中性点经小电阻接地

合集下载

中性点经电阻接地方式

中性点经电阻接地方式

中性点经电阻接地方式——适宜于以电缆线路为主配电网的中性点接地方式刘同钦一、前言三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。

中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。

中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。

在选择电网中性点接地方式时必须进行具体分析、全面考虑。

我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。

这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。

配电网中性点的接地方式主要可分为以下三种:●不接地●经消弧线圈接地●经电阻接地自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。

近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。

在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开始在广州、深圳试用、推广,并很快推广到其他城市(如广州、深圳、珠海、上海、北京、天津、厦门、南京、苏州工业园区、无锡、讪头、惠州、顺德、东莞等),同时,也在发电厂,机场、港口、地铁、钢厂、有色金属冶炼厂等行业被广泛采用。

中性点经小电阻接地系统应用及保护配置研探

中性点经小电阻接地系统应用及保护配置研探

中性点经小电阻接地系统应用及保护配置研探摘要:阐述在城市10KV配电网中性点经小电阻接地系统中,对中性点小电阻值的选择以及单相接地故障电流对继电保护装置配置的影响进行具体分析,验证中性点经小电阻接地系统采用零序保护投入使用的必要性和可行性。

关键词:中性点小电阻;继电保护配置;零序保护引言:由于城市电网规模不断地扩建和延伸,而且受城区规划、环保和场地等条件制约,城市配电网开始采用以电缆出线为主、架空出线为辅的电网结构模式,这样一来,lOkV系统单相对地电容电流就大幅度地增加了。

当系统发生单相接地时,接地相的接地电流是非故障相对地电容电流之和,当电容电流超过1OA,此时接地电弧不能可靠熄灭,就会产生弧光接地过电压,而且持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路等严重后果。

因此,为了增强配网系统安全性,使用中性点经小电阻接地系统,当发生单相接地故障后,由零序保护动作,切断故障,保护电缆线路处理对策是十分必要的。

1.中性点小电阻值的选择在中性点小电阻接地系统中,通过在回路中串联小电阻形成通路,能够泄放熄弧后半波的能量,使中性点电位降低,故障相的恢复电压上升速度也减慢,减少电弧重燃的可能性,抑制电网过电压的幅值,保证了电网的安全。

中性点电阻阻值的合理选取涉及到系统的过电压水平、继电保护的整定、中性点电阻的热容量、对通讯的干扰以及人身安全等许多问题,是一个需要综合考虑的问题[1]。

目前在对城市lOkV配电系统的中性点经小电阻接地方式的确定上,有采用传统方法进行,即从系统发生单相接地故障的情况入手,不断改变中性点接地电阻值,对系统的稳态和暂态两方面进行计算,比较随之改变的单相接地故障电流值、单相接地故障健全相电压值及弧光接地过电压值、铁磁谐振过电压值等等,然后按照规程规定值和继电保护等方面的约束值进行综合比较,最终得出较合适的接地电阻值;还有根据将系统单相短路电流限制在一定值以下,同时考虑到满足继电保护的选择性和灵敏度的要求来确定(关于接地电阻的阻值,上海供电公司规定,将接地电流的值控制在 1 000 ~ 2 000 A 来选择;而北京供电公司规定,阻值为10Ω , 接地电流在 400 ~ 500 A 之间). 虽然这种中性点运行方式在发生单相接地时将跳闸, 但是,由于绝缘要求低, 减少了投资,因此,逐渐被广泛采用。

中性点经小电阻接地方式专题

中性点经小电阻接地方式专题

中性点经小电阻接地方式专题中电阻和小电阻之间没有通一的界限,一般认为单相接地故障时通过中性点电阻的电流10A~100A时为小电阻接地方式。

中性点经中阻和小电阻接地方式适用于以电缆线路为主、不容易发生瞬时性单相接地故障的、系统电容电流比较大的城市配网、发电厂厂用电系统及大型工矿企业。

1、以电缆线路为主的配电网的特点:(1) 单位长度的电缆线路的电容电流比架空线路电容电流大10几倍,以电缆为主的城市电网对地电容电流很大。

(2) 电缆线路受外界环境条件(雷电、外力、树木、大风等)影响小,瞬时接地故障很少,接地故障一般都是永久性故障。

(3) 电缆线路发生接地故障时,接地电弧为封闭性电弧,电弧不易自行熄灭,如不及时跳闸,很容易造成相间短路,扩大事故。

(4) 电缆为弱绝缘设备。

例如,10kV交联聚乙稀电缆的一分钟工频耐压为28KV ,而一般10kV 配电设备的绝缘水平为35kV 。

在消弧线圈接地系统中,由于查找故障点时间较长,电缆长时间承受工频或暂态过电压作用,易发展成相间故障,造成一线或多线跳闸。

上海79—84的统计结果表明,有30%单相接地故障在查找故障点过程中,引起跳闸或闪络。

据湘潭钢厂同志介绍,该厂的变配电系统原采用消弧线圈接地,由于厂区基本上都是电缆线路,且使用年限较长、绝缘老化,在单相接地时,经常发生来不及找出故障线路,非故障线路就发生电缆爆炸的情况。

(5) 接地故障时由保护及时跳开故障线路。

(6) 随着城市电网改造工作的进展,配电网的结构得到加强,采用环网或双电源供电,许多地方已开始配网自动化的实施,以提高供电可靠性,而不是靠带接地故障运行来提高供电可靠性。

2、中性点经电阻接地方式的特点:(1) 中性点电阻是耗能元件,也是阻尼元件(而消弧线圈是谐振元件)。

(2) 可以降低工频过电压,单相接地故障时非故障相电压< 3 相电压,且持续时间很短。

中性点不接地或中性点经消弧线圈接地系统,非故障相电压升高到≥3 相电压,持续时间长。

10kv 配电系统中性点经小电阻接地方式

10kv 配电系统中性点经小电阻接地方式

10kv 配电系统中性点经小电阻接地方式初探摘要: 10kv 配电网中性点通常可分为不接地系统、经电阻接地系统和经消弧线圈接地系统。

本文主要介绍10kv 配电系统中性点经小电阻接地方式的构成、保护方式和计量方式。

关键词: 10kv 配电网中性点接地方式小电阻接地1引言10kv 配电网中性点通常可分为不接地系统、经电阻接地系统和经消弧线圈接地系统。

由于选择接地方式是一个涉及线路和设备的绝缘水平、通讯干扰、继电保护和供电网络安全可靠等因素的综合性问题, 所以我国配电网和大型工矿企业的供电系统做法各异。

以前, 10kv 架空电力线路大都采用中性点不接地和经消弧线圈接地的运行方式。

近年来随着10kv 系统规模的扩大和电缆应用的普及, 一些城市电网大力推广电阻接地的运行方式, 使得10kv 系统的中性点接地方式、中性点选择、计量方式、继电保护配置与10kv绝缘系统有了很大区别。

2配电网中性点接地方式运用现状一般架空线路的小电网, 网络电容电流小, 可选用中性点不接地系统。

架空线路的大电网, 网络电容电流较大, 可选用中性点经消弧线圈接地系统。

城市电缆配电网, 网络结构较好, 可选用中性点经中值或低值电阻器接地系统。

若要求补偿网络电容电流限制接地故障入地电流, 还可选用中性点经中值电阻器与消弧线圈并联的接地方式。

3中性点经电阻接地方式定义及阻值选择( 1) 定义: 电力系统中性点通过一电阻接地, 其单相接地时的电阻电流被限制到等于或略大于系统总电容充电电流值。

此种接线方式属于中性点有效接地系统,即大电流接地系统。

和消弧线圈接地方式相比, 改变了接地电流相位, 加速泄放回路中的残余负荷, 促使接地电弧自熄, 降低弧光过电压, 同时提供足够的零序电流和零序电压, 加速切除故障线路。

( 2) 中性点电阻值的选择根据有关文献资料, 从降低内部过电压考虑, 根据计算机模拟计算, 选择原则为rn ≦1/ ( 3c) 。

基于10kV中性点经小电阻接地的启示

基于10kV中性点经小电阻接地的启示
接地电流较 大 (. ~ 1k ,导致 地 电位较 0 1 A)
消弧线圈接地系统高 ,产生跨 步电压与接触 电势的
问题 ,应采取 一定 的措施 如尽量减小 电缆接地电
阻,人员能接触到的接地引线加装绝缘护套 ,正确 配置继 电保护的动作时间,教育操作人员严格遵守
电压 、瞬态电流对 电气设备 的影响 、对通信的影响
维普资讯
第 l期 ( 总第 1 0 ) 3期
20 0 6年 2月

西


No 1 ( e. 3 . S r 1 0) Fe . 0 6 b 2 0
S ANXI EI R1 H r C P E( OW ER
基于 1 V 中性 点经小 电阻接地 的启示 k 0
对于接地故障动作于跳闸前的接触 电位差及跨 步 电位差可按 D / 6 1 9 734中要求 的公式 L T 2—19 .
计 算
U t (7+01P)/ , 14 .7f v 7
U ( 7 + 0 7 f 一 14 .p) ,
() 1
京、深圳的小电阻接地系统运行情况来看 ,均能满 足对通信线路干扰 的要求 。 14 继 电保 护新 的要 求 .
为适应低电阻接地方式要求 ,0k 出线开关 1 V 及相连的下一级开关必须加装零序保护 , 以满足单
光纤通信逐渐成为主流 ,屏蔽技术与材料也得到了 相应的提高 电磁感应对主干通信没有影响 ,对支
线通信影响也越来越小。若 同一线路 的两端中性都 经小 电阻接地 ,电磁感应还可以相互抵消,故障容 易切除 , 并且影响时间短 。 从国外及国内一些大中城市,美国、上海 、北
2 4 按接 触 电势 和 跨步 电压 不超 过允 许值 校验 .

中性点经小电阻接地

中性点经小电阻接地

中性点经小电阻接地零序过流0 引言电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系,早期惠州惠阳的配网主要以架空线为主,线路电容电流较小,因此配网主要采用中性点不接地或者经消弧线圈接地并取得较好的效果,随着城网改造的深入,越来越多的采用电缆代替架空线,使得这些地区接地电容电流迅速上升,在这种情况下,中性点不接地或者经过消弧线圈接地已经不能满足系统限制过电压的要求,而且电缆馈线发生故障一般为永久性故障,宜采用迅速切除故障防止故障扩大,所以惠州惠阳10kv配网基本上都采用中性点经低电阻接地(接地变/曲折变),即NRS,由于系统的零序阻抗较小,线路发生单相接地故障时,线路的零序过流保护能够迅速切除故障,10kv母线发生故障时,接入曲折变保护的零序过流保护会动作隔离故障。

1 中性点经小电阻接地的特点1.1 降低工频过电压和抑制弧光过电压中性点经小电阻接地方式可降低单相接地工频过电压,因为能迅速切除故障线路,使得工频电压升高持续时间很短,中性点电位衰减很快,弧光重燃产生过电压幅值可明显降低,有效地抑制弧光接地过电压。

1.2 消除铁磁谐振过电压和防止断线谐振过电压在中性点不接地系统中,由于电磁式电压互感器的激磁电感和线路的对地电容形成非线型谐振回路,在特定情况下引起铁磁谐振过电压,在中性点经小电阻接地后谐振无法产生。

配网中性点不接地系统发生断线时,配电变压器的铁芯线圈与线路对地电容组成的串联回路在特定条件下会发生谐振,产生过电压。

中性点经小电阻接地可以防止大部分的断线谐振过电压,减少绝缘老化,延长电气设备使用寿命,提高网络和设备可靠性。

1.3 避免发生高压触电事故配网系统的架空线路分布较广,高度也不太高,时有发生外物误碰高压线路以及高压线断线情况,极易导致触电伤亡事故。

中性点经小电阻接地系统装有保护装置,一旦发生接地故障,可以立即跳闸,断开接地故障线路,可避免发生高压触电事故。

浅谈10kV配网中性点小电阻接地技术与应用

浅谈10kV配网中性点小电阻接地技术与应用

浅谈10kV配网中性点小电阻接地技术与应用摘要:基于城区10kV配网中电缆线路的增加,导致电容电流增大,补偿困难,尤其是接地电流的有功分量扩大,导致消弧线圈难以使接地点电流小到可以自动熄弧,此时,相比中性点不接地或经消弧线圈接地方式,中性点经小电阻接地方式有更大的优越性。

本文主要对10kv配电网中性点经小电阻接地原理进行了分析,对它的优点和存在的不足进行探讨,以便更好地推广10KV配网中性点小电阻接地技术应用。

关键词:配网;小电阻;技术;应用一、10KV中性点小电阻的优势配电网中性点小电阻接地方式由接地变、小电阻构成。

因主变10kV 侧为三角接线,需通过接地变提供系统中性点。

接地变压器容量的选择应与中性点电阻的选择相配套,中性点接地电阻接入接地变压器中性点。

接地变一般采用Z 型接地变,即将三相铁心每个芯柱上的绕组平均分为两段,两段绕组极性相反,三相绕组按Z形连接法接成星型接线。

其最大的特点在于,变电站中性点接地电阻系统由接地变、接地电阻、零序互感器(有的配有中性点接地电阻器监测装置)等组成。

1、10KV中性点小电阻系统可及时调节电压。

在配电网的整个接地电容电流中,含有5次谐波电流,所占比例高达5%~15%,消弧线圈在电网50Hz的工作环境下,对于5%~15%的接地点的谐波电流值受到影响,低于这个数值,不能正常运行。

而通过小电阻的接地方式却能保持谐波电流值数值不变,保障电力系统输出的设备有效运转。

2、及时消除安全隐患。

在配电网中,当接地电流量增加的时候电压不稳,或者发生短路等线路故障以后,小电阻系统会自动启动保护程序,立即切断故障线路,消除由于单相接地可能造成的人身安全隐患,同时也能够让电力工作人员快速排查线路故障问题,及时恢复供电。

3、增加供电的可靠性。

目前,我们国家的电缆材质主要由铜芯,铝芯,当电缆线路接地时,接地残流大,电弧不容易自行熄灭,所以电缆配电网的单相接受地故障难以消除的。

中性点经消弧线圈接地的系统为小电流接地系统,当发生单相接地永久性故障后,接地故障点的查找困难,单相接地故障点所在线路的检出,一般采用试拉接地手段。

中性点经小电阻接地方式在电力系统中的应用

中性点经小电阻接地方式在电力系统中的应用

中性点经小电阻接地方式在电力系统中的应用发表时间:2019-09-02T15:06:33.430Z 来源:《当代电力文化》2019年第08期作者:黄显军乔景龙史本谱[导读] 中性点接地是人们防止电力系统故障的技术,也是电力系统经济安全运行的基础。

许继变压器有限公司河南省许昌市 461000摘要:中性点接地是人们防止电力系统故障的技术,也是电力系统经济安全运行的基础。

因此,有必要将理论与实践有机的结合起来。

对于配电网,选择能够抑制过电压并确保电源可靠性和人身安全的中性接地方法是很有必要的。

关键词:中性点;经小电阻;接地方式;电力系统;应用前言目前国内变电站10kV~35kV系统在中性点接地方式上主要执行GB/T50064-2014《交流电气装置的过电压保护和绝缘配合设计规范》。

根据该标准,变电站10kV~35kV系统中性点采用非有效接地方式运行,依据运行经验,中性点不接地方式、中性点低电阻接地方式、包括还有中点谐振接地方式等都属于非有效的接地方式。

1接地方式概述配电网中中性点不接地的系统,对于架空线路的配电网络非常有利。

整个电网的电容电流远远超过中性点接地系统的规定值。

一旦在这样的电力网络中出现单相接地的障碍,电弧难以熄灭甚至引起事故。

与此同时,当使用不接地的中性点系统时,紧凑型全封闭电器和氧化锌避雷器的广泛使用导致了事故扩大。

同时,发生单相接地故障时,断路器不会跳闸并继续运行。

这会使高压电击造成的人身伤害造成的损失更加严重。

因此,在一些地区,特别是郊区,中性点不接地的电网改为中性点低电阻接地系统,不仅能够减小单相接地瞬态电压,还能控制故障扩散。

1.1中性点不接地方式和中性点谐振接地方式35kV系统、由各种能源的发电厂内的发电机中性点,依据实际需要,可以采取直接接地或者非直接接-地运行方式,比如当单相接地故障电容电流不大于10A时,可采用中性点不接地方式;特殊情况时,当系统发生单相接地却要求可以继续运行时,此时可以采用中性点谐振接地方式。

关于中性点经小电阻接地的方式在10kV配网中应用的几点思考

关于中性点经小电阻接地的方式在10kV配网中应用的几点思考
表1 中性点经电阻接地方式分类
高 值 电 阻 系 统 中值 电阻 系 统 低 值 电 阻 系统
消 ,一方 面减 少 了接地 点 电流 ,使得 电弧 易 低 值 电阻接 地方 式 曾在某 些城 市配 电 网中使 于熄 灭 ,从而 提高 了供 电的可靠 性 ;另一 方 用 。另外 ,在上 世纪 8年 代初 ,美 国为 我 国 O 面 , 由于 消弧 线 圈一 地 变系 统 对地 阻抗 远 设计 的首 批 3 0W 组火 力 发 电厂 的厂 用 电 接 0M机 小于 电压 互感 器 的零序 阻抗 ,在 抑制铁 磁 式 系 统 中性 点亦采 用此 种接地 方式 。这 种 中性 电压互 感器 磁 饱和 引发 的铁磁 谐振 亦有 重 要 点是采 用小 于 1 0 Q电阻接地 方式 ,其 特 点是 作 用 。对于 过 去 以架空 线为 主 、线 路对 地 电 获 得一 个大 的阻 性 电流叠加 在故 障 点上 ,能 容 较小 的情 况 下 ,以上 两种接 地方 式均 取得 正 确 、迅速 切除接 地 故障线 路 。因此 ,鉴 于 较 好 的效果 ,在 保 证供 电可靠 性 同时 ,配 网 此情 况 ,在 下文对 于 1k配 网采 用 中性 点经 0V 系 统 的安 全 性 及 经 济 性也 能得 到足 够 的保 小 电阻 接地 的方 式进行 分析 说 明,进 一步使 证 。 读 者 了解 中性点 经小 电 阻接 地方 式 ,即在 中
大 停 电 范 围 。 同时 , 由于 线 路 载 流 量 的限 制 ,不 利于 系统 的运 行稳 定 。因此 这种运 行
方 式 只能作 为短 暂 临时运 行 。
参考文献 【 冯 新年. 1 ] 内桥接 线变压器差 动保护接 线方式 的讨论 [. I ] 变压器, 0 ( : — . 2 6 ]44 0 24 7 『P T 2 O 2 s 1O 系列数 字式变压器保 护装置说 明书. ] 国电南 京 自动化股份有 限公 司

浅谈主变低压侧中性点经小电阻接地零序电流保护的应用

浅谈主变低压侧中性点经小电阻接地零序电流保护的应用

浅谈主变低压侧中性点经小电阻接地零序电流保护的应用摘要:对中性点经小电阻接地系统的接地方式及工作原理作了简单介绍,同时提出零序电流保护的优点具有简单、可靠、动作正确率高,受弧光及接地电阻影响小,不受负荷及振荡影响,这些优点都只能在选择适当合理的运行方式并正确的整定才能得到发挥。

关键词:中性点小电阻接地零序电流保护0引言内蒙古地区风能资源十分丰富,在全区118.3万平方公里的土地上,风能总储量约8.98亿千瓦,可开发利用量1.5亿千瓦,占全国可开发利用风能储量的40%。

做为具有得天独厚条件的锡林郭勒盟,正是抓住了风电快速发展这一时机,风能资源得到了开发和利用,然而风力风电的迅猛发展也对继电保护提出了更高的要求,因此主变低压侧中性点经小电阻接地后,零序电流保护得到了广泛的应用。

1.变压器中性点接地方式及工作原理1.1接线方式风电场主变低压侧中性点采用电阻接地方式时,若主变为y0接线,其中点可接接入电阻(见图1a);若为△接线,则需外加接地变压器造成一个中性点(见图1b、c、d)。

外加接地变压器零序阻抗要小,其接线为y0/△或z;接地电阻可以直接接在y0/△或 z 接线的高压侧中性点,也可以接在 y0/△接线低压侧开口三角上。

1.2中性点经电阻接地方式的基本原理接地变压器作为人为中性点接入电阻,接地变压器的绕组在电网正常供电情况下阻抗很高,等于励磁阻抗,绕组中只流过很小的励磁电流;当系统发生接地故障时,绕组将流过正序、负序和零序电流,而绕组对正序、负序电流呈现高阻抗、对于零序电流呈现较低阻抗,因此,在故障情况下会产生较大的零序电流。

在中性点接入ct,将电流检测出来送至电流继电器,就可以进行有选择性快速保护。

另,接入电阻rn,能有效抑制接地过电压。

中性点接入电阻rn后,电网中的c0与rn 形成一个rc放电回路,将电弧接地累的电荷按e-t/r(r=3r0c0)规律衰减。

这样,就能有效抑制电弧接地过电压,提高保护动作的快速性和灵敏性;为降低中压系统的绝缘水平提供可能,并能较好地保证人身安全;另外,在中性点经小电阻接地电网正常运行中,由于中性点接地电阻的强阻尼作用,中性点位移远小于中性点不接地电网的中性点位移电压(约为1/5左右)。

中性点小电阻接地系统方案分析

中性点小电阻接地系统方案分析

中性点小电阻接地系统方案分析摘要:小电阻接地系统是一种有效的防止设备损坏和保障人身安全的系统。

本文主要是对小电阻接地系统进行分析和研究,探讨了不同方案的优缺点,并且提出了一种中性点小电阻接地系统的方案。

关键词:小电阻接地系统;中性点;方案分析正文:背景介绍:小电阻接地系统被广泛应用于各种设备的电路中,可以有效地保护设备和人员的安全。

在小电阻接地系统中,中性点是一个很重要的元件,它连接了供电系统的相线和地线,并且通过小电阻的连接,使得任何故障电流都能够迅速地流回地线中,从而保护了设备和人员的安全。

方案分析:在传统的小电阻接地系统中,中性点一般是直接连接到地线上的,这种方案虽然简单易行,但是存在一些缺点。

首先,由于地线的电阻非常大,所以在发生故障时,故障电流流回地线的速度很慢,容易造成设备受损和人员受伤。

其次,在较长的电路中,由于电阻和电感的作用,中性点的电压会出现较大的偏差,这会对设备的工作造成影响。

为了解决这些问题,提出了一种中性点小电阻接地系统的方案,其主要特点是在中性点处设置一个小电阻,使得故障电流能够快速地流回中性点,而不是从地线中流回。

这种方案的优点在于:首先,由于小电阻的存在,故障电流能够迅速地流回中性点,从而保护了设备和人员的安全;其次,小电阻对电压的影响较小,可以有效地维护设备的正常工作。

实际应用中,中性点小电阻接地系统需要考虑多方面的因素,比如小电阻的阻值和选材、系统的耐压等,都需要经过系统的计算和测试。

但总的来说,这种系统的方案具有很大的优势,可以有效地提高设备的安全性和稳定性。

结论:小电阻接地系统是一种重要的电气安全装置,其方案的选择和优化对于设备的安全和稳定运行至关重要。

中性点小电阻接地系统是一种有效的方案,可以提供更好的电气保护,对于中小型的电气设备应用具有很好的适用性。

无论是什么规模的电气设备,其安全性和稳定性都是非常重要的。

而在电气设备中,小电阻接地系统是最常用的电气安全装置之一。

变电站10kV中性点经小电阻接地运行方式的分析

变电站10kV中性点经小电阻接地运行方式的分析

变电站10kV中性点经小电阻接地运行方式的分析摘要:单相接地占配网故障的 80%,而中性点接地方式决定了单相接地故障的处理流程,对供电可靠性有决定性影响。

文章针对中性点经小电阻接地方式的架空线路网络与电缆网络,分析了这种接地方式运行特性、优缺点以及需要考虑的零序CT配置问题。

0 引言10kV、35kV等小电流接地系统中性点接地方式与供电可靠性、过电压与绝缘配合、继电保护等密切相关,是保障人身和设备安全及系统可靠、稳定运行的重要条件。

小电阻接地方式在配网管理水平不断提高、人身安全越来越重要的情况下具有较大优势,应作为首选方式。

1 中性点经小电阻接地方式的技术特点1.1 运行特性中性点经小电阻接地方式中电阻值一般在20?以下,单相接地故障电流限制在400A~1000A。

依靠线路零序电流保护将单相接地故障迅速切除,同时非故障相电压不升高或升幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。

1.2 适用范围1.2.1 中性点经小电阻接地方式的主要优点:(1)限制过电压水平。

系统单相接地时,健全相电压升高持续时间短,可降低单相接地各种过电压(如工频、弧光接地、PT谐振、断线谐振过电压),对设备安全有利。

(2)快速检出并隔离接地故障线路,可减小接地故障时间,防止事故扩大。

使一些瞬间故障不致发展扩大成为绝缘损坏事故,特别降低同沟敷设紧凑布置的电缆发生故障时对邻近电缆的影响。

(3)发生人身高压触电时,切断电源,有利于保护触电者的人身安全。

(4)系统单相接地时,健全相电压不升高或升幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。

(5)接地时,由于流过故障线路的电流较大,零序过流保护有较好的灵敏度,可以比较容易检除接地线路。

但因为零序保护有一定的整定值,在发生高阻接地的情况下,有可能达不到保护动作值而不动作。

(6)中性点经小电阻接地方式除保护测控装置外,无增加控制元件,原理简单,设备缺陷率低,运维简单,出现异常情况判断处理迅速,无须依赖接地装置厂家技术支持。

关于中性点经小电阻接地方式在运行中存在问题分析黄

关于中性点经小电阻接地方式在运行中存在问题分析黄

关于中性点经小电阻接地方式在运行中存在问题分析(黄)关于配电网中性点经小电阻接地方式的分析李景禄1、李政洋1、张春辉21.长沙理工大学湖南长沙4100762.长沙信长电力科技有限公司湖南长沙(410076)摘要:本文对配电网中性点小电阻接地方式、对铁磁谐振过电压的消除、对弧光接地过电压的限制及对电网的适用性进行了分析。

分析了小电阻接地方式故障点的接地阻抗对零序保护的影响,特别对比分析了架空线路绝缘子闪络造成的瞬时性故障和架空绝缘导线断线接地时对零序保护的影响,认为:小电阻接地方式使供电可靠性下降的原因是架空线路绝缘子闪络时故障电流大,足以启动零序保护,而在架空绝缘导线断线接地时由于接地点接地电阻大会使零序保护“失灵”。

因而小电阻接地方式仅适用于纯电缆网络,不适用于架空线路为主或架空电缆混合网。

关键词:小电阻接地方式、单相断线、过渡电阻接地、人身安全Analysis of Neutral Point via Small Resistance Grounding MethodOf Distribution NetworkLi Jinglu1、Li Zheng Y ang1、Zhang Chunhui2(1.Changsha University of Science and Technology.Changsha 410076,China;2.Changsha Xinchang Power technology co., LTD.Changsha 410076,China) Abstract: In this paper, the distribution network neutral point via small resistance grounding method, elimination of ferroresonance overvoltage, the limitation on the over-voltage of arc light earthing and analyzes the applicability of the power grid. Analysis of the impact of small resistance grounding fault point grounding impedance of zero-sequence protection.Special analysis of the overhead line insulator flashover caused by instantaneous fault and overhead insulated wire break ground on the influence of zero sequence protection.Draw the conclusion: the cause of the small resistance grounding mode led to the decrease of the power supply reliability is overhead line insulator flashover faultcurrent is large enough to start the zero-sequence protection,in overhead insulated conductor break ground, because the ground point grounding resistance congress to make zero-sequence protection "failure".So small resistance grounding method applies only to pure cable network, is not suitable for overhead line or aerial cable hybrid network.Key words: Small resistance grounding method;Single-phase line break;Transition resistance grounding;The personal safety0、引言配电网中性点经小电阻接地方式由于内过电压水平低,在单相接地故障发生时可以通过零序保护及时切除故障线路而广泛应用于以纯电缆线路为主的配电网。

浅谈主变低压侧中性点经小电阻接地零序电流保护的应用

浅谈主变低压侧中性点经小电阻接地零序电流保护的应用

浅谈主变低压侧中性点经小电阻接地零序电流保护的应用摘要:对中性点经小电阻接地系统的接地方式及工作原理作了简单介绍,同时提出零序电流保护的优点具有简单、可靠、动作正确率高,受弧光及接地电阻影响小,不受负荷及振荡影响,这些优点都只能在选择适当合理的运行方式并正确的整定才能得到发挥。

关键词:中性点小电阻接地零序电流保护0引言内蒙古地区风能资源十分丰富,在全区118.3万平方公里的土地上,风能总储量约8.98亿千瓦,可开发利用量1.5亿千瓦,占全国可开发利用风能储量的40%。

做为具有得天独厚条件的锡林郭勒盟,正是抓住了风电快速发展这一时机,风能资源得到了开发和利用,然而风力风电的迅猛发展也对继电保护提出了更高的要求,因此主变低压侧中性点经小电阻接地后,零序电流保护得到了广泛的应用。

1.变压器中性点接地方式及工作原理1.1接线方式风电场主变低压侧中性点采用电阻接地方式时,若主变为y0接线,其中点可接接入电阻(见图1a);若为△接线,则需外加接地变压器造成一个中性点(见图1b、c、d)。

外加接地变压器零序阻抗要小,其接线为y0/△或z;接地电阻可以直接接在y0/△或 z 接线的高压侧中性点,也可以接在 y0/△接线低压侧开口三角上。

1.2中性点经电阻接地方式的基本原理接地变压器作为人为中性点接入电阻,接地变压器的绕组在电网正常供电情况下阻抗很高,等于励磁阻抗,绕组中只流过很小的励磁电流;当系统发生接地故障时,绕组将流过正序、负序和零序电流,而绕组对正序、负序电流呈现高阻抗、对于零序电流呈现较低阻抗,因此,在故障情况下会产生较大的零序电流。

在中性点接入ct,将电流检测出来送至电流继电器,就可以进行有选择性快速保护。

另,接入电阻rn,能有效抑制接地过电压。

中性点接入电阻rn后,电网中的c0与rn形成一个rc放电回路,将电弧接地累的电荷按e-t/r(r=3r0c0)规律衰减。

这样,就能有效抑制电弧接地过电压,提高保护动作的快速性和灵敏性;为降低中压系统的绝缘水平提供可能,并能较好地保证人身安全;另外,在中性点经小电阻接地电网正常运行中,由于中性点接地电阻的强阻尼作用,中性点位移远小于中性点不接地电网的中性点位移电压(约为1/5左右)。

10kV配电网中性点接地方式

10kV配电网中性点接地方式

10kV配电网中性点的接地方式本文简要评价了10kV配电网中性点的接地方式,提出中性点经小电阻接地方式,应用于现代化城市和经济发达地区是必要的、可行的和有益的。

中性点接地是一个涉及电力系统各个方面的综合性问题,它对电力系统的设计与运行有着重大的影响,确定电网的中性点接地方式,必须考虑:①供电安全可靠性和连续性;②配电网和线路结构;③过电压保护和绝缘配合;④继电保护构成和跳闸方式;⑤设备安全和人身保安;⑥对通信和电子设备的电磁干扰;⑦对电力系统稳定影响等诸多因素.我国35kV以下电压等级目前采用的中性点接地方式有:中性点不接地、经消弧线圈接地及经小电阻接地三种方式。

三种中性点接地方式的评价:(一)中性点不接地中性点不接地方式的主要特点是简单,不需任何附加设备,投资省,运行方便,特别适用于以架空线为主的电容电流比较小的、结构简单的辐射形配电网。

在发生单相接地故障时,流过故障点的电流仅为电网的对地电容电流。

由于电流较小,一般能自动息弧。

又由于中性点绝缘在单相接地时并不破坏系统的对称性,可带故障连续供电2小时,相对提高了供电的可靠性。

中性点不接地系统最根本的弱点就是其中性点是绝缘的,电网对地电容中储存的能量没有释放通道,在发生弧光接地时,电弧反复熄灭与重燃的过程,也是反复向电网电容充电的过程。

由于电容中能量不能释放,每个循环使电容电压升高一个阶梯,所以中性点不接地系统在弧光接地过电压中达很高的倍数,对系统设备绝缘危害很大。

同时系统存在电容和电感元件,在一定的条件下,由于倒闸操作或故障,很容易引发线性谐振或铁磁谐振。

一般说,对于馈线较短的电网会激发起高频谐振,引起较高的谐振过电压,特别容易引起电压互感器绝缘击穿,而对于馈线较长的电网却容易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,通过电压互感器的电流成倍增加,引起熔丝熔断或使电压互感器过热烧毁。

(二)中性点经消弧线圈接地当电网单相接地电流比较大的时候,如果中性点不接地,发生接地故障时,产生的电弧往往不能自熄,造成弧光接地过电压的概率增大,不利于电网的安全运行。

电力系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地大全!

电力系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地大全!

电⼒系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地⼤全!电⼒系统中性点运⾏⽅式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。

我国电⼒系统⽬前所采⽤的中性点接地⽅式主要有三种:即不接地、经消弧线圈接地和直接接地。

⼩电阻接地系统在国外应⽤较为⼴泛,我国开始部分应⽤。

1、中性点不接地(绝缘)的三相系统各相对地电容电流的数值相等⽽相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位⼀致。

这时中性点接地与否对各相对地电压没有任何影响。

可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运⾏状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。

这种现象的产⽣,多是由于架空线路排列不对称⽽⼜换位不完全的缘故造成的。

在中性点不接地的三相系统中,当⼀相发⽣接地时:⼀是未接地两相的对地电压升⾼到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘⽔平应根据线电压来设计。

⼆是各相间的电压⼤⼩和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运⾏⼀段时间,这是这种系统的最⼤优点。

但不许长期接地运⾏,尤其是发电机直接供电的电⼒系统,因为未接地相对地电压升⾼到线电压,⼀相接地运⾏时间过长可能会造成两相短路。

所以在这种系统中,⼀般应装设绝缘监视或接地保护装置。

当发⽣单相接地时能发出信号,使值班⼈员迅速采取措施,尽快消除故障。

⼀相接地系统允许继续运⾏的时间,最长不得超过2h。

三是接地点通过的电流为电容性的,其⼤⼩为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发⽣电弧。

弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场⽽产⽣过电压,损坏电⽓设备或发展成相间短路。

故在这种系统中,若接地电流⼤于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。

2、中性点经消弧线圈接地的三相系统中性点不接地三相系统,在发⽣单相接地故障时虽还可以继续供电,但在单相接地故障电流较⼤,如35kV系统⼤于10A,10kV系统⼤于30A时,就⽆法继续供电。

浅谈炼化企业中压配电系统中性点小电阻接地的设计

浅谈炼化企业中压配电系统中性点小电阻接地的设计

浅谈炼化企业中压配电系统中性点小电阻接地的设计Design for low resistance neutral earthing in Petro-chemicalcorporation distribution systemAbstract:Key words: low resistance earthing system;neutral earthing;distribution system 摘要: 主要阐述了小电阻接地在炼化企业中压配电系统使用比其它接地方式具有的优势,对小电阻阻值和接地变压器容量的计算进行了分析,介绍了小电阻接地系统中各级零序电流保护的设置,同时还分析了小电阻接地系统运行时可能出现的问题及解决措施。

关键词:小电阻接地系统、中性点接地、配电系统引言在中压配电系统中,中性点的接地方式主要有不接地方式、经消弧线圈接地方式和小电阻接地方式。

中性点的不接地方式主要应用于单相接地电容电流IC<10A的架空线路配电网络和单相接地电容电流IC<30A的电缆线路配电网络。

当单相接地电容电流超过以上值时,根据供电可靠性要求,中性点接地方式可以选择经消弧线圈接地方式和小电阻接地方式。

中性点的不接地和经消弧线圈接地方式最大特点是在允许带单相接地故障运行2h。

炼化企业的中压配电系统大多数为纯电缆网络,系统对地电容电流大,电缆瞬时性接地故障很少,一般都是永久性接地故障。

电缆终端、接头等处相对薄弱,长时间承受过电压易导致非故障相绝缘击穿,形成相间短路,扩大事故。

小电阻接地方式可以弥补消弧线圈运行方式带来的不足。

1 小电阻接地方式的优点中性点小电阻系统发生单相接地故障时,故障线路的零序电流为系统总的对地电容电流与流过中性点接地电阻的阻性电流的矢量和,比非故障线路的零序电流大很多,零序保护可准确判断并及时发出信号或切除故障线路,防止故障范围扩大;中性点不接地系统和经消弧线圈接地系统发生单相接地故障时,非故障相电压升高倍。

浅谈35kV系统中性点接地方式的应用

浅谈35kV系统中性点接地方式的应用

浅谈35kV系统中性点接地方式的应用[摘要]35kV系统中性点接地是一个综合性的技术问题,它与电力系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等关系密切,对电力系统正常运行具有保障作用,是一个非常复杂而又至关重要的问题。

我仅就35kV系统的中性点接地方式进行一下粗劣的分析。

[关键字]35kV系统中性点接地方式应用1 前言电力系统的中性点是指星形接线的变压器或发电机的中性点。

目前电力系统中性点接地方式有两类:1)电力系统中性点直接接地(包括中性点直接接地和经小电阻接地两种方式),优点:安全性好,系统单相接地时保护装置可以立即切除故障;经济性好,中性点在任何情况下电压不会升高,且不会出现系统单相接地时弧光过电压问题,这样电力系统的绝缘水平可以按相电压考虑,经济性能好。

缺点:该系统供电可靠性差。

2)电力系统中性点不直接接地,(包括中性点不接地和中性点经消弧线圈接地两种方式)优点:供电可靠性高,缺点:经济性差,电压高的系统不宜采用,此外还易出现间歇性电弧引起的系统谐振过电压。

目前我国110kV及以上的电力系统采用中性点直接接地方式,35~60kV电力系统一般采用中性点经消弧线圈或经小电阻接地;而3~10kV电力系统一般采用中性点不接地方式。

2 35kV系统的中性点接地方式比较中性点经消弧线圈接地,在系统发生单相接地时,流过接地点的电流较小,其特点是线路发生单相接地时,可不立即跳闸,按规程规定电网可带单相接地故障运行2小时。

有足够的时间去处理故障,减少停电次数.从实际运行经验和资料表明,当接地电流小于10A时,电弧能自灭,因消弧线圈的电感的电流可抵消接地点流过的电容电流,若调节得很好时,电弧能自灭。

1)消弧线圈补偿方式有:欠补偿、全补偿和过补偿。

全补偿会造成系统串联谐振,危及电网的绝缘。

欠补偿在系统运行方式改变时,也容易造成系统串联谐振。

系统中一般不采用全补偿、欠补偿方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中性点经小电阻接地零序过流
0 引言
电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系,早期惠州惠阳的配网主要以架空线为主,线路电容电流较小,因此配网主要采用中性点不接地或者经消弧线圈接地并取得较好的效果,随着城网改造的深入,越来越多的采用电缆代替架空线,使得这些地区接地电容电流迅速上升,在这种情况下,中性点不接地或者经过消弧线圈接地已经不能满足系统限制过电压的要求,而且电缆馈线发生故障一般为永久性故障,宜采用迅速切除故障防止故障扩大,所以惠州惠阳10kv配网基本上都采用中性点经低电阻接地(接地变/曲折变),即NRS,由于系统的零序阻抗较小,线路发生单相接地故障时,线路的零序过流保护能够迅速切除故障,10kv母线发生故障时,接入曲折变保护的零序过流保护会动作隔离故障。

1 中性点经小电阻接地的特点
1.1 降低工频过电压和抑制弧光过电压中性点经小电阻接地方式可降低单相接地工频过电压,因为能迅速切除故障线路,使得工频电压升高持续时间很短,中性点电位衰减很快,弧光重燃产生过电压幅值可明显降低,有效地抑制弧光接地过电压。

1.2 消除铁磁谐振过电压和防止断线谐振过电压在中性点不接地系统中,由于电磁式电压互感器的激磁电感和线路的对地电容形成非线型谐振回路,在特定情况下引起铁磁谐振过电压,在中性点经小电阻接地后谐振无法产生。

配网中性点不接地系统发生断线时,配电变压器的铁芯线圈与线路对地电容组成的串联回路在特定条件下会发生谐振,产生过电压。

中性点经小电阻接地可以防止大部分的断线谐振过电压,减少绝缘老化,延长电气设备使用寿命,提高网络和设备可靠性。

1.3 避免发生高压触电事故配网系统的架空线路分布较广,高度也不太高,时有发生外物误碰高压线路以及高压线断线情况,极易导致触电伤亡事故。

中性点经小电阻接地系统装有保护装置,一旦发生接地故障,可以立即跳闸,断
开接地故障线路,可避免发生高压触电事故。

2 10kv配网经低电阻接地的理论分析
ra、rb、rc—分别为电网A、B、C三相对地泄漏电阻;Ca、Cb、Cc—分别为三相对地电容;
Px-jQx—三相负荷;La、Lb、Lc—分别为接地变等值电抗;Ra、Rb、Rc—分别为接地变等值损耗电阻;Rh—接地变中心点电阻
因为线路泄露电流非常小,忽略不计泄露电阻的影响,利用对称分量法对其进行分解计算,得出其零序网等其中Rg0=Ra=Rb=Rc;
Xg0=2πfLa=2πfLb=2πfLc;XФ=1/2πfCa=1/2πfCb=1/2πfCc;
根据对称分量法分解计算得:
IA= (1-1)
UB’=UA (1-2)
UC’=UA (1-3)
ΔU=UA (1-4)
式中的被定名为接地程度系数,同样
IA=- I(3) (1-5)
式中I(3)为三相短路电流。

其各序等效综合阻抗为
Z1=Z2=R1+j(Xk+X1);
Z0=R0+jX0+;其中ZN=Rg0+3Rh+jXg0;
3 惠州惠阳电网10kv接地变及线路保护配置方案
10kV接地变安装在变低开关变压器侧,接地变高压零序I、II、III段定值相同都是一次值60A,2.5S切母联DL6开关并闭锁10kV备自投,3S切变低开关(#1变切DL2、DL3,#2变切DL5)及切接地变本身,馈线为了和接地变配
合其正零序I段120A、0.1S,零序II、III段40A、0.5S及0.8S。

当10kV线路发生接地故障时,首先该线路的零序保护(动作时间小于接地变动作时间)动作,出口跳开线路开关,切除故障;当该线路出现拒动的情况时,故障无法切除,流过接地变的故障量仍然存在,此时,由接地变高压零流(CT安装于10kV中性点接地电缆处)动作,出口跳开分段开关,用于判断故障线路所在10kV母线,区分故障后,出口跳开故障母线所在主变变低开关,此时,已成为越级动作事故,但仍能有效切除故障,确保电网的安全稳定运行。

4 仿真分析及存在问题介绍
根据上面的算例搭建仿真模型,设计一条母线带五条出线的一次系统,线路长度分别为26km,35km,25km,20km,15km,当馈线一线路末端出现金属性接地短路时,假定为永久性故障并且建弧稳定,分别采集故障点的故障电流Id中心点电流IN,五条馈线的零序电流。

由仿真结果可以看出基本上与理论分析一致,Id与IN由于只相差电容电流大小基本一致,并且变化趋势相同,馈线一的零序电流等于其它出现电容电流与中性点电流之和,所以幅值最大,馈线二长度最长,电容电流最大,所以零序电流幅值较其他非故障线路更大。

NRS系统是以牺牲供电可靠性来保障系统安全的,故障电流较大如上由Id=304A,中性点也会通过IN=283A的电流,由于电阻柜通过大电流会发热,产生温升效应,零序阻抗会增大,要注意其动热稳定特性;长线路由于电容电流较大,而馈线零序过流保护的整定值比接地变零序过流保护的整定值要小时间也要短,容易失去选择性发生误动,保护整定时要注意之间的配合;由上图可以看出故障线路的零序电流方向与非故障线路是相反的,可以考虑使用零序方向作为辅助元件,提高可靠性。

相关文档
最新文档