积分专题一第1讲 集合常用逻辑用语不等式课堂讲解
第1讲 集合与常用逻辑用语
【高考考情解读】
1.本讲在高考中主要考查集合的运算、充要条件的判定、含
本 讲
有一个量词的命题的真假判断与否定,常与函数、不等
栏 目
式、三角函数、立体几何、解析几何、数列等知识综合在
开 关
一起考查.
2.试题以选择题、填空题方式呈现,考查的基础知识和基本
D.(-∞,-1]∪(0,1)
热点分类突破
弄清“集合的代表元素”是解决集合问题的关键.
解析 (1)∵B={(x,y)|x∈A,y∈A,x-y∈A},
A={1,2,3,4,5},

讲 栏
∴x=2,y=1;x=3,y=1,2;x=4,y=1,2,3;x=5,
目 开

上海昂立智立方数学高中 高数—10暑—08—集合单元复习—周宝瑞-教师版

上海昂立智立方数学高中 高数—10暑—08—集合单元复习—周宝瑞-教师版

高一数学暑假班(教师版)教师日期学生课程编号课型课题集合单元复习教学目标1.理解交集及其性质,会求两个集合的交集;2.理解并集及其性质;会求两个集合的并集;3.理解补集及其性质;会求两个集合的补集。

教学重点交集与并集概念、符号之间的区别与联系,补集的有关性质教学安排版块时长1例题解析50 2巩固训练40 3师生总结10 4课后练习201、集合及其表示法能够确切指定的一些对象组成的整体叫做集合,简称集集合中的各个对象叫做这个集合的元素。

对于一个给定的集合,集合中的元素具有确定性、互异性、无序性。

集合常用大写字母C B A 、、…来表示,集合中的元素用c b a 、、…表示,如果a 是集合A 的元素,就记作A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,就记作A a ∉,读作“a 不属于A ”数的集合简称数集:全体自然数组成的集合,即自然数集,记作N ,不包含零的自然数组成的集合,记作*N ;全体整数组成的集合,即整数集,记作Z ;全体有理数组成的集合,即有理数集,记作Q ;全体实数组成的集合,即实数集,记作R ;常用的集合的特殊表示法:实数集R (正实数集+R )、有理数集Q (负有理数集-Q )、整数集Z (正整数集+Z )、自然数集N (包含零)、不包含零的自然数集*N ;点的集合简称点集,即以直角坐标平面内的点作为元素构成的集合 集合单元复习知识梳理含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集规定空集不含元素,记作∅集合的表示方法常用列举法和描述法将集合中的元素一一列举出来(不考虑元素的顺序),并且写在大括号内,这种表示集合的方法叫做列举法在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所共同具有的特性,即:}{p x x A 满足性质=(集合A 中的元素都具有性质p ,而且凡具有性质p 的元素都在集合A 中),这种表示集合的方法叫做描述法2、集合之间的关系对于两个集合A 和B ,如果集合A 中任何一个元素都属于集合B ,那么集合A 叫做集合B 的子集,记作:A B ⊆或B A ⊇,读作“A 包含于B 或B 包含A ”。

高数基础知识点汇总

高数基础知识点汇总

高数知识点汇总第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集,记作N+。

⑶、全体整数组成的集合叫做整数集,记作Z。

⑷、全体有理数组成的集合叫做有理数集,记作Q。

⑸、全体实数组成的集合叫做实数集,记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ⊂B。

⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。

⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A 。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。

记作A∪B。

(在求并集时,它们的公共元素在并集中只能出现一次。

)即A∪B={x|x∈A,或x∈B}。

⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。

最新人教A版高数数学必修一课件:1.3 集合的基本运算第2课时并集与交集

最新人教A版高数数学必修一课件:1.3 集合的基本运算第2课时并集与交集
第一章 集合与常用逻辑用语
1.3 集合的基本运算
第2课时 补集及综合运算
学习目标 1.理解在给定集合中一个子集的补集的含义,会求给 定子集的补集 2.能运用Venn图表达补集运算
素养要求 数学运算 直观想象
|自学导引|
补集的概念
1.全集
(1)定义:如果一个集合含有我们所研究问题中涉及的_所__有__元__素_,那么就称这个集合为全集.
|素养达成|
1.补集定义的理解(体现了数学运算的核心素养).
(1)补集是相对于全集而存在的,研究一个集合的补集之前一定要明确其所对应的全集.比如,当研 究数的运算性质时,我们常常将实数集R当做全集.
(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算,还是一种数学思想. (3)从符号角度来看,若x∈U,A U,则x∈A和x∈∁UA二者必居其一.
U (2)记法:全集通常记作________.
2.补集
对于一个集合 A,由全集 U 中_不__属__于__集__合__A___的所有元素组成 文字语言 的集合称为集合 A 相对于全集 U 的补集,记作___∁_U_A___
符号语言
∁UA=_{_x_|x_∈__U__且__x_∉_A_}__
图形语言
A.{1,4}
B.{1}
C.{4}
D.∅
【答案】A
【解析】∁UA={0,1,4},B∩(∁UA)={1,4}.故选A.
2.(题型2)已知集合A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=
A.{-2,-1}
B.{-2}
()
C.{-1,0,1}
D.{0,1}
【答案】A
5.(题型2)已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁UA,∁UB, (∁UA)∩(∁UB).

大一高数课件 ch1-1函数

大一高数课件 ch1-1函数
第一章
函数
一、集合 二、映射 三、函数
第一节 集合
1. 集合的概念 集合是指所考察的具有确定性质的对象的总体, 简称集.通常用大写字母 A,B,X,Y …表示. 组成集合的每一个对象称为该集合的元素,通 常用小写字母a,b,x,y… 表示 . 元素 x 属于集合 A , 记作 x A. 元素 x 不属于集合 A , 记作 x A ( 或 x A ) . 由有限个元素构成的集合,称为有限集; 由无限多个元素构成的集合,称为无限集合 . 不含有任何元素的集合称为空集,记作 .
f
y f ( D) y y f ( x), x D
(值域)
(对应规则)
使表达式及实际问题都有意义的自变量 集合. • 对应规律的表示方法: 解析法 、图象法 、列表法
例如, 反正弦主值
定义域 值域
例9. 绝对值函数
定义域 值 域
4. 函数的几何特性 (1) 奇偶性 若 若 则称 f (x) 为奇函数;
(4) 有界性
若 M 0 , 使得 f ( x) M , x I , 则称 f (x)
在 I 内有界, 也称它为 I 内的有界函数.
比如, y sin x 在 R 内有界; 1 y 在 [1,) 内有界, 但在 (0,) 内无界。 x
思考题: 证明 y x2 1 x
例1:X= {平面上所有三角形的全体} Y= {平面上所有圆的全体} f : X Y x y ( y是三角形 x 的外接圆 ). 例2: X { , , }, Y { a, b, c, d }, f ( ) a, f ( ) d , f ( ) b D f { , , } X R f { a, b, d } Y 设 例3: X R , Y R , 则对应关系 f : X Y

高数学习资料含讲义及全部内容

高数学习资料含讲义及全部内容

第一章 函数与极限函数和极限都是高等数学中最重要、最基本的概念,极值方法是最基本的方法,一切内容都将从这二者开始。

§1、 函 数一、集合、常量与变量1、集合:集合是具有某种特定性质的事物所组成的全体。

通常用大写字母A 、B 、C ……等来表示,组成集合的各个事物称为该集合的元素。

若事物a 是集合M 的一个元素,就记a ∈M (读a 属于M );若事物a 不是集合M 的一个元素,就记a ∉M 或a ∈M (读a 不属于M );集合有时也简称为集。

注 1:若一集合只有有限个元素,就称为有限集;否则称为无限集。

2:集合的表示方法:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+++======等。

中在点;为我校的学生;须有此性质。

如:中的元素必中,且,即:有此性质的必在所具有的某种性质合可表示为:,那么该集若知其元素有某种性质不到元素规律的集合,、列不出全体元素或找为全体偶数集;,,,然数集,为全体自,,,写出,如:元素的规律,也可类似、对无限集,若知道其;鸡一只猫,一只狗,一只的方法来表示,如:可用列举出其全体元素、若集合为有限集,就枚举法}),(),{(}{}0375{}{)(}642{}321{)(}{},10,,3,2,1{)(23D y x y x C x x B x x x x A A A x x A iii B A ii B A i ΛΛΛΛΛΛ 3:全体自然数集记为N,全体整数的集合记为Z,全体有理数的集合记为Q,全体实数的集合记为R 。

以后不特别说明的情况下考虑的集合均为数集。

4:集合间的基本关系:若集合A 的元素都是集合B 的元素,即若有A x ∈,必有B x ∈,就称A 为B 的子集,记为B A ⊂,或A B ⊃(读B 包含A)。

显然:R Q Z N ⊂⊂⊂.若B A ⊂,同时A B ⊂,就称A 、B 相等,记为A=B 。

5:当集合中的元素重复时,重复的元素只算一次.如:{1,2,2,3}={1,2,3}。

高数第一册第一章1共33页

高数第一册第一章1共33页

二、函数
1. 函数的定义: 设数集 X R ,若存在一个对应法则 f , 使得 x
X, 按法则 f , 有唯一确定的 y R 与之对应 , 则称 f : X R 为定义在 X 上的函数,记为 y = f (x) . 其中,x 称为自变量,y 称为应变量。X 为定义域,f ( X ) 为值 域(由 f 及 X 唯一确定)且 y 称为 f 在点 x 的函数值.
值域为{-1, 0, 1}. 图略. 1, x 0.
(5) 取整函数 y = [x],其中记号[ x ] 表示不超过 x 的
最大整数,也称为 x 的整数部分。如,
y [1 .8]3 1 , [π ] 3 , 4
.
[ 5 .3] 5 6 , [ 2 ] 2 . 3
2
• •
易见其定义域为R,
定义域——使函数表达式及实际问题都有意义的自变量的集合. 函数相同——定义域和法则都相同.
例1.
解:4x2 1 0 D[1,1][1,1].
1 x 1
22
例2.
解: x0 D(0,).
例3. 解:因两函数定义的对应法则不同,故它们不相同。
2. 函数的三种表示方法
(1) 表格法 即将自变量与对应的函数值以表格方式给
(2)绝对值函数 值域为[0, + ).
y
x
x, x,
x0, 其定义域为R,
x0.
(3)D i r i c h l e t 函数 其定义 域为R,值域为{
0D , (1}x. )10,,
y
y
a
y=a
xQ, xR\Q.
y=|x|
(c, c)
O
x
x
1, x 0,
(4) 符号函数

高数讲义系列之一

高数讲义系列之一

高数讲义系列之一第一章函数及其图形1.1预备知识一、集合1、定义:具有某种共同属性的元素的全体构成集合。

通常用大写字母A、B、C。

表示集合,用abc表示集合中的元素,a属于A,表示为a∈A,元素与集合的关系是属于不属于的关系。

2、集合的表示方法:①列举法②描述法③区间法3、集合的类型:①有限集合②无限集合③空集4、集合之间的关系:子集与相等5、集合的运算:①交集②并集③补集二、区间是数集的表示方法,一般用I表示,区间类型:1、开区间:(a,b)={x︱a<x<b}2、闭区间:[a,b]={x︱a≤x≤b}3、半开半闭区间:[a,b)与(a,b]4、无限区间:(-∞,a)、(-∞,a)、(a,+∞)、[a, +∞]、(-∞,+∞)三、邻域是一个很小的区间,邻域指相邻的区域,有数还要有半径(范围)。

a为中心,δ为半径的邻域是指开区间(a-δ, a+δ),记为N(a,δ),即N(a,δ)=(a-δ, a+δ)={x︱a-δ<x< a+δ}作业:习题1.1 (P8) :全做1.2 函数一、一元函数的定义:设有两个变量x、y,如果对于x在某一范围内的每一个值,按照某个对应法则,y有唯一确定的值与之对应,则x是自变量,y是x的函数。

记为y=f(x),也可记为y=g(x) y=Ф(x) y=F(x)等。

二、函数的主要表示方法:1、解析法(也叫代数法、公式法):用x的代数式表示一个函数的方法。

有三种标准式:例如:①y=3x+1 ②f(x)=3x+1 ③3x+1 其中③是函数的简写式,一般在说函数时使用。

分段函数也是用解析法表示的一个函数2、图像法(图形法):用函数图形表示函数的方法。

画图的方法是找几个点,连起来。

三、求定义域方法:定义域指自变量的取值范围,用D f表示;函数值的取值范围为值域,用R f表示。

求定义域通常考虑以下因素:①分母不能为0;②偶次根式的被开方数≥0;③对数的真数>0;④若函数有几项组成,其定义域是每项定义域交集;⑤分段函数的定义域是每段定义域的并集,每段定义域是该段的分段区间。

考研高数讲解新高等数学上册辅导讲解第一章上课资料

考研高数讲解新高等数学上册辅导讲解第一章上课资料

第一章函数与极限第 1 页第一节映射与函数一、集合常用数集:自然数集:整数集:有理数集:实数集:开区间:闭区间:半开区间:;邻域:去心邻域:二、函数定义:都有唯一与之对应,记为。

三、函数性质讨论函数:,讨论区间:1、有界性有界:假设,使得,称在区间上有界无界:对,总,使得,那么称在区间上无界上界、下界:假设,使得,,称在区间上有上界;假设,使得,,称在区间上有下界定理:假设在区间上有界在区间上有上界也有下界。

2、单调性严格单调增〔减〕:假设,且,恒有广义单调增〔减〕:假设,恒有,3、奇偶性偶函数:奇函数:常见奇函数:等常见偶函数:等4、周期性周期函数:,对,有,且,那么称为周期为周期函数。

常见周期函数:等【例1】〔87二〕是〔〕(A)有界函数. 〔B〕单调函数.〔C〕周期函数. 〔D〕偶函数.四、复合函数与反函数1、复合函数设定义域为,定义域为,值域为,且,在定义域上有复合函数。

【例2】〔88一二〕,且,求并写出它定义域.2、反函数将函数称为直接函数,函数称为反函数。

与图形关于直线对称。

五、初等函数第二节数列与函数极限一、数列极限定义数列:,,称为整标函数。

其函数值:叫做数列〔序列〕。

数列每一个数称为项,第项称为数列一般项。

简记数列为数列极限:已给数列与常数,如果对于,都,使得对于,不等式恒成立,那么称当时,以为极限,或收敛于,记为或。

反之,假设无极限,说发散。

二、函数极限定义〔1〕:设函数在内有定义,为一常数,假设对于,都,使有,那么称当时,以为极限,记为或。

单侧极限:左极限:。

右极限:定理:〔2〕:设函数在充分大时有定义,为一常数,假设对于,都,使都有,那么称当时,以为极限,记为或。

单侧极限:;定理:【例1】设〔为常数〕,求值,使得存在。

三、极限性质性质1 〔极限唯一性〕数列——假设存在,那么极限值是唯一。

函数——假设存在,那么其极限值是唯一。

性质2 〔有界性〕数列——如果收敛,那么一定有界。

高考高数常用公式及常用结论

高考高数常用公式及常用结论

高考常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x N M f x ->-⇔11()f x NM N>--.8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k ab k +<-<,或0)(2=k f 且22122k abk k <-<+.9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在ab x 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则{}m i n m a x m ax ()(),()(),()2b f x f f x f p f q a =-=; []q p ab x ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p abx ,2∈-=,则{}m i n()m i n (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是m in (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()m an f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.真值表p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假13.常见结论的否定形式原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有n 个 至多有(1n -)个 小于 不小于 至多有n 个 至少有(1n +)个 对所有x , 成立 存在某x , 不成立p 或qp ⌝且q ⌝ 对任何x ,不成立存在某x , 成立p 且qp ⌝或q ⌝14.四种命题的相互关系原命题 互逆 逆命题 若p则q 若q则p 互 互互 为 为 互 否 否逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b fb a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x fky -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 0()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]21()()(),(()0,1)2f x f x f x a f x +-=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)1mn nma a=(0,,a m n N *>∈,且1n >). (2)1m nmnaa -=(0,,a m n N *>∈,且1n >).31.根式的性质(1)()n n a a =.(2)当n 为奇数时,n na a =; 当n 为偶数时,,0||,0n na a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a M N M N =+;(2) log log log aa a M M N N=-; (3)log log ()na a Mn M n R =∈.36.设函数)0)((log )(2≠++=a c bx axx f m,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广 若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a a m n m n +<.38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 41.等比数列的通项公式1*11()n n n a a a q q n N q-==⋅∈;其前n 项的和公式为 11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为 1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111nn nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos 2x x <+≤.(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩ 47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-. sin cos a b αα+=22sin()a b αϕ++(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos 34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=.(n 为偶数)(n 为奇数) (n 为偶数)(n 为奇数)51.正弦定理2sin sin sin a b c R ABC===.52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-;2222cos c a b ab C =+-. 53.面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.(3)221(||||)()2O A B S O A O B O A O B ∆=⋅-⋅.54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+ 222C A Bπ+⇔=-222()C A B π⇔=-+.55. 简单的三角方程的通解 sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()kk k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈.cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈. tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式121222221122cos x x y y x y x y θ+=+⋅+(a =11(,)x y ,b =22(,)x y ). 64.平面两点间的距离公式,A B d =||AB AB AB =⋅222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12P P PP λ=,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121O P O P O P λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+).67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''O P O P P P ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为A B C ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为A B C ∆的外心222O A O B O C ⇔== .(2)O 为A B C ∆的重心0OA OB OC ⇔++=.(3)O 为A B C ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为A B C∆的内心0aOA bOB cOC ⇔++=.(5)O 为A B C ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号). (2),a b R +∈⇒2a b ab +≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c ++≥>>> (4)柯西不等式 22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s .推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)a x b x c ++><或2(0,40)a ba c ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式当a> 0时,有22x a x aa x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1)()0()()()0()()f x f x g x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(2)2()0()0()()()0()0()[()]f x f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (3)2()0()()()0()[()]f x f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x aaf xg x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x aaf xg x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1xya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数. (3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离0022||Ax By C d A B++=+(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下. 若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0a x b y c ++=是直线A B 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y D x Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若2200()()d a x b y =-+-,则d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k 的圆的切线方程为21y kx r k =±+. 92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩. 93.椭圆22221(0)x y a b ab +=>>焦半径公式 )(21cax e PF +=,)(22x c ae PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b ab+=>>的外部22221x y a b ⇔+>.95. 椭圆的切线方程 (1)椭圆22221(0)x y a b ab+=>>上一点00(,)P x y 处的切线方程是00221x x y y ab+=.(2)过椭圆22221(0)x y a b ab+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y ab+=.(3)椭圆22221(0)x y a b ab+=>>与直线0A x B y C ++=相切的条件是2222Aa B bc+=. 96.双曲线22221(0,0)x y a b ab-=>>的焦半径公式21|()|aPF e x c =+,22|()|aPF e x c=-.97.双曲线的内外部 (1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)xya b a b-=>>的外部22221x y a b ⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by ax ⇒渐近线方程:22220x y ab-=⇔x ab y ±=.(2)若渐近线方程为x ab y ±=⇔0=±by ax ⇒双曲线可设为λ=-2222by ax .(3)若双曲线与12222=-bya x有公共渐近线,可设为λ=-2222by ax (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b ab-=>>上一点00(,)P x y 处的切线方程是00221x x y y ab-=.(2)过双曲线22221(0,0)x y a b ab-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y ab-=.(3)双曲线22221(0,0)x y a b ab-=>>与直线0A x B y C ++=相切的条件是2222A aB b c -=.100. 抛物线px y 22=的焦半径公式 抛物线22(0)y px p =>焦半径02p C F x =+.过焦点弦长p x x p x p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt P P (,)x y ,其中22y px = .102.二次函数2224()24b ac b y ax bx c a x aa -=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b aa--;(2)焦点的坐标为241(,)24b ac b aa-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221xya kb k+=--,其中22m ax{,}k a b <.当22m in{,}k a b >时,表示椭圆; 当2222m in{,}m ax{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 221212()()AB x x y y =-+-或2222211212(1)()||1tan ||1t AB k x x x x y y co αα=+-=-+=-+(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线A B 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A BA B++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy C y D x Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程0000000222x y xy x x y y A x x B C y y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)O P t O A t O B =-+.||AB CD ⇔AB、CD 共线且A B C D 、不共线⇔AB tCD = 且A B C D 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使M P x M A y M B =+,或对空间任一定点O ,有序实数对,x y ,使O P O M x M A y M B =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足O P x O A y O B z O C=++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB、A C 共面⇔A D x A B y A C =+ ⇔(1)O D x y O A xO B yO C =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使O P xO A y O B z O C =++.121.射影公式已知向量AB=a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---. 124.空间的线线平行或垂直 设111(,,)a x y z =r ,222(,,)b x y z =r,则 a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉=112233222222123123a b a b a b a a ab b b++++++.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 126. 四面体的对棱所成的角四面体A B C D 中, AC 与B D 所成的角为θ,则 2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=121212222222111222||||||||x x y y z z a b a b x y z x y z ++⋅=⋅++⋅++r rr r(其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量)128.直线A B 与平面所成角sin ||||AB m arc AB m β⋅=(m为平面α的法向量). 129.若A B C ∆所在平面若β与过若A B 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为A B C ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若A B C ∆所在平面若β与过若A B 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则 ,A B d =||AB AB AB =⋅222212121()()()x x y y z z =-+-+-.135.点Q 到直线l 距离 221(||||)()||h a b a b a =-⋅(点P 在直线l 上,直线l 的方向向量a =PA,向量b =P Q ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,A B 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式 2222cos d h m n mn θ=++ .222'2cos ,d h m n m n E A A F =++-.2222cos d h m n mn ϕ=++-('E AAF ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,A F n =,E F d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos SS θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F与棱数E 的关系:12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E m V =.146.球的半径是R ,则其体积343V R π=,其表面积24S R π=. 147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a 的正四面体的内切球的半径为612a ,外接球的半径为64a .148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯ . 151.排列数公式mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+; (2)1m mn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5)11m m m n n n A A m A -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m nC=mn m mA A=mm n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质(1)m n C =m n n C - ; (2) mn C +1-m nC =mn C 1+.注:规定10=n C .155.组合恒等式(1)11m m n n n m C C m --+=;(2)1m mn n n C C n m -=-;(3)11m m n n n C C m--=; (4)∑=nr r n C 0=n 2;(5)1121++++=++++r n r n r r r r r r C C C C C . (6)nn n r n n n n C C C C C 2210=++++++ .(7)14205312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n n n n n n n nC C C C .(9)rn m r n r m n r m n r m C C C C C C C +-=+++0110 .(10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系mmn n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)。

高数基础知识

高数基础知识

高数基础知识高数基础知识是大学数学中的一门重要课程,涉及到许多数学概念和基本技巧。

下面我们就来详细介绍一下高数基础知识。

高等数学是数学的一门重要分支,在大学本科阶段学习该课程主要是为了培养学生的分析思维和抽象推论能力。

高数的基础知识包括了数列、级数、函数与极限、微积分以及微分方程等。

首先,数列是由一系列数所组成的有序集合,例如1、2、3、4、5、6、7…就是一个数列。

数列有两种类型:等差数列和等比数列。

等差数列是指数列中的相邻两项之差是一个常数,而等比数列是指数列中的相邻两项之比是一个常数。

数列的求和公式是一个重要的基本技能,通常使用等差数列和等比数列的求和公式来计算。

其次,级数是数列的和,当数列中的项数趋向于无穷时,这个和就被称为级数。

级数也有两种类型:收敛级数和发散级数。

收敛级数是指级数的和存在有限的极限,而发散级数是指级数的和趋向于无穷大或无穷小。

判断级数是否收敛的方法有很多种,如比较判别法、比值判别法以及根值判别法等。

然后,函数与极限是高数课程中的核心内容,函数是一种数学关系,描述了自变量与因变量之间的对应规律。

函数的极限是指当自变量逐渐接近某个特定值时,相应的函数值也逐渐接近某个确定的数。

函数的极限具有一些重要的性质,如极限的唯一性和保号性等。

计算函数的极限通常使用极限运算法则和洛必达法则。

再次,微积分是高等数学中的重要的部分,用于研究函数的变化率和面积、体积等问题。

微积分主要包括导数和积分两个部分。

导数是函数在某一点的变化率,可以表示为函数的斜率。

积分是导数的逆运算,可以求得函数的原函数。

微积分的基本定理将导数和积分联系起来,形成了微积分的核心内容。

最后,微分方程是数学中的一种重要方程,描述了含有未知函数及其导数的方程。

微分方程可以分为常微分方程和偏微分方程两大类。

常微分方程是指未知函数只有一个自变量,偏微分方程是指未知函数有多个自变量。

微分方程的求解需要应用微积分和代数等数学工具。

高数上第一章知识点总结

高数上第一章知识点总结

⾼数上第⼀章知识点总结第⼀章函数与极限1.1 函数及其性质1.1.1 集合集合:具有某种特定性质事物的全体称为集合。

元素:组成这个集合的事物称为该集合的元素。

集合与元素的关系:属于∈,不属于∉。

集合的表⽰⽅法:枚举法,描述法。

1.1.2 集合的运算基本运算:并、交、差。

全集\基本集:研究的问题所限定的⼤集合。

余集\补集:I - A或者A C 。

运算规律:交换律、结合律、分配律、对偶律、幂等律、吸收律。

1.1.3 区间与领域有限区间:开区间(a,b) 闭区间[a,b] 半开区间[a,b) (a,b]。

b-a:区间长度⽆限区间:开区间(a,+∞) (-∞,a) -∞,+∞) 半开区间[a,+∞) (-∞,a]邻域:以点x0为中⼼的任何开区间称为点x0的邻域,记作U(x0)。

若δ是某⼀正数,则开区间(x0-δ,x0+δ)是点x0的⼀个邻域,记作U(x0,δ)。

去⼼邻域:将点x0去掉后的x0的邻域,记作U(x0,δ)。

左邻域:(x0-δ,x0)右邻域:(x0,x0+δ)1.1.4 映射X,Y是两个⾮空集合,存在⼀个法则f,使得对X中的每个元素x,按法则f在Y中有唯⼀确定的元素y与之对应,则称f为X到Y的⼀个映射。

定义域D(f),值域R(f)或f(X)。

满射:R(f) = Y 单射:f(x1) ≠ f(x2) ⼀⼀映射:满射+单射泛函、变换、函数逆映射:g:R(f) -> X (f是单射,y = f(x),则 x = g(y))复合映射:g:X->Y1,f:Y2->Z,Y1包含于Y2, f g:X->Z。

1.1.5 函数D是实数集,称f:D->R为定义在D上的函数。

y = f(x),x∈D。

y是因变量,x是⾃变量,D称为定义域。

1.1.6 函数的特性(1)函数的有界性X包含于D,若存在M使得f(x) <= M,则称f(x)在X上有上界,类似可得下界的定义。

数M使得|f(x)| <= M(x∈X),则称f(x)在X上有界。

专题01 集合、常用逻辑用语、不等式(新定义,高数观点,压轴题)(学生版)-2024年高考压轴专题复

专题01 集合、常用逻辑用语、不等式(新定义,高数观点,压轴题)(学生版)-2024年高考压轴专题复

专题01 集合、常用逻辑用语、不等式(新定义,高数观点,压轴题)目录一、集合的新定义(高数观点)题 (2)①乘法运算封闭 (2)②“群”运算 (2)③“*”运算 (3)④“⊕”运算 (4)⑤戴德金分割 (4)⑥“类” (5)⑦差集运算 (6)⑧“势” (7)⑨“好集” (7)二、逻辑推理 (8)①充分性必要性 (8)②逻辑推理 (8)三、不等式 (9)①作差法 (9)②基本不等式 (9)一、集合的新定义(高数观点)题①乘法运算封闭②“群”运算1.(2022·全国·高三专题练习)“群”是代数学中一个重要的概念,它的定义是:设G 为某种元素组成的一个非空集合,若在G 内定义一个运算“*”,满足以下条件:①a ∀,b G ∈,有a b G*∈②如a ∀,b ,c G ∈,有()()a b c a b c **=**;③在G 中有一个元素e ,对a G ∀∈,都有a e e a a *=*=,称e 为G 的单位元;④a G ∀∈,在G 中存在唯一确定的b ,使a b b a e *=*=,称b 为a 的逆元.此时称(G ,*)为一个群.例如实数集R 和实数集上的加法运算“+”就构成一个群(),+R ,其单位元是0,每一个数的逆元是其相反数,那么下列说法中,错误的是( )A .G Q =,则(),+G 为一个群B .G R =,则(),G ⨯为一个群C .{}1,1G =-,则(),G ⨯为一个群D .G ={平面向量},则(),+G 为一个群③“*”运算1.(2023·全国·高三专题练习)在R 上的定义运算*:*2a b ab a b =++,则满足*(2)0x x -<的解集为( )A .(0,2)B .(2,1)-C .(,2)(1,)-∞-+∞D .(1,2)-2.(2023·全国·高三专题练习)设U 为全集,对集合X ,Y ,定义运算“*”,()X Y X Y *= .对于任意集合X ,Y ,Z ,则()X Y Z **=( )A .()X Y ZB .()X Y ZC .()X Y Z ⋃⋃D .()X Y Z3.(2023秋·高一课时练习)在实数集R 中定义一种运算“*”,具有以下三条性质:(1)对任意R a ∈,0*a a =;(2)对任意a ,R b ∈,**a b b a =;(3)对任意a ,b ,R c ∈,()()()()*****2a b c c ab a c b c c =++-.给出下列三个结论:①()2*0*20=;②对任意a ,b ,R c ∈,()()****a b c b c a =;③存在a ,b ,R c ∈,()()()***a b c a c b c +≠+;其中,所有正确结论的序号是( )A .②B .①③C .②③D .①②③④“⊕”运算⑤戴德金分割1.(多选)(2022秋·山西运城·高一山西省运城中学校期中)1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q⑥“类”⑦差集运算A .已知{4,5,6,7,9}A =,B .如果A B -=∅,那么C .已知全集、集合A 、集合D .已知{|1A x x =<-或x >2.(多选)(2022秋·贵州铜仁⑧“势”⑨“好集”二、逻辑推理①充分性必要性②逻辑推理三、不等式①作差法②基本不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-x f (x)
y
y f (x)
f (x)
o
xx
奇函数
4.函数的周期性:
设函数f ( x)的定义域为D, 如果存在一个不为零的
数l, 使得对于任一x D, ( x l ) D.且 f ( x l) f ( x) 恒成立. 则称f ( x)为周 期函数, l称为f ( x)的周期.
y sec x
余割函数 y csc x
y csc x
5、反三角函数
反正弦函数 y arcsin x
y arcsin x
反余弦函数 y arccos x
y arccos x
反正切函数 y arctan x
y arctan x
反余切函数 y arccot x
复数集 复平面
ห้องสมุดไป่ตู้
复数的表示法:
1. z x iy 2.复平面上的点P (x, y)或向量OP
3. z r(cos i sin ) (三角表示法) 4. z rei(指数表示法)
其中:r z x2 y2 z的模
Argz z的幅角. 任一非零复数有无穷多 个幅角,称在范围( , ]
A的一个上确界,记为inf A
定理1 有上(下)界的非空实数集必有上(下)确界
区间
(a , b) {x | a x b}
[a , b) {x | a x b} (a , b] {x | a x b}
( a , ) { x | a x } [ a , ) { x | a x } ( , b) {x | x b} ( , b] {x | x b}
集合的运算:交集 : A B

差集
:
A
\
B.
特别,若B

A,
则称A
\
B为B关于
运算律:
A的补集, 记为C A B
交换律 : A B B A, A B B A
结合律 : (A B) C A (B C), (A B) C A (B C)
复合映射 :
设 f : A B1, g : B2 C, 若B1 B2,则称 (g o f )(x) g( f (x)) x A
为f 与 g的复合映射 恒等映射I A:I A(x) x, x A
可逆映射 :
设 f : A B, 若存在g : B A, 使 g f IA, f g IB
则称f 为可逆映射,g 为f 的逆映射,记为:g f 1
几个特殊的函数举例
(1) 符号函数
y
1 当x 0
y

sgn
x


0
当x 0
1 当x 0
1
o
x
-1
(2) 取整函数 y=[x]
y
[x]表示不超过 x 的最大整数 4
3
2
-4 -3 -2 -1 1o -11 2 3 4 5 x -2 -3 -4
内的幅角为主幅角,记 为arg z.
Argz arg z 2k , k 0,1,




arg
z






性质:
arctan y x
arctan y
x
arctan y
x arctan y
x
z在第一象限 z在第二象限
z在第三象限 z在第四象限
z1

z2

z1
f : A B 或 f : x y f (x) , x A
称y为x在映射f下的像, x为y在映射f下的原像
A f 的定义域 ,
f (A) y y f (x), x A f 的值域
f为满射:若f (A) B
f为单射:若x1, x2 A, x1 x2, f为一一映射 有 f (x1) f (x2 )
y arccot x
幂函数,指数函数,对数函数,三角函数和反 三角函数统称为基本初等函数.
初等函数
由常数和基本初等函数经过有限次四则运算和 有限次的函数复合步骤所构成并可用一个式子 表示的函数,称为初等函数.
复数与复数的表示法
复数集: C z x iy x, y R
x Re z, y Im z,i 1 复数 z x iy 有序数组(x, y)
分配律 : (A B) C (A C) (B C),
(A B) C (AC) (B C)
(A \ B) C (A C) \ (B C)
幂等律:A A A, A A A
吸收律:A A, A
A (A B) A, A (A B) A
通常说周期函数的周期是指其最小正周期。
基本初等函数
1、幂函数
y x y
y x2
1
(是常数)
y x y x
(1,1)
y 1 x
o1
x
2、指数函数 y a x (a 0, a 1) y e x
y (1)x a
• (0,1)
y ax (a 1)
3、对数函数 y loga x (a 0,a 1) y ln x
阶梯曲线
(3) 狄利克雷函数
y

D( x)

1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
三、函数的特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x) M 成立, 则称函数f ( x)在X上有界.否则称无界.
2.函数的单调性:
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
对偶律 : ( A B)c Ac Bc , ( A B)c Ac Bc ( Ac I \ A)
Descartes 积(直积): A B (x, y) x A, y B
Rn R R R
(x1, x2, , xn ) xi R,i 1,2, , n
N 全体非负整数(自然数 )组成的集合 Z 全体整数组成的集合 Q 全体有理数组成的集合 R 全体实数组成的集合
C 全体复数组成的集合
集合记号右下角加“”表示将该集合内的元 素“0”去掉 后所得的集合,比如
N 全体正整数组成的集合
R 全体非零实数组成的集 合
并集:A B
y
y f (x)
f (x1)
f (x2 )
o
x
I
3.函数的奇偶性:
若 对于x D, 有 f ( x) f ( x)
称 f ( x)为偶函数;
y y f (x)
f (x)
f (x)
-x o x
x
偶函数
若 对于x D, 有 f ( x) f ( x)
称 f ( x)为奇函数;
y log a x
(1,0)

(a 1)
y log 1 x
a
4、三角函数
正弦函数 y sin x
y sin x
余弦函数 y cos x
y cos x
正切函数 y tan x
y tan x
余切函数 y cot x
y cot x
正割函数 y sec x
( , ) { x | x } R
邻域
N( a, ) {x | | x a | }
a 的 邻域

N(a, ) {x|0| xa| }
a的去心 邻域
2 函数
定义1设 A和 B是两个非空集合 , 若有一个对应法则f , x A, 按照对应关系 f,有唯一的 y B与x 相对应,则称 f 是 A到B的一个映射 , 记为
则称函数 f ( x)在区间 I上是单调增加的 ;
y
y f (x)
f (x2 )
f (x1)
o
x
I
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (2) f ( x1 ) f ( x2 ), 则称函数 f ( x)在区间I上是单调减少的;
2.实数集
封闭性 实数集R 的性质: 有序性
稠密性 完备性
定义1 设A R,且A ,若存在L R,使x A, 有x ()L,则称L为A的一个上(下)界
定义 2 设A R,且A ,若存在L R,满足:
(1)x A,有x L,
(2) 0,x0 A, 使x0 L 则称L为A的一个上确界,记为sup A L

z2 ,
z1z2

z1

z2,(
z1 z2

z1 z2
z z z 2 , z1z2 z1 z2 , z1 z2 z1 z2
预备知识
1.集合的概念及运算
概念 : 具有某种确定性质的对 象的全体.组成集合的对象 称为集合的元素。 x A
有限集
集合的类型:空集:

无限集
A是B的子集:
A B
集合间的关系: A是B的真子集:
A B

A与B相等 :
A B A B且B A
常用的数集
相关文档
最新文档