大学物理同步训练第12章-2光的衍射
《大学物理》光的衍射(一)
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
③影响衍射图样的a和
由暗纹条件: asin k 若λ 一定时,
sin 1 : 缝越窄,衍射越显著,但a不能小于(a小于时 也有衍射,a但此时半波带理论不成立);缝越宽,衍射越不明显, 条纹向中心靠近,逐渐变成直线传播。
由暗纹条件: asin k 若a一定时, sin λ 越大,衍射越显著,
20 2sin0 2 / a 1.092102 rad
易得中央明条纹的线宽度为
x=2 f tan0 2 f sin0 5.46103 m
(2)浸入水中,折射率改变,设折射率为n,则波长改变为
=/n 2
an
n , ,即中央明条纹的角宽度减小
大学物理 习题练习 光的衍射
光的衍射
• 什么是光的衍射?
波在传播中遇到障碍物,使波面受到限制时,能够绕过障碍物 继续前进的现象。
光通过宽缝时,是沿直线传播的,若将缝的宽度减小到约104m及更 小时,缝后几何阴影区的光屏上将出现衍射条纹。
菲涅耳衍射
衍射屏、光源和接收屏之间(或 二者之一)均为有限远
夫琅禾费衍射
衍射屏与光源和接收屏三者之间 均为无限远。
单缝夫琅禾费衍射
衍射屏 透镜L
透镜L
B
S
*
a
Aδ f
f
观察屏
·p
0
衍射角:
①衍射图样中明、暗纹公式:
亮纹条件: a sin (2k 1)
2
(近似值)
暗纹条件: a sin 2k k
2
②单缝衍射条纹特点—条纹宽度
对K级暗纹有
天津理工大学 大学物理同步练习答案 第12-1章 光的干涉答案
光的干涉答案(同步训练第43页至47页)一.选择题1.A2.A 3.B 4.A 5.B 6.C 7.B二.填空题1.不 2.])1([])1([111222t n r t n r -+--+ 3.2π (n -1) e / λ ; 3×103 e 。
4.暗 5.2n e +2/λ 或 2n e 2/λ 6.1.125 7.218 8.3λ / (2n )9.不变;近棱边 10.变密 11.()12-n λ三.计算题1解:(1) 方法一:明条纹位置公式 (0,1,2)k D x k k d λ==±± ,则两侧两个第五级明纹间距为 5510D x x x aλ-'∆=-==0.02 m 方法二:相邻明纹间距为D x d λ∆=,然后再数出两侧两个第五级明纹之间有10个相邻明纹间距,所以1010D x x aλ'∆=∆==0.02 m (2) 覆盖云玻璃后,零级明纹应满足(n -1)e +r 1=r 2设不盖玻璃片时,此点为第k 级明纹,则应有 r 2-r 1=k λ所以 (n -1)e = k λk =(n -1) e / λ=3.02≈3零级明纹移到原第3级明纹处2.解:λλk ne =+=∆221=k nm 6.2021=λ (不可见)2=k nm 7.673=λ(红)3=k nm 3.404=λ(紫)4=k nm 8.288=λ (不可见 )正面的颜色是紫红色的。
3.解:上下表面反射都有相位突变π,计算光程差时不必考虑附加的半波长. 设膜厚为e , B 处为暗纹,2(21)2ne k λδ==+, (k =0,1,2,…) A 处为明纹,B 处第6个暗纹对应上式k =5 ()nk e 412λ+==1.0×10-3 mm 4.解:由牛顿环暗环半径公式k r =根据题意可得1l=-=2l=-=212212//ll=λλ211222/llλλ=。
《大学物理学》光的衍射练习题(马解答)
《大学物理学》光的衍射自主学习材料(解答)一、选择题:11-4.在单缝夫琅和费衍射中,波长为λ的单色光垂直入射在宽度为3λ的单缝上,对应于衍射角30°方向,单缝处波阵面可分成的半波带数目为( B )(A ) 2个; (B ) 3个; (C ) 4个; (D ) 6个。
【提示:根据公式sin /2b k θλ=,可判断k =3】2.在单缝衍射实验中,缝宽b =0.2mm ,透镜焦距f =0.4m ,入射光波长λ=500nm ,则在距离中央亮纹中心位置2mm 处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为几个半波带?( D )(A) 亮纹,3个半波带; (B) 亮纹,4个半波带;(C) 暗纹,3个半波带; (D) 暗纹,4个半波带。
【提示:根据公式sin /2b k θλ=⇒2x b k f λ=,可判断k =4,偶数,暗纹】 3.在夫琅和费单缝衍射实验中,对于给定的入射单色光,当缝宽度变宽,同时使单缝沿垂直于透镜光轴稍微向上平移时,则屏上中央亮纹将: ( C )(A)变窄,同时向上移动; (B) 变宽,不移动;(C)变窄,不移动; (D) 变宽,同时向上移动。
【缝宽度变宽,衍射效果减弱;单缝位置上下偏移,衍射图样不变化】4.在夫琅和费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹 ( B )(A) 对应的衍射角变小; (B) 对应的衍射角变大;(C) 对应的衍射角也不变; (D) 光强也不变。
【见上题提示】5.在如图所示的夫琅和费单缝衍射实验装置中,S 为单缝,L 为凸透镜,C 为放在的焦平面处的屏。
当把单缝垂直于凸透镜光轴稍微向上平移时,屏幕上的衍射图样 ( C )(A) 向上平移; (B) 向下平移;(C) 不动;(D) 条纹间距变大。
【单缝位置上下偏移,衍射图样不变化】 6.波长为500nm 的单色光垂直入射到宽为0.25 mm 的单缝上,单缝后面放置一凸透镜,凸透镜的焦平面上放置一光屏,用以观测衍射条纹,今测得中央明条纹一侧第三个暗条纹与另一侧第三个暗条纹之间的距离为12mm ,则凸透镜的焦距f 为: ( B )(A) 2m ; (B) 1m ; (C) 0.5m ; (D) 0.2m 。
《光的衍射》同步练习3.docx
《光的衍鉗》同步练习(时间:60分钟)知识点基础中档稍难光的衍射现象1、2、3、45、6综合提升12、1413II达标基训II知识点光的衍射现象1.单色光通过双缝产生干涉现象,同种单色光通过单缝产生衍射现象,在光屏上都得到明暗相间的条纹,比较这两种条纹().A.干涉、衍射条纹间距都是均匀的B.干涉、衍射条纹间距都是不均匀的C.干涉条纹间距不均匀,衍射条纹间距均匀D.干涉条纹间距均匀,衍射条纹间距不均匀解析干涉条纹间距相同,而衍射条纹间距不均匀,中央亮条纹最宽.D正确.答案D2.光的衍射现象,下面说法正确的是().A.红光的单缝衍射图样是红暗相间的直条纹B.白光的单缝衍射图样是红暗相间的直条纹C.光照到不透明小圆盘上出现泊松亮斑,说明发生了衍射D.光照到较大圆孔上出现大光斑,说明光沿着直线传播,不存在光的衍射解析单色光照到狭缝上产生的衍射图样是亮暗相间的直条纹.白光的衍射图样是彩色条纹.光照到不透明圆盘上,在其阴影处出现亮点,是衍射现象.光的衍射现象只有明显与不明显之分,D项中屏上大光斑的边缘模糊,正是光的衍射造成的,不能认为不存在衍射现象.答案AC3.观察单缝衍射现象时,把缝宽由0・2 mm逐渐增大到0・8 mm,看到的现象是()・A.衍射条纹的间距逐渐变小,衍射现象逐渐不明显B.衍射条纹的间距逐渐变大,衍射现象越来越明显C.衍射条纹的间距不变,只是亮度增强D.以上现象都不会发生解析由单缝衍射实验的调整与观察可知,狭缝宽度越小,衍射现象越明显, 衍射条纹越宽,条纹间距也越大,本题的调整是将缝调宽,现象向相反的方向发展,故选项A正确,选项B、C、D错误.答案A4.点光源照在一个剃须刀片上,在屏上形成了它的影子,其边缘较为模糊,原因是()•A.光的反射B.光强太小C.光的干涉,通过剃须刀片中央的孔直进D.光的衍射解析在刀片边缘有部分光绕过障碍物进入到阴影中去,从而看到影子的边缘模糊,D选项正确.答案D5.在单缝衍射实验中,下列说法中正确的是()•A.将入射光由黄色换成绿色,衍射条纹间距变窄B.使单缝宽度变小,衍射条纹间距变窄C.换用波长较长的光照射,衍射条纹间距变宽D.增大单缝到屏的距离,衍射条纹间距变宽解析当单缝宽度一定时,波长越长,衍射现象越明显,即光偏离直线传播的路径越远,条纹间距也越大;当光的波长一定时,单缝宽度越小,衍射现象越明显,条纹间距越大;光的波长一定、单缝宽度也一定时,增大单缝到屏的距离,衍射条纹间距也会变宽(如图所示).故选项A、C、D正确.答案ACD6. 沙尘暴是由于土地的沙化引起的一种恶劣的气象现象,发生沙尘暴时能见度只有几十米,天空变黄发暗,这是由于这种情况下().A. 只有波长较短的一部分光才能到达地面B. 只有波长较长的一部分光才能到达地面C. 只有频率较大的一部分光才能到达地面D. 只有频率较小的一部分光才能到达地面解析 根据光发生明显衍射的条件知,发生沙尘暴时,只有波长较长的一部 分光线能到达地面,根据2=爲,到达地面的光是频率较小的部分,故选项B 、D 正确.答案BD II 综合提升II12•抽制细丝时可用激光监控其粗细,如图13-5. 6遮光板的同样宽度的窄缝时产生的条纹规律相同,则 ().A ・这是利用光的干涉现象B. 这是利用光的衍射现象C. 如果屏上条纹变宽,表明抽制的丝粗了D. 如果屏上条纹变宽,表明抽制的丝细了窄),条纹间距变宽.B 、D 选项正确.答案BD13•如图13—5、6-9所示,°、方两束光以不同的入射角由介质射向空气,结果折射角相同,下列说法正确的是一8所示.激光束越过细丝时产生的条纹和它通过解析 由图样可知,这是利用了光的衍射现象, 当丝变细时(相当于狭缝变图 13 — 5、6 — 8).A.b在该介质中的折射率比“大B.若用方做单缝衍射实验,要比用“做中央亮条纹更宽C.用a更易观测到泊松亮斑D.做双缝干涉实验时,用a光比用方光两相邻亮条纹中心的距离更大sin 外解析题设条件知,0\a = O\b> &2“v &2亦由巾= sin 知如〉巾,A错误;/因为n a>n h9所以2“<久方,又Ax=“yl,故Nx a<^x b9 B正确,D错误;而波长越长,衍射现象越明显,C错误.本题主要考查折射率公式应用,各种色光的波长、频率、折射率的大小顺序排列.答案B14.在小灯泡和光屏之间,放一个带有圆孔的遮光板,当圆孔直径从几厘米逐渐变小到零(即闭合)的过程中,在屏上先后可以看到____ 、_______ 、__________________________________________________ 、_______ 四种现象.(填字母序号:A.完全黑暗;B.小灯泡的像;C・明暗相间的条纹;D.光亮的圆)答案D B C A。
(完整版)光的干涉、衍射同步练习及答案
光的干涉、衍射1.如图所示,在用单色光做双缝干涉实验时,若单缝S 从双缝S 1、S 2的中央对称轴位置处稍微向上移动,则( )A .不再产生干涉条纹B .仍可产生干涉条纹,且中央亮纹P 的位置不变C .仍可产生干涉条纹,中央亮纹P 的位置略向上移D .仍可产生干涉条纹,中央亮纹P 的位置略向下移2.如图所示是双缝干涉的实验装置,其光屏上P 处发现明条纹,则双缝到光屏上P点的距离之差为( ) A .光波的半波长的奇数倍 B .光波的波长的奇数倍C .光波的半波长的偶数倍D .光波的波长的偶数倍3.在双缝干涉实验中,光屏上P 点到双缝S 1、S 2的距离之差δ1=0.75 μm,光屏上Q 点到双缝S 1、S 2的距离之差为δ2=1.5 μm.如果用频率为f =6.0×1014 Hz 的黄光照射双缝,则( )A .P 点出现亮条纹,Q 点出现暗条纹B .Q 点出现亮条纹,P 点出现暗条纹C .两点均出现暗条纹D .两点均出现亮条纹4.在双缝干涉实验中,以下说法正确的是( )A .狭缝屏的作用是使入射光线到达双缝屏时,双缝就成了两个振动情况完全相同的光源B .若入射光是白光,像屏上产生的条纹是黑白相间的干涉条纹C .像屏上某点到双缝的距离差为入射光波长的1.5倍,该点处一定是亮条纹D .双缝干涉图样中,亮条纹之间距离相等,暗条纹之间距离不相等5.某同学自己动手利用如图所示器材观察光的干涉现象,其中A 为单缝屏,B 为双缝屏,C为像屏.当他用一束阳光照射到A 上时,屏C 上并没有出现干涉条纹.他移走B 后,C 上出现一窄亮斑.试分析实验失败的原因,最大的可能是( )A .单缝S 太窄B .单缝S 太宽C .S 到S 1和S 2距离不等D .阳光不能做光源6.以下光源可作为相干光源的是( ) A .两个相同亮度的烛焰 B .两个相同规格的灯泡C .双丝灯泡D .出自一个单色光源的一束光所分成的两列光7.光通过双缝后在屏上产生彩色条纹,若用红色和绿色玻璃分别挡住双缝,则屏上将出现( )A .黄色的干涉条纹B .红绿相间的条纹C .黑白相间条纹D .无干涉条纹8.由两个不同光源所发出的两束白光落在同一点上,不会产生干涉现象.这是因为( )A .两个光源发出光的频率不同B .两个光源发出光的强度不同C .两个光源的光速不同D .这两个光源是彼此独立的,不是相干光源9.用白光做双缝干涉实验时,得到彩色的干涉条纹,下列说法正确的是( )A .干涉图样的中央亮条纹是白色的B .在靠近中央亮条纹两侧最先出现的是红色条纹C .在靠近中央亮条纹两侧最先出现的是紫色条纹D .在靠近中央亮条纹两侧最先出现的彩色条纹的颜色与双缝间距离有关10.如图所示是单色光双缝干涉实验某一时刻的波形图,实线表示波峰,虚线表示波谷.在此时刻,介质中A 点为波峰相叠加点,B 点为波谷相叠加点,A 、B 连线上的C 点为某中间状态相叠加点.如果把屏分别放在A 、B 、C 三个位置,那么( )A .A 、B 、C 三个位置都出现亮条纹 B .B 位置处出现暗条纹C .C 位置出现亮条纹或暗条纹要由其他条件决定D .以上结论都不对11.市场上有种灯具俗称“冷光灯”,用它照射物品时能使被照物品处产生的热效应大大降低,从而广泛地应用于博物馆、商店等处,这种灯降低热效应的原因之一是在灯泡后面放置的反光镜玻璃表面上镀了一层薄膜(例如氟化镁),这种膜能消除玻璃表面反射回来的热效应最显著的红外线,以λ表示此红外线的波长,则所镀薄膜的厚度最小应为( ) A .18λ B .14λ C .12λ D .λ 12.如图所示是双缝干涉实验装置,使用波长为600 nm 的橙色光源照射单缝S ,在光屏中央P 处观察到亮条纹,P 点上方的P 1点出现第一级亮纹中心(即P 1到S 1、S 2的光程差为一个波长),现换用波长为400 nm 的紫光源照射单缝,则( )A .P 和P 1仍为亮条纹B .P 为亮条纹,P 1为暗条纹C .P 为暗条纹,P 1为亮条纹D .P 、P 1均为暗条纹13.如图甲所示,在一块平板玻璃上放置一平凸薄透镜,在两者之间形成厚度不均匀的空气膜,让一束单色光垂直入射到该装置上,结果在上方观察到如图乙所示的同心内疏外密的圆环状干涉条纹,称为牛顿环.以下说法正确的是( )A .干涉现象是凸透镜下表面反射光和凸透镜上表面反射光叠加形成的B.干涉现象是凸透镜上表面反射光和玻璃上表面反射光叠加形成的C.干涉条纹不等间距是因为空气膜厚度不是均匀变化的D.若将该装置放到真空中观察,就无法看到牛顿环14.劈尖干涉是一种薄膜干涉,其装置如图甲所示,将一块平板玻璃放置在另一平板玻璃之上,在一端夹入两张纸片,从而在两玻璃表面之间形成一个劈形空气薄膜.当光垂直入射后,从上往下看到的干涉条纹如图乙所示,干涉条纹有如下特点:(1)任意一条明条纹或暗条纹所在位置下面的薄膜厚度相等;(2)任意相邻明条纹和暗条纹所对应的薄膜厚度差恒定.现若在图甲装置中抽去一张纸片,则当光垂直入射到新的劈形空气薄膜后,从上往下观察到的干涉条纹()A.变疏 B.变密 C.不变 D.消失15.如图所示为单色光源发出的光经一狭缝,照射到光屏上.可观察到的图象是()16.在用游标卡尺观察光的衍射现象时,当游标卡尺两测脚间狭缝宽度从0.1mm逐渐增加到0.8mm的过程中,通过狭缝观察一线状光源的情况是()A.衍射现象逐渐不明显,最后看不到明显的衍射现象了 B.衍射现象越来越明显C.衍射条纹的间距随狭缝变宽而逐渐变小 D.衍射条纹的间距随狭缝变宽而逐渐变大17.下列说法不正确的是( ) A.增透膜的厚度应为入射光在薄膜中波长的四分之一B.光的色散现象表明了同一介质对不同色光的折射率不同,各色光在同一介质中的光速也不同C.用单色光做双缝干涉实验相邻条纹之间的距离不相等 D.光的衍射为光的波动提供了有力的证据18.一个不透光的薄板上有两条平行的窄缝,有一频率单一的红光通过两窄缝在与薄板平行的屏上呈现明暗相间的间隔均匀的红色条纹,若将其中一窄缝挡住让另一缝通过红光,则在屏上可观察到()A.明暗与原来相同,间隔均匀的红色条纹 B.明暗与原来不相同,间隔不均匀的红色条纹C.一条红色的条纹 D.既无条纹,也不是一片红光,而是光源的像19. 用单色光通过小圆盘和小圆孔做衍射实验时,在光屏上得到衍射图形,它们的特征是()A.用小圆盘时中央是暗的,用小圆孔时中央是亮的 B.中央均为亮点的同心圆形条纹C.中央均为暗点的同心圆形条纹 D.用小圆盘时中央是亮的,用小圆孔时中央是暗的20.在用单色平行光照射单缝以观察衍射现象时,下面说法正确的是()A.缝越窄,衍射现象越明显 B.缝越宽,衍射现象越明显C.照射光的波长越短,衍射现象越明显 D.照射光的波长越长,衍射现象越明显21.在白炽灯的照射下,能从捏紧的两块玻璃板的表面看到彩色条纹;通过两根并在一起的铅笔狭缝去观察发光的白炽灯,也会看到彩色条纹.这两种现象 ( )A.都是光的衍射现象 B.前者是光的色散现象,后者是光的衍射现象C.前者是光的干涉现象,后者是光的衍射现象D.都是光的波动性的表现22.用某种单色光做双缝干涉实验时,已知双缝间距离d=0.25mm,双缝到毛玻璃屏间距离L的大小由下图中毫米刻度尺读出(如戊图所示),实验时先移动测量头(如图甲所示)上的手轮,把分划线对准靠近最左边的一条明条纹(如图乙所示),并记下螺旋测微器的读数x1(如丙图所示),然后转动手轮,把分划线向右边移动,直到对准第7条明条纹并记下螺旋测微器读数x7(如丁图所示),由以上测量数据可求该单色光的波长。
(网工)《大学物理学》光的衍射练习题(解答) (1)
f
a
拓展题:在单缝衍射实验中,缝宽 a=0.2mm,透镜焦距 f=0.4m,入射光波长 =500nm,在距离中
央亮纹中心位置 2mm 处是亮纹还是暗纹?对应的波阵面分为几个半波带?
(D)
(A) 亮纹,3 个半波带; (B) 亮纹,4 个半波带;(C) 暗纹,3 个半波带; (D) 暗纹,4 个半波带。
(C) 不变;
(D) 改变无法确定。
【提示:衍射光栅公式变为 d sin a sin ' k ,最高级次 k 变大】
5.在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出
现,那么此光栅每个透光缝宽度 a 和相邻两缝间不透光部分宽度 b 的关系为
(B)
/2
/2
拓展题:在单缝夫琅和费衍射中,若单缝两边缘点 A、B 发出的单色平行光到空间某点 P 的光程差
为 1.5 ,则 A、B 间可分为 个半波带,P 点处为 (填明或暗)条纹。若光程差为 2 ,则
A、B 间可分为 个半波带,P 点处为 (填明或暗)条纹。
a sin
【提示:根据公式
n 判断, n 3 ,奇数半波带对应明 条纹,2 是 4 个 / 2 ,偶数半波带对应
相等,则光谱上呈现的全部级数为
(B)
(A) 0 、 1、 2 、 3 、 4 ; (B) 0 、 1、 3 ;(C) 1、 3 ; (D) 0 、 2 、 4 。
【 提 示 : 根 据 衍 射 光 栅 公 式 d sin k , 取 =900 k 4.16 , 可 判 断 kmax 4 。 又 由 缺 级 公 式
ab
【提示:由缺级公式 k
k ' ,取 k 3k ' 】
(完整版)光的衍射习题(附答案)
光的衍射(附答案)一.填空题1.波长λ= 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f= 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l= 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1a sinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx 1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx 2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1= x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a = 1.0×10−2 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= 1.0×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1=12(2 k + 1)λ1=12λ1(取k = 1)a sinφ2=12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于 sin φ1 ≈ tan φ1,sin φ2 ≈ tan φ2 所以 x 1 = 32 f λ1 / ax 2 = 32f λ2 / a则两个第一级明纹之间距为Δx 1 = x 2 − x 1 = 32f Δλ / a = 0.27 cm(2) 由光栅衍射主极大的公式d sin φ1 = k λ1 = 1 λ1 d sin φ2 = k λ2 = 1 λ2且有sin φ = tan φ = x / f所以Δx 1 = x 2 − x 1 = f Δλ / a = 1.8 cm14. 一双缝缝距d = 0.40 mm ,两缝宽度都是a = 0.080 mm ,用波长为λ = 480 nm (1 nm = 10−9 m )的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N 和相应的级数. 解:双缝干涉条纹(1) 第k 级亮纹条件:d sin θ = k λ第k 级亮条纹位置:x 1 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d 相邻两亮纹的间距:Δx = x k +1 − x k = (k + 1) f λ / d − k λ / d = f λ / d = 2.4×10−3m = 2.4 mm(2) 单缝衍射第一暗纹:a sin θ1 = λ单缝衍射中央亮纹半宽度:Δx 0 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d = 12 mm Δx 0 / Δx = 5∴ 双缝干涉第 ±5级主极大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第 ±5 级主极大,同样可得出结论。
华南理工大学 大学物理 课后习题光的衍射,习题七
大学物理习题七姓名 班级 序号光的衍射1.在单缝衍射实验中,缝宽a = 0.2mm ,透镜焦距f = 0.4m ,入射光波长λ= 500nm ,则在距离中央亮纹中心位置2mm 处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为几个半波带? [ ](A )亮纹,3个半波带; (B )亮纹,4个半波带;(C )暗纹,3个半波带; (D )暗纹,4个半波带。
2.波长为632.8nm 的单色光通过一狭缝发生衍射。
已知缝宽为1.2mm ,缝与观察屏之间的距离为D =2.3m 。
则屏上两侧的两个第8级极小之间的距离x ∆为 [ ](A )1.70cm ; (B )1.94cm ; (C )2.18cm ; (D )0.97cm 。
3.在单缝夫琅和费衍射实验中,设第一级暗纹的衍射角很小。
若以钠黄光(λ1=589nm)为入射光,中央明纹宽度为 4.0mm ;若以蓝紫光(λ2=442nm)为入射光,则中央明纹宽度为________mm 。
4.一宇航员声称,他恰好能分辨他下方距他为H =160km 的地面上两个发射波长550nm 的点光源。
假定宇航员的瞳孔直径D =5.0mm ,求此两点光源的间距。
5.单色光1λ=720nm 和另一单色光2λ经同一光栅衍射时,发生这两种谱线的多次重叠现象。
设1λ的第1k 级主极大与2λ的第2k 级主极大重叠。
现已知当1k 分别为2, 4, 6,, 时,对应的2k 分别为3, 6, 9,, 。
,则波长2λ= nm 。
6.用波长400~760nm 的白光照射光栅,在它的衍射光谱中,第三级与第二级和第四级发生重叠。
求第三级光谱被重叠部分的光谱范围。
如果要观察完整的第三级光谱,则光栅常数与缝宽之比应为多少?7.波长为600nm 的单色光垂直照射到一单缝宽度为 0.05mm 的光栅上,在距光栅2m 的屏幕上,测得相邻两条纹间距0.4cm x ∆=。
求:(1)在单缝衍射的中央明纹宽度内,最多可以看到几级,共几条光栅衍射明纹?(2)光栅不透光部分宽度b 为多少?8.波长为680nm 的单色可见光垂直入射到缝宽为41.2510cm a -=⨯的透射光栅上,观察到第四级谱线缺级,透镜焦距1m f =。
大学物理 光的衍射 试题(附答案)
所以在单缝衍射中央明纹区有 k = 0 , ± 1 , ± 2 ,共 5 条谱线。
三、计算题 1. 在某个单缝衍射实验中,光源发出的光含有两种波长 λ1 和 λ2 ,并垂直入射于单缝上。
假如 λ1 的第一级衍射极小与 λ 2 的第二级衍射极小相重合,试问: (1) 这两种波长之间有何关系?
he .c
即 k = 0, ± 1, ± 2 ,共 5 个光栅衍射主极大。
ww
w. z
hi
na
nc
he .c
⎛d⎞ − 1 = 2 × 3 − 1 = 5 条主极大 ⎟ ⎝ a ⎠ 取整
om
d = 2.5 进成整数取为 3 a
式中 λ1 = 400 nm , λ2 = 760 nm 。若 λ1 的第 k +1 级谱线落入第 k 级光谱内, 即
(k + 1)λ1 < kλ2
d d
k ≤
,则发生重叠,所以,不发生重叠的条件是 (k + 1)λ1 ≥ kλ2
解出
λ1 400 = = 1. 11 λ2 − λ1 760 − 400
w. z
3. 在如图所示的单缝夫琅和费衍射实验中, 若将单缝 沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 [ C ] (A) 间距变大。 (B) 间距变小。 (C) 不发生变化。 (D) 间距不变,但明暗条纹的位置交替变化。 解: 单缝沿光轴方向平移, 各条光线间的光程差不变, 屏上衍射条纹不发生任何变化。
nc
1 3 5
二、填空题 1. 平行单色光垂直入射于单缝上,观察夫琅和费衍射。若屏上 P 点处为第二级暗纹,则 单缝处波面相应地可划分为 4 个半波带。若将单缝宽度缩小一半,P 点将 是 第一 级 暗 纹。 解:由单缝衍射暗纹公式 a sinϕ
工程光学习题参考答案第十二章 光的衍射
第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。
解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 9134.493 4.493500100.02863.140.02510rad a λθπ--⨯⨯∴===⨯⨯ 21150100.02860.014314.3r f m mm θ-∴=⋅=⨯⨯==同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a iλθ∆=证明:(1))即可(2)令(sin sin ai πθπλ==± ∴对于中央亮斑 sin sin i aλθ-=3. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。
大学物理第12章光的干涉测试题(附答案及知识点总结)培训讲学
大学物理第12章光的干涉测试题(附答案及知识点总结)第12章 习题精选试题中相关常数:m 10μm 16-=,m 10nm 19-=,可见光范围(400nm~760nm ) 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为π3,则此路径AB 的光程为:(A )λ5.1. (B )n /5.1λ. (C )λn 5.1. (D )λ3.[ ]2、在相同的时间内,一束波长为λ的单色光在空气中与在玻璃中: (A )传播路程相等,走过光程相等. (B )传播路程相等,走过光程不相等.(C )传播路程不相等,走过光程相等.(D )传播路程不相等,走过光程不相等.[ ]3、如图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:(A )e n 22. (B )2/22λ+e n .(C )λ+e n 22. (D ))2/(222n e n λ-.[ ]4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是:(A )使屏靠近双缝. (B )使两缝的间距变小.(C )把两个缝的宽度稍微调窄. (D )改用波长较小的单色光源.[ ]35、在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大λ5.2,则屏上原来的明纹处:(A )仍为明条纹. (B )变为暗条纹.(C )既非明纹也非暗纹. (D )无法确定是明纹,还是暗纹.[ ]6、如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:(A )向右平移. (B )向中心收缩. (C )向外扩张. (D )向左平移.[ ]7、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径k r 的表达式为:(A )R k r λ=k . (B )n R k r /k λ=. (C )R kn r λ=k . (D ))/(k nR k r λ=.[ ]8、用波长为λ的单色光垂直照射置于空气中的厚度为e折射率为1.5的透明薄膜,两束反射光的光程差=δ_______________.9、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为1r 和2r .设双缝和屏之间充满折射率为n 的介质,则P 点处光线的光程差为___________.S S 110、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________. (2)________________________________________.11、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距_________;若使单色光波长减小,则干涉条纹间距_____________.12、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为D ,则屏上相邻明纹的间距为_______________.13、用波长为λ的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环.若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触至移动到两者距离为d 的过程中,移过视场中某固定观察点的条纹数目等于_______________.14、图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A 点处所对应的空气薄膜厚度为=e _________________.15、用波长为λ的单色光垂直照射如图示的劈形膜(321n n n >>),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度=e _______________________.图b图an 1n 2 n 316、波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ以弧度计),劈形膜的折射率为n ,则反射光形成的干涉条纹中,相邻明条纹的间距为__________________.17、波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.18、在双缝干涉实验中,双缝与屏间的距离m 2.1=D ,双缝间距mm 45.0=d ,若测得屏上干涉条纹相邻明条纹间距为1.5mm ,求光源发出的单色光的波长λ.19、在杨氏双缝干涉实验中,用波长nm 1.546=λ的单色光照射,双缝与屏的距离mm 300=D .测得中央明条纹两侧的两个第5级明条纹的间距为12.2mm ,求双缝间的距离.20、在双缝干涉实验中,波长nm 550=λ的单色平行光垂直入射到缝间距m 1024-⨯=a 的双缝上,屏到双缝的距离m 2=D .求:(1)中央明纹两侧的两条第10级明纹中心的间距;(2)用一厚度为m 106.65-⨯=e 、折射率为58.1=n 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?21、用白光垂直照射置于空气中的厚度为μm 50.0的玻璃片.玻璃片的折射率为50.1=n .在可见光范围内哪些波长的反射光有最大限度的增强?22、波长nm 650=λ的红光垂直照射到劈形液膜上,膜的折射率33.1=n ,液面两侧是同一种介质.观察反射光的干涉条纹.(1)离开劈形膜棱边的第一条明条纹中心所对应的膜厚度是多少? (2)若相邻的明条纹间距mm 6=l ,上述第1条明纹中心到劈形膜棱边距离x 是多少?23、用波长为nm 600=λ的光垂直照射由两块平玻璃板构成的空气劈形膜,劈尖角rad 1024-⨯=θ.改变劈尖角,相邻两明条纹间距缩小了mm 0.1=∆l ,求劈尖角的改变量θ∆.24、曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如图所示.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求:(1)从中心向外数第k 个明环所对应的空气薄膜的厚度k e .(2)第k 个明环的半径用k r (用R 、波长λ和正整数k 表示,R 远大于上一问的k e .)25、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的R OλO 1曲率半径是cm 400=R .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm .(1)求入射光的波长.(2)设图中cm 00.1=OA ,求半径为OA 范围内可观察到的明环数目.26、用波长nm 500=λ的单色光作牛顿环实验,测得第k 个暗环半径mm 4k =r ,第10+k 个暗环半径mm 610k =+r ,求平凸透镜的凸面的曲率半径R .总体要求:理解产生相干光的三个条件和获得相干光的两种方法.了解分波阵面法和分振幅法干涉的典型实验;掌握光程的概念以及光程差和相位差的关系;掌握杨氏双缝干涉条纹及薄膜干涉条纹(尤其是劈尖和牛顿环)的分布规律,利用相关公式计算条纹分布.第12章 参考答案1、A2、C3、A4、B5、B6、B7、B8、23λ+e 或23λ-e 9、)(12r r n -10、(1)使两缝间距变小;(2)使屏与双缝之间的距离变大. 11、变小;变小 12、N D / 13、λ/2d 14、λ23 15、22n λ 16、θλn 2 17、n2λ18、解:nm 5.562/=∆=D x d λ. 19、解:mm 268.0/=∆==x D d λλ. 20、解:(1)m 11.0/20==∆a D x λ (2)零级明纹移到原第7级明纹处.21、解:nm 600=λ和nm 6.428=λ. 22、解:(1)λλk ne k =+2/2(明纹中心)现1=k ,1e e k =,则膜厚度mm 1022.1)4/(41-⨯==n e λ. (2)mm 32/==l x23、解:rad 100.442-⨯=-=∆θθθ.24、解:(1)第k 个明环,λλk e k =+212 4/)12(λ-=k e k .(2)λλk R r k =+21)2/(22,2/)12(λR k r k -= ,...2,1=k .25、解:(1)()cm 10512252×Rk r -=-=λ (或500 nm ).(2)λR r k 2212=-,对于cm 00.1=r ,5.505.02=+=λR r k .故在OA 范围内可观察到的明环数目为50个.26、解:()()m 410/2210=-=+λk k r r R .第12章 光的干涉一、基本内容1.单色光单色光是指具有单一频率的光波,单色光不是单种颜色的光.可见光的波长是(380~760)nm .虽然绝对单一频率的单色光不易得到,但可以通过各种方法获取谱线宽度很小的单色光.例如激光就可看作谱线宽度很小的单色光.2.相干光只有两列光波的振动频率相同、振动相位差恒定、振动方向相同时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光,相应的光源称为相干光源.3.半波损失光由光疏介质(即折射率相对小的介质)射到光密介质发生反射时,反射光的相位较入射光的相位发生π的突变,这一变化导致了反射光的光程在反射过程中增加了半个波长,通常称为“半波损失”.4.光程和光程差 (1)光程光波的频率v 是单色光的本质属性,与在何种介质中传播没有关系,而传播速度则与介质有关.在折射率为n 的介质中光速是真空中光速的n /1,由光速v u n n λ=可知,在折射率为n 的介质中,光波的波长n λ也是真空中波长的n /1.这样光在不同介质中经历同样的波数,但经历的几何路程却不同.所以有必要把光在折射率n 的介质中通过的几何路程折算到真空中所能传播的长度,只有这样才便于比较两束经过不同介质的光相位的变化.所以把光在折射率为n 的介质中通过的几何的路程r 乘以折射率n 折算成真空中所能传播的长度nr ,称nr 为光程.(2)光程差当采用了光程概念以后就可以把由相位差决定的干涉加强、减弱等情况用光程差来表示,为计算带来方便.即相位差π2λδϕ=∆(λ为真空中波长,δ为光程差),亦即λδϕπ2=∆.二、基本规律光程差(含半波损失)是半波长偶数倍时干涉加强,干涉相长,明条纹中心;是半波长奇数倍时,干涉相消,暗条纹中心.1.杨氏双缝干涉结果(分波阵面干涉),只讨论同一介质中传播:等间隔明暗相间条纹.光程差:Dx d=δ dD kx λ±=k ),2,1,0( =k 明条纹位置(k x —k 级干涉条纹位置,D —屏距,d —缝距)2)12(k λd D k x -±= ),2,1( =k 暗条纹位置 条纹中心间距:λdD x =∆ 2.薄膜干涉结果(分振幅干涉)薄膜干涉基础公式相同,考虑从1n 入射到2n (21n n <),i 为入射角,d —薄膜厚度,此时要考虑“半波损失”,故反射加强(上表面亮纹位置)为λλδk i n n d =+-=2sin 222122 ),2,1( =k反射减弱(上表面暗纹位置)为(注意此处k 可以取0,厚度为0处是暗纹)2)12(2sin 222122λλδ+=+-=k i n n d ),2,1,0( =k注意,一定要先分析反射光是否存在“半波损失”的情况,不能死搬硬套,一般介质折射率中间大两边小或中间小两边大都有半波损失,而三种介质折射率大小顺序排列无半波损失.薄膜干涉光程差是入射角和厚度的函数.等倾干涉:对于上两式,如果薄膜厚度不变,而光线倾角(入射角i )变化,入射角i 相同的位置光线光程差相同,条纹花样相同,叫做等倾干涉.精品资料仅供学习与交流,如有侵权请联系网站删除 谢谢11 等厚干涉:对于上两式,所有光线以同一入射角i 入射,而薄膜厚度变化,则厚度相同的位置光线光程差相同,条纹干涉花样相同,叫做等厚干涉.对空气劈尖(上玻璃板下表面和下玻璃板上表面两束光反射)两侧介质相同,由于存在“半波损失”,所以上两式适用于在空气劈尖的上表面干涉.一般取垂直入射,0=i ,则在劈尖上表面干涉,光程差满足λλδk nd =+=22 ),2,1( =k 明条纹2)12(22λλδ+=+=k nd ),2,1,0( =k 暗条纹n 代表劈尖内介质折射率. 劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差n d 2λ=∆,条纹线间距:θλn l 2=∆. 如果两侧介质不同,且满足折射率递增或递减顺序,则无半波损失,光程差满足λδk nd ==2 ),2,1,0( =k 明条纹2)12(2λδ-==k nd ),2,1( =k 暗条纹劈尖劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差和条纹线间距与有半波损失时相同.利用劈尖原理检测零件平整度,上表面放标准板,顶角在左侧,下板凹陷条纹向左弯,凸起向右弯.牛顿环的上表面干涉也是空气劈尖干涉,两侧介质相同,有半波损失,只不过牛顿环的空气厚度测量常转换成距透镜中心距离r 与透镜的曲率半径R 来表示牛顿环的明暗纹.2)12(k λR k r -= ),2,1( =k (明环) λkR r =k ),2,1,0( =k (暗环)。
大学物理同步训练第12章-1光的干涉
2. 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄
膜的厚度为 e,且������1 < ������2 < ������3,������1为入射光在������1中的波 长,则两束反射光的光程差为
(A)2������2������ (C)2������2������ − ������1������1⁄2 答案:A
动,即条纹向外扩张。
7. 已知在迈克耳逊干涉仪中使用波长为������的单色光。在干涉仪的可动反射镜移动距离 d 的过
程中,干涉条纹将移动的数目为
(A)������⁄������
(B)2������⁄������
(C)������⁄(2������)
(D)0
答案:B
分析:迈克尔逊干涉仪的两反射镜等效于一个劈尖。移动其中一个反射镜,相当于改变劈尖
向上平移,则干涉条纹间隔_____(填“变大”或“变小”或“不变”),条纹将向_____移动
同步训练答案
第十二章 波动光学(1)
第十二章 波动光学:光的干涉
许照锦
一、选择题
1. 真空中波长为������的单色光,在折射率为 n 的透明介质中从 A 沿某路径传播到 B,若 A、B
两点相位差为������,则此路径 AB 的光程为
(A)0.5������
(B)0.5 ������⁄������
(B)2������2������ − ������1⁄(2������1) (D)2������2������ − ������2������1⁄2
分析:当光从折射率低的介质到折射率高的介质表面发生反射时,存在半波损失。光程∆= ������������
为光在介质中走过的路程������乘以介质的折射率 n。对题目中的两束反射光分析,可知都存在
东华理工大学 物理练习试卷答案 光的衍射
km
d
10
缺级
d k k 4k 4, 8 a
在衍射角
2
2
的范围内,实际呈现的级次为
k=0,1,2,3,5,6,7,9,共8级明纹。
20.将一束λ=5890Å的平行钠光垂直照射到每厘米有5000条刻线 的平面衍射光栅上,光栅的透光缝宽度a与其间距b相等,求: (1) 光线垂直入射时,能看到几条谱线?是哪几级? (2) 当光线以30°的入射角(入射线与光栅平面的法线的夹角)斜入 射时,又能看到几条谱线?是哪几级? 解
三、计算题 16.单缝宽0.10 mm,透镜焦距为50cm,用 =5×103 Å,得绿光垂 直照射单缝,求位于透镜焦平面处的屏幕上中央明条纹的宽度 和半角宽度各为多少?若把此装置浸入水中(n=1.33),中央明 条纹的半角宽度又为多少?
解: 因为衍射角0 很小,所以中央明条纹的半角宽度
5 107 3 0 5 10 rad 3 a 0.1 10
a sin (2k tg
因为 sin 很小,所以
(2k 1) x ftg f sin f 2a
2ax 2 0.6 103 1.4 103 4.2 106 m 2k 1 f (2k 1) 0.4 (2k 1)
解 (1) 由光栅方程 在sin=0.20处,有 0.2d =2 (2)由第四级缺级,有
k d k 4 a
dsin =k
所以
d =6.010-4 cm
要狭缝的宽度最小,取 k =1,得
d a 1.5 10 4 cm 4
(3)
由光栅方程
dsin =k
取=90, 得
4-2光-光 的 衍 射 大学物理作业习题解答
1的第三级明纹与2=600nm的第二级在同一衍射方向上,因
此有
asin 3.47,
(1)
1
asin 600106
2.46.
(2)
解方程(1)和(2)得 1 425 .4nm .
6
2-6 一单色平行光垂直照射在单缝上,紧靠缝放置一凸透镜, 在其后焦平面上观察衍射图样.若做如下单项变动,则衍射图 样将怎样变化?
16
2-18 用水银蒸汽放电的光照明,正入射到一总宽W = 2.54厘米 的光栅上,光栅上总共有800条刻痕,求蓝光谱线435.8纳米) (在 第三级光谱中的角色散.(2)在第五级光谱中的分)辨本领.(3)第五级 光谱能分辨得最小波长间隔
解(1)光栅总宽2.54厘米,共有800条刻痕,75 10 5 m . N 800
屏 幕
上式中,k为衍射极大的级次.在个衍射方向上,同时出现1
的第三级和2的第二级衍射极大,因此
(231) 1 (221) 2
2
2
5
已知2=600nm,代入上式求出 1 428.6nm
(2)振幅矢量法:
屏式幕中上夫u 琅和as费in单 缝, 衍是射单光缝强边公缘式光为束在I方 I向0 的sinu光22 u程. 差.
(3)单缝加宽,各级明条纹中心靠拢,条纹变窄;单缝变窄, 各级明条纹向两边扩展,条纹变宽.
(4)衍射图样不变.
7
2-7 迎面驶来的汽车上,两盏前灯相距1.2米,试问汽车离人多 远的地方,眼睛恰好可分辨这两盏灯?夜间人眼瞳孔直径为5.0 毫米,入射光波长500纳米.(仅考虑人眼瞳孔的衍射效应)
解 人眼圆形瞳孔的衍射为圆孔衍射.根据瑞利判据,人
大学物理第三版上海交大出版社答案光的衍射
a
0.437 ×10−3
19-2.在单缝夫琅禾费衍射实验中,波长为 λ 的单色光的第三极亮纹与波长 λ ' = 630 nm 的
单色光的第二级亮纹恰好重合,求此单色光的波长 λ 。
解:单缝衍射的明纹公式为: a sinϕ = (2k +1) λ , 2
当 λ ' = 630 nm 时, k ' = 2 ,未知单色光的波长为 λ 、 k = 3 ,重合时 ϕ 角相同,所以有:
辨。
解:最小分辨角为:θ
= 1.22 λ
550 ×10−9 = 1.22 ×
= 2.2 ×10−4 rad
D
3 ×10−3
如果窗纱上两根细丝之间的距离为 2.0 mm ,人在 s 远处恰能分辨,则利用:
θ = l = 2.2×10−4 rad ,当 l = 2mm 时, s = 9.1m 。 s
19-5.波长为 500nm 和 520nm 的两种单色光同时垂直入射在光栅常数为 0.002cm 的光栅 上,紧靠光栅后用焦距为 2m 的透镜把光线聚焦在屏幕上。求这两束光的第三级谱线之间的
19-7.如能用一光栅在第一级光谱中分辨在波长间隔 ∆λ = 0.18nm ,发射中心波长为 λ = 656.3nm 的红双线,则该光栅的总缝数至少为多少?
解:根据光栅的分辨本领: ∆λ = kN −1,令 k = 1 ,有: λ
N = ∆λ +1 = 653.3 +1 = 3646 + 1 = 3647 (条)。
射;(2)光线以入射角 30� 入射时,最多能看到几级条纹?
解:(1)正入射时,光栅常数为: a + b
10−3 =
=
2 ×10−6
大学物理光学 光的衍射习题
解得 当第二次重合时是
k1 k2
3 2
6 4
9 6
k1 k2
0
6 4
6 1
即k1=6, k2=4
由光栅方程可知
d sin 60
d
6 4400 10 0.866
7
3 . 05 10
3
mm
12.波长= 600nm的单色光垂直入射到一光栅上, 测得第二级主极 大的衍射角为300, 且第三级是缺级。 a)光栅常数d 等于多少? b)透光缝可能的最小宽度a等于多少? c)在选定了上述d 和a之后, 求屏幕上可能呈现的主极大的极次。
sin m d sin 0
sin m d sin 0 m d 1 2 1
m d 1 2 1 m 2 . 1 m d 1 2 1 m 6 . 3
m 6 , 5 , 4 , 3 , 2 , 1 , 0 , 1 ,2
解:(1)由光栅衍射主极大公式
d kλ sin θ
d sin k
8
2 6000 10 sin 30
2 . 4 10
4
cm
(2) 由于第三级缺级, 则: d sin 3 同时满足,可得
a sin θ
a d 3 2.4 10 3
8.右下图为夫琅和费双缝衍射实验示意图, S为缝光源, S1、S2为 衍射缝, S、S1、S2的缝长均垂直纸面。已知缝间距为d, 缝宽为a, L1、L2为薄透镜.试分析在下列几种情况下, 屏上衍射花样的变 L1 L2 屏 化情况: s1 (1) d增大a不变;(2) a增大d不变; s (3) 双缝在其所在平面内沿与缝长 s2 垂直方向移动。
2018版物理新导学同步选修3-4课时作业十二光的衍射 光的偏振 含解析 精品
光照射同一干涉仪,形成的光的干涉图样如图乙所示.则下述正确的是光光子的能量较大
光光子的能量较大
光传播的速度较大
________(选填“大于”或“小于”)图乙所对应的圆孔的孔径.
图甲中出现明暗相间的条纹,是衍射现象,图乙中出现圆形亮斑.只有障碍物或孔的尺寸比光波波长小或跟波长相差不多时,才能发生明显的衍射现象.图甲是光的衍射图样,由于光波波长很短,约在10-7
甲对应的圆孔的孔径比图乙所对应的圆孔的孔径小.图乙的形成可以用光的直线
不开眼睛;如D选项所述情景,会使对方车灯的光与自己车窗的透振方向垂直,这样避免了对方强光的照射,自己车灯反射回来的光与自己车窗玻璃的透振方向相同,又能看到反射回来的光.
答案:D
8.
如图所示,a、b两束光以不同的入射角由介质射向空气,结果折射角相同,下列说法正确的是()
A.b在该介质中的折射率比a的大
B.若用b做单缝衍射实验,要比用a做时中央亮条纹更宽
C.用a更易观测到泊松亮斑
D.做双缝干涉实验时,用a光比用b光两相邻条纹中心的距离更大
解析:由题图可知,b光的入射角大于a光的入射角,折射角相等,故介质对b光的折射率比a的小,故A错误.b光的折射率小,波长长,波动性强,当用b做单缝衍射实验时,要比用a做时中央亮条纹更宽,故B正确.波长越长,越容易发生衍射现象,更易观测到泊松亮斑,故C错误.用同一双缝干涉装置时,干涉条纹间距与波长成正比,故用a光比用b光两相邻条纹中心的距离更小,D错误.
答案:B。
高中物理-光的衍射同步练习
高中物理-光的衍射同步练习●练案●当堂检测A组(反馈练)1.关于衍射的下列说法中正确的是:()A、衍射现象中条纹的出现是光叠加后产生的结果B、从双缝干涉中也存在折射现象C、一切波都很容易发生明显的衍射现象D、影的存在是一个与衍射现象相矛盾的客观事实2.关于光的衍射现象,下面说法正确的是()A、红光的单缝衍射图样是红黑相间的直条纹B、白光的单缝衍射图样是白黑相间的直条纹C、光照到不透明小圆盘上出现泊松亮斑,说明发生了衍射D、光照到较大圆孔上出现大光斑,说明光沿直线传播,不存在光的衍射3.单色光源发出的光经一狭缝,照射到光屏上,可观察到的图样是下列的()4.关于光的干涉、衍射及其应用,下列说法正确的是()A.在光的干涉和衍射现象中,都出现亮暗相间的条纹或彩色条纹.因此,干涉和衍射现象是相同的B.水面上的油层在阳光的照射下出现彩色条纹是干涉现象,泊松亮斑是衍射现象C.增透膜厚度等于光在真空中波长的四分之一D.激光防伪商标,看起来是彩色的,这也是光的干涉现象5.手持看书用的放大镜,并把手臂伸直,通过放大镜观看远处的房屋等景物时,看到的是倒立的房屋,下列说法中正确的是()A.看到的是远处房屋的实像B.看到的是远处房屋的虚像C.看到的房屋边缘呈现彩色,这是由于光的干涉现象造成的D.看到的房屋呈现彩色,这是由于光的衍射现象造成的B 组(拓展练)1.在观察光的衍射现象的实验中,通过紧靠眼睛的卡尺测脚形成的狭缝,观看远处的线状白炽灯丝(灯管或灯丝都要平行于狭缝),可以看到( )A .黑白相间的直条纹B .黑白相间的弧形条纹C .彩色的直条纹D .彩色弧形条纹2.如图所示,两个同种玻璃制成的三棱镜,顶角α1略大于α2,两单色光1和2分别垂直入射三棱镜,其出射光线与竖直界面的夹角β1=β2,则( )A .在棱镜中1光的传播速度比棱镜中2光的传播速度小B .1光的频率大于2光的频率C .让1光和2光通过同一双缝干涉装置,1光的条纹间距小于2光的条纹间距D .在利用1光和2光做衍射实验时,1光的实验效果显著3.以下关于现象的说法正确的是( )A .一个面光源发出的光经较大的障碍物后在屏上的影有本影和半影,这是光发生衍射的结果B .把两支铅笔捏紧,通过中央的细缝去观察日光灯,会看到彩色条纹,这是光发生衍射的结果C .白光通过单缝衍射时,偏离中央亮纹最远的是红光D .我们所看到的红旗的颜色是红光干涉的结果4.可见光在空气中波长范围是4400A °到7700A °,即4.4×10-4mm 到7.7×10-4mm,下列关于光衍射条件的说法正确的是( )A .卡尺两脚间的狭缝的宽度小到万分之几毫米以下时,才能观察到明显的衍射现象B .卡尺两脚间的狭缝在小到0.4mm 以下时,通过它观察线状白炽灯丝,有明显的衍射现象C .卡尺两脚间的狭缝在小到0.2mm 以下时,通过它观察各种光源,都能看到明显的衍射现象D .光的衍射条件“跟光波长可以相比”是非常严格的,即只有孔或障碍物的尺寸跟波长差不多时才能观察到光的衍射5.如图所示是通过游标卡尺两测量脚间的狭缝观察白炽灯线光源时所拍下的四张照片.(1)试通过图样分析四张照片对应的两测量脚间的宽度大小关系.(2)试说明照片(4)中中央条纹的颜色及成因.【参考答案】A组(反馈练)1.A、B解析:对于选项A,衍射现象是光通过单缝或孔形成的,但通过单缝(或孔)很窄(小)这些光波在相遇的区域里必然发生叠加于是就出现了条纹.故A正确。
光的衍射习题(附答案)1
光的衍射(附答案)一.填空题1.波长λ=500nm(1nm=109m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d=12mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589nm)中央明纹宽度为4.0mm,则λ2≈442nm(1nm=109m)的蓝紫色光的中央明纹宽度为3.0mm.3.8mm,则4.时,衍射光谱中第±4,±8,…5.6.f7.8.9.λ210.X11.λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sinθ1=1λ1a sinθ2=2λ2=θ2,sinθ1=sinθ2由题意可知θ1代入上式可得λ1=2λ2(2)a sinθ1=k1λ1=2k1λ2(k1=1,2,…)sinθ1=2k1λ2/aa sinθ2=k2λ2(k2=1,2,…)sinθ2=2k2λ2/a=2k1,则θ1=θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.若k212.在单缝的夫琅禾费衍射中,缝宽a=0.100mm,平行光垂直如射在单缝上,波长λ=500nm,会聚透镜的焦距f=1.00m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1=λ13.9m).已(1)(2)所以x1=fλ1/ax2=fλ2/a则两个第一级明纹之间距为Δx=x2?x1=fΔλ/a=0.27cm1(2)由光栅衍射主极大的公式d sinφ1=kλ1=1λ1d sinφ2=kλ2=1λ2且有sinφ=tanφ=x/f=x2?x1=fΔλ/a=1.8cm所以Δx114.一双缝缝距d=0.40mm,两缝宽度都是a=0.080mm,用波长为λ=480nm(1nm=109m)的平行光垂直照射双缝,在双缝后放一焦距f=2.0m的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l;(2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹15.(1)(2)λ'=510.3nm(2)a+b=3λ/sinφ=2041.4nmφ'=arcsin(2×400/2041.4)nm(λ=400nm)2φ''=arcsin(2×760/2041.4)nm(λ=760nm)2''?φ2'=25°白光第二级光谱的张角Δφ=φ216.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1=440nm,λ2=660nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ=kλ11d sinφ2=kλ2===当两谱线重合时有φ1=φ2即====两谱线第二次重合即是=,k1=6,k2=4由光栅公式可知d sin60°=6λ1∴d==3.05×103mm17.将一束波长λ=589nm(1nm=109m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射(1)(2)18.30°,且第三级是缺级.(1)光栅常数(a+b)等于多少?(2)透光缝可能的最小宽度a等于多少?(3)在选定了上述(a+b)和a之后,求在衍射角–<φ<范围内可能观察到的全部主极大的级次.解:(1)由光栅衍射的主极大公式得a+b==2.4×104cm(2)若第三级不缺级,则由光栅公式得(a+b)sinφ'=3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'=λa==8.0×103cm(3)(a+b)sinφ=kλ(主极大)a sinφ=k'λ(单缝衍射极小)(k'=1,2,3,…)因此k=3,6,9,…缺级;又∵k max==4,∴实际呈现出的是k=0,±1,±2级明纹(k=±4在π/2处不可见).19.在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ=480nm(1nm=109m),试问:(1)人眼最小分辨角是多大?(2)在教室的黑板上,画的等号两横线相距2mm,坐在距黑板10m处的同学能否看清?(要有计算过程)20.θ的两条谱λ2当k'=2时,a=d=×2.4μm=1.6μm21.某单色X射线以30°角掠射晶体表面时,在反射方向出现第一级极大;而另一单色X射线,波长为0.097nm,它在与晶体表面掠射角为60°时,出现第三级极大.试求第一束X射线的波长.解:设晶面间距为d,第一束X射线波长为λ1,掠射角θ1=30°,级次k1=1;另一束射线波长为λ2=0.097nm,掠射角θ2=60°,级次k2=3.根据布拉格公式:第一束2d sinθ1=k1λ1第二束2d sinθ2=k2λ2两式相除得λ==0.168nm.1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2/7
同步训练答案
第十二章 波动光学(2)
许照锦
(A)紫光
(B)绿光
(C)黄光
(D)红光
答案:A
分析:光栅方程为������������������������������ = ������������ (������ ∈ ������),式中������为光栅常数,������为衍射角(第������级主明纹的衍
分析:参考选择题 5,可知∆������1 = 3.0 × 10−3⁄3 = 1.0 × 10−3 m,∆������2 = 3.0 × 10−3⁄2 = 1.5 ×
10−3 m,由公式∆������ = ������������⁄������可得
������
=
������������ ∆������1
答案:B
分析:(概念题)根据分辨本领公式 1 ������
������ = ������0 = 1.22������ 可知 B 选项正确。式中������表示透光孔径,������表示入射光波长,������0表示最小分辨角。 二、填空题
1. 在单缝夫琅和费衍射实验中,波长������ = 400 nm的平行光垂直入射单缝,所用凸透镜焦距
单缝的宽度������ =_____。
答案:1.0 × 10−4 m
分析:在远场条件下(即观察屏和单缝屏距离足够远时),观察屏和单缝屏的距离可视为透
镜的焦距。参考选择题 5,可得∆������ = 10⁄4 = 2.5 cm,故
∆������
=
������������ ������
→
������
=
������������ ∆������
最为合适?
(A)0.5 mm
(B)1 mm
(C)0.01 mm
(D)1.0 × 10−3 mm
答案:D
分析:由光栅方程������sin������ = ������������(参考选择题 7),光栅常数越小,同一级次的主明纹距离中
央明纹越远,故光栅常数越小的光栅,测量的光波长越准确。因此选择光栅常数最小的 D
射角),������为主明纹级次。故 ������������
sin������ = ������ 由题可知,同一级次(������相同)的光谱中,波长������最短的衍射角������最小,离中央明纹最近。在
可见光中,红光波长最长,紫光波长最短,故 A 选项正确。
8. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种
二个暗纹的中心所在位置,则 BC 的长度为
(A)������⁄2
(B)������
1/7
同步训练答案
第十二章 波动光学(2)
许照锦
(C)3������⁄2
(D)2������
答案:D
分析:参考选择题 2,可知
���̅̅���̅���̅��� = ������sin������ = 2������
5. 波长������ = 600 nm(1 nm = 10−9 m)的单色光垂直照射到宽度������ = 0.3 mm的单缝上,单缝
(C)������sin������ = ������������
(D)������������sin������ = ������������
答案:C
分析:(概念题)光栅方程。
10. 提高光学仪器分辨本领的方法是
(A)增大透光孔径,增大入射光的波长 (B)增大透光孔径,减小入射光的波长
(C)减小透光孔径,增大入射光的波长 (D)减小透光孔径,减小入射光的波长
=
4
× 632.8 × 10−9 2.5 × 10−2
=
1.0
×
10−4
m
4. 用波长������ = 600 nm的光垂直入射一宽度为3.0 × 10−4 m的单缝上,测得观察屏上中央明纹
的宽度为2.0 × 10−3 m,则该单缝衍射装置所用凸透镜的焦距为_____m。
答案:0.5
分析:参考选择题 5 可知,∆������ = 2.0 × 10−3⁄2 = 1.0 × 10−3 m,故
纹的衍射角������变小,A 选项正确。缝宽度变大,透过狭缝的能量增加,因此各级衍射条纹的
光强变大,D 选项错误。
3. 在单缝夫琅和费衍射实验中,波长为������的单色光垂直入射到单缝上。对应于衍射角为30°的
方向上,若单缝处波面可分成 6 个半波带,则缝宽度������等于
(A)������
(B)6������
<
������ ������
代入公式可知
������ 1.5 × 10−6 |������| < ������ = 550 × 10−9 = 2.7 即������的最大值为 2,故可能观察到的光谱线的最高级次为第 2 级。
7. 用平行的白光垂直入射在平面透射光栅上时,波长为������1 = 400 nm(1 nm = 10−9 m)的 第三级光谱线将与波长为������2 =_____nm 的第二级光谱线重叠。 答案:600
������ = 1.5 m,第三级暗纹离中央明纹中心3.0 × 10−3 m。另一波长为������0的光的第二级暗纹在屏
3/7
同步训练答案
第十二章 波动光学(2)
许照锦
的同一位置上,则单缝的缝宽������ =_____,波长������0 =_____。 答案:6 × 10−4 m;600 nm
������ ������′ 2������′ 3������′ ������ + ������′ = 3 = 6 = 9
������ + ������′ = 3������ 或 ������ + ������′ = 3������⁄2 7. 一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,离中央明纹最近的是
级次的主明纹均不出现?(������代表每条缝的宽度)
(A)������ + ������′ = 2������ (B)������ + ������′ = 3������ (C)������ + ������′ = 4������ (D)������ + ������′ = 6������
答案:B
可得各级暗纹所在的位置
������ = ±������∆������ (������ ∈ ������)
式中������表示暗纹级次,条纹间距
������ ∆������ = ������ ������ 由图可知,中央明纹的宽度为������∆������。故由题可得∆������ = 4⁄2 = 2 mm,代入公式
× 1.5 1.5
×
10−3
=
600
×
10−9
m
=
600
nm)
2. 在单缝的夫琅和费衍射实验中,屏上第五级暗纹对应于单缝处,波阵面可划分为_____个
半波带,若将缝宽度缩小一半,原来第五级暗纹处将是_____纹(选填“明”或“暗”)。
答案:10;明
分析:参考选择题 2 可知第 5 级暗纹对应于2 × 5 = 10个半波带;缝宽减半,半波带数目减
半,即半波带数目为 5,偶数个半波带对应于暗条纹,奇数个半波带对应于明条纹,故原来
第 5 级暗纹处将是明纹。
3. He-Ne 激光器发出波长������ = 632.8 nm(1 nm = 10−9 m)的平行光束垂直照射到一单缝上,
在距单缝 4 m 远的屏上观察夫琅和费衍射图样,测得两个第二级暗纹间的距离是 10 cm,则
6. 波长为������ = 550 nm(1 nm = 10−9 m)的单色光垂直入射于光栅常数������ = 1.5 × 10−4 cm的
平面衍射光栅上,可能观察到的光谱线的最高级次为第_____级。
答案:2
分析:由光栅方程(参考选择题 7)可知
|������|
=
������ ������
|������������������������|
分析:光栅主明纹缺级公式为
������ ������′ ������ = ������
(������, ������′ ∈ ������且������′ < ������)
式中������为不出现的主明纹(缺级),������为透光缝宽度,������为光栅常数。因此由题可得
始终������′ = 1,2,故
分析:光谱线重叠,即衍射角相同。参考选择题 7 可得
sin������
=
3������1 ������
=
2������2 ������
示暗纹级次(������ ∈ ������且������ ≠ ������);������������������������������表示单缝两侧光线的光程差(见选择题 4);该公式还
表明,沿着������方向的波阵面可以分成������������个半波带。由公式可知,当缝宽������增大时,第������级暗
������
������∆������ 0.3 × 10−3 × 2 × 10−3
∆������ = ������ ������ → ������ = ������ =
600 × 10−9
=1m
6. 一束平行单色光垂直入射在光栅上,当光栅常数(������ + ������′)为下列哪种情况时,������ = 3,6,9等
(C)2������
(D)4������
答案:B
分析:参考选择题 2 可得
������sin30°
=
6 2
������
→
������
=
3������ sin30°