2015年数学二模理科(含答案)

合集下载

2015年上海市十三校联考高考数学二模试卷(理科)含详解

2015年上海市十三校联考高考数学二模试卷(理科)含详解

2015年上海市十三校联考高考数学二模试卷(理科)一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分.1.(4分)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m=.2.(4分)函数的定义域是.3.(4分)在△ABC中,已知BC=8,AC=5,三角形面积为12,则cos2C=.4.(4分)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m=.5.(4分)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=.6.(4分)若一个圆锥的侧面展开如圆心角为120°、半径为3 的扇形,则这个圆锥的表面积是.7.(4分)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为.8.(4分)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?.(只需写出一个答案即可)9.(4分)在极坐标系中,某直线的极坐标方程为ρsin(θ+)=,则极点O 到这条直线的距离为.10.(4分)设口袋中有黑球、白球共7 个,从中任取两个球,令取到白球的个数为ξ,且ξ的数学期望Eξ=,则口袋中白球的个数为.11.(4分)如图所示,一个确定的凸五边形ABCDE,令x=•,y=•,z=•,则x、y、z 的大小顺序为.12.(4分)设函数f(x)的定义域为D,D⊆[0,4π],它的对应法则为f:x→sin x,现已知f(x)的值域为{0,﹣,1},则这样的函数共有个.13.(4分)若多项式(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,则a1+a3+…+a2015=.14.(4分)在平面直角坐标系中有两点A(﹣1,3)、B(1,),以原点为圆心,r>0为半径作一个圆,与射线y=﹣x(x<0)交于点M,与x轴正半轴交于N,则当r变化时,|AM|+|BN|的最小值为.二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,选对得5分,否则一律得零分.15.(5分)若非空集合A中的元素具有命题α的性质,集合B中的元素具有命题β的性质,若A⊊B,则命题α是命题β的()条件.A.充分非必要B.必要非充分C.充分必要D.既非充分又非必要16.(5分)用反证法证明命题:“已知a、b∈N+,如果ab可被 5 整除,那么a、b 中至少有一个能被5 整除”时,假设的内容应为()A.a、b 都能被5 整除B.a、b 都不能被5 整除C.a、b 不都能被5 整除D.a 不能被5 整除17.(5分)实数x、y满足x2+2xy+y2+4x2y2=4,则x﹣y的最大值为()A.B.C.D.218.(5分)直线m⊥平面α,垂足是O,正四面体ABCD的棱长为4,点C在平面α上运动,点B在直线m上运动,则点O到直线AD的距离的取值范围是()A.[,]B.[2﹣2,2+2]C.[,]D.[3﹣2,3+2]三、解答题(本大题满分74分)本大题共5题,解答下列各题须写出必要的步骤.19.(12分)已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.20.(14分)已知数列{b n}满足b1=1,且b n+1=16b n(n∈N),设数列{}的前n 项和是T n.(1)比较T n+12与T n•T n+2的大小;(2)若数列{a n}的前n项和S n=2n2+2n+2,数列{c n}=a n﹣log d b n(d>0,d≠1),求d的取值范围使得{c n}是递增数列.21.(14分)某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ2﹣φ1的值;(2)在“A 类波“中有一个是f1(x)=Asinx,从A类波中再找出两个不同的波f2(x),f3(x),使得这三个不同的波叠加之后是平波,即叠加后f1(x)+f2(x)+f3(x),并说明理由.(3)在n(n∈N,n≥2)个“A类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明.22.(16分)设函数f(x)=ax2+(2b+1)x﹣a﹣2(a,b∈R).(1)若a=0,当x∈[,1]时恒有f(x)≥0,求b的取值范围;(2)若a≠0且b=﹣1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;(3)若a≠0,函数y=f(x)在区间[3,4]上至少有一个零点,求a2+b2的最小值.23.(18分)设有二元关系f(x,y)=(x﹣y)2+a(x﹣y)﹣1,已知曲线Γ:f (x,y)=0(1)若a=2时,正方形ABCD的四个顶点均在曲线上Γ,求正方形ABCD的面积;(2)设曲线Γ与x轴的交点是M、N,抛物线Γ′:y=x2+1与y轴的交点是G,直线MG与曲线Γ′交于点P,直线NG与曲线Γ′交于Q,求证:直线PQ过定点,并求出该定点的坐标.(3)设曲线Γ与x轴的交点是M(u,0),N(v,0),可知动点R(u,v)在某确定的曲线∧上运动,曲线∧与上述曲线Γ在a≠0时共有四个交点:A(x1,x2),B(x3,x4),C(x5,x6),D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Y i(i=1,2,…,255),将Y i中的所有元素相加(若iY中只有一个元素,则其是其自身)得到255个数y1,y2,…,y255求所有的正整数n的值,使得y1n+y2n+…+y255n是与变数a及变数x i(i=1,2,…8)均无关的常数.2015年上海市十三校联考高考数学二模试卷(理科)参考答案与试题解析一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分.1.(4分)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m= 0.【考点】4U:幂函数的概念、解析式、定义域、值域;4Y:幂函数的单调性、奇偶性及其应用.【专题】11:计算题;51:函数的性质及应用;59:不等式的解法及应用.【分析】根据幂函数的性质,可得m2+2m﹣3<0,解不等式求得自然数解,即可得到m=0.【解答】解:由幂函数y=x m2+2m﹣3在(0,+∞)为减函数,则m2+2m﹣3<0,解得﹣3<m<1.由于m∈N,则m=0.故答案为:0.【点评】本题考查幂函数的性质,主要考查二次不等式的解法,属于基础题.2.(4分)函数的定义域是(0,1] .【考点】33:函数的定义域及其求法;4K:对数函数的定义域.【专题】11:计算题.【分析】令被开方数大于等于0,然后利用对数函数的单调性及真数大于0求出x的范围,写出集合区间形式即为函数的定义域.【解答】解:∴0<x≤1∴函数的定义域为(0,1]故答案为:(0,1]【点评】求解析式已知的函数的定义域应该考虑:开偶次方根的被开方数大于等于0;对数函数的真数大于0底数大于0小于1;分母非0.3.(4分)在△ABC中,已知BC=8,AC=5,三角形面积为12,则cos2C=.【考点】HR:余弦定理.【专题】11:计算题.【分析】先通过BC=8,AC=5,三角形面积为12求出sinC的值,再通过余弦函数的二倍角公式求出答案.【解答】解:∵已知BC=8,AC=5,三角形面积为12,∴•BC•ACsinC=12∴sinC=∴cos2C=1﹣2sin2C=1﹣2×=故答案为:【点评】本题主要考查通过正弦求三角形面积及倍角公式的应用.属基础题.4.(4分)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m=1.【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】把n代入方程,利用复数相等的条件,求出m,n,即可.【解答】解:关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,可得n2﹣(2+i)n+1+mi=0所以,所以m=n=1,故答案为:1.【点评】本题考查复数相等的条件,考查计算能力,是基础题.5.(4分)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=4或8.【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】首先分两种情况:①焦点在x轴上.②焦点在y轴上,分别求出a的值即可.【解答】解:∵椭圆的焦距为4.∴2c=4,即c=2∵在椭圆中,a2=b2+c2①焦点在x轴上时:10﹣a﹣(a﹣2)=4解得:a=4.②焦点在y轴上时a﹣2﹣(10﹣a)=4解得:a=8故答案为:4或8.【点评】本题考查的知识要点:椭圆方程的两种情况:焦点在x轴或y轴上,考察a、b、c的关系式,及相关的运算问题.6.(4分)若一个圆锥的侧面展开如圆心角为120°、半径为3 的扇形,则这个圆锥的表面积是4π.【考点】LE:棱柱、棱锥、棱台的侧面积和表面积.【专题】5F:空间位置关系与距离.【分析】易得圆锥侧面展开图的弧长,除以2π即为圆锥的底面半径,圆锥表面积=底面积+侧面积=π×底面半径2+π×底面半径×母线长,把相关数值代入即可求解.【解答】解:圆锥的侧面展开图的弧长为:=2π,∴圆锥的底面半径为2π÷2π=1,∴此圆锥的表面积=π×(1)2+π×1×3=4π.故答案为:4π.【点评】本题考查扇形的弧长公式为;圆锥的侧面展开图的弧长等于圆锥的底面周长,圆锥的表面积的求法.7.(4分)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为﹣3≤a≤9.【考点】51:函数的零点.【专题】11:计算题;51:函数的性质及应用.【分析】由题意,x2+ax﹣10=0在x∈[1,5]上有解,可得a=﹣x在x∈[1,5]上有解,利用a=﹣x在x∈[1,5]上单调递减,即可求出实数a的取值范围.【解答】解:由题意,x2+ax﹣10=0在x∈[1,5]上有解,所以a=﹣x在x∈[1,5]上有解,因为a=﹣x在x∈[1,5]上单调递减,所以﹣3≤a≤9,故答案为:﹣3≤a≤9.【点评】本题主要考查方程的根与函数之间的关系,考查由单调性求函数的值域,比较基础.8.(4分)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?23,或105k+23(k为正整数)..(只需写出一个答案即可)【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】根据“三三数之剩二,五五数之剩三,七七数之剩二”找到三个数:第一个数能同时被3和5整除;第二个数能同时被3和7整除;第三个数能同时被5和7整除,将这三个数分别乘以被7、5、3除的余数再相加即可求出答案.【解答】解:我们首先需要先求出三个数:第一个数能同时被3和5整除,但除以7余1,即15;第二个数能同时被3和7整除,但除以5余1,即21;第三个数能同时被5和7整除,但除以3余1,即70;然后将这三个数分别乘以被7、5、3除的余数再相加,即:15×2+21×3+70×2=233.最后,再减去3、5、7最小公倍数的整数倍,可得:233﹣105×2=23.或105k+23(k为正整数).故答案为:23,或105k+23(k为正整数).【点评】本题考查的是带余数的除法,简单的合情推理的应用,根据题意下求出15、21、70这三个数是解答此题的关键.[可以原文理解为:三个三个的数余二,七个七个的数也余二,那么,总数可能是三乘七加二,等于二十三.二十三用五去除余数又恰好是三]9.(4分)在极坐标系中,某直线的极坐标方程为ρsin(θ+)=,则极点O 到这条直线的距离为.【考点】Q4:简单曲线的极坐标方程.【专题】5S:坐标系和参数方程.【分析】由直线的极坐标方程为ρsin(θ+)=,展开并利用即可得出直角坐标方程,再利用点到直线的距离公式即可得出.【解答】解:由直线的极坐标方程为ρsin(θ+)=,展开为,化为x+y﹣1=0,∴极点O到这条直线的距离d==.故答案为:.【点评】本题考查了直线的极坐标方程化为直角坐标方程、点到直线的距离公式、两角和差的正弦公式,考查了推理能力与计算能力,属于基础题.10.(4分)设口袋中有黑球、白球共7 个,从中任取两个球,令取到白球的个数为ξ,且ξ的数学期望Eξ=,则口袋中白球的个数为3.【考点】CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】设口袋中有白球x个,由已知得ξ的可能取值为0,1,2,由Eξ=,得×,由此能求出口袋中白球的个数.【解答】解:设口袋中有白球x个,由已知得ξ的可能取值为0,1,2,P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,∵Eξ=,∴×,解得x=3.∴口袋中白球的个数为3.故答案为:3.【点评】本题考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要注意排列组合知识的合理运用.11.(4分)如图所示,一个确定的凸五边形ABCDE,令x=•,y=•,z=•,则x、y、z 的大小顺序为x>y>z.【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量的数量积公式分别判断x,y,z的符号,得到大小关系.【解答】解:由题意,x=•=AB×ACcos∠BAC>0,y=•=AB×ADcos∠BAD≈AB×ACcos∠BAD,又∠BAD>∠BAC所以cos∠BAD<cos∠BAC,所以x>y>0z=•=AB×AEcos∠BAE<0,所以x>y>z.故答案为:x>y>z.【点评】本题考查了向量的数量积的公式;属于基础题.12.(4分)设函数f(x)的定义域为D,D⊆[0,4π],它的对应法则为f:x→sin x,现已知f(x)的值域为{0,﹣,1},则这样的函数共有1395个.【考点】3C:映射.【专题】51:函数的性质及应用;5J:集合.【分析】分别求出sinx=0,x=0,π,2π,3π,4π,sinx=,x=,x=,x=,x=,sinx=1,x=,x=利用排列组合知识求解得出这样的函数共有:(C+C)()()即可.【解答】解:∵函数f(x)的定义域为D,D⊆[0,4π],∴它的对应法则为f:x→sin x,f(x)的值域为{0,﹣,1},sinx=0,x=0,π,2π,3π,4π,sinx=,x=,x=,x=,x=,sinx=1,x=,x=这样的函数共有:(C+C)()()=31×15×3=1395故答案为:1395【点评】本题考查了映射,函数的概念,排列组合的知识,难度不大,但是综合性较强.13.(4分)若多项式(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,则a1+a3+…+a2015=0.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据等式,确定a1=﹣2000×2001+2001×2000=0,a3=0,a5=0,…,即可得出结论.【解答】解:根据(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,可得x1999•x2000的系数a1=﹣2000×2001+2001×2000=0,a3=0,a5=0,…,所以a1+a3+a5+…+a2011+a2013+a2015=0,故答案为:0.【点评】本题考查二项式定理的运用,考查学生分析解决问题的能力,属于中档题.14.(4分)在平面直角坐标系中有两点A(﹣1,3)、B(1,),以原点为圆心,r>0为半径作一个圆,与射线y=﹣x(x<0)交于点M,与x轴正半轴交于N,则当r变化时,|AM|+|BN|的最小值为2.【考点】IR:两点间的距离公式.【专题】11:计算题;35:转化思想;5M:推理和证明.【分析】由题意,设M(a,﹣a)(a<0),则r=﹣2a,N(﹣2a,0).可得|AM|+|BN|=+,设2a=x,进而可以理解为(x,0)与(﹣,)和(﹣1,)的距离和,即可得出结论.【解答】解:由题意,设M(a,﹣a)(a<0),则r=﹣2a,N(﹣2a,0).∴|AM|+|BN|=+设2a=x,则|AM|+|BN|=+,可以理解为(x,0)与(﹣5,)和(﹣1,)的距离和,∴|AM|+|BN|的最小值为(﹣5,)和(﹣1,﹣)的距离,即2.故答案为:2.【点评】本题考查两点间距离公式的应用,考查学生分析解决问题的能力,有难度.二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,选对得5分,否则一律得零分.15.(5分)若非空集合A中的元素具有命题α的性质,集合B中的元素具有命题β的性质,若A⊊B,则命题α是命题β的()条件.A.充分非必要B.必要非充分C.充分必要D.既非充分又非必要【考点】29:充分条件、必要条件、充要条件.【专题】5J:集合;5L:简易逻辑.【分析】可举个例子来判断:比如A={1},B={1,2},α:x>0,β:x<3,容易说明此时命题α是命题β的既非充分又非必要条件.【解答】解:命题α是命题β的既非充分又非必要条件;比如A={1},α:x>0;B={1,2},β:x<3;显然α成立得不到β成立,β成立得不到α成立;∴此时,α是β的既非充分又非必要条件.故选:D.【点评】考查真子集的概念,以及充分条件、必要条件、既不充分又不必要条件的概念,以及找一个例子来说明问题的方法.16.(5分)用反证法证明命题:“已知a、b∈N+,如果ab可被 5 整除,那么a、b 中至少有一个能被5 整除”时,假设的内容应为()A.a、b 都能被5 整除B.a、b 都不能被5 整除C.a、b 不都能被5 整除D.a 不能被5 整除【考点】FC:反证法.【专题】5M:推理和证明.【分析】反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.【解答】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故选:B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.17.(5分)实数x、y满足x2+2xy+y2+4x2y2=4,则x﹣y的最大值为()A.B.C.D.2【考点】7F:基本不等式及其应用.【专题】56:三角函数的求值.【分析】x2+2xy+y2+4x2y2=4,变形为(x+y)2+(2xy)2=4,设x+y=2cosθ,2xy=2sinθ,θ∈[0,2π).化简利用三角函数的单调性即可得出.【解答】解:x2+2xy+y2+4x2y2=4,变形为(x+y)2+(2xy)2=4,设x+y=2cosθ,2xy=2sinθ,θ∈[0,2π).则(x﹣y)2=(x+y)2﹣4xy=4cos2θ﹣4sinθ=5﹣4(sinθ+)2≤5,∴x﹣y.故选:C.【点评】本题考查了平方法、三角函数代换方法、三角函数的单调性,考查了推理能力与计算能力,属于中档题.18.(5分)直线m⊥平面α,垂足是O,正四面体ABCD的棱长为4,点C在平面α上运动,点B在直线m上运动,则点O到直线AD的距离的取值范围是()A.[,]B.[2﹣2,2+2]C.[,]D.[3﹣2,3+2]【考点】MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】确定直线BC与动点O的空间关系,得到最大距离为AD到球心的距离+半径,最小距离为AD到球心的距离﹣半径.【解答】解:由题意,直线BC与动点O的空间关系:点O是以BC为直径的球面上的点,所以O到AD的距离为四面体上以BC为直径的球面上的点到AD的距离,最大距离为AD到球心的距离(即BC与AD的公垂线)+半径=2+2.最小距离为AD到球心的距离(即BC与AD的公垂线)﹣半径=2﹣2.∴点O到直线AD的距离的取值范围是:[2﹣2,2+2].故选:B.【点评】本题考查点、线、面间的距离计算,考查学生分析解决问题的能力,属于中档题,解题时要注意空间思维能力的培养.三、解答题(本大题满分74分)本大题共5题,解答下列各题须写出必要的步骤.19.(12分)已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(1)由已知得AB⊥平面B1BCC1,从而PQ⊥平面B1BCC1,进而C1Q⊥PQ,又C1Q⊥QR,由此能证明C1Q⊥平面PQR.(2)由已知得B1Q=1,BQ=1,△B1C1Q∽△BQR,从而BR=,QR=,由C1Q、QR、QP两两垂直,能求出四面体C1PQR 的体积.【解答】(1)证明:∵四棱柱ABCD﹣A1B1C1D1是正四棱柱,∴AB⊥平面B1BCC1,又PQ∥AB,∴PQ⊥平面B1BCC1,∴C1Q⊥PQ,又已知C1Q⊥QR,且QR∩QP=Q,∴C1Q⊥平面PQR.(2)解:∵B1C1=,,∴B1Q=1,∴BQ=1,∵Q是BB1中点,C1Q⊥QR,∴∠B1C1Q=∠BQR,∠C1B1Q=∠QBR,∴△B1C1Q∽△BQR,∴BR=,∴QR=,∵C1Q、QR、QP两两垂直,∴四面体C1PQR 的体积V=.【点评】本小题主要考查空间线面关系、线面垂直的证明、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.20.(14分)已知数列{b n}满足b1=1,且b n+1=16b n(n∈N),设数列{}的前n 项和是T n.(1)比较T n+12与T n•T n+2的大小;(2)若数列{a n}的前n项和S n=2n2+2n+2,数列{c n}=a n﹣log d b n(d>0,d≠1),求d的取值范围使得{c n}是递增数列.【考点】82:数列的函数特性;8H:数列递推式.【专题】11:计算题;54:等差数列与等比数列.【分析】(1)由数列递推式可得数列{b n}为公比是16的等比数列,求出其通项公式后可得,然后由等比数列的前n项和求得T n,再由作差法证明T n+12>T n•T n+2;(2)由S n=2n2+2n+2求出首项,进一步得到n≥2时的通项公式,再把数列{a n},{b n}的通项公式代入c n=a n﹣log d b n=4n+(4﹣4n)log d2=(4﹣4log d2)n+4log d2,然后由一次项系数大于0求得d的取值范围.【解答】解:(1)由b n+1=16b n,得数列{b n}为公比是16的等比数列,又b1=1,∴,因此,则=,∵T n+12﹣T n•T n+2=.于是T n+12>T n•T n+2;(2)由S n=2n2+2n+2,当n=1时求得a1=S1=6;当n≥2时,=4n.a1=6不满足上式,∴a n=.当n=1时,c1=a1﹣log d b1=6﹣log d1=6,当n≥2时,可得c n=a n﹣log d b n=4n+(4﹣4n)log d2=(4﹣4log d2)n+4log d2,要使数列{c n}是递增数列,则,解得:0<d<1或d>4.综上,d∈(0,1)∪(4,+∞).【点评】本题考查了等比关系的确定,考查了数列的函数特性,考查了对数不等式的解法,是中档题.21.(14分)某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ2﹣φ1的值;(2)在“A 类波“中有一个是f1(x)=Asinx,从A类波中再找出两个不同的波f2(x),f3(x),使得这三个不同的波叠加之后是平波,即叠加后f1(x)+f2(x)+f3(x),并说明理由.(3)在n(n∈N,n≥2)个“A类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明.【考点】F1:归纳推理;GP:两角和与差的三角函数.【专题】15:综合题;57:三角函数的图像与性质;5M:推理和证明.【分析】(1)根据定义可求得f1(x)+f2(x)=(cosφ1+cosφ2)sinx+(sinφ1+sinφ2)cosx,则振幅是=,由=1,即可求得φ1﹣φ1的值.(2)设f2(x)=Asin(x+φ1),f3(x)=Asin(x+φ2),则f1(x)+f2(x)+f3(x)=0恒成立,可解得cosφ1=﹣,可取φ2=(或φ2=﹣等),证明f1(x)+f2(x)+f3(x)=0.(3)由题意可得f1(x)=Asinx,f2(x)=Asin(x+),f3(x)=Asin(x+),…,从而可求f n(x)=Asin(x+),这n个波叠加后是平波.【解答】解:(1)f1(x)+f2(x)=sin(x+φ1)+sin(x+φ2)=(cosφ1+cosφ2)sinx+(sinφ1+sinφ2)cosx,振幅是=则=1,即cos(φ1﹣φ2)=﹣,所以φ1﹣φ2=2kπ±,k ∈Z.(2)设f2(x)=Asin(x+φ1),f3(x)=Asin(x+φ2),则f1(x)+f2(x)+f3(x)=Asinx+Asin(x+φ1)+Asin(x+φ2)=Asinx(1+cosφ1+cosφ2)+Acosx(sinφ1+sinφ2)=0恒成立,则1+cosφ1+cosφ2=0且sinφ1+sinφ2=0,即有:cosφ2=﹣cosφ1﹣1且sinφ2=﹣sinφ1,消去φ2可解得cosφ1=﹣,若取φ1=,可取φ2=(或φ2=﹣等),此时,f2(x)=Asin(x+),f3(x)=Asin(x+)(或f3(x)=Asin(x﹣)等),则:f1(x)+f2(x)+f3(x)=A[sinx+(sinx+cosx)+(﹣sinx﹣cosx)]=0,所以是平波.(3)f1(x)=Asinx,f2(x)=Asin(x+),f3(x)=Asin(x+),…,f n(x)=Asin(x+),这n个波叠加后是平波.【点评】本题主要考查了两角和与差的正弦函数公式的应用,考查了归纳推理的常用方法,综合性较强,考查了转化思想,属于中档题.22.(16分)设函数f(x)=ax2+(2b+1)x﹣a﹣2(a,b∈R).(1)若a=0,当x∈[,1]时恒有f(x)≥0,求b的取值范围;(2)若a≠0且b=﹣1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;(3)若a≠0,函数y=f(x)在区间[3,4]上至少有一个零点,求a2+b2的最小值.【考点】3H:函数的最值及其几何意义;53:函数的零点与方程根的关系.【专题】15:综合题;51:函数的性质及应用.【分析】(1)求出a=0的解析式,再由一次函数的单调性,得到不等式,即可得到范围;(2)b=﹣1时,y=a(x2﹣1)﹣x﹣2,当x2=1时,无论a取任何值,y=﹣x﹣2为定值,y=f(x)图象一定过点(1,﹣3)和(﹣1,﹣1),运用函数的定义即可得到结论;(3)由题意,存在t∈[3,4],使得at2+(2b+1)t﹣a﹣2=0,即(t2﹣1)a+(2t)b+t﹣2=0,由点到直线的距离意义可知≥=,由此只要求,t∈[3,4]的最小值.【解答】解:(1)当a=0时,f(x)=(2b+1)x﹣2,当x∈[,1]时恒有f(x)≥0,则f()≥0且f(1)≥0,即b﹣≥0且2b﹣1≥0,解得b≥;(2)b=﹣1时,y=a(x2﹣1)﹣x﹣2,当x2=1时,无论a取任何值,y=﹣x﹣2为定值,y=f(x)图象一定过点(1,﹣3)和(﹣1,﹣1)由函数定义可知函数图象一定不过A(1,y1)(y1≠﹣3)和B(﹣1,y2)(y2≠﹣1);(3)由题意,存在t∈[3,4],使得at2+(2b+1)t﹣a﹣2=0即(t2﹣1)a+(2t)b+t﹣2=0,由点到直线的距离意义可知≥=,由此只要求,t∈[3,4]的最小值.令g(t)=,t∈[3,4]设u=t﹣2,u∈[1,2],则g(t)=f(u)==∴u=1,即t=3时,g(t)取最小值,∴t=3时,a2+b2的最小值为.【点评】本题考查不等式的恒成立问题转化为求函数的值域问题,主要考查一次函数的单调性,运用主元法和直线和圆有交点的条件是解题的关键.23.(18分)设有二元关系f(x,y)=(x﹣y)2+a(x﹣y)﹣1,已知曲线Γ:f (x,y)=0(1)若a=2时,正方形ABCD的四个顶点均在曲线上Γ,求正方形ABCD的面积;(2)设曲线Γ与x轴的交点是M、N,抛物线Γ′:y=x2+1与y轴的交点是G,直线MG与曲线Γ′交于点P,直线NG与曲线Γ′交于Q,求证:直线PQ过定点,并求出该定点的坐标.(3)设曲线Γ与x轴的交点是M(u,0),N(v,0),可知动点R(u,v)在某确定的曲线∧上运动,曲线∧与上述曲线Γ在a≠0时共有四个交点:A(x1,x2),B(x3,x4),C(x5,x6),D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Y i(i=1,2,…,255),将Y i中的所有元素相加(若iY中只有一个元素,则其是其自身)得到255个数y1,y2,…,y255求所有的正整数n的值,使得y1n+y2n+…+y255n是与变数a及变数x i(i=1,2,…8)均无关的常数.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)令f(x,y)=(x﹣y)2+2(x﹣y)﹣1=0,解得x﹣y=﹣1±,由于f(x,y)表示两条平行线,之间的距离是2,为一个正方形,即可得出面积S.(2):在曲线C中,令y=0,则x2+ax﹣1=0,设M(m,0),N(n,0),则mn=﹣1,G(0,1),则直线MG:y=﹣x+1,NG:y=﹣x+1.分别与抛物线方程联立可得P,Q.直线PQ的方程为:,令x=0,可得y=3,因此直线PQ过定点(0,3).(3)令y=0,则x2+ax﹣1=0,则mn=﹣1,即点R(u,v)在曲线xy=﹣1上,又曲线C:f(x,y)=0.恒表示平行线x﹣y=,A(x1,x2),B(x3,x4)关于直线y=﹣x对称,即x1+x2+x3+x4=0,同理可得x5+x6+x7+x8=0,则x1+x2+…+x8=0,集合X={x1,x2,…,x8}的所有非空子集设为Y i=1,2,…,255),取Y1={x1,x2,…,x8},则y1=x1+x2+…+x8=0,即n∈N*,=0,对X的其它子集,把它们配成集合“对”(Y p,Y q),Y p∪Y q=X,Y p∩Y q=∅,这样的集合“对”共有127对,且对每一个集合“对”都满足y p+y q=0.可以利用扇形归纳法证明:对于Y p的元素和y p与Y q的元素和y q,当n为奇数时,=0.即可得出.【解答】解:(1)令f(x,y)=(x﹣y)2+2(x﹣y)﹣1=0,解得x﹣y=﹣1±,∴f(x,y)=0表示两条平行线,之间的距离是2,此为一个正方形的一个边长,其面积S=4.(2)证明:在曲线C中,令y=0,则x2+ax﹣1=0,设M(m,0),N(n,0),则mn=﹣1,G(0,1),则直线MG:y=﹣x+1,NG:y=﹣x+1.联立,解得P,同理可得Q.∴直线PQ的方程为:令x=0,则y===3,因此直线PQ过定点(0,3).(3)令y=0,则x2+ax﹣1=0,则mn=﹣1,即点R(u,v)在曲线xy=﹣1上,又曲线C:f(x,y)=(x﹣y)2+a(x﹣y)﹣1=0.恒表示平行线x﹣y=,如图所示,A(x1,x2),B(x3,x4)关于直线y=﹣x对称,则=,即x1+x2+x3+x4=0,同理可得x5+x6+x7+x8=0,则x1+x2+…+x8=0,集合X={x1,x2,…,x8}的所有非空子集设为Y i,取Y1={x1,x2,…,x8},则y1=x1+x2+…+x8=0,即n∈N*,=0,对X的其它子集,把它们配成集合“对”(Y p,Y q),Y p∪Y q=X,Y p∩Y q=∅,这样的集合“对”共有127对,且对每一个集合“对”都满足y p+y q=0.以下证明:对于Y p的元素和y p与Y q的元素和y q,当n为奇数时,=0.先证明:n为奇数时,x+y能够整除x n+y n,用数学归纳法证明.1°当n=1时,成立;2°假设当n=k(奇数)时,x+y能够整除x k+y k,则当n=k+2时,x k+2+y k+2=x k+2﹣x k y2+x k y2+y k+2=x k(x2﹣y2)+y2(x k+y k),因此上式可被x+y整除.由1°,2°可知:n为奇数时,x+y能够整除x n+y n.又∵当n为奇数时,=(y p+y q)M,其中M是关于y p,y q的整式,∵Y p∪Y q=X,Y p∩Y q=∅,∴每一个集合“对”(Y p,Y q)都满足y p+y q=0.则一定有=(x+y)M=0,M∈N*,于是可得y1n+y2n+…+y255n=0是常数.【点评】本题考查了平行直线系、直线的交点、一元二次方程的根与系数的关系、集合的性质、中点坐标公式、对称性、扇形归纳法,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.。

2015年山东省青岛市二模理科数学试题及答案word版

2015年山东省青岛市二模理科数学试题及答案word版

高三自主诊断试题 数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知11abi i=-+,其中,a b 是实数,i 是虚数单位,则||a bi -= A .3 B .2 C .5 D2. 已知集合2{|lg(2)}M x y x x ==-,22{|1}N x x y =+=,则M N = A .[1,2)- B .(0,1) C .(0,1] D .∅3. 高三(3)班共有学生56人,座号分别为1,2,3,,56 ,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、17号、45号同学在样本中,那么样本中还有一个同学的座号是A .30B .31C .32D .334. 已知函数22, 0,()|log |,0,x x f x x x ⎧≤=⎨>⎩,则使()2f x =的x 的集合是A .1{,4}4B .{1,4}C .1{1,}4D .1{1,,4}45. 已知MOD 函数是一个求余函数,其格式为其结果为n 除以m 的余数,例如(8,3)2MOD =. 右面是一个算法的程序框图, 当输入的值为25时, 则输出的结果为A .4B .5C .6D .76. 设,x y 满足约束条件2311x x y y x ≥⎧⎪-≥⎨⎪≥+⎩,则下列不等式恒成立的是A .3x ≥B .4y ≥C .280x y +-≥D .210x y -+≥7. “2-≤a ”是“函数a x x f -=)(在[1,)-+∞上单调递增”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件8. 将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有 A .18种 B .24种 C .36种 D .72种9. 定义在R 上的奇函数()f x 满足(1)()f x f x +=-,当1(0,]2x ∈时,)1(log )(2+=x x f ,则()f x 在区间3(1,)2内是 A .减函数且()0f x >B .减函数且()0f x <C .增函数且()0f x >D .增函数且()0f x <10. 已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过F 作斜率为1-的直线交双曲线的渐近线于点P ,点P 在第一象限,O 为坐标原点,若OFP ∆的面积为228a b +,则该双曲线的离心率为 A.3 B.3C.3 D.3 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11. 已知不共线的平面向量a ,b满足(2,2)a =- ,()()a b a b +⊥- ,那么||b = ;12. 某班有50名同学,一次数学考试的成绩X 服从正态分布2(110,10)N ,已知(100110)0.3P X ≤≤=,估计该班学生数学成绩在120分以上的有 人; 13. 某三棱锥的三视图如图所示,该三棱锥的体积是 ;第14题图正(主)视图侧(左)视图第13题图14. 若函数()sin()(0,0)6f x A x A πωω=->>的图象如图所示,则图中的阴影部分的面积为 ;15. 若不等式2222()y x c x xy -≥-对任意满足0x y >>的实数,x y 恒成立,则实数c 的最大值为 .三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)已知向量2(s i n,c o s )33xx a k = ,(cos ,)3xb k =- ,实数k 为大于零的常数,函数()f x a b =⋅ ,R x ∈,且函数()f x 的最大值为12.(Ⅰ)求k 的值;(Ⅱ)在ABC ∆中,,,a b c 分别为内角,,A B C 所对的边,若2A ππ<<,()0f A =,且a =,求AB AC ⋅的最小值.17.(本小题满分12分)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:现有甲、乙两位乘客,他们乘坐的里程都不超过22公里.已知甲、乙乘车不超过6公里 的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13. (Ⅰ)求甲、乙两人所付乘车费用不相同的概率;(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望. 18.(本小题满分12分)如图,在正四棱台1111ABCD A BC D -中,11A B a =,2AB a =,1AA ,E 、F 分别是AD 、AB 的中点. (Ⅰ)求证:平面11EFB D ∥平面1BDC ;(Ⅱ)求二面角1D BC C --的余弦值的大小.注:底面为正方形,从顶点向底面作垂线,垂足是底面中心, 这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的 平面去截该棱锥,底面与截面之间的部分叫做正四棱台.19.(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正整数的等比数列,且111a b ==,13250a b =,82345a b a a +=++,*N n ∈.(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)若数列{}n d 满足218log 11()2n b n n d d +-++=(*N n ∈),且116d =,试求{}n d 的通项公式及其前n 项和n S .20.(本小题满分13分)已知抛物线1:C 22(0)y px p =>的焦点为F ,抛物线上存在一点G 到焦点的距离为3,且点G 在圆:C 229x y +=上.(Ⅰ)求抛物线1C 的方程;(Ⅱ)已知椭圆2:C 2222 1 (0)x y m n m n+=>>的一个焦点与抛物线1C 的焦点重合,若椭圆2C 上存在关于直线:l 1143y x =+对称的两个不同的点,求椭圆2C 的离心率e 的取值范围. 21.(本小题满分14分)已知函数1()1ln a f x x x=-+(a 为实数). (Ⅰ)当1a =时,求函数()f x 的图象在点11(,())22f 处的切线方程;(Ⅱ)设函数2()32h a a a λ=-(其中λ为常数),若函数()f x 在区间(0,2)上不存在极值,且存在a 满足()≥h a 18+λ,求λ的取值范围; C1BE D FAB1A1D 1C(Ⅲ)已知*N n ∈,求证:11111ln(1)12345n n+<++++++ . 高三自主诊断试题数学(理科)参考答案及评分标准一、选择题:本大题共10小题.每小题5分,共50分.D C B A B C A C B C二、填空题:本大题共5小题,每小题5分,共25分. 11.12. 8 13.32 14.232- 15.4 三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)解:(Ⅰ)由已知2()(sin ,cos )(cos ,)333x x x f x a b k k =⋅=⋅-221cos12223sin cos cos sin (sin cos )3332322332x x x x x k x x k k k k k +=-=-=--……2分222)sin()3342x x k x k π=-=-- ……………………5分因为R x ∈,所以()f x 的最大值为1)122k=,则1k = …………………6分 (Ⅱ)由(Ⅰ)知,21()sin()2342xf x π=--,所以21()sin()02342A f A π=--= 化简得2sin()34A π-= 因为2A ππ<<,所以25123412Aπππ<-< 则2344A ππ-=,解得34A π=…………………………………………………8分因为2222240cos222b c a b c A bc bc+-+-=-==,所以2240b c ++= 则22402b c bc +=≥,所以20(2bc ≤= ……………10分则3cos 20(142AB AC AB AC π⋅==-≥所以AB AC ⋅的最小值为20(1 …………………………………………………12分17.(本小题满分12分)解:(Ⅰ)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13则甲、乙两人所付乘车费用相同的概率111111114323433P =⨯+⨯+⨯= ……………2分 所以甲、乙两人所付乘车费用不相同的概率1121133P P =-=-= …………………4分 (Ⅱ)由题意可知,6,7,8,9,10ξ= 则111(6)4312P ξ==⨯= 11111(7)43234P ξ==⨯+⨯=1111111(8)4343233P ξ==⨯+⨯+⨯=11111(9)23434P ξ==⨯+⨯=111(10)4312P ξ==⨯= ………………………………………………………………10分所以ξ的分布列为则11111()67891081243412E ξ=⨯+⨯+⨯+⨯+⨯= ……………………………………12分 18.(本小题满分12分)证明:(Ⅰ)连接11AC ,AC ,分别交11,,B D EF BD 于,,M N P ,连接1,MN C P 由题意,BD ∥11B D因为BD ⊄平面11EFB D ,11B D ⊂平面11EFB D ,所以BD ∥平面11EFB D …………2分又因为11,2A B a AB a ==,所以111122MC AC a == 又因为E 、F 分别是AD 、AB 的中点,所以14NP AC == 所以1MC NP =又因为AC ∥11AC ,所以1MC ∥NP 所以四边形1MC PN 为平行四边形 所以1PC ∥MN因为1PC ⊄平面11EFB D ,MN ⊂平面11EFB D ,所以1PC ∥平面11EFB D因为1PC BD P =I ,所以平面11EFB D ∥平面1BDC …………………………………5分 (Ⅱ)连接1A N ,因为11A M MC NP ==,又1A M ∥NP 所以四边形1A NPM 为平行四边形,所以PM ∥1A N由题意M P ⊥平面ABCD ,1A N ∴⊥平面ABCD ,1A N AN ∴⊥ 因为11A B a =,2AB a =,1AA =,所以12A N MP === 因为ABCD 为正方形,所以AC BD ⊥所以,以,,PA PB PM 分别为,,x y z 轴建立如图所示的坐标系则,0)B,(0,,0)D,(,0,0)C,1()2C a -所以(0,,0)BD =-u u u r,1(,)BC =uuu r,(,,0)BC =u u u r ………………………………………………………7分设1111(,,)n x y z =u u r 是平面1BDC 的法向量,则1110n BC n BD ⎧⋅=⎪⎨⋅=⎪⎩u u r uuu ru u r uu u r111100⎧-=⎪∴⎨⎪-=⎩,10y ∴=, 令11z =,则1x1n =u u r……………………………………………9分设2222(,,)n x y z =uu r 是平面1BCC 的法向量,则2120n BC n BC ⎧⋅=⎪⎨⋅=⎪⎩uu r uuu r uu r uu u r2222200⎧=⎪∴⎨⎪=⎩令21y =,则21x =-,23z =所以2(3n =-uu r ………………………………11分所以1212120cos ,3n n n n n n +⋅<>===u u r uu r u r u u r u u r uu r 所以二面角1D BC C --………………………………………12分 ,则依题意有0q >2分4分(Ⅱ) 12n n b -= 21log n b n +∴=811()2n n n d d -++∴= , 7121()2n n n d d -+++=两式相除:212n n d d +=, 由116d =,81121()1282d d -+==可得:28d =135,,,d d d ∴ 是以116d =为首项,以12为公比的等比数列;246,,,d d d 是以28d =为首项,以12为公比的等比数列 ……………………………………………………………6分 ∴当n 为偶数时,1218()16(22n n n d -=⨯= ……………………………………………………………7分13124()()n n n S d d d d d d -=+++++++22221116[1()]8[1()]112232[1()]16[1()]4811221122n nn n n ⨯-⨯-=+=-+-=--- …………9分∴当n 为奇数时,112116()2(22n n n d +-=⨯=…………………………………………………………10分13241()()n n n S d d d d d d -=+++++++112211221116[1()]8[1()]112232[1()]16[1()]4811221122n n n n n +-+-⨯-⨯-=+=-+-=---∴,,nn n d ⎧⎪⎪=⎨⎪⎪⎩,48,48,n n n S ⎧-⎪⎪=⎨⎪-⎪⎩ …………………12分20.(本小题满分13分)n 为奇数 n 为偶数n 为偶数 n 为奇数解:(Ⅰ)设点G 的坐标为00(,)x y ,由题意可知022002003292p x x y y px⎧+=⎪⎪+=⎨⎪=⎪⎩………………………2分解得:001,4,x y p ==±=所以抛物线1C 的方程为:28y x = ………………………………………………………4分 (Ⅱ)由(Ⅰ)得抛物线1C 的焦点(2,0)F椭圆2C 的一个焦点与抛物线1C 的焦点重合∴椭圆2C 半焦距2222, 4c m n c =-==……①…………………………………………5分设1122(,),(,)M x y N x y 是椭圆2C 上关于直线:l 1143y x =+对称的两点, :4MN y x λ=-+ 由2222 1 4x y m n y x λ⎧+=⎪⎨⎪=-+⎩22222222(16)80m n x m x m m n λλ⇒+-+-=……(*) 则42222222644(16)()0m m n m m n λλ∆=-+->,得:222160m n λ+->……②………………………………………………………………7分对于(*),由韦达定理得:21222816m x x m n λ+=+ 212122224()216n y y x x m n λλ∴+=-++=+ MN 中点Q 的坐标为2222224(,)1616m n m n m n λλ++将其代入直线:l 1143y x =+得:222222141164163n m m n m n λλ=⨯+++……③……9分 由①②③消去λ,可得:217m <<, 椭圆2C 的离心率2c e m m ==,∴137e << ………13分21.(本小题满分14分)解:(Ⅰ)当1a =时,11()1ln f x x x =-+,211()f x x x'=-, 则1()4222f '=-=,1()12ln 2ln 212f =-+=-∴函数()f x 的图象在点11(,())22f 的切线方程为:1(ln 21)2()2y x --=-, 即2ln 220x y -+-= …………………………………………………………………4分 (Ⅱ)221()a a x f x x x x-'=-=,由()0f x '=x a ⇒= 由于函数()f x 在区间(0,2)上不存在极值,所以0≤a 或2≥a ………………………5分由于存在a 满足()≥h a 18+λ,所以max ()≥h a 18+λ……………………………………6分 对于函数2()32h a a a λ=-,对称轴34a λ= ①当304λ≤或324λ≥,即0λ≤或83λ≥时,2max 39()()48h a h λλ==, 由max ()≥h a 18+λ29188⇒≥+λλ,结合0λ≤或83λ≥可得:19≤-λ或83λ≥ ②当3014λ<≤,即403λ<≤时,max ()(0)0h a h ==, 由max ()≥h a 18+λ108⇒≥+λ,结合403λ<≤可知:λ不存在; ③当3124λ<<,即4833λ<<时,max ()(2)68h a h λ==-; 由max ()≥h a 18+λ1688⇒-≥+λλ,结合4833λ<<可知:13883≤<λ 综上可知:19≤-λ 或138≥λ………………………………………………………………9分 (Ⅲ)当1a =时,21()x f x x-'=,当(0,1)x ∈时,()0f x '>,()f x 单调递增;当(1,)∈+∞时,()0f x '<,()f x 单调递减,∴11()1ln f x x x=-+在1x =处取得最大值(1)0f = 即11()1ln (1)0f x f x x =-+≤=,∴11ln x x x-≤,……………………………………11分 令 1n x n =+,则11ln n n n +<,即1ln(1)ln n n n +-<, ∴ln(1)ln(1)ln1[ln(1)ln ][ln ln(1)](ln 2ln1)n n n n n n +=+-=+-+--++-1111121n n n <++++-- . 故11111ln(1)12345n n +<++++++ . ………………………………………………14分。

二模理科数学试题及答案.docx

二模理科数学试题及答案.docx

桑水试卷类型:A2015年广州市普通高中毕业班综合测试(二)数学(理科)2015.4本试卷共4页,21小题, 满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:球的表面积公式24S R =π,其中R 是球的半径.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题“若2x =,则2320x x -+=”的逆否命题是A .若2x ≠,则2320x x -+≠B .若2320x x -+=,则2x = C .若2320x x -+≠,则2x ≠ D .若2x ≠,则2320x x -+=桑水2.已知0a b >>,则下列不等关系式中正确的是A .sin sin a b >B .22log log a b <C .1122a b < D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭3.已知函数()4,0,1,0,x x f x x x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩则()2f f =⎡⎤⎣⎦ A .14 B .12C .2D .44.函数()sin y A x ωϕ=+()0,0,0A ωϕ>><<π的图象的一部分如图1所示, 则此函数的解析式为A .3sin y x ππ⎛⎫=+ ⎪44⎝⎭B .3sin y x π3π⎛⎫=+ ⎪44⎝⎭C .3sin y x ππ⎛⎫=+ ⎪24⎝⎭D .3sin y x π3π⎛⎫=+ ⎪24⎝⎭5.已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x ≥成立的概率为A .425B .12C .23 D .16.如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =, 有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是A .13B .7C .433D .3327.已知两定点()1,0A -,()1,0B ,若直线l 上存在点M ,使得3MA MB +=,则称直线l 为“M 型直线”.给出下列直线:①2x =;②3y x =+;③21y x =--;④1y =;⑤23y x =+.其中是“M 型直线”的条数为A .1B .2C .3D .48.设(),P x y 是函数()y f x =的图象上一点,向量()()51,2x =-a ,()1,2y x =-b ,且//a b .数列{}na 是公差不为0的等差数列,且()()()12936f a f a f a ++⋅⋅⋅+=,则129a a a ++⋅⋅⋅+= A .0 B .9 C .18 D .36二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.y xO 1 5 3 -3图1AV CB图2桑水(一)必做题(9~13题)9.已知i 为虚数单位,复数1i1iz -=+,则z = . 10.执行如图3所示的程序框图,则输出的z 的值是 .11.已知()sin 6f x x π⎛⎫=+⎪⎝⎭,若3cos 5α=02απ⎛⎫<< ⎪⎝⎭,则12f απ⎛⎫+= ⎪⎝⎭ .12.5名志愿者中安排4人在周六、周日两天参加社区公益活动.若每天安排2人,则不同的安排方案共有_________种(用数字作答). 13.在边长为1的正方形ABCD 中,以A 为起点,其余顶点为终点的向量分别为1a ,2a ,3a ;以C 为起点,其余顶点为终点的向量分别为1c ,2c ,3c .若m 为()()i j s t +∙+a a c c 的最小值,其中{}{},1,2,3i j ⊆,{}{},1,2,3s t ⊆,则m = .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图4,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点, AE 与BC 的延长线交于点F ,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为 . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知曲线1C 和2C 的方程分别为32,12x t y t =-⎧⎨=-⎩(t 为参数)和24,2x t y t=⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有 个.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且::7:5:3a b c =. (1)求cos A 的值;(2)若△ABC 的面积为453,求△ABC 外接圆半径的大小. 17.(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了n 份,统计结果如下面的图表所示. 组号 年龄 答对全卷 答对全卷的人数x=1, y=2z=xy是z<20? x =yy =z输出z结束否开始图3BACDE FG 图4年龄频率/组距 20 30 40 50 600.010c 0.0350.025 0桑水分组 的人数 占本组的概率1 [20,30) 28 b2 [30,40) 27 0.93 [40,50) 5 0.5 4[50,60]a0.4(1)分别求出a ,b ,c ,n 的值;(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X 为第3组被授予“环保之星”的人数,求X 的分布列与数学期望.18.(本小题满分14分) 如图5,已知六棱柱111111ABCDEF A B C D E F -的侧棱 垂直于底面,侧棱长与底面边长都为3,M ,N 分别 是棱AB ,1AA 上的点,且1AM AN ==. (1)证明:M ,N ,1E ,D 四点共面;(2)求直线BC 与平面1MNE D 所成角的正弦值. 19.(本小题满分14分)已知点(),n n n P a b ()n ∈*N在直线l :31y x =+上,1P 是直线l 与y 轴的交点,数列{}n a 是公差为1的等差数列.(1)求数列{}n a ,{}n b 的通项公式; (2)求证:22212131111116n PP PP PP ++++<. 20.(本小题满分14分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D 的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求AB 的取值范围. 21.(本小题满分14分)已知函数()ln f x a x =-11x x -+,()e xg x =(其中e 为自然对数的底数). C 1ABA 1B 1D 1 CDMNEFE 1F 1图5桑水(1)若函数()f x 在区间()0,1内是增函数,求实数a 的取值范围;(2)当0b >时,函数()g x 的图象C 上有两点(),e b P b ,(),e b Q b --,过点P ,Q 作图象C 的切线分别记为1l ,2l ,设1l 与2l 的交点为()00,M x y ,证明00x >.2015年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.题号 12 3 4 56 7 8答案 C D A A B B C C二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.题号 9 10 1112 131415答案1327210305- 43 116.(本小题满分12分) 解:(1)因为::7:5:3a b c =,所以可设7a k =,5b k =,3c k =()0k >,…………………………………………………………2分 由余弦定理得,222cos 2b c a A bc +-=()()()222537253k k k k k+-=⨯⨯…………………………………………………………3分桑水12=-.………………………………………………………………………………………………4分 (2)由(1)知,1cos 2A =-,因为A 是△ABC 的内角,所以2sin 1cos A A =-32=.………………………………………………………………………6分 由(1)知5b k =,3c k =, 因为△ABC 的面积为453,所以1sin 4532bc A =,……………………………………………8分 即135345322k k ⨯⨯⨯=, 解得23k =.…………………………………………………………………………………………10分由正弦定理2sin a R A =,即71432sin 32k R A ==,…………………………………………………11分 解得14R =.所以△ABC 外接圆半径的大小为14.…………………………………………………………………12分 17.(本小题满分12分)解:(1)根据频率直方分布图,得()0.0100.0250.035101c +++⨯=,解得0.03c =.……………………………………………………………………………………………1分 第3组人数为105.05=÷,所以1001.010=÷=n .…………………………………………………2分 第1组人数为1000.3535⨯=,所以28350.8b =÷=.……………………………………………3分 第4组人数为2525.0100=⨯,所以250.410a =⨯=.……………………………………………4分 (2)因为第3,4组答对全卷的人的比为5:101:2=,所以第3,4组应依次抽取2人,4人.…………………………………………………………………5分 依题意X 的取值为0,1,2.……………………………………………………………………………6分()022426C C 20C 5P X ===,…………………………………………………………………………………7分 ()112426C C 81C 15P X ===,………………………………………………………………………………8分桑水()202426C C 12C 15P X ===,………………………………………………………………………………9分所以X 的分布列为:X 0 12 P25 815 115所以2812012515153EX =⨯+⨯+⨯=. ………………………………………………………………12分 18.(本小题满分14分)第(1)问用几何法,第(2)问用向量法: (1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形. 所以11A BE D .………………………………2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN BA .…………………………………………………………………………………………4分 所以1MNDE .所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分 (2)解:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系, 则()33,3,0B ,339,,022C ⎛⎫⎪ ⎪⎝⎭,()0,3,0D , ()10,0,3E ,()33,1,0M ,…………………………8分………………………………………10分 xzyC 1A BA 1B 1D 1CDMNEFE 1F 1 C 1A BA 1B 1D 1CDMNEFE 1F 1桑水则333,,022BC ⎛⎫=- ⎪⎪⎝⎭,()10,3,3DE =-,()33,2,0DM =-.……………………………………………………………………………………10分设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩n n 即330,3320.y z x y -+=⎧⎪⎨-=⎪⎩取33y =,则2x =,33z =.所以()2,33,33=n 是平面1MNE D 的一个法向量.………………………………………………12分 设直线BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n n()()2222223332333302217411633323333022⎛⎫⨯-+⨯+⨯ ⎪⎝⎭==⎛⎫⎛⎫++⨯-++ ⎪ ⎪⎝⎭⎝⎭. 故直线BC 与平面1MNE D 所成角的正弦值为174116.………………………………………………14分 第(1)(2)问均用向量法:(1)证明:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()33,3,0B ,339,,022C ⎛⎫⎪ ⎪⎝⎭,()0,3,0D ,()10,0,3E ,()33,1,0M ,()33,0,1N ,……………2分所以()10,3,3DE =-,()0,1,1MN =-. ………………3分 因为13DE MN =,且MN 与1DE 不重合,xzyC 1A BA 1B 1D 1CDMNEFE 1F 1桑水所以1DE MN .…………………………………………5分所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分 (2)解:由(1)知333,,022BC ⎛⎫=- ⎪⎪⎝⎭,()10,3,3DE =-,()33,2,0DM =-.………………10分(特别说明:由于给分板(1)6分(2)8分,相当于把(1)中建系与写点坐标只给2分在此加2分)设(),,x y z =n 是平面1MNE D 的法向量, 则10,0.DE DM ⎧=⎪⎨=⎪⎩n n即330,3320.y z x y -+=⎧⎪⎨-=⎪⎩ 取33y =,则2x =,33z =.所以()2,33,33=n 是平面1MNE D 的一个法向量.………………………………………………12分 设直线1BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n n()()2222223332333302217411633323333022⎛⎫⨯-+⨯+⨯ ⎪⎝⎭==⎛⎫⎛⎫++⨯-++ ⎪ ⎪⎝⎭⎝⎭. 故直线BC 与平面1MNE D 所成角的正弦值为174116.………………………………………………14分 第(1)(2)问均用几何法:(1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,C 1A 1B 1D 1DEE 1F 1桑水所以四边形11A BDE 是平行四边形. 所以11A BE D .………………………………2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN BA .…………………………………………………………………………………………4分 所以1MNDE .所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分 (2)连接AD ,因为BCAD ,所以直线AD 与平面1MNE D 所成的角即为直线BC 与平面1MNE D 所成的角.…………………7分 连接DN ,设点A 到平面DMN 的距离为h ,直线AD 与平面1MNE D 所成的角为θ,则sin hADθ=.……………………………………………………………………………………………8分 因为A DMN D AMN V V --=,即1133DMN AMN S h S DB ∆∆⨯⨯=⨯⨯.…………………………………………9分在边长为3的正六边形ABCDEF 中,33DB =,6DA =, 在△ADM 中,6DA =,1AM =,60DAM ∠=, 由余弦定理可得,31DM =.在Rt △DAN 中,6DA =,1AN =,所以37DN =. 在Rt △AMN 中,1AM =,1AN =,所以2MN =. 在△DMN 中,31DM =,37DN =,2MN =,由余弦定理可得,2cos 31DMN ∠=-,所以29sin 31DMN ∠=.所以158sin 22DMN S MN DM DMN ∆=⨯⨯⨯∠=.…………………………………………………11分桑水 又12AMN S ∆=,……………………………………………………………………………………………12分 所以3358AMN DMN S DB h S ∆∆⨯==.…………………………………………………………………………13分 所以174sin 116h AD θ==. 故直线BC 与平面1MNE D 所成角的正弦值为174116.………………………………………………14分19.(本小题满分14分)(1)解:因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1,所以10a =,11b =.……………………………………………………………………………………2分 因为数列{}n a 是公差为1的等差数列,所以1n a n =-.……………………………………………………………………………………………4分 因为点(),n n n P a b 在直线l :31y x =+上,所以31n n b a =+32n =-.所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分(2)证明:因为()10,1P ,()1,32n P n n --,所以()1,31n P n n ++. 所以()222211310n PP n n n +=+=.………………………………………………………………………7分 所以222121311111n PP PP PP ++++22211111012n ⎛⎫=+++ ⎪⎝⎭.……………………………………8分 因为()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-,……………………………10分 所以,当2n ≥时,222121311111n PP PP PP ++++桑水111111210352121n n ⎡⎤⎛⎫<+-++- ⎪⎢⎥-+⎝⎭⎣⎦……………………………………………………………11分 15110321n ⎛⎫=- ⎪+⎝⎭………………………………………………………………………………………12分 16<. 又当1n =时,212111106PP =<.………………………………………………………………………13分 所以22212131+111116n PP PP PP +++<.……………………………………………………………14分 20.(本小题满分14分)解:(1)方法一:设圆C 的方程为:()222x a y r -+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-,所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分 解得1a =-,1r =.所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分 方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分 因为直线l 的方程为1122y x -=+,即1y x =+,……………………………………………………2分 所以圆心C 的坐标为()1,0-.…………………………………………………………………………3分 所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分 (2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分 由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在,桑水设PA 的方程为:()010y y k x x -=-,则点A 的坐标为()0100,y k x -,同理可得点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k 满足00211k y kx k -+-=+,即1k ,2k 是方程()()2220000022110x x k y x k y +-++-=的两根,………………………………7分 即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以120AB k k x =-()()220000220000412122y y x x x x x x -+⎡⎤=-⎢⎥++⎣⎦……………………………………………9分 因为()220044y x =--, 所以()02056222x AB x -=+.…………………………………………………………………………10分 设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤ ⎥⎝⎦上是减函数,……………………12分 所以()0max 2225564f x f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭, ()()(){}min 0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭, 所以AB 的取值范围为522,4⎡⎤⎢⎥⎣⎦.…………………………………………………………………14分桑水方法二:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分 设点()0,A a ,()0,B b ,则直线PA :00y a y a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C 相切,所以()0022001a y ax y a x -+=-+,化简得()2000220x a y a x +--=. ①同理得()2000220x b y b x +--=, ②由①②知a ,b 为方程()2000220x x y x x +--=的两根,…………………………………………7分即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以()24AB a b a b ab =-=+- 200002422y x x x ⎛⎫=+ ⎪++⎝⎭ ()()2000204422y x x x ++=+.……………………………………………………………………9分 因为()220044y x =--, 所以()02056222x AB x -=+……………………………………………………………………………10分 ()2001652222x x =-+++.………………………………………………………………11分桑水 令012t x =+,因为026x ≤≤,所以1184t ≤≤. 所以222165AB t t =-+252522163264t ⎛⎫=--+ ⎪⎝⎭,………………………………………12分 当532t =时,max 524AB =, 当14t =时,min 2AB =. 所以AB 的取值范围为522,4⎡⎤⎢⎥⎣⎦.…………………………………………………………………14分 21.(本小题满分14分)(1)解法一:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '=-≥+()01x <<.……………………………………………………………1分 即()2120a x x +-≥()01x <<,即()221xa x ≥+……………………………………………………………………………………………2分212x x=++()01x <<, 因为21122x x<++在()0,1x ∈内恒成立, 所以12a ≥. 故实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………………4分 解法二:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '-+≥=()01x <<.……………………………………………………………1分 即()2120a x x +-≥()01x <<,桑水即()2210ax a x a +-+≥()01x <<,…………………………………………………………………2分 设()()221g x ax a x a =+-+,当0a =时,得20x -≥,此时不合题意.当0a <时,需满足()()00,10,g g ≥⎧⎪⎨≥⎪⎩即()0,210,a a a a ≥⎧⎪⎨+-+≥⎪⎩解得12a ≥,此时不合题意. 当0a >时,需满足()222140a a --≤⎡⎤⎣⎦或()()00,10,10,g g a a ⎧⎪≥⎪≥⎨⎪-⎪-<⎩或()()00,10,11,g g a a⎧⎪≥⎪≥⎨⎪-⎪->⎩ 解得12a ≥或1a >, 所以12a ≥. 综上所述,实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………4分(2)证明:因为函数()e x g x =,所以()e x g x '=. 过点(),e b P b ,(),e b Q b --作曲线C 的切线方程为: 1l :()e e b b y x b =-+,2l :()e e b b y x b --=++,因为1l 与2l 的交点为()00,M x y ,由()()e e ,e e ,b b b b y x b y x b --⎧=-+⎪⎨=++⎪⎩ ………………………………………………………………………………6分 消去y ,解得()()()0e +e e e e e b b b b b b b x -----=-. ①…………………………………………7分 下面给出判定00x >的两种方法:方法一:设e bt =,………………………………………………………………………………………8分 因为0b >,所以1t >,且ln b t =.桑水所以()()2202+1ln 11t t t x t --=-.…………………………………………………………………………9分设()()()22+1ln 1h t t t t =--()1t >, 则()12ln h t t t t t'=-+()1t >.………………………………………………………………………10分 令()12ln u t t t t t=-+()1t >, 则()212ln 1u t t t'=+-. 当1t >时,ln 0t >,2110t ->,所以()212ln 10u t t t'=+->,………………………………11分 所以函数()u t 在()1,+∞上是增函数,所以()()10u t u >=,即()0h t '>,…………………………………………………………………12分 所以函数()h t 在()1,+∞上是增函数,所以()()10h t h >=.…………………………………………………………………………………13分 因为当1t >时,210t ->, 所以()()2202+1ln 101t t t x t --=>-.…………………………………………………………………14分方法二:由①得0x ()221+e 11e b b b --=--. 设2e b t -=,…………………………………………………………………………………………………8分 因为0b >,所以01t <<,且ln 2t b =-. 于是21ln b t -=,……………………………………………………………………………………………9分 所以()01+221ln 1ln 1b t b t x b t t t t +⎛⎫=+=+ ⎪--⎝⎭.…………………………………………………………10分 由(1)知当12a =时,()1ln 2f x x =-11x x -+在区间()0,1上是增函数,…………………………11分 所以()ln 2t f t =-()1101t f t -<=+, 即ln 2t <11t t -+. …………………………………………………………………………………………12分桑水 即210ln 1t t t++>-,………………………………………………………………………………………13分 已知0b >, 所以0210ln 1t x b t t +⎛⎫=+> ⎪-⎝⎭.…………………………………………………………………………14分。

2015年普通高中高三第二次联合考试理科数学附答案

2015年普通高中高三第二次联合考试理科数学附答案

BA BC 2 ,则 ABC 的面积为 (
A. 2
2
) C. 2 2 D. 4 2
B.
3 2
(10)已知抛物线 y =2px(p>0)与双曲线 2- 2=1(a>0,b>0)有相同的焦点 F,点 A 是两曲线的一个交点,且 AF⊥x 轴,则双曲线的离心率为( ( ) A. 2+2 B. 5+1 C. 3+1
2015 年普通高中高三第二次联合考试理科数学
注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的 姓名、准考证号填写在答题卡上。 2. 回答第Ⅰ卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号框 涂黑。如 需改动,用橡皮擦干净后,再选涂其它答案标号框。写在本试卷上无效。 3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4. 考试结束后,将本试卷和答题卡一并交回。
D. 1,1
第Ⅱ卷
本卷包括必考题和选考题两部分。 第 13 题~第 21 题为必考题, 每个试题考生都必须做 答。第 22 题~第 24 题为选考题,考生根据要求做答。 二、填空题:本大题共 4 小题,每小题 5 分。
(13)若复数 z
(a 2 4) (a 2)i 为纯虚数,则
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只 有一项是符合题目要求的。
(1)设集合 A
x y lg(3 2x),集合 B y y
B. (﹣∞,1] C.



A. [ 0, )
3 2
(2) 若命题 p 为真命题,命题 q 为假命题,则以下为真命题的是(
A. p q

2015年高考数学全国卷二理科真题+答案解析

2015年高考数学全国卷二理科真题+答案解析

2015年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,-1,0,2},B={x|(X-1)(x+2)<0},则A∩B= (A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2}2.若a 为实数且(2+ai )(a -2i )=-4i ,则a =(A )-1 (B )0 (C )1 (D )23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是(A )逐年比较,2008年减少二氧化硫排放量的效果最显著 (B )2007年我国治理二氧化硫排放显现(C )2006年以来我国二氧化硫年排放量呈减少趋势 (D )2006年以来我国二氧化硫年排放量与年份正相关 4.等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 = (A )21 (B )42 (C )63 (D )845.设函数f (x )=⎩⎨⎧≥++-1,2,1),2(log 112x x x x <,则f (-2)+ f (log 212) =(A )3 (B )6 (C )9 (D )126.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则 截去部分体积与剩余部分体积的与剩余部分体积的比值为(A )81 (B )71 (C )61(D )517.过三点A (1,3),B (4,2),C (1,7)的圆交于y 轴于M 、N 两点,则MN=(A )26 (B )8 (C )46 (D )10 8.右边程序抗土的算法思路源于我国古代数学名著《九章算术》 中的“更相减损术”。

执行该程序框图,若输入a,b 分别为14,18, 则输出的a= (A )0 (B )2 (C )4 (D )149.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体 积的最大值为36,则球O 的表面积为(A )36π (B )64π (C )144π (D )256π10.如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与 DA 运动,∠BOP=x 。

2015市二模理科数学

2015市二模理科数学

理科数学试题(二)参考答案一、选择题(本大题共12小题,每小题5分,共60分.)CBDA A BCBAD CC. 二、填空题:(本大题共4小题,每小题5分,共20分.) 13.23π. 14. 23n n a =. 15.14. 16. 2016 三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)11sincos 2222ααα-=,11c o s 22αα-=,所以1sin()62πα-=,又因为α为锐角,所以3πα=. ………………6分(Ⅱ)2()cos 22sin 2sin 2sin 1f x x x x x =+=-++,令sin t x =,则2221(11)y t t t =-++-≤≤,由二次函数的图像知:当12t =时,max 32y =;当1t =-时,min 3y =-, 所以函数()f x 的值域为3[3,]2-. ………………12分18.(本小题满分12分) 解:(Ⅰ)证明:PD ⊥平面ABCD ,BC Ü平面ABCD ,BC PD ∴⊥,又,BC CD CD PD D ⊥=,BC PCD ∴⊥面,又PC PCD 面Ü,∴BC PC ⊥. …………6分(Ⅱ)因为,//BC CD AD BC ⊥,所以AD DC ⊥,以D 为原点建立空间直角坐标系D xyz -,不妨设1AD =,则(1,0,0)A ,(0,0,2)P ,(0,2,0)C ,(2,2,0)B ,设平面PBC 的一个法向量为(,,)m x y z =,又(2,0,0)BC =-,(0,2,2)PC =-,由00m BC m PC ⎧⋅=⎪⎨⋅=⎪⎩得20220x y z -=⎧⎨-=⎩,不妨取1y =,则(0,1,1)m =,(1,0,2)PA =-,∴PA 与平面PBC 所成角θ的正弦值sin cos ,52PA m PA m PA mθ⋅=<>===⋅. ……………12分19.(本小题满分12分)解:(Ⅰ)由图知,m 名学生中星期日运动时间少于60分钟的频率为:111()30750300020+⨯=,所以1520m ⨯=,所以100m =;设星期日运动时间在[)90,120内的频率为x ,则1111111()3013000750300100200300600x ++++++⨯+=,所以14x =.所以星期日运动时间在[)90,120内的频率为14. ……………6分 (Ⅱ)由图知,第一组有1人、第二组有4人、第七组有10人,第八组有5人,四组共20人,其中星期日运动时间少于60分钟的有5人.所以ξ可能取值为0,1,2,3,且3515320()(0,1,2,3)i i C C P i i C ξ-⋅===.所以ξ的分布列为所以ξ的期望=0+1+2+3==2282282282282284E ξ⨯⨯⨯⨯. …………12分20.(本小题满分12分) 解:(Ⅰ)由c a =,及222a b c =+,设2,,(0)a k c b k k ===>,则由四个顶点构成的四边形面积为4得12242a b ⋅⋅=,即14242k k ⋅⋅=,解得1k =, ∴椭圆22:14x C y +=. ……………5分 (Ⅱ)设直线:l x ty m =+,即0x ty m --=,1m ≥,则由直线l 与圆221x y +=相切得1=,即221t m =-, 由222244()44x y ty m y x ty m⎧+=⇒++=⎨=+⎩,即222(4)240t y tmy m +++-=,易知0∆>恒成立,设1122(,),(,)A x y B x y ,由韦达定理知:12221222444tm y y t m y y t -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,∴由弦长公式得12AB y =-21212)4]y y y y =+-⋅==,∵1m ≥,∴23AB m m ==≤=+,当且仅当3m m =,即m =时等号成立,所以max 2AB =,所以OAB ∆的面积最大值为12112⨯⨯=. ……………12分21.(本小题满分12分) 解:(Ⅰ)由已知得,221ln ln ()=ex xf x x x--'=.由()0f x '>得01x <<;由()0f x '<得1x >.所以函数()y f x =的单调增区间为:(0,1),单调减区间为(1,)+∞.……………5分(Ⅱ)不等式()()f x g x ≥恒成立⇔不等式1+ln 1x kx x ≥+恒成立 ⇔不等式(1)(1+ln )x x k x+≤恒成立,令(1)(1+ln )1()1(1+ln )(1)x x h x x x x x +⎛⎫==+≥ ⎪⎝⎭,则min ()k h x ≤.因为2ln ()x x h x x-'=,令()l n (1)x x xx ϕ=-≥,则()h x '与()x ϕ同号,因为1()0x x x ϕ-'=≥(当且仅当1x =时取等号),所以()x ϕ在[1,)+∞上递增,所以()(1)10x ϕϕ≥=>,所以()0h x '>,所以()h x 在[1,)+∞上递增,所以min ()(1)2h x h ==,所以 2.k ≤ ……………12分22.证明:(Ⅰ)因为A C B D =,所以ABC BCD ∠=∠.又因为EC 与圆相切于点C ,故ACE ABC∠=∠,所以ACE BCD ∠=∠. ………………5分 (Ⅱ)因为ECB CDB ∠=∠,EBC BCD ∠=∠,所以BDCECB ∆∆,故B C C DB E B C=.即2BC BE CD =⋅.又82BE ,CD ,==所以=4BC . ………………10分23.解:(Ⅰ)曲线1:2cos C ρθ=化为普通方程为:22(1)1x y -+=;直线2C的参数方程x ty =⎧⎪⎨=⎪⎩ (t 为参数).0y -=.所以曲线1C 是以1C ()1,0为圆心,1r =为半径的圆.所以圆心1C ()1,00y -=的距离为:d ==.所以1AB ==.………………5分 (Ⅱ)由(Ⅰ)知,圆10分 24.解: 1,1()1223,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩(Ⅰ)不等式()2f x x >,即112x x ≤⎧⎨->⎩或12232x x x <<⎧⎨->⎩或212x x≥⎧⎨>⎩,解得12x <-,所以不等式()2f x x >的解集为12x x ⎧⎫<-⎨⎬⎩⎭. ……………5分(Ⅱ)存在x R ∈,使得2()1f x t t >-+,即2max ()1f x t t >-+∵max ()1f x =, ∴只要22110(0,1)t t t t t >-+⇔-<⇔∈即(0,1)t ∈ ……………10分。

2015杭州二模数学(理)

2015杭州二模数学(理)
19. (Ⅰ) a2 1, b2 0, a3 , b3 0 , (Ⅲ) bk 1 bk , ak 1 bk 1 0 , ak ak 1 , 即 k [2, N ] 时,恒有 ak a , 由(II)知 bk ak (b a )( ) k 1 , bk a (b a )( ) k 1 , 所以 ak 1 bk 1 a a (b a )( ) k 2 0 , 解得: k 2 log 1
……………………8 分
(II)当 a 3[1,6] 时, sin C 1 , 当 a 1时, b2 a2 c2 2ac cos B 1 36 2 1 6 于是
1 31 ,∴ b 31 , 2
3 93 6 31 ,从而: sin C , 31 sin C sin π 3 3 3 93 3 ,因为 , 2 31 2
D A G E
C B
PA DH 4 1 2 , PD 2 5 5
4 19 , 3 5 5
P
在 Rt△GHC 中, GC HG2 HC2
GH 2 19 所以 cos GHC . GC 19
所以二面角 A-PD-C 的余弦值为-
A
H D G
2 19 . 19
……………………8 分
1 . 2
π ,即 a2-6a+8=0, 3
根据余弦定理 b2=a2+c2-2accosB,得 (2 7 )2=a2+62-12acos 解得:a=2 或 a=4.
当 a=2 时, SABC ac sin B 2 6 sin 当 a=4 时, SABC
1 1 3 3; 2 2 3 1 1 ac sin B 4 6 sin 6 3 . 2 2 3

2015二模理数答案

2015二模理数答案

长春市普通高中2015届高三质量监测(二)数学(理科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1. D2. A3. C4. C5. D6. D7. B8. B9. C 10.A 11. C 12. A 简答与提示:1. 【命题意图】本题主要考查集合交集与补集的运算,属于基础题.【试题解析】D 由题意可知{|1Q x x =-≤或2}x >,则{|12}Q x x =-<≤R ð,所以{|02}P Q x x =≤≤R ð. 故选D. 2. 【命题意图】本题考查复数的除法运算,以及复平面上的点与复数的关系,属于基础题.【试题解析】A131255i i i -=--,所以其共轭复数为3155i +. 故选A. 3. 【命题意图】本题考查正态分布的概念,属于基础题,要求学生对统计学原理有全面的认识.【试题解析】C (01)(12)0.5(2)P P P ξξξ==->=≤≤≤≤. 故选C. 4. 【命题意图】本题借助不等式来考查命题逻辑,属于基础题.【试题解析】C 由p 成立,则1a ≤,由q 成立,则1a >,所以p ⌝成立时1a >是q 的充要条件.故选C.5. 【命题意图】本题主要考查线性规划,是书中的原题改编,要求学生有一定的运算能力.【试题解析】D由题意可知,35x y +在(2,1)--处取得最小值,在35(,)22处取得最大值,即35[11,17]x y +∈-.故选D.6. 【命题意图】本题通过正方体的三视图来考查组合体体积的求法,对学生运算求解能力有一定要求.【试题解析】D 该几何体可视为正方体截去两个三棱锥,所以其体积为41138362--=. 故选D. 7. 【命题意图】本题考查向量模的运算.【试题解析】B |2|+==a b 故选B.8. 【命题意图】本题考查学生对茎叶图的认识,通过统计学知识考查程序流程图的认识,是一道综合题.【试题解析】B 由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10. 故选B. 9. 【命题意图】本题主要考查三角函数的图像和性质,属于基础题.【试题解析】C由题意()sin(2)6f x x π=+,将其图像向右平移ϕ(0)ϕ>个单位后解析式为()sin[2()]6f x x πϕ=-+,则26k πϕπ-=,即212k ππϕ=+()k ∈N ,所以ϕ的最小值为12π. 故选C.10. 【命题意图】本题借助基本不等式考查点到直线的距离,属于中档题.【试题解析】A 由直线与圆相切可知||m n +=1mn m n =++,由2()2m n mn +≤可知211()4m n m n ++≤+,解得(,2[222,)m n +∈-∞-++∞. 故选A. 11. 【命题意图】本题主要考查双曲线的几何性质,结合着较大的运算量,属于难题.【试题解析】C 由题可知,过I 、III 象限的渐近线的倾斜角为θ,则tan b a θ=,222tan 2aba bθ=-,因此△OAB 的面积可以表示为3222112tan 227a b a a a a b θ⋅⋅==-,解得34b a =,则54e =. 故选C.12. 【命题意图】本题是最近热点的复杂数列问题,属于难题.【试题解析】A 设(2)n n n b nS n a =++,有14b =,28b =,则4n b n =, 即(2)4n n n b nS n a n =++=当2n ≥时,1122(1)(1)01n n n n S S a a nn ---++-+=- 所以12(1)11n n n n a a n n -++=-,即121n n a a n n -⋅=-,所以{}n a n是以12为公比,1为首项的等比数列,所以11()2n n a n -=,12n n na -=. 故选A.二、填空题(本大题包括4小题,每小题5分,共20分)13. 6014.4915.83π16. 19(2,)8简答与提示:13. 【命题意图】本题主要考查二项式定理的有关知识,属于基础题.【试题解析】由题意可知常数项为2246(2)(60C x =. 14. 【命题意图】本题考查定积分的几何意义及微积分基本定理,属于基础题.【试题解析】由题意322023a a x ==⎰,所以49a =. 15. 【命题意图】球的内接几何体问题是高考热点问题,本题通过求球的截面面积,对考生的空间想象能力及运算求解能力进行考查,具有一定难度.【试题解析】由题意,面积最小的截面是以AB为直径,可求得3AB =,进而截面面积的最小值为283ππ=. 16. 【命题意图】本题主要考查数形结合以及函数的零点与交点的相关问题,需要学生对图像进行理解,对学生的能力提出很高要求,属于难题.【试题解析】由题意可知()f x 是周期为4的偶函数,对称轴为直线2x =. 若()F x 恰有4个零点,有(1)(1)(3)(3)g f g f >⎧⎨<⎩,解得19(2,)8a ∈.三、解答题(本大题必做题5小题,三选一选1小题,共70分)17. (本小题满分12分)【命题意图】本小题主要考查两角和的正切公式,以及同角三角函数的应用,并借助正弦定理考查边角关系的运算,对考生的化归与转化能力有较高要求.【试题解析】解:(1) +,tan tan()A B C C A B π+=∴=-+ (3分)tan 2,tan 3,tan 1,4A B C C π==∴=∴= (6分)(2)因为tan 3B =sin 3sin 3cos cos BB B B⇒=⇒=,而22sin cos 1B B +=,且B 为锐角,可求得sin B =.(9分)所以在△ABC中,由正弦定理得,sin sin AB AC B C =⨯=. (12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识、离散型随机变量的分布列以及数学期望的求法. 本题主要考查数据处理能力.【试题解析】(1)由图可知0.035a =,0.025b =. (4分)(2) 利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人,属于潜在消费人群的为4人. (6分) 从中取出三人,并计算三人所获得代金券的总和X , 则X 的所有可能取值为:150,200,250,300.363101(150)6C P X C ===, 21643101(200)2C C P X C ===,126433(250)10C C P X C ===,343101(300)30C P X C ===,(10分) 且1131150200250300210621030EX =⨯+⨯+⨯+⨯=.(12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求. 【试题解析】解:(1) 取PB 中点N ,连结MN 、AN ,M 是PC 中点,1//,22MN BC MN BC ∴==, 又//BC AD ,//,MN AD MN AD ∴=,∴四边形ADMN 为平行四边形 ,AP AD AB AD ⊥⊥,AD ∴⊥平面PAB ,AD AN ∴⊥,AN MN ∴⊥ AP AB =,AN PB ∴⊥,AN ∴⊥平面PBC ,AN ⊂平面ADM ,∴平面ADM ⊥平面PBC .(6分) (2) 存在符合条件的λ.以A 为原点,AB 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立空间直角坐标系A xyz -,设(2,,0)E t ,(0,0,2)P ,(0,2,0)D ,(2,0,0)B从而(0,2,2)PD =-,(2,2,0)DE t =-,则平面PDE 的法向量为1(2,2,2)n t =-, 又平面DEB 即为xAy 平面,其法向量2(0,0,1)n =,则1212122cos ,3||||(2n n n n n n ⋅<>===⋅,解得3t =或1t =,进而3λ=或13λ=.(12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法,椭圆方程的求法、直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1) 已知11(||||||)||||22ABC A S AB AC BC r BC y ∆=++⋅=⋅,且||2BC =,||3A y r =,其中r 为内切圆半径,化简得:||||4AB AC +=,顶点A 的轨迹是以B C 、为焦点,长轴长为4的椭圆(去掉长轴端点),其中2,1,a c b ===进而其方程为22143x y +=(0)y ≠. (5分)(2) 1232k k k =+,以下进行证明:当直线PQ 斜率存在时,设直线:(1)PQ y k x =-且11(,)P x y ,22(,)Q x y ,(4,)H m联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩可得2122834k x x k +=+,212241234k x x k -=+. (8分)由题意:13mk =,1214y m k x -=-,2324y m k x -=-.11212312()(4)()(4)(4)(4)y m x y m x k k x x --+--+=--21212121212882(5)()2424224()1636363m k kx x m k x x mk m mk x x x x k ++-+++====-+++当直线PQ 斜率不存在时,33(1,),(1,)22P Q -,231332222333m m m k k k -++=+== 综上可得1232k k k =+. (12分)21. (本小题满分12分) 【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值以及函数零点的情况. 本小题对考生的逻辑推理能力与运算求解有较高要求.【试题解析】解:(1) 对()f x 求导得:1()ln(1)1axf x a x b x-'=-++-+,根据条件知(0)0f '=,所以101b b -=⇒=. (3分)(2) 由(1)得()(1)ln(1)f x ax x x =-+-,01x ≤≤1()ln(1)11axf x a x x-'=-++-+ 22(1)(1)21()1(1)(1)a a x ax ax a f x x x x -+--++''=-+=-+++.① 当12a ≤-时,由于01x ≤≤,有221()()0(1)a a x a f x x ++''=-≥+,于是()f x '在[0,1]上单调递增,从而()(0)0f x f ''≥=,因此()f x 在[0,1]上单调递增,即()(0)0f x f ≥=而且仅有(0)0f =;②当0a ≥时,由于01x ≤≤,有221()0(1)ax a f x x ++''=-<+,于是()f x '在[0,1]上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,1]上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =;③当102a -<<时,令21min{1,}a m a+=-,当0x m ≤≤时,221()()0(1)a a x a f x x ++''=-≤+,于是()f x '在[0,]m 上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,]m 上单调递减, 即()(0)0f x f ≤=而且仅有(0)0f =.综上可知,所求实数a 的取值范围是1(,]2-∞-. (8分)(3) 对要证明的不等式等价变形如下:2110000100010000.41000.55210001100111()()(1)(1)100001000100001000e e ++<<⇔+<<+ 所以可以考虑证明:对于任意的正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 并且继续作如下等价变形2152112111(1)(1)()ln(1)1()ln(1)52n n e n n n n n n+++<<+⇔++<<++ 211(1)ln(1)0()5111(1)ln(1)0()2p n n n q n n n ⎧++-<⎪⎪⇔⎨⎪++->⎪⎩对于()p 相当于(2)中21(,0)52a =-∈-,12m =情形,有()f x 在1[0,]2上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.取1x n =,当2n ≥时,211(1)ln(1)05n n n++-<成立;当1n =时,277(1)ln 21ln 210.710555+-=-<⨯-<.从而对于任意正整数n 都有211(1)ln(1)05n n n ++-<成立.对于()q 相当于(2)中12a =-情形,对于任意x ∈[0,1],恒有()0f x ≥而且仅有(0)0f =. 取1x n=,得:对于任意正整数n 都有111(1)ln(1)02n n n++->成立.因此对于任意正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 这样依据不等式215211(1)(1)n n e n n+++<<+,再令10000n =利用左边,令1000n = 利用右边,即可得到10000.41000.5100011001()()100001000e <<成立. (12分) 22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到弦切角定理以及三角形 相似等内容.本小题重点考查考生对平面几何推理能力.【试题解析】解:(1) 由题意可知,EPC APC ∠=∠,PEB PAC ∠=∠,则△PED ∽△PAC ,则PE PD PA PC =,又PE ED PB BD =,则ED PB PDBD PA PC⋅=. (5分) (2) 由EPC APC ∠=∠,PEB PAC ∠=∠,可得CDE ECD ∠=∠, 在△ECD 中,30CED ∠=,可知75PCE ∠=. (10分)23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1) 对于曲线1C 有1x y +=,对于曲线2C 有2214x y +=.(5分) (2) 显然曲线1C :1x y +=为直线,则其参数方程可写为21x y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)与曲线2C :2214x y +=联立,可知0∆>,所以1C 与2C 存在两个交点,由125t t +=,1285t t =,得21||5d t t =-==. (10分) 24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及 不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】解:(1) 当3a =时,174,213()5,22341,2x x f x x x x ⎧-≤⎪⎪⎪=<<⎨⎪⎪-≥⎪⎩,所以()7f x >的解集为{|0x x <或2}x >.(5分)(2) ()|21||2||212||1|f x x a x a x a x a a a =-+-+≥-+-+=-+, 由()3f x ≥恒成立,有|1|3a a -+≥,解得2a ≥ 所以a 的取值范围是[)2,+∞.(10分)。

2015年云南省高考数学二模试卷(理科)(解析版)

2015年云南省高考数学二模试卷(理科)(解析版)

2015年云南省高考数学二模试卷(理科)一、选择题:共12小题,每小题5分,共60分1.(5分)已知i为虚数单位,复数z1=2+3i,z2=1﹣i,则=()A.﹣﹣i B.﹣+i C.﹣i D.+i2.(5分)设△ABC的外接圆的圆心为P,半径为3,若=,则=()A.﹣B.﹣C.3D.93.(5分)设a=3,b=,c=,则下列正确的是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.(5分)在(2x﹣)3的二项展开式中,各项系数的和为()A.27B.16C.8D.15.(5分)设S n是等差数列{a n}的前n项和,若=,则=()A.B.C.4D.56.(5分)如图是一个空间几何体的三视图(注:正视图也称主视图,侧视图也称左视图),其中正视图和侧视图都是边长为6的正三角形,俯视图是直径等于6的圆,则这个空间几何体的体积为()A.54πB.18πC.9D.7.(5分)已知平面向量=(cos x,sin x),=(cos x,cos x),函数f(x)=•,R 是实数集,如果∃x1∈R,∃x2∈R,∀x∈R,f(x1)<f(x)≤f(x2),则|x2﹣x1|的最小值为()A.πB.C.D.8.(5分)在三棱锥P﹣ABC中,P A,PB,PC两两互相垂直,P A=1,PB=PC=2,若三棱锥P﹣ABC的顶点都在球O的球面上,则球O的表面积等于()A.9πB.16πC.25πD.36π9.(5分)如图所示的程序框图的功能是()A.求数列{}的前10项的和B.求数列{}的前11项的和C.求数列{}的前10项的和D.求数列{}的前11项的和10.(5分)表格提供了某工厂节能降耗技术改造后,一种产品的产量x(单位:吨)与相应的生产能耗y(单位:吨)的几组对应数据:根据表中提供的数据,求得y关于x的线性回归方程为=0.7x+0.35,那么表格中t的值为()A.3.5B.3.25C.3.15D.611.(5分)已知a>0,b>0,直线3x﹣4y=0是双曲线S:﹣=1的一条渐近线,双曲线S的离心率为e,则的最小值为()A.B.C.D.12.(5分)已知e是自然对数的底数,函数f(x)=e x﹣e﹣x+lg(x+),a,b都是实数,若p:a+b<0,q:f(a)+f(b)<0,则p是q的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件二、填空题:每小题5分,共20分13.(5分)在区间(0,4)内任取两个实数,如果每个实数被取到的概率相等,那么取出的两个实数的和大于2 的概率等于.14.(5分)设S n是数量{a n}的前n项和,如果S n=3a n﹣2,那么数列{a n}的通项公式为.15.(5分)已知e是自然对数的底数,函数f(x)=e x(x2+ax﹣2)在区间(﹣3,﹣2)内单调递减,则实数a的取值范围为.16.(5分)已知以点C(1,﹣3)为圆心的圆C截直线4x﹣3y+2=0得到的弦长等于2,椭圆E的长轴长为6,中心为原点,椭圆E的焦点为F1,F2,点P在椭圆E上,△F1PF2是直角三角形,若椭圆E的一个焦点是圆C与坐标轴的一个公共点,则点P到x轴的距离为.三、计算题17.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,S是△ABC的面积,tan B =(Ⅰ)求B的值(Ⅱ)设a=8,S=10,求b的值.18.(12分)某班级艺术团的成员唱歌、跳舞至少擅长一项,已知擅长唱歌的有5人,擅长跳舞的有4人,设从艺术社团的成员中随机选2人,每位成员被选中的概率相等,选出的人中既擅长唱歌又擅长跳舞的人数为X,且P(X>0)=,求:(Ⅰ)该班级艺术社团的人数;(Ⅱ)随机变量X的均值E(X).19.(12分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点(Ⅰ)求证:平面A1ED⊥平面EBD;(Ⅱ)求二面角A1﹣DE﹣B的正弦值.20.(12分)已知抛物线C:y2=4x的准线与x轴交于点M,E(x0,0)是x轴上的点,直线l经过M与抛物线C交于A,B两点(Ⅰ)设l的斜率为,x0=5,求证:点E在以线段AB为直径的圆上;(Ⅱ)设A,B都在以点E为圆心的圆上,求x0的取值范围.21.(12分)已知函数F(x)=lnx,f(x)=x2+a,a为常数,直线l与函数F(x)和f (x)的图象都相切,且l与函数F(x)的图象的切点的横坐标等于1.(Ⅰ)求直线l的方程和a的值;(Ⅱ)求证:关于x的不等式F(1+x2)≤ln2+f(x)的解集为(﹣∞,+∞).四、选考题选修4-1:几何证明选讲22.(10分)如图,P是⊙O的直径CB的延长线上的点,P A与⊙O相切于点A,点D在⊙O 上,∠BAD=∠APC,BC=40,PB=5(Ⅰ)求证:tan∠ABC=3;(Ⅱ)求AD的值.五、选修4-4:坐标系与参数分方程23.已知曲线C1的参数方程为(t为参数),当t=0时,曲线C1上对应的点为P,以原点O为极点,以x轴的正半轴建立极坐标系,曲线C2的极坐标方程为(Ⅰ)求证:曲线C1的极坐标方程为3ρcosθ﹣4ρsinθ﹣4=0;(Ⅱ)设曲线C1与曲线C2的公共点为A,B,求|P A|•|PB|的值.六、选修4-5:不等式选讲24.已知a是常数,f(x)=x2+2|x﹣1|+3,对任意实数x,不等式f(x)≥a都成立(Ⅰ)求a的取值范围(Ⅱ)对任意实数x,求证:|x+3|≥a﹣|x﹣1|2015年云南省高考数学二模试卷(理科)参考答案与试题解析一、选择题:共12小题,每小题5分,共60分1.(5分)已知i为虚数单位,复数z1=2+3i,z2=1﹣i,则=()A.﹣﹣i B.﹣+i C.﹣i D.+i【解答】解:====﹣,故选:B.2.(5分)设△ABC的外接圆的圆心为P,半径为3,若=,则=()A.﹣B.﹣C.3D.9【解答】解:由题意=,又△ABC的外接圆的圆心为P,半径为3,故,两向量的和向量的模是3,由向量加法的平行四边形法则知,此时,两向量的和向量与两向量的夹角都是60°,即,两向量的夹角为120°,∴•=3×3×cos120°=9×(﹣)=﹣.故选:A.3.(5分)设a=3,b=,c=,则下列正确的是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【解答】解:a=3<0,b==1,0<c=<1,∴a<c<b.故选:B.4.(5分)在(2x﹣)3的二项展开式中,各项系数的和为()A.27B.16C.8D.1【解答】解:令二项式(2x﹣)3中的x=1得到展开式中各项的系数的和为1.故选:D.5.(5分)设S n是等差数列{a n}的前n项和,若=,则=()A.B.C.4D.5【解答】解:等差数列{a n}中,设首相为a1,公差为d,由于:,则:,解得:,=,故选:D.6.(5分)如图是一个空间几何体的三视图(注:正视图也称主视图,侧视图也称左视图),其中正视图和侧视图都是边长为6的正三角形,俯视图是直径等于6的圆,则这个空间几何体的体积为()A.54πB.18πC.9D.【解答】解:此几何体是一个圆锥,由正视图和侧视图都是边长为6的正三角形,可得其底面半径R=3,且其高为正三角形的高,由于此三角形的高为,故圆锥的高h=,此圆锥的体积V=πR2h=9,故选:C.7.(5分)已知平面向量=(cos x,sin x),=(cos x,cos x),函数f(x)=•,R 是实数集,如果∃x1∈R,∃x2∈R,∀x∈R,f(x1)<f(x)≤f(x2),则|x2﹣x1|的最小值为()A.πB.C.D.【解答】解:平面向量=(cos x,sin x),=(cos x,cos x),函数f(x)=•=cos2x+sin x cos x=(1+cos2x)+sin2x=+sin(2x+),即有f(x)的最小值为﹣1,最大值为+1,如果∃x1∈R,∃x2∈R,∀x∈R,f(x1)<f(x)≤f(x2),则﹣1<f(x)≤+1,则|x1﹣x2|的最小值为,即=,故选:B.8.(5分)在三棱锥P﹣ABC中,P A,PB,PC两两互相垂直,P A=1,PB=PC=2,若三棱锥P﹣ABC的顶点都在球O的球面上,则球O的表面积等于()A.9πB.16πC.25πD.36π【解答】解:由题意,以P A、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P﹣ABC外接球.∵长方体的对角线长为=3,∴球直径为3,半径R=,因此,三棱锥P﹣ABC外接球的表面积是4πR2=4π×()2=9π故选:A.9.(5分)如图所示的程序框图的功能是()A.求数列{}的前10项的和B.求数列{}的前11项的和C.求数列{}的前10项的和D.求数列{}的前11项的和【解答】解:由已知框图可得:循环变量k的初值为1,终值为10,步长为1,故循环共进而10次,又由循环变量n的初值为1,步长为2,故终值为20,由S=S+可得:该程序的功能是计算S=的值,即数列{}的前10项的和,故选:C.10.(5分)表格提供了某工厂节能降耗技术改造后,一种产品的产量x(单位:吨)与相应的生产能耗y(单位:吨)的几组对应数据:根据表中提供的数据,求得y关于x的线性回归方程为=0.7x+0.35,那么表格中t的值为()A.3.5B.3.25C.3.15D.6【解答】解:==4.5,==2+,∵y关于x的线性回归方程为=0.7x+0.35,∴2+=0.7×4.5+0.35∴t=6.故选:D.11.(5分)已知a>0,b>0,直线3x﹣4y=0是双曲线S:﹣=1的一条渐近线,双曲线S的离心率为e,则的最小值为()A.B.C.D.【解答】解:由题意,=,e==,所以==≥=,所以的最小值为,故选:A.12.(5分)已知e是自然对数的底数,函数f(x)=e x﹣e﹣x+lg(x+),a,b都是实数,若p:a+b<0,q:f(a)+f(b)<0,则p是q的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件【解答】解:函数f(x)的定义域为R,∵f(x)=e x﹣e﹣x+lg(x+),∴f(x)为增函数,f(﹣x)+f(x)=e﹣x﹣e x+lg(﹣x+)+e x﹣e﹣x+lg(x+)=lg(x+)(﹣x+)=lg1=0,即f(﹣x)=﹣f(x),即函数f(x)是奇函数,若a+b<0,则a<﹣b,则f(a)<f(﹣b),即f(a)<﹣f(b),则f(a)+f(b)<0,若f(a)+f(b)<0,则f(a)<﹣f(b),∵函数f(x)是奇函数,∴f(a)<f(﹣b),∵f(x)是增函数,∴a<﹣b,即a+b<0成立,故p是q的充要条件,故选:C.二、填空题:每小题5分,共20分13.(5分)在区间(0,4)内任取两个实数,如果每个实数被取到的概率相等,那么取出的两个实数的和大于2 的概率等于.【解答】解:设在区间(0,4)内任取两个实数为x,y,则满足,取出的两个实数的和大于2,则满足,如图满足条件的实数如图中阴影部分,面积为4×4﹣×2×2=14,由几何概型公式可得取出的两个实数的和大于2 的概率等于;故答案为:.14.(5分)设S n是数量{a n}的前n项和,如果S n=3a n﹣2,那么数列{a n}的通项公式为.【解答】解:∵S n=3a n﹣2,∴当n=1时,a1=3a1﹣2,解得a1=1;当n≥2时,a n=S n﹣S n﹣1=(3a n﹣2)﹣(3a n﹣1﹣2),化为,∴数列{a n}是等比数列,首项为1,公比为.∴.故答案为:.15.(5分)已知e是自然对数的底数,函数f(x)=e x(x2+ax﹣2)在区间(﹣3,﹣2)内单调递减,则实数a的取值范围为[,+∞).【解答】解:由f(x)=(x2+ax﹣2)e x,得f′(x)=[x2+(a+2)x+a﹣2]e x,令g(x)=x2+(a+2)x+a﹣2,因为△=(a+2)2﹣4(a﹣2)=a2+12>0,所以g(x)有两个不相等的实数根x1,x2,不妨设x1>x2,要使f(x)在[﹣3,﹣2]上单调递减,必须满足,即,解得:a≥,故答案为:[,+∞).16.(5分)已知以点C(1,﹣3)为圆心的圆C截直线4x﹣3y+2=0得到的弦长等于2,椭圆E的长轴长为6,中心为原点,椭圆E的焦点为F1,F2,点P在椭圆E上,△F1PF2是直角三角形,若椭圆E的一个焦点是圆C与坐标轴的一个公共点,则点P到x轴的距离为.【解答】解:如右图,点C到直线4x﹣3y+2=0的距离d==3,故r==,故圆C的方程为(x﹣1)2+(y+3)2=10,令y=0解得,x=0或x=2,故椭圆的一点焦点坐标为(2,0),故c=2,再由椭圆E的长轴长为6知,a=3;故椭圆的方程为+=1;又∵点P在椭圆E上,△F1PF2是直角三角形,∴∠PF1F2=90°或∠PF2F1=90°,∴设点P的横坐标为x0,则|x0|=2,故+=1,故|y0|=;即点P到x轴的距离为;故答案为:.三、计算题17.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,S是△ABC的面积,tan B =(Ⅰ)求B的值(Ⅱ)设a=8,S=10,求b的值.【解答】解:(Ⅰ)△ABC中,∵tan B=,∴b sin A sin B=(2a﹣c+b cos A)cos B.利用正弦定理可得sin A sin2B=(2sin A﹣sin C+sin B cos A)cos B,∴sin A sin2B﹣sin B cos A cos B=2sin A cos B﹣sin C cos B.即﹣sin B cos((A+B)=2sin A cos B﹣sin C cos B,∴sin B cos C+sin C cos B=2sin A cos B,即sin(B+C)=2sin A cos B,∴cos B=,B=.(Ⅱ)∵a=8,S=10=ac•sin B=2c,∴c=5.再由余弦定理可得b===7.18.(12分)某班级艺术团的成员唱歌、跳舞至少擅长一项,已知擅长唱歌的有5人,擅长跳舞的有4人,设从艺术社团的成员中随机选2人,每位成员被选中的概率相等,选出的人中既擅长唱歌又擅长跳舞的人数为X,且P(X>0)=,求:(Ⅰ)该班级艺术社团的人数;(Ⅱ)随机变量X的均值E(X).【解答】解:(Ⅰ)设艺术社团既擅长唱歌又擅长跳舞共有x人,则艺术社团有(9﹣x)人,那么唱歌、跳舞只擅长一项的人数为(9﹣2x)人…(2分)∵P(X>0)=P(X≥1)=1﹣P(X=0)=,∴1﹣=…(4分)整理为:19x2﹣153x+288=0,∴x=3,∴9﹣x=6,即艺术社团有6人…(6分)(Ⅱ)依(Ⅰ)有:艺术社团有6人,既擅长唱歌又擅长跳舞共有3人.X的可能取值为0,1,2,P(X=0)==,P(X=1)==;P(X=2)==…(10分)∴EX=0×+1×+2×=1…(12分)19.(12分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点(Ⅰ)求证:平面A1ED⊥平面EBD;(Ⅱ)求二面角A1﹣DE﹣B的正弦值.【解答】(I)证明:设正方体ABCD﹣A1B1C1D1的棱长为2,建立坐标系D﹣xyz如图,则D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),A1(2,0,2),B1(2,2,2),C1(0,2,2),D1(0,0,2),E(0,2,1),BD的中点0(1,1,0),=(1,﹣1,2),=(2,2,0),=(0,2,1),=(2,0,2),∵,•=﹣1×0﹣1×2+2×1=0,∴OA1⊥DB,OA1⊥DE,又∵DB∩DE=D,DB⊂平面EBD,DE⊂平面EBD,∴OA1⊂平面A1BD,∴平面A1BD⊥平面EBD;(II)解:由(I)知:=(1,﹣1,2)是平面EBD的一个法向量,设=(x,y,z)是平面A1DE的一个法向量,则⊥,⊥,∴,取y=1,解得,∴=(2,1,﹣2)是平面A1DE的一个法向量,设二面角A1﹣DE﹣B的大小为θ,则|cosθ|==,∵0<θ<π,∴,∴二面角A1﹣DE﹣B的正弦值为.20.(12分)已知抛物线C:y2=4x的准线与x轴交于点M,E(x0,0)是x轴上的点,直线l经过M与抛物线C交于A,B两点(Ⅰ)设l的斜率为,x0=5,求证:点E在以线段AB为直径的圆上;(Ⅱ)设A,B都在以点E为圆心的圆上,求x0的取值范围.【解答】(Ⅰ)证明:由已知得M(﹣1,0),直线l的斜率存在,设为k,则k≠0,且l的方程为y=k(x+1),由,得k2x2+2(k2﹣2)x+k2=0.由直线l与抛物线C交于A、B两点得,△=4(k2﹣2)2﹣4k4>0,解得k2<1.∴0<k2<1.设A(x1,kx1+k),B(x2,kx2+k),则,当,x0=5时,,则E(5,0),,∴,),=(x2﹣5,),∵[x1x2+(x1+x2)+1]=0.∴,即EA⊥EB.∴点E在以线段AB为直径的圆上;(Ⅱ)解:∵A、B都在以点E为圆心的圆上,∴|EA|=|EB|.设AB的中点为D,则D(),∵|EA|=|EB|,∴DE⊥AB.∵k≠0,∴k DE•k=﹣1,解得:.∵0<k2<1,∴.∴x0的取值范围为(3,+∞).21.(12分)已知函数F(x)=lnx,f(x)=x2+a,a为常数,直线l与函数F(x)和f (x)的图象都相切,且l与函数F(x)的图象的切点的横坐标等于1.(Ⅰ)求直线l的方程和a的值;(Ⅱ)求证:关于x的不等式F(1+x2)≤ln2+f(x)的解集为(﹣∞,+∞).【解答】(Ⅰ)解:F′(x)=,F′(1)=1,故直线l的斜率为1,切点为(1,f(1)),即(1,0),∴直线l:y=x﹣1 ①又∵f′(x)=x,直线l:y=x﹣1与函数g(x)的图象都相切,∴令f′(x)=1,解得x=1,即切点为(1,+a),∴直线l:y﹣(+a)=x﹣1,即y=x﹣+a②比较①和②的系数得﹣+a=﹣1,∴a=﹣.(Ⅱ)证明:设H(x)=F(1+x2)﹣f(x)﹣ln2=ln(1+x2)﹣x2+﹣ln2,H′(x)=﹣x==,当0<x<1时,H′(x)>0,H(x)递增;当x>1时,H′(x)<0,H(x)递减.即有x>0时,H(x)有最大值,且为H(1)=0;由于H(﹣x)=H(x),则H(x)为偶函数,则H(﹣1)=H(1)=0,即有x<0时,H(x)的最大值为H(﹣1)=0.则H(x)≤0.即x∈R时,F(1+x2)﹣f(x)﹣ln2≤0.即关于x的不等式F(1+x2)≤ln2+f(x)的解集为(﹣∞,+∞).四、选考题选修4-1:几何证明选讲22.(10分)如图,P是⊙O的直径CB的延长线上的点,P A与⊙O相切于点A,点D在⊙O 上,∠BAD=∠APC,BC=40,PB=5(Ⅰ)求证:tan∠ABC=3;(Ⅱ)求AD的值.【解答】(Ⅰ)证明:连接AC,∵P是⊙O的直径CB的延长线上的点,P A与⊙O相切于点A,∴P A2=PB•PC=PB(PB+BC)=225,∴P A=15,在△ACP和△BAP中,∵∠ACP=∠BAP,∠APC=∠BP A,∴△ACP∽△BAP,∴=3,∵AC⊥AB,∴tan∠ABC==3;(Ⅱ)解:连接BD,则在△ACP与△BDA中,∵∠ACP=∠BDA,∠APC=∠BAD,∴△ACP∽△BDA,∴,∴AD==3AB,∵AC⊥AB,=3,∴AC2+AB2=BC2=1600,∴AB=4,∴AD=12.五、选修4-4:坐标系与参数分方程23.已知曲线C1的参数方程为(t为参数),当t=0时,曲线C1上对应的点为P,以原点O为极点,以x轴的正半轴建立极坐标系,曲线C2的极坐标方程为(Ⅰ)求证:曲线C1的极坐标方程为3ρcosθ﹣4ρsinθ﹣4=0;(Ⅱ)设曲线C1与曲线C2的公共点为A,B,求|P A|•|PB|的值.【解答】(Ⅰ)证明:∵曲线C1的参数方程为(t为参数),∴曲线C1的直角坐标方程为3x﹣4y﹣4=0,所以曲线C1的极坐标方程为3ρcosθ﹣4ρsinθ﹣4=0;(Ⅱ)解:当t=0时,x=0,y=﹣1,所以P(0,﹣1),由(Ⅰ)知:曲线C1是经过P的直线,设它的倾斜角为α,则tanα=,从而,cos,所以曲线C1的参数方程为,T为参数,∵,∴ρ2(3+sin2θ)=12,所以曲线C2的直角坐标方程为3x2+4y2=12,将,代入3x2+4y2=12,得21T2﹣30T﹣50=0,所以|P A|•|PB|=|T1T2|=.六、选修4-5:不等式选讲24.已知a是常数,f(x)=x2+2|x﹣1|+3,对任意实数x,不等式f(x)≥a都成立(Ⅰ)求a的取值范围(Ⅱ)对任意实数x,求证:|x+3|≥a﹣|x﹣1|【解答】解:(Ⅰ)∵f(x)=x2+2|x﹣1|+3=,∴当x≥1时,f(x)≥f(1)=4;当x<1时,f(x)>4;∴f(x)的最小值为4,∵对任意实数x,不等式f(x)≥a都成立,∴a≤4,∴a的取值范围为(﹣∞,4];(Ⅱ)证明:由(Ⅰ)得a≤4,∵|x+3|+|x﹣1|≥|(x+3)﹣(x﹣1)|=4,∴|x+3|+|x﹣1|≥a,∴|x+3|≥a﹣|x﹣1|.第21页(共21页)。

2015年佛山二模数学(理)试卷和答案

2015年佛山二模数学(理)试卷和答案

2015年佛山市普通高中高三教学质量检测(二)数学(理科)本试卷共4页,21小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}40 <<∈=x N x A 的子集个数为( )A .3B .4C .7D .82.若复数z 满足2)1()1(i z i +=-,其中i 为虚数单位,则在复平面上复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知向量a ()32, 0-=,b ()3, 1=,则向量a 在b 上的投影为( )A .3-B .3-C .3D .34.不可能肥直线b x y +=23作为切线的曲线是( )A .xy 1-= B .x y sin = C . x y ln =D .x e y =5.已知双曲线)0, 0( 12222>>=-b a by a x 的右焦点到左顶点的距离等于它到渐近线距离的2倍倍,则其渐近线方程为( )A .02=±y xB .02=±y xC .034=±y xD .043=±y x6.已知函数)( 11ln )(R a x a x f ∈⎪⎭⎫⎝⎛+-=.命题p :)(, x f R a ∈∃是奇函数;命题q :)(, x f R a ∈∀在定义域内是增函数,那么下列命题为真命题的是( )A .p ⌝B .q p ∧C .()q p ∧⌝D .()q p ⌝∧7.已知a , b , c 均为直线,α, β为平面.下面关于直线与平面关系的命题: (1)任意给定一条直线a 与一个平面α,则平面α内必存在与a 垂直的直线;(2)任意给定的三条直线a , b , c ,必存在与a , b , c 都相交的直线; (3)α//β,βα⊂⊂b a , ,必存在与a , b 都垂直的直线; (4)βαβαβα⊂⊂=⊥b a c , , , ,若a 不垂直c ,则a 不垂直b . 其中真命题的个数为( ) A .1 B . 2C .3D .48.若集合P 具有以下性质:① P P ∈∈1, 0; ② 若P y x ∈,,则P y x ∈-,且0≠x 时,P x∈1.则称集合P 是“Γ集”,则下列结论不正确的是( ) A .整数集Z 是“Γ集” B .有理数集Q 是 “Γ集”C .对任意的一个“Γ集”P ,若P y x ∈,,则必有P xy ∈D .对任意的一个“Γ集”P ,若P y x ∈,,且0≠x ,则必有P xy∈二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式112<-x 的解集为 .10.已知等差数列{}n a 满足1243=+a a ,523a a =,则=6a .11.将编号为1, 2, 3, 4, 5的五个球放入编号为1, 2, 3, 4, 5的一个盒子,每个盒内放一个球,若恰好有两个球的编号与盒子编号相同,则不同的投放方法的种数为 . 12.在△ABC 中,角A , B , C 所对的边分别为a , b , c ,若C c b B A b a sin )()sin )(sin (+=-+,则A = .13.已知{}21 ),( ≤≤+=y x y x A ,{}02 ),( =-+=a y x y x B ,若ΦB A ≠ ,则实数a 的 最大值为 .(二)选做题(14~15题,考生只能从中选做一题)14.(极坐标与参数方程选讲) 在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧+==t y tx 4(t 为参数),以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标为)4sin(24πθρ+=,则直线l和曲线C 的公共点有 个. 15.(几何选讲) 如图1,AB 是圆O 的直径,CD ⊥AB 于D ,且AD =2BD ,E 为AD 的中点,连接CE 并延长交圆O 于F ,若2=CD ,则EF = .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数R x x x x f ∈-++= , )62cos()32sin()(ππ.(1)求)4(πf 的值;(2)求函数)(x f 的值域和单调递增区间.17.(本小题满分12分)寒假期间,很多同学都喜欢参加“迎春花市摆档口”的社会实践活动,下表是今年某个已知摊位租金900元/档,精品进货价为9元/件,售价为12元/件,售余精品可以以进货价退回厂家.(1) 画出表中10个销售数据的茎叶图,并求出这组数据的中位数;(2) 从表中可知:2月14、15日这两个下雨天的平均销售量为80件/天,后三个非雨天平均销售量为100件/天,以此数据为依据,除天气外,其它条件不变.假如明年花市5天每天下雨的概率为51,且每天是否下雨相互独立,你准备在迎春花市租赁一个档口销售同样的精品,推测花市期间所租档口大约能售出多少件精品?(3) 若所获利润大于500元的概率超过0.6,则称为“值得投资”,那么在(2)条件下,你认为“值得投资”吗?A B图118.(本小题满分14分)如图2,在直三棱柱ABC -A 1B 1C 1中,AB =BC =2,∠ABC =1200,D 为AC 的中点,P 为棱A 1B 上的动点.(1) 探究:AP 能否与平面A 1BC 垂直? (2) 若AA 1=6,求二面角A 1-BD -B 1的余弦值.19.(本小题满分14分)设数列{}n a 满足),2( 1, 11211*-∈≥-=+⋅⋅⋅++=N n n a a a a a n n(1) 求数列{}n a 的通项公式;(2) 若数列{}n a 满足)1( log >=a a b n n a ,求证:111111132212-<-+⋅⋅⋅+-+-≤--a b b b b b b a a n n .20.(本小题满分14分)已知椭圆E :)0( 12222>>=+b a b y a x 过点(0, -2),且离心率为35.(1) 求椭圆E 的方程;图2A 11A(2) 如图3,ABD 是椭圆E 的顶点,M 是椭圆E 上除顶点外的任意一点,直线DM 交x 轴于点Q ,直线AD 交BM 于点P ,设BM 的斜率为k ,PQ 的斜率为m ,求动点N (m , k )轨迹方程.21.(本小题满分14分)设常数a >0,R ∈λ,函数32)()()(a x a x x x f +--=λ.(1) 若函数)(x f 恰有两个零点,求λ的值;(2) 若)(λg 是函数)(x f 的极大值,求)(λg 的取值范围.2015年佛山市普通高中高三教学质量检测(二)数学(理科)参考答案选择题:DBAB CDBA一、填空题:9.(0, 1); 10.11; 11.20;12.32π; 13.5;14.1;15:332 答案解析:1.集合A 的元素是自然数,所以A ={1,2,3},共3个元素,其子集个数为23=8个2.()()()()()()()i i i i i i i i i i i z +-=+=+=+-++=-+=1121211111122与第二象限的点(-1,1)对应.3.向量a 在b326)3(133202-=-=+⨯-==θ 4.对于B 选项:x x f cos )('=的最大值为1,所以x y sin =不存在斜率为23的切线。

河北省石家庄市2015届高三下学期二模考试数学(理)试题(含答案)

河北省石家庄市2015届高三下学期二模考试数学(理)试题(含答案)

X
的分布列,期望 E(X)和方程 D( X)
19、(本小题满分 12 分)
已知 PA 平面 ABCD ,CD AD , BA AD ,CD AD AP 4, AB 1 。 ( 1)求证: CD 平面 ADP ; ( 2) M为线段 CP上的点,当 BM AC 时,求二面角 C AB M 的余弦值。
11
1
.1
2 32 432
11
1
1
.1
2 32 4 32 5 432
9、在平面直角坐标系中,角
的顶点与原点重合,始边与 x 轴的非负半
轴重合,终边过点 P(sin ,cos ) ,则 sin(2
)
88
12
A. 3 2
B .3 2
1
C.
2
D .1 2
10、在四面体 S-ABC中, SA 平面 ABC, BAC 120 , SA AC 2, AB 1,
如图: O 的直径 AB 的延长线于弦 CD的延长线相交于 点 P, E 为 O 上一点, AE AC, DE 交 AB 于点 F。 ( 1)求证: O , C , D , F 四点共圆; ( 2)求证: PF PO PA PB .
23、(本小题满分 10 分)选修 4-4 :坐标系与参数方程
在平面直角坐标系
若将日均课外阅
读时间不低于 60 分钟的学生称为“读书谜” ,低于 60 分钟的学生称为“非读书谜”
( 1)根据已知条件完成下面 2 2 的列联表,并据此判断是否有
与性别有关?
99%的把握认为“读书谜”
( 2)将频率视为概率, 现在从该校大量学生中, 用随机抽样的方法每次抽取 1 人,共抽取
3 次,记被抽取的 3 人中的“读书谜”的人数为 X,若每次抽取的结果是相互独立的,求

2015年高考理科数学全国卷2及答案

2015年高考理科数学全国卷2及答案

数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷2)数学(理科)使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、云南、内蒙古、青海、贵州、甘肃、广西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,1,0,1,2}A =--,{|(1)(2)0}B x x x =-+<,则AB =( )A .{1,0}A =-B .{0,1}C .{1,0,1}-D .{0,1,2} 2.若a 为实数,且(2i)(2i)4i a a +-=-,则a =( )A .1-B .0C .1D .23.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.已知等比数列{}n a 满足13a =,135a a a ++=21,则357a a a ++=( )A .21B .42C .63D .845.设函数211log (2),1,()2, 1,x x x f x x -+-⎧=⎨⎩<≥则2(2)(log 12)f f -+=( )A .3B .6C .9D .126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B .17C .16D .157.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .108.如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .149.已知A ,B 是球O 的球面上两点,∠AOB =90°, C 为该球面上的动点.若三棱锥O-ABC 体积的 最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )ABCD11.已知A ,B 为双曲线E 的左、右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A .5B .2C .3D .2 12.设函数'()f x 是奇函数()()f x x ∈R 的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页)数学试卷 第6页(共21页)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.14.若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为________.15.4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =________. 16.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △中,D 是BC 上的点,AD 平分BAC ∠,ABD △面积是ADC △面积的2倍.(Ⅰ)求sin sin BC∠∠;(Ⅱ)若1AD =,22DC =,求BD 和AC 的长. 18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意 满意 非常满意记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.19.(本小题满分12分)如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.20.(本小题满分12分)已知椭圆222 9(0)C x y m m +=>:,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,请说明理由.21.(本小题满分12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e --≤,求m 的取值范围.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,O 为等腰三角形ABC 内一点,⊙O 与ABC △的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点. (Ⅰ)证明:EF BC ∥;(Ⅱ)若AG 等于⊙O 的半径,且23AE MN ==,求四边形EBCF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0πα≤<.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,3:23cos C ρθ=. (Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 最大值.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c ,d 均为正数,且a b c d +=+,证明: (Ⅰ)若ab cd >,则a b c d +>+; (Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)2015年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】由已知得{|21}B x x =-<<,故,}10{AB -=,故选A .【提示】解一元二次不等式,求出集合B ,然后进行交集的运算即可. 【考点】集合的交集运算和一元二次方程求根. 2.【答案】B【解析】由已知得24+(4)i 4i a -=-,所以40a =,244a -=-,解得0a =,故选B .【提示】首先将坐标展开,然后利用复数相等解之. 【考点】复数的四则运算. 3.【答案】D【解析】解:A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A 正确;B .2004~2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D 错误. 故选:D【提示】A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A 正确;B .从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D 错误. 【考点】柱形图信息的获得. 4.【答案】B51AB CB k =-,所以径为5,所以面积为:4π144πS R ==,选C .。

2015年北京西城高三二模数学(理科)试题及答案

2015年北京西城高三二模数学(理科)试题及答案

北京市西城区 2 0 1 5年高三二模试卷数学(理科)2015.5本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 6 页,共 150 分.考试时长 120 分钟.考生务势必答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回.1.设会合,会合?,则 A I B=()(-1? 3)?(1? 3]?[?(-]A .B .C. 1? 3) D .1? 32.已知平面向量,则实数 k =()A . 4B.- 4C. 8D.- 83.设命题 p :函数在 R上为增函数;命题q:函数为奇函数.则以下命题中真命题是()4.履行如下图的程序框图,若输入的,则输出的 s属于()A.{ 1?2}?B.{1?3}?C.{2?3}?D.{1?3?9}?5.某生产厂商更新设施,已知在将来x 年内,此设施所花销的各样花费总和y(万元)与 x知足函数关系,若欲使此设施的年均匀花销最低,则此设施的使用年限x为()A . 3B. 4C.5D. 66.数列为等差数列,知足,则数列前 21项的和等于()A .B.21C. 42D. 847.若“x> 1 ”是“不等式建立”的必需而不充足条件,则实数a的取值范围是()A . a > 3B . a < 3C. a > 4 D .a < 48.在长方体,点 M 为AB1的中点,点 P 为对角线AC1上的动点,点Q为底面ABCD上的动点(点P,Q能够重合),则MP+PQ的最小值为()第Ⅱ卷(非选择题共110 分)二、填空题:本小题共 6 小题,每题 5 分,共 30 分.9.复数=____10.双曲线 C :的离心率为;渐近线的方程为..已知角的终边经过点(-,); cos 2 =.11 3 4 ,则 cos = ?12.如图, P 为O 外一点, PA是切线,A为切点,割线PBC 与O订交于点B、C,且 PC = 2PA , D 为线段 PC 的中点,AD 的延伸线交O于点 E.若PB=3? ,则4PA =; AD·DE =.13.现有 6 人要排成一排照相,此中甲与乙两人不相邻,且甲不站在两头,则不一样的排法有种.(用数字作答)14.如图,正方形 ABCD 的边长为 2, O为AD 的中点,射线 OP 从 OA 出发,绕着点 O 顺时针方向旋转至 OD,在旋转的过程中,记, OP 所经过的在正方形 ABCD 内的地区(暗影部分)的面积S = f (x),那么关于函数 f (x)有以下三个结论:①;②随意,都有③随意此中全部正确结论的序号是.三、解答题:本大题共 6 小题,共 80分.解答应写出必需的文字说明、证明过程或演算步骤.15.(本小题满分 13分)在锐角△ ABC 中,角 A, B ,C 所对的边分别为 a, b , c ,已知 a =7 ,b=3,.(Ⅰ)求角 A 的大小;(Ⅱ)求△ ABC 的面积.16.(本小题满分 13分)某厂商检查甲、乙两种不一样型号电视机在10 个卖场的销售量(单位:台),并依据这10个卖场的销售状况,获得如下图的茎叶图.为了鼓舞卖场,在同型号电视机的销售中,该厂商将销售量高于数据均匀数的卖场命名为该型号电视机的“星级卖场”.(Ⅰ)当 a = b =3时,记甲型号电视机的“星级卖场”数目为m,乙型号电视机的“星级”n,比较m,n的大小关系;卖场数目为(Ⅱ)在这 10个卖场中,随机选用 2 个卖场,记 X 为此中甲型号电视机的“星级卖场”的个数,求 X 的散布列和数学希望.(Ⅲ)若 a = 1,记乙型号电视机销售量的方差为s2,依据茎叶图推测 b为什么值时, s2达到最小值.(只要写出结论)17.(本小题满分 14分)如图 1,在边长为 4的菱形 ABCD中,于点 E ,将△ADE沿DE 折起到的地点,使,如图2.⑴求证:平面 BCDE ;⑵求二面角的余弦值;⑶判断在线段 EB 上能否存在一点 P ,使平面?若存在,求出的值;若不存在,说明原因.18.(本小题满分 13分)已知函数,此中 a R .⑴当时,求 f (x)的单一区间;⑵a0m0x f (x)|≤m建立.当>时,证明:存在实数>,使得关于随意的实数,都有|19.(本小题满分 14分)设分别为椭圆 E:x2y21(a b0) 的左、右焦点,点 A 为椭圆 E 的左极点,a2b2点 B 为椭圆 E 的上极点,且|AB|= 2.⑴若椭圆 E 的离心率为,求椭圆 E 的方程;⑵设 P 为椭圆 E 上一点,且在第一象限内,直线与y轴订交于点Q,若以PQ为直径的圆经过点F1,证明:20.(本小题满分 13 分)无量数列P:,知足,关于数列P ,记,此中表示会合中最小的数.(Ⅰ)若数列P:1?3?4?7?,写出;(Ⅱ)若,求数列P 前 n项的和;(Ⅲ)已知= 46,求的值.欢迎接见“高中试卷网”——。

2015年全国卷2(理科数学)含答案

2015年全国卷2(理科数学)含答案

绝密★启用前2015年普通高等学校招生全国统一考试理科数学(全国Ⅱ卷)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A={-2,-1,0,2},B={x|(x-1)(x+2)<0},则A∩B=【A】(A){-1,0}(B){0,1}(C){-1,0,1}(D){0,1,2}(2) 若a为实数且(2+ai)(a-2i)=-4i,则a=【B】(A)-1 (B)0 (C)1 (D)2(3) 根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是【D】(A)逐年比较,2008年减少二氧化硫排放量的效果最显著.(B)2007年我国治理二氧化硫排放显现成效.(C)2006年以来我国二氧化硫年排放量呈减少趋势.(D)2006年以来我国二氧化硫年排放量与年份正相关.(4)等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 =【B 】(A )21 (B )42 (C )63 (D )84(5)设函数则【C 】(A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为【D 】 (A )(B ) (C ) (D ) (7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则=【C 】(A )2 (B )8 (C )4 (D )10(8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a ,b 分别为14,18,则输出的a =【B 】(A )0 (B )2 (C )4(D )14(9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O的表面积为【C 】A .36πB .64πC .144πD .256π211log (2),1(),2,1x x x f x x -+-⎧=⎨≥⎩2(2)(og 12)f f l -+=81716151MN 66(10).如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,∠BOP =x.将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为【B 】(11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为【D 】AB .2C D (12)设函数是奇函数的导函数,,当x >0时,<0,则使得f (x ) >0成立的x 的取值范围是【A 】 A . B . C .D .第Ⅱ卷二、填空题本大题共四个小题,每小题5分。

2015年河南省开封市高考数学二模试卷(理科)

2015年河南省开封市高考数学二模试卷(理科)

2015年河南省开封市高考数学二模试卷(理科) 参考答案与试题解析 一、选择题.1.设全集U =R ,集合(){}2lg 1M x y x ==-,{}02N x x =<<,则()U N M ð =( ) A.{}21x x -<≤ B.{}01x x <≤ C.{}11x x -≤≤ D.{}1x x <答案:B考点:交集及其运算. 专题:函数的性质及应用.分析:由全集U =R ,集合(){}{}2lg 111M x y x x x huox ==-=<->,先求出U M ð,再由集合N 能够求出()U N M ð.解答:解: 全集U =R ,集合(){}{}2lg 111M x y x x x huox ==-=<->,{}11U M x x ∴=-≤≤ð, 集合{}02N x x =<<, ()()01U N M x x ∴=< ð≤.故选B .点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.2.若()12i i=1bi a +-,其中a 、b ∈R ,i 是虚数单位,则i a b +=( )A.1i 2+B.5C.54答案:D考点:点的极坐标和直角坐标的互化;复数代数形式的乘除运算. 专题:数系的扩充和复数.分析:利用复数的运算法则、复数相等、模的计算公式即可得出. 解答:解:()12i i=1bi a +- ,2i=1bi a ∴-+-, 21a ∴-=,1b =-,解得12a =-,1b =-.则11i i i 22a b +=--=+=.故选:D .点评:本题考查了复数的运算法则、复数相等、模的计算公式,属于基础题. 3.下列有关命题的说法正确的是( )A.命题“x ∀∈R ,均有210x x -+>”的否定是:“0x ∃∈R ,使得20010x x -+<”B.在ABC △ 中,“sin sin A B >”是“A B >”成立的充要条件C.线性回归方程y b a =+ 对应的直线一定经过其样本数据点()11,x y 、()22,x y 、 ,(),n n x y 中的一个D.在22⨯列联表中,ad bc -的值越接近0,说明两个分类变量有关的可能性就越大 答案:B考点:命题的真假判断与应用. 专题:简易逻辑.分析:A.写出命题“x ∀∈R ,均有210x x -+>”的否定,可判断A ;B.在ABC △ 中,利用正弦定理可知sin sin A B a b A B >⇔>⇔>,可判断B ;C.线性回归方程y b a =+ 对应的直线不一定经过其样本数据点()11,x y 、()22,x y 、 ,(),n n x y 中的任何一个,可判断C ;D.在22⨯列联表中,ad bc -的值越接近0,说明两个分类变量有关的可能性就越小,可判断D .解答:解:对于A ,命题“x ∀∈R ,均有210x x -+>”的否定是:“0x ∃∈R ,使得20010x x -+≤”,故A 错误;对于B ,在ABC △ 中,由正弦定理知,sin sin A B a b >⇔>,又a b A B >⇔>,所以在ABC △ 中,“sin sin A B >”是“A B >”成立的充要条件,B 正确;对于C ,线性回归方程y ba =+ 对应的直线不一定经过其样本数据点()11,x y 、()22,x y 、 、(),nnx y 中的一个,故C 错误;对于D ,在22⨯列联表中,ad bc -的值越接近0,说明两个分类变量有关的可能性就越小,故D 错误. 综上所述,A 、B 、C 、D 四个选项中,只有B 正确, 故选:B .点评:本题考查命题的真假判断与应用,着重考查命题的否定、充分必要条件、线性回归方程及列联表的理解与应用,属于中档题.4.已知0a b >>,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离心率之积1C 、2C 的离心率分别为( )A.12,3 2 D.14,答案:B考点:双曲线的简单性质;椭圆的简单性质. 专题:圆锥曲线的定义、性质与方程.分析:求出椭圆与双曲线的离心率,然后推出ab 关系,即可求解双曲线的渐近线方程.解答:解:0a b >>,椭圆1C 的方程为22221x y a b +=,1C双曲线2C 的方程为22221x y a b-=,2C ,1C 与2C ,=,122b a ⎛⎫∴= ⎪⎝⎭,b a =,则1C 的离心率c a =则2C 的离心率:c a =.故选:B .点评:本题考查椭圆与双曲线的基本性质,离心率以及渐近线方程的求法,基本知识的考查.5.某几何体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此几何体的外接球的表面积为( )正视图侧视图俯视图A.3πB.4πC.2πD.5π2答案:A考点:由三视图求面积、体积. 专题:空间位置关系与距离.分析:如图所示,该几何体是正方体的内接正四棱锥.因此此几何体的外接球的直径2R =正方体的对解答:解:如图所示,该几何体是正方体的内接正四棱锥. 因此此几何体的外接球的直径2R =其表面积24π3πS R ==. 故选:A .点评:本题考查了正方体的内接正四棱锥、球的表面积计算公式,考查了推理能力与计算能力,属于基础题.6.函数()()()πsin 0,2f x x x ωφωφ⎛⎫=+∈>< ⎪⎝⎭R 的部分图象如图所示,如果1x 、2ππ,63x ⎛⎫∈- ⎪⎝⎭,且()()12f x f x =,则()12f x x +等于( )A.12D.1答案:C考点:由()sin y A x ωφ=+的部分图象确定其解析式;正弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:通过函数的图象求出函数的周期,利用函数的图象经过的特殊点求出函数的初相,得到函数的解析式,利用函数的图象与函数的对称性求出()12f x x +即可. 解答:解:由图观察可知,ππ2π36T ⎛⎫=⨯+= ⎪⎝⎭,2π2Tω∴==,函数的图象经过π,06⎛⎫- ⎪⎝⎭,∴可得:π0sin 3φ⎛⎫=-+ ⎪⎝⎭,π2φ< ,∴可解得:π3φ=, ()πsin 23f x x ⎛⎫∴=+ ⎪⎝⎭,12ππ2126x x +=⨯=,()122πsin3f x x ∴+==. 故选:C .点评:本题考查三角函数的解析式的求法,函数的图象的应用,函数的对称性,考查计算能力,属于中档题.7.给出一个如图所示的流程图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是( )A.1B.2C.3D.4 答案:C考点:选择结构.专题:图表型;分类讨论. 分析:由已知的流程图,我们易得这是一个计算并输出分段函数函数值的程序,我们根据条件,分2x ≤,25x <≤,5x >三种情况分别讨论,满足输入的x 值与输出的y 值相等的情况,即可得到答案. 解答:解:当2x ≤时,由2x x =得:0x =,1满足条件; 当25x <≤时,由23x x -=得:3x =,满足条件;当5x >时,由1x x=得:1x =±,不满足条件,故这样的x 值有3个. 故选C .点评:根据流程图(或伪代码)写程序的运行结果,我们要先分析流程图(或伪代码)判断其功能,并将其转化为数学问题,建立数学模型后,用数学的方法解答即可得到答案.8.有5盆菊花,其中黄菊花2盆、白菊花2盆、红菊花1盆,现把它们摆放成一排,要求2盆黄菊花必须相邻,2盆白菊花不能相邻,则这5盆花不同的摆放种数是( ) A.12 B.24 C.36 D.48考点:排列、组合及简单计数问题.分析:由题设中的条件知,可以先把黄1与黄2必须相邻,可先将两者绑定,又白1与白2不相邻,可把黄1与黄2看作是一盆菊花,与白1白2之外的菊花作一个全排列,由于此两个元素隔开了三个空,再由插空法将白1白2菊花插入三个空,由分析过程知,此题应分为三步完成,由计数原理计算出结果即可.解答:解:由题意,第一步将黄1与黄2绑定,两者的站法有2种,第二步将此两菊花看作一个整体,与除白1,白2之外的一菊花看作两个元素做一个全排列有22A 种站法,此时隔开了三个空,第三步将白1,白2两菊花插入三个空,排法种数为23A则不同的排法种数为22232A A 22624⨯⨯=⨯⨯=. 故选B .点评:本题考查排列、组合及简单计数问题,解题的关键是本题中所用到的绑定,与插空,不同的计数问题中所采用的技巧,将这些技巧与具体的背景结合起来,熟练掌握这些技巧.9.若sin cos θθ+πtan 3θ⎛⎫+ ⎪⎝⎭的值是( )A.1B.2C.1-D.3答案:B考点:两角和与差的正切函数. 专题:三角函数的求值.分析:利用三角恒等变换可得πsin cos 4θθθ⎛⎫+=+= ⎪⎝⎭()π2π+4k k θ=∈Z ,再利用两角和的正切计算即可.解答:解:πsin cos 4θθθθθ⎫⎛⎫+=+=⎪ ⎪⎪⎝⎭⎭, πsin 14θ⎛⎫∴+= ⎪⎝⎭,()ππ2π+42k k θ∴+=∈Z .()π2π+4k k θ∴=∈Z .πππtan tan 343θ⎛⎫⎛⎫∴+=+ ⎪ ⎪⎝⎭⎝⎭2ππtan tan 1432ππ1tan tan 43+===--故选:B .点评:本题考查三角恒等变换的应用与两角和与差的正切函数,求得()π2π+4k k θ=∈Z 是关键,考查化归思想与运算求解能力,属于中档题.10.三棱锥S ABC -中,90SBA SCA ∠=∠=︒,ABC △是斜边AB a =的等腰直角三角形,则以下结论中: ①异面直线SB 与AC 所成的角为90︒. ②直线SB ⊥平面ABC ; ③平面SBC ⊥平面SAC ;④点C 到平面SAB 的距离是12a .其中正确的个数是( )SBAA.1B.2C.3D.4答案:D考点:平面与平面垂直的判定;异面直线及其所成的角. 专题:空间位置关系与距离.分析:由条件根据异面直线所成的角,直线和平面垂直的判定定理、性质定理,平面和平面垂直的判定定理,判断各个选项是否正确,从而得出结论.解答:解:由题意知AC ⊥平面SBC ,故AC SB ⊥,故①正确;再根据SB AC ⊥、SB AB ⊥,可得SB ⊥平面ABC ,平面SBC ⊥平面SAC ,故②③正确;取AB 的中点E ,连接CE ,可证得CE ⊥平面SAB ,故CE 的长度即为C 到平面SAB 的距离12a ,④正确, 故选:D .点评:本题主要考查异面直线所成的角,直线和平面垂直的判定定理、性质定理,平面和平面垂直的判定定理的应用,体现了转化的数学思想,属于基础题.11.设实数x 、y 满足26260,0x y x y x y +⎧⎪+⎨⎪⎩≤≤≥≥,则{}max 231,22z x y x y =+-++的取值范围是( )A.[]2,5B.[]2,9C.[]5,9D.[]1,9-答案:B考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用作差法求出z 的表达式,然后根据平移,根据数形结合即可得到结论.解答:解:作出不等式组对应的平面区域如图: ()231223x y x y x y +--++=+-,即{}231,30max 231,2222,30x y x y z x y x y x y x y +-+-⎧=+-++=⎨+++-<⎩≥,其中直线30x y +-=过A ,C 点.在直线30x y +-=的上方,平移直线231z x y =+-(红线),当直线231z x y =+-经过点()2,2B 时,直线231z x y =+-的截距最大,此时z 取得最大值为223219z =⨯+⨯-=.在直线30x y +-=的下方,平移直线22z x y =++(蓝线),当直线22z x y =++经过点()0,0O 时, 直线22z x y =++的截距最小, 此时z 取得最小值为022z =+=. 即29z ≤≤, 故选:B .点评:本题主要考查线性规划的应用,根据z 的几何意义确定对应的直线方程是截距本题的关键.难12.已知函数()1y f x =-的图象关于点()1,0对称,且当(),0x ∈-∞时,()()'0f x xf x +<成立(其中()'f x 是()f x 的导函数),若()()0.30.333a f =⋅,()()ππlog 3log 3b f =⋅,3311log log 99c f ⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是( )A.a b c >>B.c a b >>C.c b a >>D.a c b >> 答案:B考点:函数单调性的性质;导数的运算;不等式比较大小. 专题:计算题;函数的性质及应用.分析:由函数()1y f x =-的图象关于点看()1,0对称,知()f x 为奇函数,当(),0x ∈-∞时,()()'0f x xf x +<成立,所以()xf x 为减函数,由此能判断a ,b ,c 的大小关系.解答:解: 当(),0x ∈-∞时不等式()()'0f x xf x +<成立,即:()()'0xf x <, ()xf x ∴在(),0-∞上是减函数.又 函数()1y f x =-的图象关于点()1,0对称,∴函数()y f x =的图象关于点()0,0对称, ∴函数()y f x =是定义在R 上的奇函数()xf x ∴是定义在R 上的偶函数 ()xf x ∴在()0,+∞上是增函数.又0.323131log 30log 29>>>>=- ,0.33212log 31log 309=->>>>,()()()0.30.333ππ11log log 33log 3log 399f f f ⎛⎫⎛⎫∴-->⋅>⋅ ⎪ ⎪⎝⎭⎝⎭,即()()()0.30.333ππ11log log 33log 3log 399f f f ⎛⎫⎛⎫>⋅>⋅ ⎪ ⎪⎝⎭⎝⎭即:c a b >> 故选B .点评:本题考查函数的奇偶性和单调性的应用,解题时要认真审题,仔细解答,注意对数函数性质的合理运用. 二、填空题 13.设e 11a dx x =⎰,则二项式621ax x ⎛⎫- ⎪⎝⎭展开式中的常数项为 .答案:15考点:二项式系数的性质;定积分. 专题:计算题;二项式定理.分析:求出a ,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得常数项.解答:解:e 1e1ln 11a dx x x ===⎰,∴二项式662211ax x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭的展开式中的通项公式为()12316C 1r rr r T x -+=⋅-⋅, 令1230r -=,求得4r =,故展开式中的常数项为46C 15=, 故答案为:15.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且3π4C =,sin A =,5c a -=考点:余弦定理;正弦定理. 专题:计算题;解三角形.分析:由已知可求得cos A ,sin B ,sin C,由正弦定理得sin sin a A c C ==,又因为5c a -=而可求得a ,即可由正弦定理求sina Bb A =的值. 解答:解:因为3π4C =,sin A =,所以cos A =,由三角形内角和得π4B A =-,所以πππsin sin sin cos cos sin 444B A A A ⎛⎫=-=-= ⎪⎝⎭,已知3π4C =,所以sin C =,由正弦定理得sin sin a Ac C ==,又因为5c a -=所以5c =,a =由sin B=所以sin sin a Bb A=.点评:本题主要考查了正弦定理、两角差的正弦公式的应用,属于基本知识的考查.15.若函数()log 4a a f x x x ⎛⎫=+- ⎪⎝⎭,(0a >且a ≠1)的值域为R ,则实数a 的取值范围是 .答案:()(]0,11,4考点:对数函数的值域与最值. 专题:计算题.分析:函数()log 4a a f x x x ⎛⎫=+- ⎪⎝⎭,(0a >且a ≠1)的值域为R ,则其真数在实数集上恒为正,将这一关系转化为不等式求解参数的范围即可.解答:解:函数()log 4a a f x x x ⎛⎫=+- ⎪⎝⎭,(0a >且1a ≠)的值域为R ,其真数在实数集上恒为正,即40a x x +->恒成立,即存在x ∈R 使得4ax x+≤,又0a >且1a ≠. 故可求ax x +的最小值,令其小于等于4ax x+ ≥4∴,解得4a ≤,故实数a 的取值范围是()(]0,11,4 .故应填()(]0,11,4点评:考查存在性问题的转化,请读者与恒成立问题作比较,找出二者逻辑关系上的不同.16.已知a ,b 是单位向量,0a b ⋅= ,若向量c 与向量a 、b 共面,且满足1a b c --= ,则c的取值范围是 .答案:1,1⎤⎦考点:平面向量数量积的运算. 专题:计算题;平面向量及应用.分析:由a ,b 是单位向量,0a b ⋅= .可设()1,0a = ,()0,1b = ,(),c x y = ,由向量c 满足1c a b -+= ,可得()()22111x y -++=.其圆心()1,1C -,半径1r =.利用OC r c OC r -+ ≤即可得出.解答:解:由a ,b 是单位向量,0a b ⋅=,可设()1,0a = ,()0,1b = ,(),c x y =,向量c 满足1c a b -+=,()1,11x y ∴-+=,1,即()()22111x y -++=. 其圆心1,1C -,半径1r =.OC∴=11c =≤.c ∴的取值范围是1,1⎤⎦.故答案为:1,1⎤⎦.点评:本题考查了向量的垂直与数量积的关系、数量积的运算性质、点与圆上的点的距离大小关系,考查了推理能力和计算能力,属于中档题. 三、解答题17.等差数列{}n a 中公差0d ≠,13a =,1a 、4a 、13a 成等比数列. (Ⅰ)求n a ;(Ⅱ)设{}n a 的前n 项和为n S ,求:12111nS S S +++ . 考点:数列的求和;等比数列的通项公式;等比数列的性质.专题:等差数列与等比数列.分析:(I )1a 、4a 、13a 成等比数列.可得24113a a a =,利用等差数列的通项公式可得()()2333312d d +=+,解出即可.(II )由(I )可得:()()32122n n n S n n ++==++,111122n S n n ⎛⎫=- ⎪+⎝⎭.利用“裂项求和”即可得出. 解答:解:(I )1a 、4a 、13a 成等比数列.24113a a a ∴=,()()2333312d d ∴+=+, 化为220d d -=,0d ≠, 解得2d =.()32121n a n n ∴=+-=+. (II )由(I )可得:()()32122n n n S n n ++==++,111122n S n n ⎛⎫∴=- ⎪+⎝⎭. 1211111111111111232435112n S S S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴+++=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111112212n n ⎛⎫=+-- ⎪++⎝⎭. ()()3234212n n n +=-++. 点评:本题考查了等差数列的通项公式、“裂项求和”,考查了计算能力,属于基础题.18.公司开发一新产品有甲、乙两种型号,现分别对这两种型号产品进行质量检测,从它们的检测数据中随机抽取8次(数值越大产品质量越好),记录如下: 甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3 乙:9.2,9.5,8.0,7.5,8.2,8.1, 9.0,8.5 (Ⅰ)画出甲、乙两产品数据的茎叶图;(Ⅱ)现要从甲、乙中选一种型号产品投入生产,从统计学角度,你认为生产哪种型号产品合适?简单说明理由;(Ⅲ) 若将频率视为概率,对产品乙今后的三次检测数据进行预测,记这三次数据中不低于8.5分的次数为ξ,求ξ的分布列及期望E ξ.考点:离散型随机变量的期望与方差;茎叶图;极差、方差与标准差;离散型随机变量及其分布列. 专题:概率与统计. 分析:(Ⅰ)由已知数据能作出甲、乙两产品数据的茎叶图.(Ⅱ)分别求出x 甲,x 乙,2S 甲,2S 乙,得到=x x 甲乙,22S S <甲乙,这说明甲的数据更加稳定,故生产甲产品合适.(Ⅲ)依题意,乙不低于8.5分的频率为12,ξ的可能取值为0,1,2,3,13,2B ξ⎛⎫~ ⎪⎝⎭,由此能求解答:解:(Ⅰ)由已知作出甲、乙两产品数据的茎叶图如图:(Ⅱ)()1=8.39.07.97.89.48.98.48.3=8.58x +++++++甲,()1=9.29.58.07.58.28.19.08.5=8.58x +++++++乙,()()()()()()()()222222222=18.38.59.08.57.98.57.88.59.48.58.98.58.48.58.38.58=0.27S ⎡⎤-+-+-+-+-+-+-+-⎣⎦甲,()()()()()()()()222222222=19.28.59.58.58.08.57.58.58.28.58.18.59.08.58.58.58=0.405S ⎡⎤-+-+-+-+-+-+-+-⎣⎦乙,=x x 甲乙,22S S <甲乙, ∴甲和乙的质量数值的平均数相同,但甲的方差较小, 说明甲的数据更加稳定,故生产甲产品合适.(Ⅲ)依题意,乙不低于8.5分的频率为12,ξ的可能取值为0,1,2,3,则13,2B ξ⎛⎫~ ⎪⎝⎭,()30311=0=C 28P ξ⎛⎫∴= ⎪⎝⎭,()2131131C 228P ξ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,()2231132C 228P ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()333113C 28P ξ⎛⎫=== ⎪⎝⎭,ξ∴的分布列为:3313012388882E ξ∴=⨯+⨯+⨯+⨯=.0250125598740943398乙甲点评:本题主要考查茎叶图、概率、随机变量分布列以及数学期望等基础知识,考查运用概率统计知识解决简单实际问题的能力,数据处理能力.19.如图,在三棱柱111ABC A B C -中,AB AC ⊥,1AC BB ⊥,11AB A B AC ===,1BB (Ⅰ)求证:1A B ⊥平面ABC ;(Ⅱ)若P 是棱11B C 的中点,求二面角1P AB A --的余弦值.C 1B 1A 1PCB考点:二面角的平面角及求法;直线与平面垂直的判定. 专题:空间位置关系与距离;空间角. 分析:(Ⅰ)由已知得AC ⊥平面11ABB A ,从而1AC A B ⊥,由勾股定理得1A B AB ⊥,从而能证明1A B ⊥平面ABC .(Ⅱ)以B 为原点,以BC ,BA ,1BB 所在直线为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角1P AB A --的余弦值.解答:(Ⅰ)证明: 在三棱柱111ABC A B C -中,AB AC ⊥,1AC BB ⊥, 又1AB BB B = ,AC ∴⊥平面11ABB A , 又1A B ⊂平面11ABB A ,1AC A B ∴⊥, 11AB A B AC === ,1BB =22211AB A B AA ∴+=,1A B AB ∴⊥,又AC AB A = ,1A B ∴⊥平面ABC .(Ⅱ)解:以11AC ,11A B ,1BA 所在直线为x ,y ,z 轴建立如图1A xyz -直角坐标系, ()10,0,0A ,11,,022P ⎛⎫⎪⎝⎭,()0,0,1B -,()110,1,0AB A B == ,11,,122PB ⎛⎫=--- ⎪⎝⎭,设平面PAB 的法向量(),,n x y z =, 则0n AB ⋅=,即0y =, ()11,,,,1022n PB x y z ⎛⎫⋅=⋅---= ⎪⎝⎭,即102x z --=,取1z =,2x =-,()2,0,1n ∴=-,设平面11ABA B 的法向量()π1,0,0=,cos ,πn m n n m⋅=⋅. ∴二面角1P AB A --.点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.20.已知函数()()()22211e x f x ax a x a a ⎡⎤=+-+--⎣⎦(其中a ∈R ).(Ⅰ)若0x =为()f x 的极值点,求a 的值;(Ⅱ)在(Ⅰ)的条件下,解不等式()()21112f x x x x ⎛⎫>-++ ⎪⎝⎭.考点:利用导数研究函数的极值;利用导数研究函数的单调性. 专题:计算题;导数的概念及应用;导数的综合应用. 分析:(Ⅰ)求导()()22'1e x f x ax a x a ⎡⎤=+++⎣⎦,从而可得0a =;(Ⅱ)当0a =时,不等式()()21112f x x x x ⎛⎫>-++ ⎪⎝⎭可化为()()211e 112x x x x x ⎛⎫->-++ ⎪⎝⎭,即()211e 102x x x x ⎛⎫⎛⎫--++>⎪ ⎪⎝⎭⎝⎭,令()21e 12x g x x x ⎛⎫=-++ ⎪⎝⎭,()()'e 1x h x g x x ==--,从而由导数解不等式.解答:解:(Ⅰ)()()()22211e x f x ax a x a a ⎡⎤=+-+--⎣⎦.()()22'1e x f x ax a x a ⎡⎤∴=+++⎣⎦,0x = 为()f x 的极值点,()0'0e 0f a ∴=⋅=, 0a ∴=;经检验成立;(Ⅱ)当0a =时,不等式()()21112f x x x x ⎛⎫>-++ ⎪⎝⎭可化为()()211e 112x x x x x ⎛⎫->-++ ⎪⎝⎭,即()211e 102x x x x ⎛⎫⎛⎫--++> ⎪ ⎪⎝⎭⎝⎭,令()21e 12x g x x x ⎛⎫=-++ ⎪⎝⎭,()()'e 1x h x g x x ==--,()'e 1x h x =-;当0x >时,()'e 10x h x =->,当0x <时,()'e 10x h x =-<; 故()h x 在(),0-∞上单调递减,在()0,+∞上单调递增, 所以()()00h x h >=;故()g x 在R 上单调递增,且()00g =; 故21e 102x x x ⎛⎫-++> ⎪⎝⎭,0x >;21e 102x x x ⎛⎫-++< ⎪⎝⎭,0x <;所以原不等式的解集为{}01x x huox <>.点评:本题考查了导数的综合应用及不等式的解法的应用,属于中档题. 21.已知抛物线()2:20C x py p =>的焦点为F ,抛物线上一点A 的横坐标为()110x x >,过点A 作抛物线C 的切线1l 交x 轴于点D ,交y 轴于点Q ,交直线:2pl y =于点M ,当2FD =时,60AFD ∠=︒. (1)求证:AFQ △为等腰三角形,并求抛物线C 的方程; (2)若B 位于y 轴左侧的抛物线C 上,过点B 作抛物线C 的切线2l 交直线1l 于点P ,交直线l 于点N ,求PMN △面积的最小值,并求取到最小值时的1x 值.考点:直线与圆锥曲线的综合问题;抛物线的标准方程. 专题:圆锥曲线中的最值与范围问题.分析:(1)设211,2x A x p ⎛⎫⎪⎝⎭,则A 处的切线方程为2111:2x x l y x p p =-,即可得到得D ,Q 的坐标,利用两点间的距离公式即可得到FQ AF =.由点A ,Q ,D 的坐标可知:D 为线段AQ 的中点,利用等腰三角形的性质可得FD AQ ⊥,可得AF ,利用两点间的距离概率及点A 满足抛物线的方程即可得出.(2)设()()222,0B x y x <,则B 处的切线方程为22224x x y x =-,与切线1l 的方程联立即可得到点P 的坐标,同理求出点M ,N 的坐标.进而得到三角形PMN 的面积12S MN h =⋅△(h 为点P 到MN 的距离),利用表达式及其导数即可得到最小值,即可得出1x 的值.解答:解:(1)设211,2x A x p ⎛⎫ ⎪⎝⎭,则A 处的切线方程为2111:2x x l y x p p =-, 可得:1,02x D ⎛⎫⎪⎝⎭,210,2x Q p ⎛⎫- ⎪⎝⎭2122p x FQ AF p ∴=+=;AFQ ∴△为等腰三角形.由点A ,Q ,D 的坐标可知:D 为线段AQ 的中点,4AF ∴=,得:2122142216p x px p ⎧+=⎪⎨⎪+=⎩ 2p ∴=,2:4C x y =.(2)设()()222,0B x y x <,则B 处的切线方程为22224x x y x =-,联立2222112424x x y x x x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得到点1212,24x x x x P +⎛⎫ ⎪⎝⎭,联立211241x x y x y ⎧=-⎪⎨⎪=⎩得到点112,12x M x ⎛⎫+ ⎪⎝⎭. 同理222,12x N x ⎛⎫+ ⎪⎝⎭,设h 为点P 到MN 的距离,则()()22112121212124112212222416x x x x x x x x S MN h x x x x --⎛⎫⎛⎫=⋅=⨯+---= ⎪ ⎪⎝⎭⎝⎭△ ① 设AB 的方程为y kx b =+,则0b >,由24y kx b x y=+⎧⎨=⎩得到2440x kx b --=, 得121244x x k x x b +=⎧⎨=-⎩代入①得:S △要使面积最小,则应0k =,得到()1b S b+=△②t ,得()()223112t S t t t t t+==++△,则()()()22'2311t t S t t -+=△,所以当0,t ⎛∈ ⎝⎭时,()S t 单调递减;当t ⎫∈+⎪⎪⎝⎭∞时,()S t 单调递增,所以当t =S 213b t ==,0k =,所以113y=,解得1x =.故PMN △面积取得最小值时的1x 值为.点评:本题综合考查了利用导数的几何意义得到抛物线的切线的斜率、直线与抛物线相交问题转化为方程联立得到根与系数的关系、等腰三角形的性质、利用导数研究函数的单调性、极值与最值等知识与方法,熟练掌握其解题模式是解题的关键. 【选修4-1:几何证明选讲】22.如图,ABC △是直角三角形,90ABC ∠=︒,以AB 为直径的圆O 交AC 于点E ,点D 是BC 边的中点,连接OD 交圆O 于点M .(1)求证:O 、B 、D 、E 四点共圆; (2)求证:22DE DM AC DM AB =⋅+⋅.MECBAO考点:与圆有关的比例线段. 专题:证明题;直线与圆.分析:(1)连接BE 、OE ,由直径所对的圆周角为直角,得到BE EC ⊥,从而得出12DE BD BC ==,由此证出ODEQD ODB △△,得90OED OBD ∠=∠=︒,利用圆内接四边形形的判定定理得到O 、B 、D 、E 四点共圆;(2)延长DO 交圆O 于点H ,由(1)的结论证出DE 为圆O 的切线,从而得出2DE DM DH =⋅,再将DH 分解为DO OH +,并利用12OH AB =和12DO AC =,化简即可得到等式22DE DM AC DM AB =⋅+⋅成立. 解答:解:(1)连接BE 、OE ,则AB 为圆O 的直径,90AEB ∴∠=︒,得BE EC ⊥, 又D 是BC 的中点,ED ∴是Rt BEC △的中线,可得DE BD =.又OE OB = ,OD OD =,ODEQD ODB ∴∠△. 可得90OED OBD ∠=∠=︒,因此,O 、B 、D 、E 四点共圆; (2)延长DO 交圆O 于点H ,DE OE ⊥,OE 是半径,DE ∴为圆O 的切线.可得()2DE DM DH DM DO OH DM DO DM OH =⋅=⋅+=⋅+⋅. 12OH AB =,OD 为ABC △的中位线,得12DO AC =, 21122DE DM AC DM AB ⎛⎫⎛⎫∴=⋅+⋅ ⎪ ⎪⎝⎭⎝⎭,化简得22DE DM AC DM AB =⋅+⋅.HOACEM点评:本题着重考查了圆的切线的性质定理与判定、直径所对的圆周角、全等三角形的判定与性质等知识,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,直线I的参数方程为415315x ty t⎧=+⎪⎪⎨⎪=--⎪⎩(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为π4ρθ⎛⎫=+⎪⎝⎭.(1)求直线I被曲线C所截得的弦长;(2)若(),M x y是曲线C上的动点,求x y+的最大值.考点:参数方程化成普通方程.专题:计算题;直线与圆;坐标系和参数方程.分析:(1)将曲线C化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长.(2)运用圆的参数方程,设出M,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值.解答:解:(1)直线I的参数方程为415315x ty t⎧=+⎪⎪⎨⎪=--⎪⎩(t为参数),消去t,可得,3410x y++=;由于π4ρθθθ⎫⎛⎫=+=⎪⎪⎪⎝⎭⎭,即有2cos sinρρθρθ=-,则有220x y x y+-+=,其圆心为11,22⎛⎫-⎪⎝⎭,半径为r=,圆心到直线的距离110d=,75;(2)可设圆的参数方程为:1212xyθθ⎧=+⎪⎪⎨⎪=-⎪⎩(θ为参数),则设11,22Mθθ⎛⎫-⎪⎪⎝⎭,则πsin4x yθθθ⎛⎫+=+⎪⎝⎭,由于θ∈R,则x y+的最大值为1.点评:本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题.【选修4-5:不等式选讲】24.已知函数()1f x x=-(Ⅰ)解不等式()()248f x f x++≥;(Ⅱ)若1a<,1b<,0a≠,求证:()f ab bfa a⎛⎫> ⎪⎝⎭.考点:绝对值不等式的解法.专题:不等式的解法及应用;推理和证明.分析:(Ⅰ)依题意,()()32,31242134,32132,2x x f x f x x x x x x x ⎧⎪--<-⎪⎪++=-++=--<⎨⎪⎪+⎪⎩≤≥,利用分段函数分段解不等式()()248f x f x ++≥,即可求得其解集.(Ⅱ)1a <,1b <,()()1f ab b b f f ab a f ab a b aa a ⎛⎫⎛⎫>⇔>⇔->- ⎪ ⎪⎝⎭⎝⎭, 要证该不等式成立,只需证明2210ab a b --->即可.解答:(Ⅰ)解:()()32,31242134,32132,2x x f x f x x x x x x x ⎧⎪--<-⎪⎪++=-++=--<⎨⎪⎪+⎪⎩≤≥,当3x <-时,由328x --≥,解得103x -≤;当132x -<≤时,由48x -+≥,解得x ∈∅;当12x ≥时,由328x +≥,解得2x ≥所以,不等式()()248f x f x ++≥的解集为1023x x huox ⎧⎫-⎨⎬⎩⎭≤≥;(Ⅱ)证明:()f ab b f aa ⎛⎫> ⎪⎝⎭等价于()b f ab a f a ⎛⎫> ⎪⎝⎭,即1ab a b ->-,因为1a <,1b <,所以()()()()222222221212110ab a b a b ab a ab b a b ---=-+--+=-->, 所以,1ab a b ->-,故所证不等式成立.点评:本题考查绝对值不等式的解法,着重考查分类讨论思想与等价转化思想的综合运用,考运算及推理、证明能力,属于中档题.。

2015广东省广州市高考数学二模试卷(理科)(含解析)

2015广东省广州市高考数学二模试卷(理科)(含解析)

2015年广东省广州市高考数学二模试卷(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“若2x =,则2320x x +=-”的逆否命题是( ).A .若2x ≠,则2320x x +≠-B .若2320x x +=-,则2x =C .若2320x x +≠-,则2x ≠D .若2x ≠,则2320x x +=-【答案】C【解答】解:命题“若2x =,则2320x x +=-”的逆否命题是 “若2320x x +≠-,则2x ≠”.故选C . 2.(5分)已知0a b >>,则下列不等关系式中正确的是( ).A .sin sin a b >B .22log log a b <C .1122a b <D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】D【解答】解:选项A 错误,比如取πa =,π2b =,显然满足0a b >>,但不满足sin sin a b >; 选项B 错误,由函数2log y x =在(0,)+∞上单调递增可得22log log a b >; 选项C错误,由函数12y x ==[0,)+∞上单调递增可得1122a b >; 选项D 正确,由函数13xy ⎛⎫= ⎪⎝⎭在R 上单调递减可得1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;故选D .3.(5分)已知函数40()1,0x f x x x x ⎧⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩≥,则)[](2f f =( ). A .14B .12C .2D .4【答案】A【解答】解:函数40()1,0x f x x x x ⎧⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩≥,则(2)f =441[(2)](4f f f ⎛⎛==== ⎝⎝.故选A .4.(5分)函数sin()(0,0,0π)y A x A ωϕωϕ=+>><<的图象的一部分如图所示,则此函数的解析式为( ).A .ππ3sin 44y x ⎛⎫=+ ⎪⎝⎭B .π3π3sin 44y x ⎛⎫=+ ⎪⎝⎭C .ππ3sin 24y x ⎛⎫=+ ⎪⎝⎭D .π3π3sin 24y x ⎛⎫=+ ⎪⎝⎭【答案】A【解答】解:根据函数的图象,得知:3A =, 2(51)8T =-=,所以:2ππ84ω==,当1x =时,(1)3f =,0πϕ<<, 解得:π4ϕ=, 所以函数的解析式:ππ()3sin 44f x x ⎛⎫=+ ⎪⎝⎭.故选A .5.(5分)已知函数2()23f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使0)(0f x ≥成立的概率为( ).A .425B .12C .23D .1【答案】B【解答】解:已知区间[]4,4-长度为8,满足0)(0f x ≥,200()230f x x x =-++≥,解得013x -≤≤,对应区间长度为4, 由几何概型公式可得,使0)(0f x ≥成立的概率是4182=. 故选B . 6.(5分)如图,圆锥的底面直径2AB =,母线长3VA =,点C 在母线长VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到点C ,则这只蚂蚁爬行的最短距离是( ).VCBAABC D 【答案】B【解答】解:由题意知,底面圆的直径为2,故底面周长等于2π, 设圆锥的侧面展开后的扇形圆心角为α,根据底面周长等于展开后扇形的弧长得,2π3α=,解得:2π3α=, ∴2π2AOA '∠=,则π13∠=,过C 作CF OA ⊥, ∵C 为OB 的三等分点,3BO =, ∴1OC =, ∵160∠=︒, ∴30OCF ∠=︒,∴12FO =,∴22234CF CO OF -==,∵3AO =,12FO =,∴52AF =, 在Rt AFC △中,利用勾股定理得:2227AC AF FC =+=,则AC = 故选B .1FCBAO A'7.(5分)已知两定点(1,0)A -,(1,0)B ,若直线l 上存在点M ,使得||||3MA MB +=,则称直线l 为“M 型直线”,给出下列直线:①2x =;②3y x =+;③21y x =--;④1y =;⑤23y x =+.其中是“M 型直线”的条数为( ).A .1B .2C .3D .4【答案】C【解答】解:由题意可知,点M 的轨迹是以A ,B 为焦点的椭圆,其方程是2219544x y +=,①把2x =代入2219544x y +=,无解,∴2x =不是“M 型直线”;②把3y x =+代入2219544x y +=,无解,∴3y x =+不是“M 型直线”;③把21y x =--代入22144x y +=,有解,∴21y x =--是“M 型直线”;④把1y =代入22144x y +=,有解,∴1y =是“M 型直线”; ⑤23y x =+代入2219544x y +=,有解,∴23y x =+是“M 型直线”. 故选C .8.(5分)设(,)P x y 是函数()y f x =的图象上一点,向量5(1,(2))a x =-r ,(1,2)b y x =-r,且满足a b r r ∥,数列{}n a 是公差不为0的等差数列,若129))(((6)3f a f a f a +++=L ,则129a a a +++=L ( ).A .0B .9C .18D .36【答案】C【解答】解:∵向量5(1,(2))a x =-r ,(1,2)b y x =-r ,且a b r r ∥,∴52(2)0y x x ---=, 即5(2)2y x x =-+, ∴5()(2)2f x x x =-+; 令5()(2)42g x f x x x =+-=+,则函数()g x 为奇函数,且是定义域内的增函数, 由129))(((6)3f a f a f a +++=L , 得129(2)(2)(2)0g a g a g a +++---=L , 又数列{}n a 是公差不为0的等差数列, ∴5(2)0g a -=,即520a -=,52a =, ∴129599218a a a a +++==⨯=L .故选C .二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题) 9.(5分)已知i 为虚数单位,复数1i1iz -=+,则||z =__________. 【答案】1【解答】解:i 为虚数单位,复数1i1i z -=+,则1i |1i|||11i |1i |z --====++. 故答案为:1. 10.(5分)执行如图所示的程序框图,输出的S 值为__________.【答案】10【解答】解:由已知可得该程序的功能是计算并输出 22221234S -=-++的值∵2222123410S -=-++=. 故答案为:10.11.(5分)已知π()sin 6f x x ⎛⎫=+ ⎪⎝⎭,若3πcos 052αα⎛⎫=<< ⎪⎝⎭,则π12f α⎛⎫+= ⎪⎝⎭__________.【解答】解:∵3cos 5α=,且π02α<<,∴4sin 5,又∵π()sin 6f x x ⎛⎫=+ ⎪⎝⎭,∴πππsin 12126f αα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭πsin 4α⎛⎫=+ ⎪⎝⎭cos )αα+=,. 12.(5分)5名志愿者中安排4人在周六、周日两天参加社区公益活动.若每天安排2人,则不同的安排方案共有__________种(用数字作答). 【答案】30【解答】解:先从5人中任取4人,共有45C 种不同的取法.再把4人分成两部分,每部分2人,共有224222C C A 种分法.最后排在周六和周日两天,有22A 种排法,∴2242425222C C C A 30A ⨯⨯=种.故答案为:30.13.(5分)在边长为1的正方形ABCD 中,以A 为起点,其余顶点为终点的向量分别为1a u u r ,2a u u r ,3a u u r;以C 为起点,其余顶点为终点的向量分别为1c u r ,2c u u r ,3c u u r.若m 为()()i j s t a a c c +⋅+u u r u u r u u r u r 的最小值,其中{}{},1,2,3i j ⊆,{}{},1,2,3s t ⊆,则m =__________.【答案】5-【解答】解:不妨记以A 为起点,其余顶点为终点的向量为1a u u r ,2a u u r ,3a u u r分别为AB u u u r ,AC u u u r ,AD u u u r ,以C为起点,其余顶点为终点的向量为1c u r ,2c u u r,分别为CD u u u r ,CA u u u r ,CB u u u r .如图建立坐标系.(1)当1i =,2j =,1s =,2t =时,则()()[1,0)(1,1)][1,0)(1,1)5(((]i j s t a a c c +⋅+=+=-⋅+---u u r u u r u u r u r;(2)当1i =,2j =,1s =,3t =时,则()()[1,0)(1,1)][1,0)(0,1)]3(((i j s t a a c c +⋅+=+⋅+-=--u u r u u r u u r u r;(3)当1i =,2j =,2s =,3t =时,则()()[1,0)(1,1)][1,1)(0,1)4(((]i j s t a a c c +⋅+=++-⋅--=-u u r u u r u u r u r;(4)当1i =,3j =,1s =,2t =时,则()()[1,0)(0,1)][1,0)(1,1)3(((]i j s t a a c c +⋅+=+=-⋅+---u u r u u r u u r u r;同样地,当i ,j ,s ,t 取其它值时,()()5i j s t a a c c +⋅+=-u u r u u r u u r u r,4-或3-.则()()i j s t a a c c +⋅+u u r u u r u u r u r的最小值是5-.故答案为:5-.(二)选做题(14~15题,考生只能从中选做一题)(几何证明选讲选做题)14.(5分)如图,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点,AE 与BC 的延长线交于点F ,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为__________.FCBAGD【答案】【解答】解:∵AE 为DAB ∠的平分线, ∴DAF BAF ∠=∠, ∵DC AB ∥, ∴BAF DEA ∠=∠, ∴DAF DEA ∠=∠, ∴AD ED =, 又E 为DC 的中点, ∴DE CE =,∴11222AD DE DC AB ====,在Rt ADG △中,根据勾股定理得:AG则2AE AG == ∵平行四边形ABCD , ∴AD BC ∥,∴DAE F ∠=∠,ADE FCE ∠=∠, 在ADE △和FCE △中,DAE FADE FCE DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE △≌()FCE AAS △, ∴AE FE =,则2AF AE ==.故答案是:.E DGABCF(坐标系与参数方程选做题)15.在平面直角坐标系中,已知曲线1C 和2C 的方程分别为3212x ty t =-⎧⎨=-⎩(t 为参数)和242x t y t =⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有__________个. 【答案】1【解答】1解:已知曲线1C 方程3212x ty t =-⎧⎨=-⎩(t 为参数)转化为直角坐标方程为:20x y --=.曲线2C 的方程242x t y t =⎧⎨=⎩(t 为参数),转化为直角坐标方程为:28x y = 所以:2820x yx y ⎧=⎨--=⎩,整理得:28160x x +=-, 所以:64640∆=-=, 则:曲线1C 和2C 的交点有1个.故答案为:1.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(12分)已知ABC △的三边a 、b 、c 所对的角分别为A 、B 、C ,且::7:5:3a b c =. (1)求cos A 的值.(2)若ABC △的面积为ABC △的外接圆半径的大小. 【答案】见解析.【解答】解:(1)根据题意设7a k =,5b k =,3c k =,∴2222222259491cos 2302b c a k k k A bc k +-+-===-, 则2π3A =.(2)∵1sin 2ABC S bc A ==△∴21152k ⋅=k =,∴7a k == 由正弦定理2sin aR A =,得:142sin a R A ==. 17.(12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在2060:岁的问卷中随机抽取了n 份,统计结果如图表所示.(1)分别求出a ,b ,c (2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X 为第3组被授予“环保之星”的人数,求X 的分布列与数学期望.年龄【答案】见解析.【解答】(本小题满分12分)解:(1)根据频率直方分布图,得(0.0100.0250.035)101c +++⨯=, 解得0.03c =.第3组人数为50.510÷=,所以100.1100n =÷=. 第1组人数为1000.3535⨯=,所以28350.8b =÷=. 第4组人数为1000.2525⨯=,所以250.410a =⨯=. (2)因为第3,4组答对全卷的人的比为5:101:2=, 所以第3,4组应依次抽取2人,4人. 依题意X 的取值为0,1,2.002426C C 2(0)C 5P X ===, 112426C C 8(1)5C 1P X ===, 202426C C 1(2)5C 1P X ===, 所以X 的分布列为:所以2812012515153EX =⨯+⨯+⨯=.18.(14分)如图,已知六棱柱111111ABCDEF A B C D E F -的侧棱垂直于底面,侧棱长与底面边长都为3,M ,N 分别是棱AB ,1AA 上的点,且1AM AN ==.(1)证明:M ,N ,1E ,D 四点共面. (2)求直线BC 与平面1MNE D 所成角的正弦值.F 1E 1C 1D 1A 1B 1N F ECB A D【答案】见解析.【解答】(1)证明:连接1A B ,11D B ,BD ,11A E , 在四边形1111A B D E 中,1111A E B D =,且1111A E B D ∥, 在四边形11BB D D 中,11BD B D ∥,且11BD B D =, 所以:11A E BD ∥,且11A E BD =, 则四边形11A BDE 是平行四边形. 所以11A B E D ∥.在1ABA △中,1AM AN ==,13AB AA ==, 所以:1AM ANAB AA = 则:1MN BA ∥, 且:1MN DE ∥,所以:M ,N ,1E ,D 四点共面;D A B CEFN B 1A 1D 1C 1E 1F 1(2)解:以点E 坐标原点,EA ,ED ,1EE 线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则B,9,,02C ⎫⎪⎪⎝⎭,(0,3,0)D ,10,(0,3)E,M .3,,02BC ⎛⎫= ⎪ ⎪⎝⎭u u u r ,1(0,3,3)DE =-u u u u r,2,0)DM =-u u u u r , 设平面1MNE D 的法向量为:(,,)m x y z =u r ,则:100m DE m DM ⎧⋅=⎪⎨⋅=⎪⎩u r u u u u r u r u u u u r ,即:33020y z y -+=⎧⎪⎨-=⎪⎩,解得:m =,设直线BC 与平面1MNE D 所成的角为θ,则sin ||||m BC m BC θ⋅=u r u u u r u r u u u r , 故直线BC 与平面1MNE DFF19.(14分)已知点*(,)()n n n P a b n ∈N 在直线:31l y x =+上,1P 是直线l 与y 轴的交点,数列{}n a 是公差为1的等差数列.(1)求数列{}n a ,{}n b 的通项公式.(2)求证:2221213111111||||||6n PP PP PP ++++<L . 【答案】见解析.【解答】(1)解:∵点*(,)()n n n P a b n ∈N 在直线:31l y x =+上,∴31n n b a =+,直线l 与y 轴的交点为(0,1),∴10a =,11b =.∵数列{}n a 是公差为1的等差数列,∴1n a n =-.∴3(1)132n b n n =-+=-.∴数列{}n a ,{}n b 的通项公式分别为:1n a n =-,32n b n =-.(2)证明:∵1)(0,1P ,1,3(2)n P n n --,∴1,31()n P n n ++.∴222211||(3)10n PP n n n +=+=, ∴1221111111111||1010521214n PP n n n n +⎛⎫=<⋅=- ⎪-+⎝⎭-. ∴当2n ≥时,22212131111111111111||||||10535572121n PP PP PP n n +⎡⎤⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦ 111111110532110156n ⎛⎫=+-<+< ⎪+⎝⎭. 又当1n =时,212111||106PP =<. ∴2221213111111||||||6n PP PP PP ++++<L . 20.(14分)已知圆心在x 轴上的圆C 过点(0,0)和(1,1)-,圆D 的方程为22(4)4x y -+=. (1)求圆C 的方程.(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求||AB 的取值范围.【答案】见解析.【解答】解:(1)过两点(0,0)A 和(1,1)B -的直线的斜率为1-, 则线段AB 的中垂线方程为:11122y x ⎛⎫-=⨯+ ⎪⎝⎭,整理得:1y x =+. 取0y =,得1x =-.∴圆C 的圆心坐标为(1,0)-,半径为1,∴圆C 的方程为:22(1)1x y ++=;(2)设00)(,P x y ,(0,)A a ,(0,)B b ,则直线PA 方程为00y a x y a x -=-,整理得:000()0y a x x y ax -+=-.∵直线PA 与圆C1=,化简得2000(2)20x a y a x +--=;同理可得PB 方程2000(2)20x b y b x +--=, 因而a ,b 为2000(2)20x x y x x +--=的两根,∴||||AB a b =-== 令02[,8]4t x =+∈,则||AB =,配方可求得min ||AB,max ||AB =.故答案为:⎦21.(14分)已知函数1()ln 1x f x a x x -=-+,()e x g x =(其中e 为自然对数的底数). (1)若函数()f x 在区间(0,1)内是增函数,求实数a 的取值范围; (2)当0b >时,函数()g x 的图象C 上有两点(e ),b P b 、(,)e b Q b --,过点P 、Q 作图象C 的切线分别记为1l 、2l ,设1l 与2l 的交点为00)(,M x y ,证明:00x >.【答案】见解析.【解答】解:(1)∵2()ln 11f x a x x =+-+, ∴22(1)2()(1)a x x f x x x +-'=+, 若函数()f x 在区间(0,1)内是增函数, 则2(1)20a x x -+≥,∴2222(1)4x a x =++≥, ∴12a ≥. (2)∵()e x g x '=,∴()()e b g b g b '==,∴1:(e )e b b l y x b =-+…①,()()e b g b g b -'-=-=,∴2:(e )e b b l y x b --=++…②,由①②得:e )e e ()e (b b b b x b x b ---+=++,两边同乘以e b 得:22e )e (1b b x b x b -+=++,∴222(e 1)e e 1b b b x b b =-+-⋅+,∴2202e e 1e 1b b b b b x -++=-, 分母2e 10b ->, 令22()e e 1b b h b b b -=++, ∴22()2e e 1b b h b b -'=+, ∴2()4e 10b h b b ''=+>, ∴min ()(0)0h b h +''→→,∴min ()(0)0h b h b →→>, ∴00x >.。

2015届南昌市高三“二模”测试数学(理科)参考答案及评分标准

2015届南昌市高三“二模”测试数学(理科)参考答案及评分标准

2015届南昌市高三“二模”测试数学(理科)参考答案及评分标准—高三数学(理科)答案第1页—2015 年高三测试卷数学(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目二、填空题:本大题共4小题,每小题5分.13.214.13π 15.13 16.2212x y -= 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(Ⅰ)由点,C B 的坐标可以得到34AOC π∠=,23AOB π∠=,…………………2分所以cos cos()COB AOC AOB ∠=∠+∠1()222=--=;……6分(Ⅱ)因为c 23AOB π∠=,所以3C π=,所以2sin sin a b A B ===,………8分所以22sin 2sin()3a b A A π+=+-2sin()6A π=+,2(0)3A π<<,……………………11分所以当3A π=时,a b +最大,最大值是12分18.解:(Ⅰ)该校运动会开幕日共有13种选择,其中运动会期间至少两天空气质量优良的选择有:1日,2日,3日,5日,9日,10日,12日,所以运动会期间至少两天空气质量优良的概率是2713P =.…………………………………6分(Ⅱ)随机变量ξ所有可能取值有:0,1,2,3;………………………………………………7分(0)P ξ==113,(1)P ξ==613,(2)P ξ==613,(3)P ξ==113,……………………9分所以随机变量ξ的分布列是:随机变量ξ的数学期望是1661012313131313E ξ=?+?+?+?=2113.……………………12分……………………10分—高三数学(理科)答案第2页—19.(Ⅰ)证明:在梯形ABCD 中,因为2AD DC CB ===,4AB =,4212cos 22CBA -∠==,所以60,ABC ∠=?由余弦定理求得AC =90ACB ∠=?即BC⊥又因为平面AEFC ⊥平面ABCD ,所以BC ⊥平面所以BC AG⊥,………………………………………3分在矩形AEFC 中,tan 1AE AGE EG ∠==,4AGE π∴∠=tan 1CF CGF GF ∠==,4CGF π∠=,所以2CGF AGE π∠+∠=,即AG CG ⊥,所以AG ⊥平面BCG ;……………………………………………………………………………6分(Ⅱ)FC AC ⊥,平面AEFC ⊥平面ABCD ,所以FC ⊥平面ABCD ,以点C 为原点,,,CA CB CF 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则)(0,0,0),(0,2,0),1,0)C A B D-,G ,…………………………8分平面BCG 的法向量(3,0,GA =,设平面GCD 的法向量(,,)n x y z =,则00n CG n CD ??==??,从而00x z y +=??-=,令1x =则(1,3,1)n =-,…………………………………………………………………………10分所以cos ,n GA <>==11分而二面角D —GCB 为钝角,故所求二面角的余弦值为.………………………………………………………………12分20.解:(Ⅰ)当l 垂直于OD 时||AB 最小,因为||2OD ==,所以2r ==,…………………………………2分因为圆1C 222:(0)x y r r +=>的一条直径是椭圆2C 的长轴,所以2a =,又点D 在椭圆22222:1(0)x y C a b a b +=>>上,所以291414b b +=?=,—高三数学(理科)答案第3页—所以圆1C 的方程为224x y +=,椭圆2C 的方程为22143x y +=;………………………5分(Ⅱ)椭圆2C 的右焦点F 的坐标是(1,0),当直线m 垂直于x轴时,||PQ = ||4MN =,四边形PMQN的面积S =当直线m 垂直于y 轴时,||4PQ =,||3MN =,四边形PMQN 的面积6S =,…………6分当直线m 不垂直于坐标轴时,设n 的方程为(1)y k x =-(0)k ≠,此时直线m 的方程为1(1)y x k=--,圆心O 到直线m的距离为:d =,所以||PQ ==8分将直线n 的方程代入椭圆2C 的方程得到:()22224384120k x k x k +-+-=,||MN =所以:四边形PMQN 的面积1||||2S PQ MN =?===∈,综上:四边形PMQN的面积的取值范围是.…………………………………………12分21.解:(Ⅰ)21221'()22x ax f x x a x x-+=+-=(0)x >,记2()221g x x ax =-+………1分(一)当0a ≤时,因为0x >,所以()10g x >>,函数()f x 在(0,)+∞上单调递增;……2分(二)当0a <≤时,因为24(2)0a =-≤△,所以()0g x ≥,函数()f x 在(0,)+∞上单调递增;…………………………………………………………………………………………………3分(三)当a >0()0x g x >??>?,解得x ∈,所以函数()f x在区间(,)2a a +上单调递减,在区间)+∞上单调递增.…………………………5分(Ⅱ)由(1)知道当(1a ∈时,函数()f x 在区间(0,1]上单调递增,所以(0,1]x ∈时,函数()f x 的最大值是(1)22f a =-,对任意的(1a ∈,都存在0(0,1]x ∈使得不等式20()ln ()f x a m a a +>-成立,等价于对任意的(1a ∈,不等式222ln ()a a m a a -+>-都成立,……………………………………6分即对任意的(1a ∈,不等式2ln (2)20a ma m a +-++>都成立,—高三数学(理科)答案第4页—记2()ln (2)2h a a ma m a =+-++,则(1)0h =,1(21)(1)'()2(2)a ma h a ma m a a --=+-+=,因为(1a ∈,所以210a a->,当1m ≥时,对任意(1a ∈,10ma ->,所以'()0h a >,即()h a在区间上单调递增,()(1)0h a h >=成立;…………………………………………………………………………9分当1m <时,存在0(1a ∈使得当0(1,)a a ∈时,10ma -<,'()0h a <,()h a 单调递减,从而()(1)0h a h <=,所以(1a ∈时,()0h a >不能恒成立.综上:实数m 的取值范围是[1,)+∞.……………………………………………………………12分 22.解:AF 是圆的切线,且18,15AF BC ==,∴由切割线定理得到2218(15)12AF FB FC FB FB FB =??=?+?=,…………………3分,AB AD ABD ADB =∴∠=∠,则,//FAB ABD AF BD ∠=∠∴,…………………………………………………………………6分又//AD FC ,∴四边形ADBF 为平行四边形.12,,18AD FB ACF ADB F AC AF ==∠=∠=∠∴==,//,18AE ADAD FC AE BC∴=-,解得8AE =。

2015年河南省郑州市高考数学二模试卷(理科)(解析版)

2015年河南省郑州市高考数学二模试卷(理科)(解析版)

2015年河南省郑州市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个符合题目要求.1.(5分)设i是虚数单位,复数z=,则|z|=()A.1B.C.D.22.(5分)集合U={0,1,2,3,4},A={1,2},B={x∈Z|x2﹣5x+4<0},则∁U(A∪B)=()A.{0,1,3,4}B.{1,2,3}C.{0,4}D.{0}3.(5分)已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m、n的比值=()A.1B.C.D.4.(5分)某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.3种B.6种C.9种D.18种5.(5分)如图,y=f(x)是可导函数,直线L:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=()A.﹣1B.0C.2D.46.(5分)有四个关于三角函数的命题:p1:sin x=sin y⇒x+y=π或x=y;p2:∀x∈R,sin2+cos2=1;p3:x,y∈R,cos(x﹣y)=cos x﹣cos y;p4:∀x∈[0,],=cos x.其中真命题是()A.p1,p2B.p2,p3C.p1,p4D.p2,p47.(5分)若实数x、y满足且z=2x+y的最小值为4,则实数b的值为()A.1B.2C.D.38.(5分)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为()A.8πB.16πC.32πD.64π9.(5分)已知函数f(x)=函数g(x)=f(x)﹣2x恰有三个不同的零点,则实数a的取值范围是()A.[﹣1,3)B.[﹣3,﹣1]C.[﹣3,3)D.[﹣1,1)10.(5分)在△ABC中,角A,B,C所对的边分别是a,b,c,已知sin(B+A)+sin(B ﹣A)=2sin2A,且c=,C=,则△ABC的面积是()A.B.C.D.或11.(5分)如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE,若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是()A.|BM|是定值B.点M在某个球面上运动C.存在某个位置,使DE⊥A1CD.存在某个位置,使MB∥平面A1DE12.(5分)已知双曲线﹣=1(a>0,b>0)的左、右焦点分别是F1,F2,过F2的直线交双曲线的右支于P,Q两点,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,则该双曲线的离心率为()A.B.C.2D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知点A(﹣1,1)、B(0,3)、C(3,4),则向量在方向上的投影为.14.(5分)已知实数m是2和8的等比中项,则抛物线y=mx2的焦点坐标为.15.(5分)执行如图所示的程序框图,输出的S值为.16.(5分)已知偶函数y=f(x)对于任意的x∈[0,)满足f′(x)cos x+f(x)sin x>0(其中f′(x)是函数f(x)的导函数),则下列不等式中成立的有.(1)f(﹣)<f()(2)f(﹣)>f(﹣)(3)f(0)<f(﹣)(4)f()<f()三、解答题(共8小题,满分70分)17.(12分)已知等差数列{a n}的各项均为正数,a1=1,且a3,a4+,a11成等比数列.(Ⅰ)求a n的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和T n.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,四边形AA1C1C是边长为2的菱形,平面ABC⊥平面AA1C1C,∠A1AC=60°,∠BCA=90°.(Ⅰ)求证:A1B⊥AC1;(Ⅱ)已知点E是AB的中点,BC=AC,求直线EC1与平面ABB1A1所成的角的正弦值.19.(12分)某商场每天(开始营业时)以每件150元的价格购入A商品若干件(A商品在商场的保鲜时间为10小时,该商场的营业时间也恰好为10小时),并开始以每件300元的价格出售,若前6小时内所购进的商品没有售完,则商店对没卖出的A商品以每件100元的价格低价处理完毕(根据经验,4小时内完全能够把A商品低价处理完毕,且处理完后,当天不再购进A商品).该商场统计了100天A商品在每天的前6小时内的销售量,制成如下表格(注:视频率为概率).(其中x+y=70)(Ⅰ)若某该商场共购入6件该商品,在前6个小时中售出4件.若这些产品被6名不同的顾客购买,现从这6名顾客中随机选2人进行回访,则恰好一个是以300元价格购买的顾客,另一个以100元价格购买的顾客的概率是多少?(Ⅱ)若商场每天在购进5件A商品时所获得的平均利润最大,求x的取值范围.20.(12分)设椭圆C:+=1(a>b>0),F 1、F2为左右焦点,B为短轴端点,且=4,离心率为,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点M、N,且满足|+|=|﹣|?若存在,求出该圆的方程,若不存在,说明理由.21.(12分)已知函数f(x)=ax+ln(x﹣1),其中a为常数.(Ⅰ)试讨论f(x)的单调区间;(Ⅱ)若a=时,存在x使得不等式|f(x)|﹣≤成立,求b的取值范围.22.(10分)如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.(Ⅰ)求证:AC•BC=AD•AE;(Ⅱ)若AF=2,CF=2,求AE的长.23.在直角坐标系xOy中,曲线M的参数方程为(α为参数),若以直角坐标系中的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为ρsin(θ+)=t(t为参数).(Ⅰ)求曲线M和N的直角坐标方程;(Ⅱ)若曲线N与曲线M有公共点,求t的取值范围.24.已知函数f(x)=|3x+2|.(Ⅰ)解不等式f(x)<4﹣|x﹣1|;(Ⅱ)已知m+n=1(m,n>0),若|x﹣a|﹣f(x)≤+(a>0)恒成立,求实数a的取值范围.2015年河南省郑州市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个符合题目要求.1.(5分)设i是虚数单位,复数z=,则|z|=()A.1B.C.D.2【解答】解:∵z===i(1﹣i)=i+1,则|z|=.故选:B.2.(5分)集合U={0,1,2,3,4},A={1,2},B={x∈Z|x2﹣5x+4<0},则∁U(A∪B)=()A.{0,1,3,4}B.{1,2,3}C.{0,4}D.{0}【解答】解:集合B中的不等式x2﹣5x+4<0,变形得:(x﹣1)(x﹣4)<0,解得:1<x<4,∴B={2,3},∵A={1,2},∴A∪B={1,2,3},∵集合U={0,1,2,3,4},∴∁∪(A∪B)={0,4}.故选:C.3.(5分)已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m、n的比值=()A.1B.C.D.【解答】解:根据茎叶图,得;乙的中位数是33,∴甲的中位数也是33,即m=3;甲的平均数是=(27+39+33)=33,乙的平均数是=(20+n+32+34+38)=33,∴n=8;∴=.故选:D.4.(5分)某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.3种B.6种C.9种D.18种【解答】解:可分以下2种情况:①A类选修课选1门,B类选修课选2门,有C21C32种不同的选法;②A类选修课选2门,B类选修课选1门,有C22C31种不同的选法.∴根据分类计数原理知不同的选法共有C21C32+C22C31=6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C.5.(5分)如图,y=f(x)是可导函数,直线L:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=()A.﹣1B.0C.2D.4【解答】解:∵直线L:y=kx+2是曲线y=f(x)在x=3处的切线,∴f(3)=1,又点(3,1)在直线L上,∴3k+2=1,从而k=,∴f′(3)=k=,∵g(x)=xf(x),∴g′(x)=f(x)+xf′(x)则g′(3)=f(3)+3f′(3)=1+3×()=0,故选:B.6.(5分)有四个关于三角函数的命题:p1:sin x=sin y⇒x+y=π或x=y;p2:∀x∈R,sin2+cos2=1;p3:x,y∈R,cos(x﹣y)=cos x﹣cos y;p4:∀x∈[0,],=cos x.其中真命题是()A.p1,p2B.p2,p3C.p1,p4D.p2,p4【解答】解:p1:若sin x=sin y⇒x+y=π+2kπ或x=y+2kπ,k∈Z,故错误;p2:根据同角三角函数基本关系的平方关系,可得:∀x∈R,sin2+cos2=1,故正确;p3:x,y∈R,cos(x﹣y)=cos x cos y+sin x sin y,与cos x﹣cos y不一定相等,故错误;p4:∀x∈[0,],==|cos x|=cos x,故正确.故选:D.7.(5分)若实数x、y满足且z=2x+y的最小值为4,则实数b的值为()A.1B.2C.D.3【解答】解:作出不等式组对于的平面区域如图:∵z=2x+y的最小值为4,即2x+y=4,且y=﹣2x+z,则直线y=﹣2x+z的截距最小时,z也取得最小值,则不等式组对应的平面区域在直线y=﹣2x+z的上方,由;,解得,即A(1,2),此时A也在直线y=﹣x+b上,即2=﹣1+b,解得b=3,故选:D.8.(5分)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为()A.8πB.16πC.32πD.64π【解答】解:由已知中的三视图可得,该几何体是一个以正视图为底面的四棱锥,其外接球,与以俯视图为底面,以4为高的直三棱柱的外接球相同,如图所示:由底面底边长为4,高为2,故底面为等腰直角三角形,可得底面外接圆的半径为:r=2,由棱柱高为4,可得球心距为2,故外接球半径为:R==2,故外接球的表面积S=4πR2=32π,故选:C.9.(5分)已知函数f(x)=函数g(x)=f(x)﹣2x恰有三个不同的零点,则实数a的取值范围是()A.[﹣1,3)B.[﹣3,﹣1]C.[﹣3,3)D.[﹣1,1)【解答】解:∵f(x)=,∴g(x)=f(x)﹣2x=,而方程﹣x+3=0的解为3,方程x2+4x+3=0的解为﹣1,﹣3;若函数g(x)=f(x)﹣2x恰有三个不同的零点,则,解得,﹣1≤a<3实数a的取值范围是[﹣1,3).故选:A.10.(5分)在△ABC中,角A,B,C所对的边分别是a,b,c,已知sin(B+A)+sin(B ﹣A)=2sin2A,且c=,C=,则△ABC的面积是()A.B.C.D.或【解答】解:∵在△ABC中,C=,∴B=﹣A,B﹣A=﹣2A,∵sin(B+A)+sin(B﹣A)=2sin2A∴sin C+sin(﹣2A)=2sin2A,即sin C+cos2A+sin2A=2sin2A,整理得:sin(2A﹣)=sin C=,∴sin(2A﹣)=,又A∈(0,),∴2A﹣=,解得A=,当A=时,B=,tan C===,解得a=,∴S△ABC=ac sin B=××=;故选:B.11.(5分)如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE,若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是()A.|BM|是定值B.点M在某个球面上运动C.存在某个位置,使DE⊥A1CD.存在某个位置,使MB∥平面A1DE【解答】解:取CD中点F,连接MF,BF,则MF∥DA1,BF∥DE,∴平面MBF∥平面A1DE,∴MB∥平面A1DE,故D正确由∠A1DE=∠MFB,MF=A1D=定值,FB=DE=定值,由余弦定理可得MB2=MF2+FB2﹣2MF•FB•cos∠MFB,所以MB是定值,故A正确.∵B是定点,∴M是在以B为圆心,MB为半径的圆上,故B正确,∵A1C在平面ABCD中的射影为AC,AC与DE不垂直,∴存在某个位置,使DE⊥A1C不正确.故选:C.12.(5分)已知双曲线﹣=1(a>0,b>0)的左、右焦点分别是F1,F2,过F2的直线交双曲线的右支于P,Q两点,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,则该双曲线的离心率为()A.B.C.2D.【解答】解:如图,l为该双曲线的右准线,设P到右准线的距离为d;过P作PP1⊥l,QQ1⊥l,分别交l于P1,Q1;∵,3|PF2|=2|QF2|;∴,;过P作PM⊥QQ1,垂直为M,交x轴于N,则:;∴解得d=;∵根据双曲线的定义,|PF1|﹣|PF2|=2a,∴|PF2|=2c﹣2a;∴根据双曲线的第二定义,;整理成:;∴解得(舍去);即该双曲线的离心率为.故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知点A(﹣1,1)、B(0,3)、C(3,4),则向量在方向上的投影为2.【解答】解:由已知得到=(1,2),=(4,3),所以向量在方向上的投影为==2;故答案为:2.14.(5分)已知实数m是2和8的等比中项,则抛物线y=mx2的焦点坐标为(0,±).【解答】解:∵实数m是2和8的等比中项,∴m2=16,m=±4,由y=mx2,得,若m=4,则,即2p=,,焦点坐标为(0,);若m=﹣4,则,即2p=,,焦点坐标为(0,﹣).∴抛物线y=mx2的焦点坐标为:(0,±).故答案为:(0,±).15.(5分)执行如图所示的程序框图,输出的S值为10.【解答】解:由已知可得该程序的功能是计算并输出S=﹣12+22﹣32+42的值∵S=﹣12+22﹣32+42=10故答案为:1016.(5分)已知偶函数y=f(x)对于任意的x∈[0,)满足f′(x)cos x+f(x)sin x>0(其中f′(x)是函数f(x)的导函数),则下列不等式中成立的有(2)(3)(4).(1)f(﹣)<f()(2)f(﹣)>f(﹣)(3)f(0)<f(﹣)(4)f()<f()【解答】解:∵偶函数y=f(x)对于任意的x∈[0,)满足f′(x)cos x+f(x)sin x>0∴g(x)=,g′(x)=>0,∴x∈[0,),g(x)=是单调递增,且是偶函数,∴g(﹣)=g(),g(﹣)=g(),∵g()<g(),∴,即f(>f(),(1)化简得出f(﹣)=f()>f(),所以(1)不正确.(2)化简f(﹣)>f(﹣),得出f()>f(),所以(2)正确.又根据g(x)单调性可知:g()>g(0),∴>,∴f(0)<f(),∵偶函数y=f(x)∴即f(0)<f(﹣),所以(3)正确.∵根据g(x)单调性可知g()>g(),∴,f()>f().所以(4)正确.故答案为:(2)(3)(4)三、解答题(共8小题,满分70分)17.(12分)已知等差数列{a n}的各项均为正数,a1=1,且a3,a4+,a11成等比数列.(Ⅰ)求a n的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和T n.【解答】解:(Ⅰ)设等差数列公差为d,由题意知d>0,∵a3,,a11成等比数列,∴()2=a3a11,∴,即44d2﹣36d﹣45=0,解得或(舍去),所以;(Ⅱ)因为b n===,所以数列{b n}的前n项和T n==.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,四边形AA1C1C是边长为2的菱形,平面ABC⊥平面AA1C1C,∠A1AC=60°,∠BCA=90°.(Ⅰ)求证:A1B⊥AC1;(Ⅱ)已知点E是AB的中点,BC=AC,求直线EC1与平面ABB1A1所成的角的正弦值.【解答】(Ⅰ)证明:取AC的中点O,连接A1O,由于平面ABC⊥平面AA1C1C,A1O⊥AC,所以:A1O⊥平面ABC,所以:A1O⊥BC,又BC⊥AC,所以:BC⊥平面A1AC,又AC1⊥A1C,A1C为A1B的射影,所以:A1B⊥AC1.(Ⅱ)以O为坐标原点建立空间直角坐标系O﹣xyz,A(0,﹣1,0),B(2,1,0),C(0,1,0),C1(0,2,),则:,,设=(x,y,z)是平面ABB1A1的法向量,所以:,求得:,由E(1,0,0)求得:,直线EC1与平面ABB1A1所成的角的正弦值sinθ=cos=.19.(12分)某商场每天(开始营业时)以每件150元的价格购入A商品若干件(A商品在商场的保鲜时间为10小时,该商场的营业时间也恰好为10小时),并开始以每件300元的价格出售,若前6小时内所购进的商品没有售完,则商店对没卖出的A商品以每件100元的价格低价处理完毕(根据经验,4小时内完全能够把A商品低价处理完毕,且处理完后,当天不再购进A商品).该商场统计了100天A商品在每天的前6小时内的销售量,制成如下表格(注:视频率为概率).(其中x+y=70)(Ⅰ)若某该商场共购入6件该商品,在前6个小时中售出4件.若这些产品被6名不同的顾客购买,现从这6名顾客中随机选2人进行回访,则恰好一个是以300元价格购买的顾客,另一个以100元价格购买的顾客的概率是多少?(Ⅱ)若商场每天在购进5件A商品时所获得的平均利润最大,求x的取值范围.【解答】解:(1)恰好一个是以300元价格购买的顾客,另一个以100元价格购买的顾客的概率是A,则P(A)==;(2)设销售A商品获得利润为X,(单位,元),以题意,视频率为概率,为追求更多的利润,则商店每天购进的A商品的件数取值可能为4件,5件,6件,当购进A商品4件时,EX=150×4=600,当购进A商品5件时,EX=(150×4﹣50)×0.3+150×5×0.7=690,当购进A商品6件时,EX=(150×4﹣2×50)×0.3+(150×5﹣50)×+150×6×=780﹣2x,由题意780﹣2x≤690,解得x≥45,又知x≤100﹣30=70,所以x的取值范围为[45,70].x∈N*.20.(12分)设椭圆C:+=1(a>b>0),F 1、F2为左右焦点,B为短轴端点,且=4,离心率为,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点M、N,且满足|+|=|﹣|?若存在,求出该圆的方程,若不存在,说明理由.【解答】解:(Ⅰ)∵椭圆C:+=1(a>b>0),由题意可得,=•2c•b=4,e==,且a2=b2+c2;联立解得,;故椭圆C的方程为+=1;(Ⅱ)假设存在圆心在原点的圆x2+y2=r2,使得该圆的任意一条切线与椭圆C恒有两个交点M、N,∵|+|=|﹣|,∴•=0;设M(x1,y1),N(x2,y2),当切线斜率存在时,设该圆的切线的方程为y=kx+m,解方程组得,(1+2k2)x2+4kmx+2m2﹣8=0,则△=(4km)2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0;即8k2﹣m2+4>0;∴x1+x2=﹣,x1x2=;y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=;要使•=0,故x1x2+y1y2=0;即+=0;所以3m2﹣8k2﹣8=0,所以3m2﹣8≥0且8k2﹣m2+4>0;解得m≥或m≤﹣;因为直线y=kx+m为圆心在原点的圆的一条切线,所以圆的半径为r=,r2===;故r=;即所求圆的方程为x2+y2=;此时圆的切线y=kx+m都满足m≥或m≤﹣;而当切线的斜率不存在时切线为x=±与椭圆+=1的两个交点为(,±),(﹣,±);满足•=0,综上所述,存在圆心在原点的圆x2+y2=满足条件.21.(12分)已知函数f(x)=ax+ln(x﹣1),其中a为常数.(Ⅰ)试讨论f(x)的单调区间;(Ⅱ)若a=时,存在x使得不等式|f(x)|﹣≤成立,求b的取值范围.【解答】解:(Ⅰ)由已知易得函数f(x)的定义域为:{x|x>1},f′(x)=a+=,当a≥0时,f′(x)>0在定义域内恒成立,f(x)的单调递增区间为(1,+∞),当a<0时,由f′(x)=0得x=1﹣,当x∈(1,1﹣)时,f′(x)>0,当x∈(1﹣,+∞)时,f′(x)<0,f(x)的单调递增区间为(1,1﹣),递减区间为(1﹣,+∞);(Ⅱ)由(I)知当a=时,f(x)=x+ln(x﹣1),且f(x)的单调增区间为(1,e),单调减区间为(e,+∞),所以f(x)max=f(e)=+ln(e﹣1)<0,所以|f(x)|≥﹣f(e)=恒成立,(当x=e时取等号)令,则,当1<x<e时,g(x)>0;当x>e时,g(x)<0,从而g(x)在区间(1,e)上单调递增,在区间(e,+∞)上单调递减,所以g(x)max=g(e)=,所以,存在x使得不等式|f(x)|﹣≤成立,只需﹣≤,即:b≥﹣2ln(e﹣1).22.(10分)如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.(Ⅰ)求证:AC•BC=AD•AE;(Ⅱ)若AF=2,CF=2,求AE的长.【解答】证明:(I)如图所示,连接BE.∵AE是⊙O的直径,∴∠ABE=90°.又∠E与∠ACB都是所对的圆周角,∴∠E=∠ACB.∵AD⊥BC,∠ADC=90°.∴△ABE∽△ADC,∴AB:AD=AE:AC,∴AB•AC=AD•AE.又AB=BC,∴BC•AC=AD•AE.解:(II)∵CF是⊙O的切线,∴CF2=AF•BF,∵AF=2,CF=2,∴(2)2=2BF,解得BF=4.∴AB=BF﹣AF=2.∵∠ACF=∠FBC,∠CFB=∠AFC,∴△AFC∽△CFB,∴AF:FC=AC:BC,∴AC==.∴cos∠ACD=,∴sin∠ACD==sin∠AEB,∴AE==23.在直角坐标系xOy中,曲线M的参数方程为(α为参数),若以直角坐标系中的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为ρsin(θ+)=t(t为参数).(Ⅰ)求曲线M和N的直角坐标方程;(Ⅱ)若曲线N与曲线M有公共点,求t的取值范围.【解答】解:(1)由x=,得x2=2cos2α,所以曲线M可化为y=x2﹣1,x∈[﹣2,2],由ρsin()=t,得ρsinθρcosθ=t,所以ρsinθ+ρcosθ=t,所以N可化为x+y=t,(2)若曲线N与曲线M有公共点,则当直线N过点(2,3)时,满足要求,此时t=5,并且向左下方平行运动直到相切之前总有公共点,相切时仍只有一个公共点,联立得x2+x﹣1﹣t=0,△=1+4(1+t)=0,解得t=,综上可得t的取值范围≤t≤5.24.已知函数f(x)=|3x+2|.(Ⅰ)解不等式f(x)<4﹣|x﹣1|;(Ⅱ)已知m+n=1(m,n>0),若|x﹣a|﹣f(x)≤+(a>0)恒成立,求实数a的取值范围.【解答】解:(Ⅰ)不等式f(x)<4﹣|x﹣1|,即|3x+2|+|x﹣1|<4,∴①,或②,或③.解①求得﹣<x<﹣,解②求得﹣≤x<,解③求得x∈∅.综上可得,不等式的解集为(﹣,).(Ⅱ)已知m+n=1(m,n>0),∴+=(m+n)(+)=2++≥2+2=4,当且仅当m=n=时,取等号.再根据|x﹣a|﹣f(x)≤+(a>0)恒成立,可得|x﹣a|﹣f(x)≤4,即|x﹣a|﹣|3x+2|≤4.设g(x)=|x﹣a|﹣|3x+2|=,故函数g(x)的最大值为g(﹣)=+a,再由+a≤4,求得0<a≤.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年东北三省四城市联考暨沈阳市高三质量监测(二)数 学(理科)沈阳命题:沈阳市第四中学 孙玉才 沈阳市第二十中学 金行宝沈阳市第九中学 付一博 沈阳市第一二0中学 潘 戈 沈阳市回民中学 庞红全 沈阳市第二十八中学 陶 慧 沈阳主审:沈阳市教育研究院 王恩宾本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22题~第24题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.注意事项:1. 答题前,考生务必将自己的姓名、考号填写在答题卡上,并将条码粘贴在答题卡指定区域.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡指定位置书写作答,在本试题卷上作答无效.3. 考试结束后,考生将答题卡交回.第Ⅰ卷一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 已知集合{11}A x x =-≤≤,2{20}B x x x =-≤,则A B =I ( ) (A ) [1,0]- (B ) ]2,1[ (C ) [0,1] (D ) (,1][2,)-∞+∞U2. 设复数1z i =+(i 是虚数单位),则22z z+=( ) (A )1i + (B )1i - (C )1i -- (D )1i -+3. 已知a ρ=1,b ρ=2,且a ρ)(b a ρρ-⊥,则向量a ρ与向量b ρ的夹角为( )(A )6π (B )4π (C ) 3π (D )23π4. 已知△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若222a b c bc =+-,4bc =,则△ABC 的面积为( ) (A )12(B )1 (C )3 (D )25. 已知{}2,0,1,3,4a ∈-,{}1,2b ∈,则函数 2()(2)f x a x b =-+为增函数的概率是( ) (A )25 (B )35 (C )12 (D )3106. 阅读如图所示的程序框图,运行相应的程序. 若输出的S 为1112,则判断框中填写的内容可以是( ) (A )6n = (B )6n < (C )6n ≤ (D )8n ≤7. 如图,网格纸上小正方形的边长为1,粗线画出的是某多 面体的三视图,则该多面体的体积为( ) (A )323 (B )64 (C )3233(D ) 643 8. 已知直线22(1)y x =-与抛物线:C x y 42=交于B A ,两点,点),1(m M -,若0=⋅MB MA ,则实数=m ( ) (A )2 (B )22(C )21 (D )09. 对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为M 函数:① 对任意的[0,1]x ∈,恒有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立,则下列函数不是M 函数的是( )(A )2()f x x = (B )()21xf x =- (C )2()ln(1)f x x =+ (D )2()1f x x =+10. 在平面直角坐标系中,若(,)P x y 满足44021005220x y x y x y -+≤⎧⎪+-≤⎨⎪-+≥⎩,则当xy 取得最大值时,点P 的坐标是( )(A )(4,2) (B )(2,2) (C )(2,6) (D )5(,5)211. 已知双曲线22221(0,0)x y a b a b-=>>与函数(0)y x x =≥的图象交于点P . 若函数y x =在点P 处的切线过双曲线左焦点(1,0)F -,则双曲线的离心率是( )(A )512+(B ) 522+ (C )312+ (D )3212. 若对,[0,)x y ∀∈+∞,不等式2242x y x y ax ee +---≤++恒成立,则实数a 的最大值是( ) (A )14 (B )1 (C )2 (D )12第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上) 13. 函数13sin cos 22y x x =+([0,]2x π∈)的单调递增区间是__________. 14. 612x x ⎛⎫- ⎪⎝⎭的展开式中常数项为 .15. 已知定义在R 上的偶函数()f x 在[0,)+∞单调递增,且(1)0f = ,则不等式(2)0f x -≥的解集是 .16. 同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a ,球的半径为R .设两个正三棱锥的侧面与底面所成的角分别为α、β,则tan()αβ+的值是 .三.解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分12分)已知数列{}n a 中,11a =,其前n 项的和为n S ,且满足2221n n n S a S =-(2)n ≥. (Ⅰ) 求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(Ⅱ) 证明:当2n ≥时,1231113 (232)n S S S S n ++++<.18. (本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠DAB =60o,PD ⊥平面ABCD ,PD =AD =1,点,E F 分别为AB 和PD 中点.(Ⅰ)求证:直线AF //平面PEC ; (Ⅱ)求PC 与平面PAB 所成角的正弦值.19. (本小题满分12分)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:学生 1号 2号 3号 4号 5号 甲班 6 5 7 9 8 乙班48977(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作X 和Y ,试求X 和Y 的分布列和数学期望.FEBDCAP20.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的上顶点为(0,1),且离心率为32.(Ⅰ) 求椭圆C 的方程;(Ⅱ)证明:过椭圆1C :22221(0)x y m n m n+=>>上一点00(,)Q x y 的切线方程为00221x x y ym n+=; (Ⅲ)从圆2216x y +=上一点P 向椭圆C 引两条切线,切点分别为,A B ,当直线AB 分别与x 轴、y 轴交于M 、N 两点时,求MN 的最小值.21.(本小题满分12分)若定义在R 上的函数()f x 满足222(1)()2(0)2x f f x e x f x -'=⋅+-, 21()()(1)24x g x f x a x a =-+-+,∈a R.(Ⅰ)求函数()f x 解析式;(Ⅱ)求函数()g x 单调区间;(Ⅲ)若x 、y 、m 满足||||-≤-x m y m ,则称x 比y 更接近m .当2a ≥且1x ≥时,试比较e x和1x e a -+哪个更接近ln x ,并说明理由.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-1:几何证明选讲 如图所示,AB 为圆O 的直径,BC ,CD 为 圆O 的切线,B ,D 为切点. (Ⅰ)求证: OC AD //;(Ⅱ)若圆O 的半径为2,求OC AD ⋅的值.23.(本小题满分10分)选修4-4:坐标系与参数方程已知在直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧+-=+=θθsin 24cos 23y x (θ为参数).(Ⅰ)以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; (Ⅱ)已知(2,0),(0,2)A B -,圆C 上任意一点),(y x M ,求△ABM 面积的最大值.24.(本小题满分10分)选修4-5:不等式选讲设函数()222f x x x =+--. (Ⅰ)求不等式2)(>x f 的解集; (Ⅱ)若R ∈∀x ,27()2f x t t ≥-恒成立,求实数t 的取值范围.2015年东北三省四城市联考暨沈阳市高三质量监测(二)数学(理科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。

二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。

三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。

四、只给整数分数,选择题和填空题不给中间分。

一.选择题(1)C ;(2)A ;(3)B ;(4)C ;(5)B ;(6)C ;(7)D ;(8)B ; (9)D ;(10)D ;(11) A ;(12)D . 二.填空题 (13)[0,]6π;(14)52-;(15) (,1][3,)-∞+∞U ;(16)433R a -.三.解答题(17)解:(Ⅰ)当2n ≥时,21221nn n n S S S S --=-, …………………2分112n n n n S S S S ---=.1112n n S S --=, 从而⎭⎬⎫⎩⎨⎧n S 1构成以1为首项,2为公差的等差数列. ………………………………6分 (Ⅱ)由(1)可知,111(1)221n n n S S =+-⨯=-,121n S n ∴=-. ………8分 当2n ≥时,11111111()(21)(22)2(1)21n S n n n n n n n n n=<=⋅=-----. ……10分 从而123111111111313...1(1)2322231222n S S S S n n n n ++++<+-+-++-<-<-L . …12分(18)解:(Ⅰ)证明:作FM ∥CD 交PC 于M . ∵点F 为PD 中点,∴CD FM 21=. …………2分 ∵21=k ,∴FM AB AE ==21, ∴AEMF 为平行四边形,∴AF ∥EM , ……4分 ∵AF PEC EM PEC ⊄⊂平面,平面,∴直线AF //平面PEC . ……………6分 (Ⅱ)60DAB ∠=oQ ,DE DC ∴⊥. 如图所示,建立坐标系,则P (0,0,1),C (0,1,0),E (32,0,0), A (32,12-,0),31(,,0)22B , ∴31,,122AP ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,()0,1,0AB =u u u r . …8分设平面PAB 的一个法向量为(),,n x y z =r.∵0n AB ⋅=r u u u r ,0n AP ⋅=r u u u r ,∴⎪⎩⎪⎨⎧==++-02123y z y x ,取1x =,则32z =, ∴平面PAB 的一个法向量为3(1,0,)2n =r . …………………………10分 设向量n PC θr u u u r 与所成角为,∵(0,1,1)PC =-u u u r ,∴3422cos 14724n PCn PCθ-⋅===-⨯r u u u rr u u u r , MFEBACDPFEBACDyzx P∴PC 平面PAB 所成角的正弦值为4214. .…………………………12分 (19)解:(Ⅰ)两个班数据的平均值都为7, ……………………1分甲班的方差22222216-7+-7+-7+-7+-7=25s =()(5)(7)(9)(8), …………3分 乙班的方差2222222-7+-7+-7+-7+-714=55s =(4)(8)(9)(7)(7), …………5分 因为2212s s <,甲班的方差较小,所以甲班的成绩比较稳定. ………………6分 (Ⅱ)X 可能取0,1,2211(0)525P X ==⨯=,31211(1)52522P X ==⨯+⨯=,313(2)5210P X ==⨯=,所以X 分布列为:X0 1 2 P15 12 310 数学期望11311012521010EX =⨯+⨯+⨯=. …………………………………9分Y 可能取0,1,2313(0)5525P Y ==⨯=,342114(1)555525P Y ==⨯+⨯=,248(2)5525P Y ==⨯=,所以Y 分布列为:Y0 1 2 P325 1425 825数学期望314860122525255EY =⨯+⨯+⨯=. …………………………12分 (20)解:(Ⅰ)1b =Q ,3=2c e a =, 2,1a b ∴==,∴椭圆C 方程为2214x y +=. ………………………………………2分(Ⅱ)法一:椭圆1C :22221x y m n +=,当0y >时,221x y n m=-,故22211nxy mx m '=-⋅-,∴当00y >时,200022220002111x nn n k x x y mm m y x n m =-⋅=-=-⋅-. ……………4分 切线方程为()200020x n y y x x m y -=-⋅-,222222220000n x x m y y m y n x m n +=+=,00221x x y ym n +=. …………………………6分 同理可证,00y <时,切线方程也为00221x x y ym n +=.当0=0y 时,切线方程为x m =±满足00221x x y ym n+=.综上,过椭圆上一点00(,)Q x y 的切线方程为00221x x y ym n+=. ……………………7分解法2. 当斜率存在时,设切线方程为y kx t =+,联立方程:22221x y mn y kx t ⎧+=⎪⎨⎪=+⎩可得222222()n x m kx t m n ++=,化简可得: 22222222()2()0n m k x m ktx m t n +++-=,①由题可得:42222222244()()0m k t m n m k t n ∆=-+-=, ……………………4分 化简可得:2222t m k n =+,①式只有一个根,记作0x ,220222m kt m kx n m k t=-=-+,0x 为切点的横坐标,切点的纵坐标200n y kx t t =+=,所以2020x m ky n =-,所以2020n x k m y =-,所以切线方程为:2000020()()n x y y k x x x x m y -=-=--,化简得:00221x x y ym n+=. …………………………… 6分 当切线斜率不存在时,切线为x m =±,也符合方程00221x x y ym n+=,综上:22221x y m n +=在点00(,)x y 处的切线方程为00221x x y ym n+=.(其它解法可酌情给分) ………………………… 7分(Ⅲ)设点P (,)p p x y 为圆2216x y +=上一点,,PA PB 是椭圆2214x y +=的切线,切点1122(,),(,)A x y B x y ,过点A 的椭圆的切线为1114x xy y +=,过点B 的椭圆的切线为2214x xy y +=. Q 两切线都过P 点,12121,144p p p p x x x x y y y y ∴+=+=.∴切点弦AB 所在直线方程为14p p xx yy +=. …………………… 9分1(0)p M y ∴,,4(,0)pN x ,2222222161161=16p pp p p p x y MN x y x y ⎛⎫+∴=++⋅ ⎪ ⎪⎝⎭222222221125=171617216161616p pp pppp p x y x y y x y x ⎛⎫⎛⎫ ⎪++⋅≥+⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭. 当且仅当222216p p ppx y y x =,即226416,55P P x y ==时取等,54MN ∴≥,MN ∴的最小值为54. ……………………………………12分(21)(本小题满分12分) 解:(Ⅰ)22'()'(1)22(0)x f x f e x f -=+-,所以'(1)'(1)22(0)f f f =+-,即(0)1f =.又2(1)(0)2f f e -'=⋅,所以2'(1)2f e =, 所以22()2xf x ex x =+-. ……………………………………4分(Ⅱ)22()2xf x ex x =-+Q ,222111()()(1)(1)(1)2444x x x g x f x a x a e x x x a x a e a x ∴=-+-+=+--+-+=--.……………5分()x g x e a '∴=-,①当0a ≤时,()0g x '>,函数 在R 上单调递增; .……………6分 ②当0a >时,由()0xg x e a '=-=得ln x a =, ∴(),ln x a ∈-∞时,()0g x '<, ()g x 单调递减;()ln ,x a ∈+∞时,()0g x '>,()g x 单调递增.综上,当0a ≤时,函数()g x 的单调递增区间为(,)-∞+∞;当0a >时,函数()g x 的单调递增区间为()ln ,a +∞,单调递减区间为(),ln a -∞. .……………8分 (Ⅲ)解:设1()ln ,()ln x ep x x q x e a x x-=-=+-, Q 21'()0e p x x x=--<,∴()p x 在[1,)x ∈+∞上为减函数,又()0p e =, ∴当1x e ≤≤时,()0p x ≥,当x e >时,()0p x <.Q 11'()x q x e x -=-,121''()0x q x e x -=+>,∴'()q x 在[1,)x ∈+∞上为增函数,又'(1)0q =,∴[1,)x ∈+∞时,'()0q x ≥,∴()q x 在[1,)x ∈+∞上为增函数,)(x g∴()(1)20q x q a ≥=+>.①当1x e ≤≤时,1|()||()|()()x e p x q x p x q x e a x--=-=--, 设1()x e m x e a x -=--,则12'()0x em x e x-=--<,∴()m x 在[1,)x ∈+∞上为减函数,∴()(1)1m x m e a ≤=--,Q 2a ≥,∴()0m x <,∴|()||()|p x q x <,∴e x比1x e -+a 更接近ln x . ②当x e>时,11|()||()|()()2ln 2ln x x ep x q x p x q x x e a x e a x---=--=-+--<--,设1()2ln x n x x e a -=--,则12'()x n x e x -=-,122''()0x n x e x-=--<,∴'()n x 在x e >时为减函数,∴12'()'()0e n x n e e e -<=-<,∴()n x 在x e >时为减函数,∴1()()20e n x n e a e -<=--<, ∴|()||()|p x q x <,∴e x 比1x e -+a 更接近ln x . 综上:在2,1a x ≥≥时,e x比1x e -+a 更接近ln x . …………………………… 12分(22) 解: (1)连接CD CB OD BD ,,,Θ是圆O 的两条切线,OC BD ⊥∴,ο90=∠+∠∴DOC ODB ,又AB Θ为圆O 的直径,DB AD ⊥∴,ο90=∠+∠∴ODB ADO ODA OAD ∠=∠∴,DOC OAD ∠=∠∴,即得证,……5分(2)OD AO =∴,DOC DAO ∠=∠∴,Rt ∴△BAD ∽△COD ,8AD OC AB OD ⋅=⋅=. ………………………………………………………… 10分(23)解:(1)圆C 的参数方程为⎩⎨⎧+-=+=θθsin 24cos 23y x (θ为参数)所以普通方程为4)4()3(22=++-y x …………………………………………2分∴圆C 的极坐标方程:021sin 8cos 62=++-θρθρρ …………………5分(2)点),(y x M 到直线AB :02=+-y x 的距离为 ………………………6分2|9sin 2cos 2|+-=θθd………………………7分△ABM 的面积|9)4sin(22||9sin 2cos 2|||21+-=+-=⨯⨯=θπθθd AB S………………………9分 所以△ABM 面积的最大值为229+ ………………………10分(24) 解:(1)4,1()3,124,2x x f x x x x x --<-⎧⎪=-≤<⎨⎪+≥⎩, ………………………2分当1,42,6,6x x x x <---><-∴<- 当2212,32,,233x x x x -≤<>>∴<< 当2,42,2,2x x x x ≥+>>-∴≥综上所述 2|63x x x ⎧⎫><-⎨⎬⎩⎭或 . ………………………5分 (2)易得min ()(1)3f x f =-=-,若R ∈∀x ,t t x f 211)(2-≥恒成立, 则只需22min 73()32760222f x t t t t t =-≥-⇒-+≤⇒≤≤, 综上所述322t ≤≤.………………………10分。

相关文档
最新文档