人教版八年级下册第17章勾股定理培优提高考试试题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级下册第17章《勾股定理》培优提高试题
一.选择题(共8小题)
1.下列条件中,不能判断△ABC为直角三角形的是()
A.a=1.5 b=2 c=2.5B.a:b:c=5:12:13
D.∠A:∠B:∠C=3:4:5A C.∠+∠B=∠C
2.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()
2 222cm.72cm108B.36cm D A.18cm C.3.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()
A.30厘米B.40厘米C.50厘米D.以上都不对
=,则∠B为(=4,BC)=4.在△ABC中,∠A30°,AB C.30°或60°D.30°或90°.30A.°B90°5.如图,一架25米的梯子AB靠在一座建筑物AO上,梯子的底部B距离建筑物AO的底部O有7米(即BO=7米),如果梯子顶部A下滑4米至A,则梯子底部B滑开的距离1BB是()1
A.4米B.大于4米C.小于4米D.无法计算
的大小,小亮进行了如下分析后作一个直角三角形,使其两直与.为比较
6.
为边长定理可求得长角边的分别其为斜与,则由勾股
,可得.根据“三角形三边关系”.小)亮的这一做法体现的数学思想是(
A.分类讨论思想B.方程思想.数形结合思想DC.类此思想是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个“赵爽弦图”7.,则中间小正方形与大正方形的面积差是6直角三角形的两条直角边的长分别是3和)
(
27D.34A.9B.36C..如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方8,60S=+S、S、S.若SS+ABCD形、正方形EFGH、正方形MNPQ的面积分别为311232)则S的值是(2
30D C.20.BA.12.15小题)二.填空题(共6.9.直角三角形的斜边长是5,一直角边长是3,则此直角三角形另一直角边是时,这个三角a,如果a+b,﹣b是三角形较小的两条边,当第三边等于a10.设>b形为直角三角形.米处折断(未完1米高的小孩,如果大树在距地面4米高的大树,树下有一个11.有一棵9米之外才是安全的.全折断),则小孩至少离开大树
扩充为等腰三角形,将△3ABC,°,90AC=4BC==中,∠△.如图,在12Rt ABCACB.的长为CD为直角边的直角三角形,则AC,使扩充的部分是以
ABD.
,吸管放进杯里(如cm,高为1213.一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm 3.6cm,为节省材料,管长acm.的取值范围是图所示),杯口外面至少要露出
222本身就是一个关于a,b,bc=c的方程,满足这个方程的正整数解(aa14.勾股定理,+b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组
为.
三.解答题(共6小题)
15.一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD =13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?
16.如图,小巷左右两侧是竖着的墙,两墙相距2.2米.一架梯子斜靠在左墙时,梯子顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.梯长多少米?
17.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.
(1)求AB的长;
(2)求△ABC的面积;
(3)求CD的
18.如图,点C在线段BD上,AC⊥BD,CA=CD,点E在线段AC上,且CE=CB,若已知BC =a,AC=b,AB=c,请借助这个图形证明勾股定
理.
.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以19摆放时,都可以用“面积2灵感,他惊喜的发现,当两个全等的直角三角形如图1或图°)证明勾股定理(其中∠DAB=90法”来证明,请你利用图1或图2222.a求证:=+bc
20.阅读下面的材料,然后解答问题:两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.我们新定义一种三角形,理解:“是”(填根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?①)或“不是”
②若某三角形的三边长分别为1、)(填“是”或“不是”,则该三角形2、奇异三角形.探究:22,则这个三角形是否是奇异三,50c100aa Rt在△ABC中,两边长分别是、c,且==角形?请说明理由.拓展:是奇异三,若a Rt ABC△>,且=,=,=°,=中,∠△在
Rt ABCC90ABcACbBCab222.c::a角形,求b
参考答案一.选择题(共8小题)
222符合勾股定理的逆定理,故△ABC为直角三角形;=解:A、因为1.52.5+21.【解答】22)x+(x,则(5x)12ca=5x,b=12x,=135B、因为a:b:c=:12:13,所以可设2,故△ABC)为直角三角形;=(13xC、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故△ABC为直角三角形;
D、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.
故选:D.
2.【解答】解:由图可得,A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.
即A、B、C、D、E、F、G的面积之和为3个G的面积.
22,cm=36∵G的面积是62.=108cm、G的面积之和为36×3、∴A、B、C、DE、F故选:D.3.【解答】解:此题要分两种情况:
10;是直角边时,所需木棒的长是(1)当50=.50是斜边时,所需木棒的长是302()当.故选:D解:此题存在两种情况:4.【解答】222cos A+AB?﹣2AC?(1)根据BCAB=AC
°.30=BC,即∠B=∠A=计算得AC=222﹣2AC?AB+AB?cos A(2)根据BC=AC
==2BC,即∠B=90°.计算得AC所以本题答案为30°或者90°.
故选:
D.
==24米,BO25,当=7时,AOAB【解答】5.解:在直角△OAB中,=OA=米,20点时,即4当下滑米到A11