向量证明垂直、求角

合集下载

两个空间向量垂直的公式

两个空间向量垂直的公式

两个空间向量垂直的公式“两个空间向量垂直的公式”,也称为叉积公式,是在空间上判断两条线段是否垂直的一种计算方法。

它是由三角函数的知识扩展而来的,可以用于计算两个空间向量之间的夹角,也可以用来判断两条线段之间的垂直关系。

叉积公式有两种形式:一种是矢量形式,另一种是矩阵形式。

矢量形式:设$\overrightarrow{a}=(a_1,a_2,a_3)$、$\overrightarrow{b}=(b_1,b_2,b_3)$ 是两个空间中的两个向量,它们的叉积为:$$\overrightarrow{a}\times\overrightarrow{b}=(a_2b_3-a_3b_2, a_3b_1-a_1b_3, a_1b_2-a_2b_1)$$矩阵形式:若已知两个空间中的两个向量:$\overrightarrow{a}=(a_1,a_2,a_3)$、$\overrightarrow{b}=(b_1,b_2,b_3)$,则它们的叉积可写成如下矩阵形式:$$\begin{bmatrix} a_1 & a_2 & a_3\\ b_1 & b_2 & b_3 \end{bmatrix}$$根据叉积公式,可以判断两个空间向量是否垂直,即可以判断两条线段是否垂直,若两个空间向量的叉积为零向量,则证明这两个向量垂直。

例如设$\overrightarrow{a}=(6,4,0)$ 、$\overrightarrow{b}=(3,2,-1)$ 是两个空间中的向量,则它们的叉积为:$$\begin{aligned} \overrightarrow{a}\times\overrightarrow{b}&=(a_2b_3-a_3b_2, a_3b_1-a_1b_3, a_1b_2-a_2b_1)\\ &=(4\times(-1)-0\times2, 0\times 3 - 6\times (-1), 6\times 2 - 4\times 3 )\\ &=(-4,18,-12) \end{aligned}$$可以看出,叉积不为零向量,因此$\overrightarrow{a}, \overrightarrow{b}$不垂直。

向量运算垂直

向量运算垂直

向量运算垂直
向量运算在数学中是一个非常重要且基础的概念,它在几何、代数以
及物理学等领域都有着广泛的应用。

其中,向量的垂直关系是向量运算中一个非常关键的方面,它在很多实际问题中都扮演着重要的角色。

在二维空间中,两个向量的垂直性可以通过它们的内积来判断。

如果
两个向量的内积为零,那么它们就是垂直的。

这是因为两个向量的内积等于它们的长度乘积再乘以它们夹角的余弦值,当夹角为90度时,余弦值为零,所以内积为零。

这个性质可以帮助我们判断两个向量是否垂直,从而解决实际问题中的几何关系。

在三维空间中,两个向量的垂直性有更多的可能性。

除了通过内积来
判断,我们还可以通过向量的叉积来得到两个向量的垂直向量。

具体来说,两个向量的叉积的结果是一个新的向量,这个向量与原来的两个向量都垂直。

这种垂直性的判断方式在计算机图形学、物理学等领域都有着广泛的应用。

在工程领域中,向量的垂直性也是一个非常重要的概念。

比如,在建
筑设计中,我们需要确保墙体之间的角度是垂直的,这样才能保证建筑的稳定性和美观性;在机械设计中,我们需要确保零件之间的连接方式是垂直的,这样才能确保机器的正常运转。

让我们总结一下本文的重点,我们可以发现,向量运算中的垂直性是一个非常重要且普遍的概念,它在数学、几何、物理等多个领域都有着广泛
的应用。

通过研究和理解向量的垂直性,我们可以更好地解决实际问题,提高我们的工作效率和准确性。

希望未来能够有更多的研究者投入到这个领域,为这一概念的深入发展做出更多的贡献。

证明垂直的方法

证明垂直的方法

证明垂直的方法在几何学中,垂直是一个基本概念,它是指两条直线、线段或平面相互交于一个相互垂直的角度。

垂直关系在很多数学和物理学问题中都非常重要。

例如,在计算机图形学、建筑设计和机械工程等领域中,垂直关系都是必须考虑的。

那么,我们该如何证明两条线段或直线之间的垂直关系呢?下面将介绍一些证明垂直的方法。

垂直定义法根据垂直的定义,两条直线、线段或平面相互垂直的条件是它们的交角是90度。

因此,我们可以利用这个定义来证明两条线段或直线之间的垂直关系。

具体的证明步骤如下:1.画出两条线段或直线,并标出它们的交点;2.测量它们交角的大小,如果交角恰好为90度,则可以证明它们垂直;3.如果交角不是90度,就需要进一步推导和证明。

这种方法比较直观,但是需要测量角度,有一定的局限性。

垂线相交法垂线相交法是一种比较常用的证明方法,它可以不用测量角度来确定两条线段或直线之间的垂直关系。

具体的证明步骤如下:1.画出两条线段或直线,并标出它们的交点;2.从交点开始,画出两条垂直的直线;3.如果两条直线分别与两条线段或直线相交,并且它们的交点在同一条直线上,则可以证明它们垂直。

例如,我们要证明线段AB和线段CD垂直,可以按照如下步骤进行:垂线相交法示意图1.画出线段AB和线段CD,并标出它们的交点E;2.从E点开始,分别画出垂直于AB和CD的两条线段EF和EG,其中F和G 分别在AB和CD上;3.如果EF和CD以及EG和AB相交,并且它们的交点H和I在同一条直线上,则可以证明线段AB和线段CD垂直。

向量法向量法也是一种常用的证明垂直的方法,它可以利用向量的内积和外积的性质来判断两个向量是否垂直。

具体的证明步骤如下:1.画出两条线段或直线,并标出它们的任意点A和B;2.确定两个向量$\\vec{v_1}$和$\\vec{v_2}$,其中$\\vec{v_1}$表示从A点到B点的向量,$\\vec{v_2}$表示与之垂直的向量;3.计算这两个向量的内积和外积,如果内积为0且外积不为0,则证明它们垂直。

专题08 利用空间向量证明平行、垂直(解析版)

专题08 利用空间向量证明平行、垂直(解析版)

2020年高考数学立体几何突破性讲练08利用空间向量证明平行、垂直一、考点传真:能用向量语言表述线线、线面、面面的平行和垂直关系二、知识点梳理:证明平行、垂直问题的思路(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.3其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.三、例题:例1. (2019江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【解析】证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .例2.(2016年北京卷) 如图,在四棱锥中,平面PAD ⊥平面,,,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.【解析】(1)∵面PAD面ABCD AD =,面PAD ⊥面ABCD ,∵AB ⊥AD ,AB ⊂面ABCD ,∴AB ⊥面PAD ,P ABCD -ABCD PA PD ⊥PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP∵PD ⊂面PAD , ∴AB ⊥PD , 又PD ⊥PA ,∴PD ⊥面PAB , (2)取AD 中点为O ,连结CO ,PO ,∵CD AC == ∴CO ⊥AD , ∵PA PD =, ∴PO ⊥AD ,以O 为原点,如图建系易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,则(111)PB =-,,,(011)PD =--,,,(201)PC =-,,,(210)CD =--,,, 设n 为面PDC 的法向量,令00(,1)n x y =,.011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩,,则PB 与面PCD 夹角θ有,sin cos ,1n PB n PB n PBθ⋅=<>== (3)假设存在M 点使得BM ∥面PCD , 设AMAPλ=,()0,','M y z , 由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-,()1,1,0B ,()0,'1,'AM y z =- 有()0,1,AM AP M λλλ=⇒- ∴()1,,BM λλ=--∵BM ∥面PCD ,n 为PCD 的法向量, ∴0BM n ⋅=,即102λλ-++=,∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求. 例3.(2011安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==OAB ∆,OAC ∆,ODE ∆,ODF ∆都是正三角形. (Ⅰ)证明直线BC ∥EF ; (Ⅱ)求棱锥F OBED -的体积.【解析】(Ⅰ)(综合法)证明:设G 是线段DA 与EB 延长线的交点. 由于OAB ∆与ODE∆都是正三角形,所以OB ∥DE 21,OG=OD=2, 同理,设G '是线段DA 与线段FC 延长线的交点,有.2=='OD G O 又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合.在GED ∆和GFD 中,由OB ∥DE 21和OC ∥DF 21,可知B 和C 分别是GE 和GF 的中点,所以BC 是GEF ∆的中位线,故BC ∥EF .(向量法)过点F 作AD FQ ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系. 由条件知).23,23,0(),0,23,23(),3,0,0(),0,0,3(--C B F E则有33(,0,),(3,0,BC EF =-=- 所以,2=即得BC ∥EF .(Ⅱ)由OB=1,OE=2,23,60=︒=∠EOB S EOB 知,而O E D ∆是边长为2的正三角形,故.3=OED S 所以.233=+=OED EOB OBED S S S过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F —OBED 的高,且FQ=3,所以.2331=⋅=-OBED OBED F S FQ V 例4.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点. 求证:(Ⅰ)直线EF ∥平面PCD ;(Ⅱ)平面BEF ⊥平面PAD .【证明】(Ⅰ)在△PAD 中,因为E 、F 分别为AP ,AD 的中点,所以EF//PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF//平面PCD .(Ⅱ)连结DB ,因为AB=AD ,∠BAD=60°,所以ABD ∆为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD ,平面PAD 平面ABCD=AD ,所以BF ⊥平面PAD .又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .例5.(2010广东)如图,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =.(Ⅰ)证明:EB FD ⊥;(Ⅱ)已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值.【证明】:(Ⅰ)连结CF ,因为¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,所以EB AC ⊥.在RT BCE ∆中,EC ===.在BDF ∆中,BF DF ==,BDF ∆为等腰三角形, 且点C 是底边BD 的中点,故CF BD ⊥.在CEF ∆中,222222)(2)6CE CF a a EF +=+==,所以CEF ∆为Rt ∆,且CF EC ⊥.因为CF BD ⊥,CF EC ⊥,且CE BD C =I ,所以CF ⊥平面BED , 而EB ⊂平面BED ,CF EB ∴⊥.因为EB AC ⊥,EB CF ⊥,且AC CF C =I ,所以EB ⊥平面BDF , 而FD ⊂平面BDF ,EB FD ∴⊥.(Ⅱ)设平面BED 与平面RQD 的交线为DG .由23FQ FE =,23FR FB =,知//QR EB . 而EB ⊂平面BDE ,∴//QR 平面BDE , 而平面BDE I 平面RQD = DG , ∴////QR DG EB .由(Ⅰ)知,BE ⊥平面BDF ,∴DG ⊥平面BDF , 而,DR DB ⊂平面BDF ,∴DG DR ⊥,DG DQ ⊥, ∴RDB ∠是平面BED 与平面RQD 所成二面角的平面角. 在Rt BCF ∆中,2CF a ===,sin FC RBD BF ∠===cos RBD ∠==. 在BDR ∆中,由23FR FB =知,133BR FB ==,由余弦定理得,RD== 由正弦定理得,sin sin BR RD RDB RBD=∠∠,即332sin RDB =∠,sin RDB ∠=故平面BED 与平面RQD 所成二面角的正弦值为29.为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ; (2)求证:CF ⊥平面AEF .【解析】证明 取BC 中点H ,连接OH ,则OH ∥BD ,又四边形ABCD 为正方形, ∴AC ⊥BD ,∴OH ⊥AC ,故以O 为原点,建立如图所示的直角坐标系,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0).BC →=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3). (1)设平面BCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·CF →=0,即⎩⎨⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE →=BF →=(-1,-2,3), ∴AE →=AD →+DE →=BC →+BF →=(-2,-2,0)+(-1,-2,3)=(-3,-4,3), ∴AE →·n =33-43+3=0,∴AE →⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0, ∴CF →⊥AF →,CF →⊥AE →, 即CF ⊥AF ,CF ⊥AE , 又AE ∩AF =A , AE ,AF ⊂平面AEF , ∴CF ⊥平面AEF .2.如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .【解析】证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱,所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2), 所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎪⎨⎪⎧-x 1+2y 1=0,x 1+2z 1=0,,令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 3.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,DE =2,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M -CDE 的体积; (2)求证:DM ⊥平面ACE .【解析】(1)设AC ∩BD =O ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则C (0,3,0),D (-1,0,0),E (-1,0,2),M (1,0,1), DE →=(0,0,2),DC →=(1,3,0),DM →=(2,0,1), ∵DE →·DC →=0, ∴DE ⊥DC ,∴S △DEC =12×DE ×DC =12×2×2=2,设平面DEC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DE →=2z =0,n ·DC →=x +3y =0,取x =3,得n =(3,-1,0),∴M 到平面DEC 的距离h =|DM →·n ||n |=233+1=3,∴三棱锥M -CDE 的体积V =13×S △CDE ×h =13×2×3=233.(2)证明:A (0,-3,0),AC →=(0,23,0),AE →=(-1,3,2), AC →·DM →=0,AE →·DM →=-2+2=0, ∴AC ⊥DM ,AE ⊥DM ,∵AC ∩AE =A ,∴DM ⊥平面ACE .4.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC .【解析】证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又ABCD 是正方形,所以OF ⊥AD . 因为P A =PD =22AD , 所以P A ⊥PD ,OP =OA =a2.以O 为原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系, 则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a 2,0,D ⎝⎛⎭⎫-a2,0,0, P ⎝⎛⎭⎫0,0,a 2,B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点,所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4,且OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0, 又因为EF ⊄平面P AD , 所以EF ∥平面P AD .(2)因为P A →=⎝⎛⎭⎫a 2,0,-a 2,CD →=(0,-a,0), 所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD . 又P A ⊥PD ,PD ∩CD =D , PD ,CD ⊂平面PDC , 所以P A ⊥平面PDC . 又P A ⊂平面P AB , 所以平面P AB ⊥平面PDC .5.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .【解析】证明 如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).(1)∵AP →=(0,3,4),BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0,AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125. 又AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则A P →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,BM ∩BC =B , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .6. 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .【解析】证明 (1)取BC 的中点O ,连接PO ,△PBC 为等边三角形,即PO ⊥BC , ∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .7.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱A 1A =2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得AP →=λP A 1→且面AB 1C 1⊥面PB 1C 1.【解析】 如图所示,以DA ,DC ,DA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),D 1(-1,0,3),B 1(0,1,3),C 1(-1,1,3).(1)证明:AC →=(-1,1,0),A 1B →=(1,1,-3), ∴AC →·A 1B →=0,∴AC ⊥A 1B . (2)假设存在, ∵AP →=λP A 1→, ∴P ⎝⎛⎭⎪⎫11+λ,0,3λ1+λ. 设平面AB 1C 1的一个法向量为n 1=(x 1,y 1,z 1), ∵AB 1→=(-1,1,3),AC 1→=(-2,1,3), ∴⎩⎪⎨⎪⎧n 1·AB 1→=-x 1+y 1+3z 1=0,n 1·AC 1→=-2x 1+y 1+3z 1=0.令z 1=3,则y 1=-3,x 1=0.∴n 1=(0,-3,3).同理可求面PB 1C 1的一个法向量为n 2=⎝ ⎛⎭⎪⎫0,3λ+1,-1, ∴n 1·n 2=0.∴-331+λ-3=0,即λ=-4.∵P 在棱A 1A 上,∴λ>0,矛盾. ∴这样的点P 不存在.8.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n 3=(x 3,y 3,z 3), 则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .。

3.2.2 利用向量证明空间中的垂直关系

3.2.2  利用向量证明空间中的垂直关系
3.2.2 利用向量证明空间中的
垂直关系
一、基础知识
1、立体几何中如何证明两条直线垂直?
①利用定义:证明两直线所成角为 900; ②利用线面垂直的性质来证明线线垂直.
线面垂直的性质:如果一条直线垂直一个平面,那么这条直线 垂直该平面内的任一直线.
αA
l B
Q C
lα AB α


l

BB1,CD 的中点,求证:D1F⊥平面 ADE.
【解析】如图,以 O 为原点建立空间直角
z
D1
C1 坐标系.设棱长为 2,由题意可得
A1
D(0,0,0),D1(0,0,2),F(0,1,0),A(2,0,0),
B1
E(2,2,1)
D xA
E C

y
D1F (0,1,2),DE (2,2,1),DA (2,0,0)
C.l1⊥l2
D.不能确定
2.设平面α的法向量为a (1,2,2) ,平面β的法向量为
b (2,4,k),若α⊥β,则 k=( B )
A.2
B.-5
C.4
D.-2
3.已知平面α内的两个向量a (2,2,1),b (2,0,0),则平面的一个
法向量是( A )
A.(0,1,2) B.(1,0,2) C.(1, 2, 1) D.(0,0, 2)
(1)l⊥m
(2)l//m
答案: (1)α β
(2)α //β
设两个平面α,β的法向量分别为a ,b ,则
α β ab ab0
二、自我检测
C 1、直线 l1,l2 的方向向量分别为a (1,2,2),b (2,3,2) ,则( )

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.已知平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.题型一 证明平行问题例1 (2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.题型二证明垂直问题例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.题型三解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A 组 专项基础训练1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面D .平行或在平面3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( )A .(2,4,-1)B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确6.已知平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .(23,23,1)C .(22,22,1) D .(24,24,1) 12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( )A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD求一点G,使GF⊥平面PCB,并证明你的结论.。

证明垂直的方法

证明垂直的方法

证明垂直的方法证明垂直的方法1利用直角三角形中两锐角互余证明由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

2勾股定理逆定理3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分线线垂直分为共面与不共面。

不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为02斜率两条直线斜率积为-13线面垂直,则这条直线垂直于该平面内的所有直线一条直线垂直于三角形的两边,那么它也垂直于另外一边4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

2高中立体几何的证明主要是平行关系与垂直关系的证明。

方法如下:Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。

2.公理4。

3.线面平行的性质。

4.面面平行的性质。

5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。

2.平面外的一条直线与平面内的一条直线平行。

3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。

2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:线线垂直:1.直线所成角为90°。

2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。

2.一条直线与一个平面内的两条相交直线都垂直。

3.面面垂直的性质。

4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。

5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

面面垂直:1.面面所成二面角为直二面角。

2.一个平面过另一平面的垂线,那么这两个平面垂直线线垂直分为共面与不共面。

向量垂直方法证明

向量垂直方法证明

向量垂直方法证明向量的垂直是指两个向量的夹角为90度。

要证明向量垂直,可以使用两种方法:矢量的数量积为0和使用向量的坐标表示进行计算。

首先,我们来看第一种方法:矢量的数量积为0。

设有两个向量u和v,要证明u⊥v,即u和v垂直,需要证明它们的数量积为0,即u·v=0。

根据数量积的定义,u·v= u ·v ·cosθ,其中θ为u和v的夹角。

如果u⊥v,那么夹角θ=90度,即cosθ=0,所以可以得到u·v= u ·v ·0=0。

因此,矢量的数量积为0是判断两个向量是否垂直的一个有效方法。

接下来,我们来看第二种方法:使用向量的坐标表示进行计算。

设有两个向量u=(u1, u2)和v=(v1, v2),要证明u⊥v,可以通过计算它们的内积来判断。

内积的公式为u·v=u1·v1+u2·v2。

如果u⊥v,意味着u和v的夹角θ=90度,根据向量夹角余弦公式cosθ=0,可以推导出u1·v1+u2·v2=0。

这表明u1·v1=-u2·v2。

可以将u和v表示为列向量:u1u = u2u3v1v = v2v3可以根据向量的坐标表示计算u和v的数量积,即u·v=u1·v1+u2·v2+u3·v3。

由于u 和v 垂直,所以u·v=0。

综上所述,通过两种方法证明:向量的数量积为0和使用向量的坐标表示进行计算,都可以得出结论,即两个向量是垂直的。

以一个具体的例子来进一步说明。

设有两个向量u=(3, -2, 1)和v=(4, 6, 9)。

首先,使用矢量的数量积方法进行计算:u·v= u ·v ·cosθ=(√(3^2+(-2)^2+1^2))·(√(4^2+6^2+9^2))·cosθ=√14·√117·cosθ。

利用向量方法求空间角 知识点+例题+练习

利用向量方法求空间角 知识点+例题+练习

教学内容利用向量方法求空间角教学目标1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.重点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.难点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.教学准备教学过程自主梳理1.两条异面直线的夹角①定义:设a,b是两条异面直线,在直线a上任取一点作直线a′∥b,则a′与a的夹角叫做a与b的夹角.②范围:两异面直线夹角θ的取值范围是_____________________.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是________________________.③向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________.(2)二面角的向量求法:①若AB、CD分别是二面角α—l—β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB→与CD→的夹角(如图①).②设n1,n2分别是二面角α—l—β的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为_______________________________________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.教学效果分析教学过程探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.教学效果分析教学过程探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.教学效果分析教学过程变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.)一、填空题(每小题6分,共48分)1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→,CM→〉的值等于________.2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.教学效果分析教学过程4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.教学效果分析教学过程11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.自主梳理1.②⎝⎛⎦⎤0,π2③|cos φ|⎪⎪⎪⎪a·b|a|·|b| 2.②⎣⎡⎦⎤0,π2 3.(1)[0,π]教学效果分析自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA . 连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 因此BC =2FG . 连结AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE ,方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连结GN ,因此四边形BNGF 为平行四边形, 所以GN ∥FB .在▱ABCD 中,M 是线段AD 的中点,连结MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB ,过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a , AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23.即AE 和CF 所成角的余弦值为23.4.64 5.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD →=(-3 2,-3 2,8), EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210.(14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(4分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(7分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .(10分)作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F , 故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(12分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217,即AB 与平面SBC 所成的角的正弦值为217.(14分)方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分) 又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(14分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。

高考理科数学必考——几何证明与利用空间向量求线面角、面面角

高考理科数学必考——几何证明与利用空间向量求线面角、面面角

高考理科数学必考——几何证明与利用空间向量求线面角、面
面角
时间过的飞快,距离高考的时间就只剩76天了,同学和老师也越来越紧张了,有些地方欠缺的同学开始寝食难安,老师也赶快奉献点干货来帮助几何证明欠缺的学生。

立体几何其实难度不大,只要你会空间向量,会建系,一切就自然而然水到渠成了。

在这先分析这些立体几何的解题思路。

在立体几何中,第一问一般会让你证明线面平行、线面垂直、面面平行、面面垂直
1、证明线面平行的方法1、平移的方法,找到直线与平面内一条直线平行
2、利用面面平行、证明线面平行
2、证明线面垂直的方法1、证明直线与平面内相交的两直线垂直
3、证明面面平行的方法1、证明一个平面内两相交的直线与另一个平面内两相交的直线互相平行
2、证明平面内两相交的直线分别平行另一个平面
4、证明面面垂直的方法1、先证明一条直线垂直于一个平面,这条直线还在另一个平面内
利用这些方法第一问就可以轻松解决了。

在立体几何第二中,会求线面角、面面角,在第二步中,利用空间向量解决就可以
利用空间向量解决第二问的步骤1、找三垂,建立空间直角坐标系
2、写出各个点的坐标
3、求出直线向量、面的法向量
4、利用夹角公式算出余弦值
下面通过两个例题说明一下这个空间几何。

空间向量解立体几何常用结论

空间向量解立体几何常用结论

l
v
n
面面垂直 n1 n2 n1 n2 0
n1
n2
面面平行 // n1 // n2 n1 k n2
n2
n1
三、利用空间向量求夹角的基本原理
(1)异面直线所成的角 (范围: 0 )
2
v1
v1, v2
v2
统一结论: cos cos v1, v2
(2)二面角 (范围: 0 )

(3)模长公式:若 a (x1, y1, z1) , b (x2, y2, z2 ) ,
则| a |
aa
x12 y12 z12 , | b |
bb
x22
y22
z
2 2
(4)夹角公式: cos
ab
a b
| a | | b |
x1x2 y1 y2 z1z2

x12 y12 z12 x22 y22 z22
2
x2
,
y1
2
y2
,
z1
2
z2
二、利用空间向量证明平行、垂直的基本原理
线线平行 l // m v1 // v2 v1 kv2
v1
l
m
v2
线面平行 l // v n v n 0
v
l
n
线线垂直 l
m
v1
v2
v1
v2
0
v1
l
v2
m 线面垂直 l v // n v k n
利用空间向量解立体几何常用结论
一、空间向量的直角坐标运算:
(1)若 a (x1, y1, z1) , b (x2, y2, z2 ) ,则
a b (x1 x2, y1 y2, z1 z2 ) ,

【精品】备战2020年高考理科数学之高频考点专题专题16 空间向量与立体几何(学生版)

【精品】备战2020年高考理科数学之高频考点专题专题16 空间向量与立体几何(学生版)

专题16 空间向量与立体几何考点1 利用空间向量证明平行与垂直调研1 如图,在正方体1111ABCD A B C D-中,O是AC的中点,E是线段1D O上一点,且1D E EOλ=⋅u u u u r u u u r.(1)求证:11DB CD O⊥平面;(2)若平面CDE ⊥平面1CD O ,求λ的值. 【答案】(1)证明见解析;(2)2λ=.【解析】(1)不妨设正方体的棱长为1,如图建立空间直角坐标系,则1111(0,0,0),(1,1,1),(,,0),(0,1,0),(0,0,1)22D B O C D ,于是1111(1,1,1),(,,0),(0,1,1)22DB OC CD ==-=-u u u u r u u u u r u u u r ,因为1110,0DB CD DB OC ⋅=⋅=u u u r u u u r u u u u u u ru r ,所以111,DB CD DB OC ⊥⊥, 故11DB CD O ⊥平面.(2)由(1)可知1CD O 平面的一个法向量为1(1,1,1)DB ==u u u u rm , 由1D E EO λ=⋅u u u u r u u u r,则1(,,)2(1)2(1)(1)E λλλλλ+++,设平面CDE 的法向量为(,,)x y z =n ,由·0,0CD DE =⋅=u u u r u u u r n n ,得0,02(1)2(1)(1)y x y zλλλλλ=⎧⎪⎨++=⎪+++⎩∴可取(2,0,)λ=-n ,因为1CD O CED ⊥平面平面,所以·0,2λ=∴=m n .☆技巧点拨☆直线与平面、平面与平面的平行与垂直的向量判定方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行:l ∥α⇔a ⊥μ⇔a·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0; (2)线面垂直:l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2; (3)面面平行:α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3; (4)面面垂直:α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.注意:用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.考点2 求空间角题组一 求异面直线所成的角调研1 如图所示,在三棱锥P –ABC 中,P A ⊥平面ABC ,D 是棱PB 的中点,已知P A =BC =2,AB =4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为A .−3010 B .−305 C .305D .3010【答案】D【解析】因为P A ⊥平面ABC ,所以P A ⊥AB ,P A ⊥BC .过点A 作AE ∥CB ,又CB ⊥AB ,则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),P (0,0,2),B (4,0,0),C (4,−2,0).因为D 为PB 的中点,所以D (2,0,1).故CP uu r =(−4,2,2),AD uuu r =(2,0,1).所以cos 〈AD uuu r ,CP uu r 〉=||||AD CPAD CP ⋅⋅uuu r uu ruuur uu r =-65×26=−3010. 设异面直线PC ,AD 所成的角为θ,则cos θ=|cos 〈AD uuu r ,CP uu r〉|=3010.调研 2 在正方体1111ABCD A B C D -中,点P 在1A C 上运动(包括端点),则BP 与1AD 所成角的取值范围是ABCD 【答案】D【解析】以点D 为原点,DA 、DC 、1DD 所在直线分别为x y z 、、轴建立空间直角坐标系,设正方体棱长为1,点P 坐标为(),1,x x x -,则()()11,,,1,0,1BP x x x BC =--=-u u u r u u u u r ,设1BP BC u u u ru u u u r、的夹角为α,则所以当13x =时,cos α取最大值当1x =时,cos α因为11BC AD ∥,所以BP 与1AD 所成角的取值范围是故选D. 【名师点睛】空间向量的引入为求空间角带来了方便,解题时只需通过代数运算便可达到解题的目的,由于两向量夹角的范围为[0,π],因此向量的夹角不一定等于所求的空间角,因此在解题时求得两向量的夹角(或其余弦值)后还要分析向量的夹角和空间角大小间的关系.解题时要根据所求的角的类型得到空间角的范围,并在此范围下确定出所求角(或其三角函数值).☆技巧点拨☆利用向量求异面直线所成的角一是几何法:作—证—算;二是向量法:把角的求解转化为向量运算,应注意体会两种方法的特点,“转化”是求异面直线所成角的关键,一般地,异面直线AC ,BD 的夹角β的余弦值为cos β=||||AC BD AC BD ⋅⋅uuu r uu u ruuur uu u r . 注意:两条异面直线所成的角α不一定是两直线的方向向量的夹角β,即cos α=|cos β|.题组二 求线面角调研3 如图,四棱锥P –ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面P AB ,△P AB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求证:PE ⊥CD ;(2)求PC 与平面PDE 所成角的正弦值. 【答案】(1)见解析;(2) 35.【解析】(1)因为AD ⊥侧面P AB ,PE ⊂平面P AB ,所以AD ⊥PE . 又△P AB 是等边三角形,E 是线段AB 的中点,所以PE ⊥AB . 因为AD ∩AB =A ,所以PE ⊥平面ABCD , 而CD ⊂平面ABCD ,所以PE ⊥CD .(2)以E 为坐标原点,建立如图所示的空间直角坐标系E −xyz . 则E (0,0,0),C (1,−1,0),D (2,1,0),P (0,0,3). 所以ED →=(2,1,0),EP →=(0,0,3),PC →=(1,−1,−3). 设n =(x ,y ,z )为平面PDE 的法向量.由,得⎩⎨⎧2x +y =0,3z =0.令x =1,可得n =(1,−2,0).设PC 与平面PDE 所成的角为θ,则sin θ=|cos 〈PC →,n 〉|=|||||PC PC ⋅⋅uu u ruu ur n n |=35. 所以PC 与平面PDE 所成角的正弦值为35.调研4 如图,四棱锥P ABCD -中,PD ABCD ⊥平面,底面ABCD 是梯形,AB ∥CD ,BC CD ⊥,AB=PD=4,CD=2,AD =M 为CD 的中点,N 为PB 上一点,且(01)PN PB λλ=<<u u u r u u u r.(1)若14λ=时,求证:MN ∥平面P AD ; (2)若直线AN 与平面PBCAD 与直线CN 所成角的余弦值. 【答案】(1)见解析;(2. 【解析】(114PN PB =u u u r u u u r .在P A 上取点EEN ,DE ,Q 1444PN PB PE PA AB ===u u u r u u u r u u r ,,,∴EN ∥AB ,且14EN AB ==,Q M 为CD 的中点,CD=2,∴112DM CD ==,又AB ∥CD ,∴EN ∥DM ,EN =DM ,∴四边形DMNE 是平行四边形,∴MN ∥DE ,又DE ⊂平面P AD ,MN ⊄平面P AD ,∴MN ∥平面P AD .(2)如图所示,过点D 作DH ⊥AB 于H ,则DH ⊥CD .以D 为坐标原点建立空间直角坐标系D −xyz . 则D (0,0,0),M (0,1,0),C (0,2,0),B (2,2,0),A (2,−2,0),P (0,0,4),∴()()2,0,0,0,2,4CB CP ==-u u u r u u u r ,()()2,2,42,2,4AN AP PN AP PB λλ=+=+=-+-u u u r u u u r u u u r u u u r u u u r()22,22,44λλλ=-+-.该平面PBC 的法向量为(),,x y z =n ,则由20240CB x CP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩u u u r u u u r n n ,得02x y z =⎧⎨=⎩,令z =1,得()0,2,1=n .该直线AN 与平面PBC 所成的角为θ,则 ,解得1,3λ=∴()228248,,,,2,2,0333333N CN AD ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭u u ur u u u r ,,, 设直线AD 与直线CN 所成的角为α所以直线AD 与直线CN.☆技巧点拨☆利用向量求直线与平面所成的角①分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); ②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.注意:直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.直线与平面的夹角计算设直线l 的方向向量为a =(a 1,b 1,c 1),平面α的法向量为μ=(a 3,b 3,c 3),直线l 与平面α的夹角为θ⎝⎛⎭⎫0≤θ≤π2,则sin θ=|a·μ||a ||μ|=|cos 〈a ,μ〉|.题组三 求二面角调研5 二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,已知2AB =,3AC =,4BD =,CD = A .45︒ B .60︒ C .120︒D .150︒【答案】B【解析】由已知可得:0,0AB AC AB BD ⋅=⋅=u u u r u u u r u u u r u u u r ,CD CA AB BD =++u u u r u u u u r u u r u u u r,,∴cos CA 12,即CA ,∴二面角的大小为60°,故选B.【名师点睛】这个题目考查的是立体几何中空间角的求法;解决立体几何的小题,通常有以下几种方法:一是建系法,二是用传统的方法,利用定义直接在图中找到要求的角;还有就是利用空间向量法来解决问题.注意向量夹角必须是共起点的,还有就是异面直线夹角必须是锐角或直角.调研6 如图,在四棱锥P ABCD -中,AP ,AB ,AD 两两垂直,BC AD ∥,且4AP AB AD ===,2BC =.(1)求二面角P CD A --的余弦值;(2)已知点H 为线段PC 上异于C 的点,且DC DH =,求PHPC的值. 【答案】(1)23;(2【思路分析】(1)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得各平面法向量,利用向量数量积求向量夹角,最后根据二面角与向量夹角关系求结果;(2)设PH PC λ=u u u v u u u v,根据向量坐标表示距离,再根据距离相等解得λ,即为PHPC的值. 【解析】以{},,A AB AP D u u u r u u u r u u u r为正交基底,建立如图所示的空间直角坐标系A xyz -.则()0,0,0A ,()4,0,0B ,()4,2,0C ,()0,4,0D ,()0,0,4P .(1)易知()0,4,4DP =-u u u r ,()4,2,0DC =-u u u r.设平面PCD 的法向量为()1,,x y z =n ,则1100DP DC ⎧⋅=⎪⎨⋅=⎪⎩u u u v u u u v n n ,即440420y z x y -+=⎧⎨-=⎩,令1x =,则2y =,2z =.所以()11,2,2=n .易知平面ACD 的法向量为()20,0,1=n ,P CD A --的余弦值为23. (2)由题意可知,()4,2,4PC =-u u u r ,()4,2,0DC =-u u u r ,设()4,2,4PH PC λλλλ==-u u u r u u u r,则DH DP PH =+=u u u u r u u u r u u u r()4,24,44λλλ--, 因为DC DH ==,化简得23410λλ-+=,所以1λ=或13λ=.点H 异于点C ,所以13λ=调研7 如图,在三棱柱111ABC A B C -中,侧棱1CC ⊥底面ABC ,且122,CC AC BC AC BC ==⊥,D 是棱AB 的中点,点M 在侧棱1CC 上运动.(1)当M 是棱1CC 的中点时,求证:CD ∥平面1MAB ; (2)当直线AM 与平面ABC 所成的角的正切值为32时,求二面角11A MB C --的余弦值.【答案】(1)见解析;(2)14-. 【思路分析】(1)取线段1AB 的中点E ,连接,DE EM ,可得四边形CDEM 是平行四边形,CD EM ∥,即可证明CD ∥平面1MAB ;(2)以C 为原点,CA ,CB ,1CC 所在直线分别为x ,y ,z 轴建立空间直角坐标系,利用向量法求二面角11A MB C --的余弦值. 【解析】(1)取线段1AB 的中点E ,连接,DE EM . ∵1,AD DB AE EB ==,∴1DE BB ∥,且112DE BB =. 又M 为1CC 的中点,∴1CM BB ∥,且112CM BB =, ∴CM DE ∥,且CM DE =,∴四边形CDEM 是平行四边形,∴CD EM ∥. 又EM ⊂平面1,AB M CD ⊄平面1AB M ,∴CD ∥平面1MAB .(2)∵1,,CA CB CC 两两垂直,∴以C 为原点,1,,CA CB CC 所在直线分别为x ,y ,z 轴,建立空间直角坐标系C xyz -,如图,∵三棱柱111ABC A B C -中,1CC ⊥平面ABC ,∴MAC ∠即为直线AM 与平面ABC 所成的角. 设1AC =,则由3tanMAC ∠=,得3CM =.设平面1AMB 的一个法向量为(),,x y z =n ,2z =,得3,1x y ==-,即()3,1,2=-n .又平面11BCC B 的一个法向量为()1,0,0CA =u u ur,∴,又二面角11A MB C --的平面角为钝角,∴二面角11A MB C --的余弦值为14-.☆技巧点拨☆利用向量求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.注意:两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.运用空间向量坐标运算求空间角的一般步骤(1)建立恰当的空间直角坐标系; (2)求出相关点的坐标; (3)写出向量坐标;(4)结合公式进行论证、计算;(5)转化为几何结论.平面与平面的夹角计算公式设平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4),平面α,β的夹角为θ(0≤θ≤π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|.题组四 解决探索性问题调研8 如图,在五面体ABCDPE 中,PD ⊥平面ABCD ,∠ADC =∠BAD =90°,F 为棱P A 的中点,PD =BC =2,AB =AD =1,且四边形CDPE 为平行四边形.(1)判断AC 与平面DEF 的位置关系,并给予证明;(2)在线段EF 上是否存在一点Q ,使得BQ 与平面PBC 所成角的正弦值为36?若存在,请求出QE 的长;若不存在,请说明理由.【答案】(1) AC ∥平面DEF ,证明见解析;(2) 在线段EF 上存在一点Q ⎝⎛⎭⎫14,1,324,使得BQ 与平面PBC 所成角的正弦值为36,此时QE =194. 【解析】(1)AC ∥平面DEF .理由如下: 设线段PC 交DE 于点N ,连接FN ,如图所示,因为四边形PDCE 为平行四边形,所以点N 为PC 的中点, 又点F 为P A 的中点,所以FN ∥AC , 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .(2)假设在线段EF 上存在一点Q ,使得BQ 与平面PBC 所成角的正弦值为36,设FQ →=λFE →(0≤λ≤1),如图,以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系. 因为PD =BC =2,AB =AD =1,所以CD =2,所以P (0,0,2),B (1,1,0),C (0,2,0),A (1,0,0),所以PB →=(1,1,−2),BC →=(−1,1,0). 设平面PBC 的法向量为m =(x ,y ,z ),则,即⎩⎨⎧ x +y -2z =0,-x +y =0,解得⎩⎨⎧x =y ,z =2x ,令x =1,得平面PBC 的一个法向量为m =(1,1,2). 假设存在点Q 满足条件.由F ⎝⎛⎭⎫12,0,22,E (0,2,2),可得FE →=⎝⎛⎭⎫-12,2,22.由FQ→=λFE →(0≤λ≤1),整理得1)(,2,)22Q λλλ-+,则BQ →=1)(,21,)22λλλ-+--, 因为直线BQ 与平面PBC 所成角的正弦值为36,所以|cos 〈BQ →,m 〉|=|||||BQ BQ ⋅⋅uu u ruu ur m m |=|5λ-1|219λ2-10λ+7=36, 化简可得14λ2-5λ-1=0, 又0≤λ≤1,所以λ=12,故在线段EF 上存在一点Q ⎝⎛⎭⎫14,1,324,使得BQ 与平面PBC 所成角的正弦值为36, 且QE=194.调研9 棱台1111ABCD A B C D -的三视图与直观图如图所示. (1)求证:平面11ACC A ⊥平面11BDD B ;(2)在线段1DD 上是否存在一点Q ,使CQ 与平面11BDDB ?若存在,指出点Q 的位置;若不存在,说明理由.【答案】(1)见解析;(2)存在,点Q 在1DD 的中点位置,理由见解析.【思路分析】(1)首先根据三视图特征可得1AA ⊥平面ABCD ,四边形ABCD 为正方形,所以AC BD ⊥.再由1AA BD ⊥即可得线面垂直,从而得出面面垂直;(2)直接建立空间直角坐标系写出各点坐标求出法向量,再根据向量的夹角公式列等式求出12λ=. 【解析】(1)根据三视图可知1AA ⊥平面ABCD ,四边形ABCD 为正方形,所以AC BD ⊥. 因为BD ⊂平面ABCD ,所以1AA BD ⊥, 又1AA AC A =I ,所以BD ⊥平面11ACC A .因为BD ⊂平面11BDD B ,所以平面11ACC A ⊥平面11BDD B .(2)以A 为坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴建立空间直角坐标系,如图所示,根据三视图可知四边形ABCD 为边长为2的正方形,四边形1111A B C D 为边长为1的正方形,1AA ⊥平面ABCD ,且11AA =.所以()11,0,1B ,()10,1,1D ,()2,0,0B ,()0,2,0D ,()2,2,0C . 因为Q 在1DD 上,所以可设()101DQ DD λλ=≤≤u u u r u u u u r.因为()10,1,1DD =-u u u u r ,所以1AQ AD DQ AD DD λ=+=+u u u r u u u u u r u u r u u u r u u u r()()()0,2,00,1,10,2,λλλ=+-=-. 所以()0,2,Q λλ-,()2,,CQ λλ=--u u u r.设平面11BDD B 的法向量为(),,x y z =n ,根据()()()()1,,2,2,00,0,,0,1,10,0x y z BD x y z DD ⎧⎧⋅-=⋅=⎪⎪⇒⎨⎨⋅-=⋅=⎪⎪⎩⎩u u u r u u u ur n n令1x =,可得1y z ==,所以()1,1,1=n .设CQ 与平面11BDD B 所成的角为θ,9==. 所以12λ=,即点Q 在1DD 的中点位置. 调研10 如图(1),在边长为4的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥DC ,如图(2).(1)求证:A 1E ⊥平面BCDE . (2)求二面角E −A 1B −C 的余弦值.(3)判断在线段EB 上是否存在一点P ,使平面A 1DP ⊥平面A 1BC ?若存在,求出EPPB 的值;若不存在,说明理由.【答案】(1)见解析;(2) −77;(3)在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC . 【解析】(1)∵DE ⊥BE ,BE ∥DC ,∴DE ⊥DC .又∵A 1D ⊥DC ,A 1D ∩DE =D ,∴DC ⊥平面A 1DE ,∴DC ⊥A 1E . 又∵A 1E ⊥DE ,DC ∩DE =D ,∴A 1E ⊥平面BCDE . (2)∵A 1E ⊥平面BCDE ,DE ⊥BE ,∴以EB ,ED ,EA 1所在直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系(如图).易知DE =23,则A 1(0,0,2),B (2,0,0),C (4,23,0),D (0,23,0),∴1BA uuu r =(−2,0,2),BC uu u r=(2,23,0),易知平面A 1BE 的一个法向量为n =(0,1,0).设平面A1BC的法向量为m =(x ,y ,z ),由1BA uuu r ·m =0,BC uu u r·m =0,得⎩⎨⎧-2x +2z =0,2x +23y =0.令y =1,得m =(−3,1,−3),∴cos 〈m ,n 〉=m·n|m |·|n |=17×1=77.由图得二面角E −A 1B −C 为钝二面角, ∴二面角E −A 1B −C 的余弦值为−77.(3)假设在线段EB 上存在一点P ,使得平面A 1DP ⊥平面A 1BC .设P (t ,0,0)(0≤t ≤2),则1A P uuu r =(t ,0,−2),1A D uuu r=(0,23,−2),设平面A 1DP 的法向量为p =(x 1,y 1,z 1),由得⎩⎨⎧23y 1-2z 1=0,tx 1-2z 1=0.令x 1=2,得p =⎝⎛⎭⎫2,t 3,t .∵平面A 1DP ⊥平面A 1BC ,∴m·p =0,即23−t3+3t =0,解得t =−3. ∵0≤t ≤2,∴在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC .☆技巧点拨☆用向量解决探索性问题的方法1.确定点在线段上的位置时,通常利用向量共线来求.2.确定点在平面内的位置时,充分利用平面向量基本定理表示出有关向量的坐标而不是直接设出点的坐标. 3.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.1.(山东省泰安第二中学2019-2020学年高三上学期9月月考数学试题)已知(2,1,3)=-a ,(1,4,2)=--b ,(7,5,)x =c ,若a ,b ,c 三向量共面,则实数x =A .627 B .637C .607D .6572.(四川省成都市树德中学2019-2020学年高三11月阶段性检测数学试题)如图三棱锥S ABC -中,SA ⊥底面ABC ,AB BC ⊥,2AB BC ==,SA =SC 与AB 所成角的大小为A .90︒B .60︒C .45︒D .30°3.(甘肃省天水市第一中学2020年高三上学期12月月考数学试题)如图1四边形ABCD 与四边形ADEF分别为正方形和等腰梯形,,AD EF AF =∥4,2AD EF ==,沿AD 边将四边形ADEF 折起,使得平面ADEF ⊥平面ABCD ,如图2,动点M 在线段EF 上,,N G 分别是,AB BC 的中点,设异面直线MN 与AG 所成的角为α,则cos α的最大值为A BC D 4.(山东省泰安第二中学2019-2020学年高三上学期9月月考数学试题)在正方体1111ABCD A B C D -中,点M 是1AA 的中点,已知AB =u u u r a ,AD =u u u rb ,1AA =u u u r c ,用a ,b ,c 表示CM u u u u r ,则CM =u u u u r ______. 5.(河南省天一大联考2019-2020学年高三阶段性测试(三)数学试题)在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,60BAD ∠=o ,1122AB AA ==,E 、F 分别是线段1AA 、11C D 的中点.(1)求证:BD CE ⊥;(2)求平面ABCD 与平面CEF 所成锐二面角的余弦值.6.(四川省南充市高中2019-2020学年高三第一次高考适应性考试数学试题)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,2AB =,BC a =,PA ABCD 底面⊥.(1)当a 为何值时,BD PAC ⊥平面?证明你的结论; (2)当122PA a ==时,求面PDC 与面PAB 所成二面角的正弦值.7.(河北省承德市第一中学2019-2020学年高三上学期12月月考数学试题)如图,已知点H 在正方体1111ABCD A B C D -的对角线11B D 上,∠HDA =60︒.(1)求DH 与1CC 所成角的大小;(2)求DH 与平面1A BD 所成角的正弦值.8.(湖北省“荆、荆、襄、宜四地七校考试联盟2019-2020学年高三上学期10月联考数学试题)已知在多面体ABCDE 中,DE AB ∥,AC BC ⊥,24BC AC ==,2AB DE =,DA DC =且平面DAC ⊥平面ABC .(1)设点F 为线段BC 的中点,试证明EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60o ,求二面角B AD C --的余弦值.9.(广东省广州市番禺区广东仲元中学2019-2020年高三上学期11月月考数学试题)如图1,PAD △是以AD 为斜边的直角三角形,1PA =,BC AD ∥,CD AD ⊥,22AD DC ==,12BC =,将PAD △沿着AD 折起,如图2,使得2PC =.(1)证明:平面PAD ⊥平面ABCD ; (2)求二面角A PB C --大小的余弦值.10.(天津市部分区2019-2020学年高三上学期期末数学试题)如图,在三棱柱111ABC A B C -中,P 、O 分别为AC 、11A C 的中点,11PA PC ==1111A B B C =1PB ==114A C =.(1)求证:PO ⊥平面111A B C ; (2)求二面角111B PA C --的正弦值;(3)已知H 为棱11B C 上的点,若11113B H BC =u u u u r u u u u r,求线段PH 的长度.1.(2018新课标全国Ⅱ理科)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为A .15 BC .5D .22.(2017新课标全国Ⅲ理科)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________________.(填写所有正确结论的编号)3.(2018新课标全国Ⅰ理科)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.4.(2018新课标全国Ⅱ理科)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.5.(2018新课标全国Ⅲ理科)如图,边长为2的正方形ABCD 所在的平面与半圆弧»CD 所在平面垂直,M 是»CD上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.6.(2017新课标全国Ⅰ理科)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o . (1)证明:平面P AB ⊥平面P AD ;C(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值.7.(2017新课标全国Ⅱ理科)如图,四棱锥P −ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.8.(2017新课标全国Ⅲ理科)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.9.(2019年高考全国Ⅰ卷理数)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.10.(2019年高考全国Ⅱ卷理数)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.11.(2019年高考全国Ⅲ卷理数)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.。

数学:平面向量的模、方向角和垂直判定

数学:平面向量的模、方向角和垂直判定

方向角的运算律
平面向量的垂直判定
第四章
垂直的定义和判定方法
● 定义:两个向量垂直,当且仅当它们的数量积为0。
● 判定方法: a. 数量积为0:如果两个向量的数量积为0,则它们垂直。 b. 向量积为0:如果两个 向量的向量积为0,则它们垂直。 c. 斜率关系:如果两个向量在同一直线上,且一个向量的斜率 与另一个向量的斜率的乘积为-1,则它们垂直。
模的运算律
平面向量的方向角
第三章
定义和计算方法
定义:平面向量在平面直角坐标系中的夹 角
计算方法:利用向量的坐标进行计算,通 过三角函数关系得出
方向角的性质和定理
性质:方向角是 向量在平面上的 投影与x轴之间 的夹角,其取值
范围为[0,π)
定理:对于任意 两个向量a和b, 如果它们的方向 角相等,则它们 平行;如果它们 的方向角互补,
垂直的应用场景
物理中的力:在物理中,力是矢量, 可以通过向量的垂直判定来判断力 的方向和大小。
解析几何:在解析几何中,垂直判 定可以用来确定两条直线是否垂直, 进而计算交点、距离等参数。
添加标题
添加标题
添加标题
添加标题
三角函数:在三角函数中,垂直判 定可以用来确定两个向量是否垂直, 进而计算角度和长度等参数。
计算方法:向量的模等于向量坐标的平方和的平方根
模的性质和定理
模定义:向量的长度或大小 模的性质:非负性、正定性、齐次性 模的定理:向量加法、数乘、模的三角不等式 模的计算方法:几何意义、坐标表示
模的应用场景
物理中的力 与位移计算
向量投影与 点积计算
三角函数中 的模长求值
复数表示中 的模长计算
向量代数:在向量代数中,垂直判 定可以用来确定两个向量是否正交, 进而进行向量的运算和变换等操作。

向量的夹角与垂直性的判定

向量的夹角与垂直性的判定

向量的夹角与垂直性的判定向量是数学中经常使用的概念,它既可以表示方向,又可以表示大小。

在向量的运算中,夹角和垂直性是比较常见的概念。

本文将详细介绍向量的夹角与垂直性的判定方法。

一、向量的夹角判定向量的夹角可以通过向量的内积来进行计算。

设向量A和向量B的夹角为θ,则有以下公式:cosθ = (A·B) / (|A|·|B|)其中,A·B表示向量A与向量B的内积,|A|表示向量A的模,|B|表示向量B的模。

从公式中可以看出,夹角的大小与向量的内积和向量的模有关。

根据夹角的定义,可以得到以下结论:1. 当夹角θ为0度时,两个向量重合,此时有A·B = |A|·|B|,夹角为0度。

2. 当夹角θ为90度时,两个向量垂直,此时有A·B = 0,夹角为90度。

3. 当夹角θ为180度时,两个向量反向,此时有A·B = -|A|·|B|,夹角为180度。

通过计算向量的内积和模,可以判断两个向量之间的夹角是锐角、直角还是钝角。

若内积大于0,则夹角为锐角;若内积等于0,则夹角为直角;若内积小于0,则夹角为钝角。

二、向量的垂直性判定如果两个向量的夹角为90度,则它们互为垂直向量。

当已知两个向量A和B时,可以通过向量的垂直性判定来判断它们是否垂直。

判断两个向量的垂直性有两种方法:1. 方法一:通过计算向量的内积判断若A·B = 0,则向量A与向量B垂直。

这是因为,当两个向量垂直时,它们的夹角为90度,而根据前文所述,夹角为90度时,内积等于0。

2. 方法二:通过判断向量的方向余弦判断若向量A与向量B的方向余弦都为0,则向量A与向量B垂直。

方向余弦的计算公式为:cosθ = (A·B) / (|A|·|B|)当θ = 90度时,cosθ = 0,因此,若A与B的方向余弦都为0,则A与B垂直。

需要注意的是,无论是向量的夹角判定还是向量的垂直性判定,都需要先计算向量的内积和模。

向量垂直坐标公式

向量垂直坐标公式

向量垂直坐标公式向量的垂直性是指两个向量之间的夹角为90度,也就是两个向量的内积为0。

在坐标系中,向量的垂直性可以通过坐标公式进行计算。

设有两个向量a=(x₁,y₁)和b=(x₂,y₂),我们要判断这两个向量是否垂直,即计算它们的内积。

内积可以通过向量的坐标乘积和加和来计算:a·b=x₁x₂+y₁y₂如果a·b=0,则可以得出结论a和b是垂直的;如果a·b≠0,则可以得出结论a和b不是垂直的。

下面我们将从几何和代数两个方面来探讨向量的垂直坐标公式。

几何角度:对于两个二维向量a=(x₁,y₁)和b=(x₂,y₂),它们的夹角θ可以通过向量的点积公式来计算:a·b = ,a,,b,cosθ其中,a,和,b,分别表示向量的模,a,=√(x₁²+y₁²),b,=√(x₂²+y₂²)。

由于题目中要求夹角为90度,即cosθ=0,可以推导出a·b = ,a,,b,cosθ = 0展开后即得到向量的垂直坐标公式:x₁x₂+y₁y₂=0这便是二维向量的垂直坐标公式。

在三维空间中,向量的垂直性的判断方式相似。

假设有两个向量a=(x₁,y₁,z₁)和b=(x₂,y₂,z₂),同样可以通过点积公式计算它们的夹角θ:a·b = ,a,,b,cosθ其中,a,和,b,分别表示向量的模,a,=√(x₁²+y₁²+z₁²),b,=√(x₂²+y₂²+z₂²)。

同样,将夹角θ设为90度,即cosθ=0,可以推导出a·b = ,a,,b,cosθ = 0展开后即得到向量的垂直坐标公式:x₁x₂+y₁y₂+z₁z₂=0这便是三维向量的垂直坐标公式。

代数角度:我们可以通过向量的坐标公式来证明向量的垂直坐标公式。

设有两个二维向量a=(x₁,y₁)和b=(x₂,y₂),根据向量余弦公式可得:cosθ = (a·b) / (,a,,b,)其中,a,和,b,同样分别表示向量的模,a,=√(x₁²+y₁²),b,=√(x₂²+y₂²)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.45 B.60 C.90 D.30
四.我的疑问:
_______________________________________________________________________
【课内探究】
一、讨论、展示、点评、质疑
探究一:用向量法证明两直线垂直
已知正方体 中,点 、 分别是棱 与对角线 的中点。
3.如何用向量法求两条直线所成的角?
思考:两直线所成的角与两直线的方向向量所成的角的关系是什么?
三.练一练:
1. 的方向向量 , 的方向向量 ,若 ,则m等于()
A.1 B.-1 C.0 D.2
2.在正方体ABCD-A B C D 中,E、F、G、H分别是AA 、AB、BB 、B C 的中点,则异面直线EF与GH所成的角等于()
用向量运算证明两条直线直或求两条直线所成的角
编制人:丁建萍霍川川于晓群审核人:领导签字:
【使用说明】1.用20分钟时间仔细研读课本P99-101,认真限时完成问题导学与练一练;
2.具体要求:熟练运用向量运算证明两条直线垂直或求两条直线所成的角。
【学习目标】1.会用向量运算求两异面直线所成的角,提高运算求解能力;
求证: ; .
拓展:已知正方体ABCD- 中,点M,N分别在面对角线 和面对角线BD上,并且 ,求证:直线MN 直线AD.
小结:
探究二:用向量法求两异面直线所成角
已知三棱锥 (如图), ,
、 分别是棱 的中点。
求:直线 与 所成的角。
拓展1:已知正四面体OABC,M,N分别是棱OA,BC的中点,求MN与OB所成的角.
2.独立思考,合作学习,探究求两异面直线所成角的规律与方法;
3.激情投入,培养缜密的逻辑思维品质。
【课前预习】
一.重点难点:
重点:用向量运算证明两条直线垂直或求两条直线所成的角;
难点:用向量运算证明两条直线垂直或求两条直线所成的角。
二.问题导学:
1.回顾证明线线垂直的方法有哪些?
2.如何用向量法证明两条直线垂直?
拓展2:如图,四棱锥S-ABCD的高SO=3,底面是边长为2, 的菱形,O为底面的中心,E,F分别为SA和SC的中点,求异面直线BF与DE所成的角。
小结:
二、课堂小结:
1.知识方面:
2.数学思想方法方面:
三、当堂检测:(见课件)
相关文档
最新文档