模数与数模转换电路

合集下载

数电电子第7章 数模(DA)和模数(AD)转换

数电电子第7章 数模(DA)和模数(AD)转换


28

D7

27

D1

21

D0

20 )

VREF R 210
9

i0
Di
2i

VREF R 210
D
模拟输出电流(流入运算放大 器虚地)与10位二进制数的数 值(即数字量)成正比,实现 了数字/模拟电流的转换
式中D为输入二进制数的数值。
接入运算放大器后,则可 将数字量转换为模拟电压,运放 的输出电压:
(二)集成D/A转换器的结构及分类
各种类型的集成DAC器件多由参考电压源,电阻网络和电子开关三个 基本部分组成。
按电阻网络的结构不同,可将DAC分成T形R-2R电阻网络DAC、倒T 形R-2R电阻网络DAC及权电阻求和网络DAC等几类。由于权电阻求和网 络中电阻值离散性太大,精度不易提高,因此在集成DAC中很少采用。T 形R-2R电阻网络DAC、倒T形R-2R电阻网络DAC中只有两种阻值的电阻, 因此最适用于集成工艺,集成DAC普遍采用这种电路结构。倒T形R-2R电 阻网络DAC在集成芯片中比T形R-2R网络DAC应用更广泛。
(二)集成A/D转换器的主要参数 1.分辨率 其含义与DAC的分辨率一样,通 常也可用位数来表示,位数越多,分辨率(有时 也称分辨力)也越高。
2.量化编码电路
用数字量来表示采样信号时,必须把它转化成某个最 小数量单位的整数倍,这个转化过程叫量化,所规定的最 小数量单位叫作量化单位,用S表示。
将量化的数值用二进制代码表示,称为编码。这个二 进制代码便是A/D转换器的输出信号。
量化的方法一般有两种形式:
1)舍尾取整法
2)四舍五入法
用舍尾取整法量化时,最大量化误差为1S,用四舍五 入法量化时,最大量化误差为S/2。所以,绝大多数ADC 集成电路均采用四舍五入量化方式。

数字电子技术基础第九章模数与数模转换

数字电子技术基础第九章模数与数模转换

vo
+
I=IREF
=
VREF R1
S3
S2
S1
S0
I
I
I
I
I
VREF
R1 VR+
Tr A2
2
T3
T2
4
8
16
16
T1
T0
Tc
VR— +
IREF
IE3
IE2
IE1
IE0
IEC
R
2R
2R
2R
2R 2R
IBB
偏置 电流
VEE
R
R
R
IE3=I/2,IE2=I/4,IE1=I/8,IE0=I/16
电流的参 考方向
i0
二. 倒T形电阻网络D/A转换器(4位)
图中S0~S3为模拟电子开关,由输入数码Di控制, 当Di=1时,Si接运算放大器反相输入端(虚地),电流Ii流入求和电路; 当Di=0时,Si将电阻2R接地。 所以,无论Si处于何种位置,与Si相连的2R电阻均接“地”(地或虚地)。
电流的参 考方向
电流的真 实方向也 如此
参考电压源VREF、运算放大器A2、R1、Tr、R与VEE组成基准电 流IREF产生电路,A2和R1、Tr的cb结组成电压并联负反馈电路 ,以稳定输出电压,即Tr的基极电压。Tr的集电结,电阻R到 VEE为反馈电路的负载,由于电路处于深度负反馈,根据虚短 的原理,其基准电流为:
I I REF
VREF R1
000 001 010 011 100 101 110 111 D
根据解码网络的不同,D/A转换器分不同类型,常见的 有: 倒T型电阻网络D/A转换 权电阻网络D/A转换 权电流型D/A转换等

模数转换与数模转换电路问答

模数转换与数模转换电路问答

模数转换与数模转换电路问答No. 001Σ-Δ型模数转换器与传统的A/D转换器有什么差别?Σ-Δ型模数转换器由Σ-Δ调制器和数字抽取滤波器组成,Σ-Δ调制器量化对象不是传统A/D转换器中信号采样点的幅值,而是相邻两个采样点幅值之间的差值,并将这种值编码为1位的数字信号输出;数字抽取滤波器则具有数字抽取(重采样)和低通滤波的双重功能。

它和传统滤波器最大的差别在于:传统的A/D转换器可以多个通道模拟信号输入共用一个转换器,而Σ-Δ型模数转换器是一个通道一个转换器,传统的A/D转换器每一通道的前端都需要一个抗混叠滤波器,而Σ-Δ型模数转换器因其数字抽取滤波器具有低通滤波功能而避免了混叠失真,所以不需要此器件。

No. 002I2C接口9通道14位电流DAC MAX5112的性能如何?MAX5112是一款14位、9通道电流输出数/模转换器(DAC)(见图1)。

该器件工作在低至3.0V电源,并提供14位的性能,而无需任何调整。

图1MAX5112的内部功能框图器件输出范围优化用于偏置大功率可调节激光源,9个通道中每一路都带有电流源。

并行连接DAC输出可获得额外电流或更高的分辨率。

器件包含内部基准。

I2C兼容接口能够以高达400MHz的时钟速率驱动器件,通过高电平有效的异步CLR输入能够将DAC复位至0,无需使用串口。

器件为驱动接口逻辑电路提供独立的电源输入。

MAX5112工作在-40℃~+105℃温度范围,提供3mm×3mm、36焊球WLP 和5mm×5mm、32引脚TQFN封装。

MAX5112的特点和优势:●低至3.0V的供电电压●集成多路复用器用于输出1和输出2●并行连接输出可增大电流或提高分辨率●I2C兼容串行接口●内部基准●过热保护●-40℃~+105℃温度范围●提供36焊球WLP或32引脚TQFN封装No. 003A/D前都需要加抗混叠滤波器吗?根据奈奎斯特采样定律,A/D的采样频率fs必须高于信号最高频率的两倍,因此一般A/D在进行数模转换前,都会在A/D前加一个抗混迭滤波器,滤去fs/2以上的频率,消除混迭失真的影响。

电路基础原理数字信号的模数转换与数模转换

电路基础原理数字信号的模数转换与数模转换

电路基础原理数字信号的模数转换与数模转换电路基础原理:数字信号的模数转换与数模转换在现代电子技术中,数字信号的模数转换和数模转换是非常重要的概念。

它们是将模拟信号转换为数字信号和将数字信号转换为模拟信号的过程。

本文将探讨数字信号的模数转换和数模转换的基本原理及其在电路中的应用。

一、数字信号的模数转换数字信号的模数转换(Analog-to-Digital Conversion, ADC)是指将模拟信号转换为数字信号的过程。

在这个过程中,连续的模拟信号被离散化为一系列离散的数字信号。

模数转换的过程包括采样和量化两个步骤。

采样是指对连续时间内的模拟信号进行离散化,取样点的时间间隔称为采样周期。

而量化则是对采样得到的离散信号进行幅度的近似描述,将其转换为一系列离散的数值。

在实际应用中,模数转换器(ADC)通常采用电压-数字转换器(Voltage-to-Digital Converter, VDC)来实现。

VDC使用一系列的比较器来比较模拟信号与参考电压之间的差异,并将其转换为数字信号。

数字信号的模数转换在现代电子技术中具有广泛的应用。

例如,在通信领域中,模数转换是将声音、图像等模拟信号转换为数字信号的关键步骤。

在工业自动化中,模数转换则是传感器将物理量转换为数字信号的基础。

二、数字信号的数模转换数字信号的数模转换(Digital-to-Analog Conversion, DAC)是指将数字信号转换为模拟信号的过程。

在这个过程中,一系列离散的数字信号被重构为连续的模拟信号。

数模转换的过程包括数值恢复和模拟滤波两个步骤。

数值恢复是指根据数字信号的编码方式,将数字信号转换为相应的数值。

而模拟滤波则是通过滤波器对数值恢复后的数字信号进行平滑处理,去除数字信号中的高频成分,生成连续的模拟信号。

在实际应用中,数模转换器(DAC)通常采用数字-电压转换器(Digital-to-Voltage Converter, DVC)来实现。

第9章数模和模数转换

第9章数模和模数转换


Vref 2n
i
1 LSB 2
~
Vref 2n
i
1 2
LSB


Xi
i = 0, 1, 2,…, n-1.
1 2
LSB

Vref 2n1
称为量化误差
9.3.1 ADC的工作过程
1. 采样与保持 采样:按一定的时间间隔取信号一瞬间的值。
输入信号 采样脉冲 采样信号
为采样时间
TS 为采样周期

x2 4

x3 8

Vref 23 R
x122 x2 21 x3 20

Vref 23 R
X
V0 iRf


Vref 23
Rf R
X
当 Rf
R
时, V0


Vref 23
X
9.1.4 R-2R倒梯形DAC
从每个节点(ABC)向右看,等效电阻都是2R。因
此每过一个节点,电流减小一半。
x1
Vref R

x2
Vref 2R

x3
Vref 4R



R f Vref 22 R
x122 x2 21 x3 20


Vref 23
X
其中取 R 2R f ,x1, x2 , x3 取值为0或1。
9.1.3 R-2R T形电阻网络DAC
(1) 当 x3 = x2 = 0, x1 = 1 时
普通电视图象信号,最高频率达 5.5MHz,用 24位真彩 色,采样频率用 11MHz,则转换输出码率为 264Mb ps,即 31.47MByte ps。用普通光盘可以存储约 20秒种。

数-模与模-数转换

数-模与模-数转换

4)转换时间。完成一次A/D所需的时间称为转换时间。各类A/D转换 器的转换时间有很大差别,取决于A/D转换的类型和转换位数。速度 最快的达到ns级,慢的约几百ms。
直接A/D型快,间接A/D型慢。并联比较型A/D最快,约几十ns;逐次 渐近式A/D其次,约几十μs;双积分型A/D最慢,约几十ms~几百ms 。
模拟电子开关的导通压降、导通电阻和电阻网络中电阻的误差等因素 有关。
2021/8/13
5
3)温度系数。在输入不变的情况下,输出模拟电压随温度 变化而变化的量,称压变化的值。
4)建立时间。完成一次D/A转换所需时间。一般小于1μs 。
功能。当采样脉冲us到来后,采样管VT导通,输入的模拟 信号uA经过VT管向电容C充电。在采样脉冲结束后,采样 管VT截止,若电容和场效应管的漏电都很小,运算放大器
的输入阻抗又很高,那么两次采样之间的时间内,电容没
有泄漏电荷,其电压基本保持不变。
2021/8/13
10
3)量化与编码。所谓量化就是将采样/保持后得到的样本值在幅值上以一定的 级数离散化,用最小量化单位的倍数来表示采样保持阶梯波离散电平的过程。
例如,对于一个8位D/A转换器,其分辨率为:1/(281)=1/255≈0.00392=0.392%
2)转换精度。转换精度是指输出模拟电压实际值与理论值之差,即最 大静态误差。
转换精度与D/A转换器的分辨率、非线性转换误差、比例系数误差和温
度系数等参数有关。这些参数与基准电压UREF的稳定、运放的零漂、
电子技术基础与技能
数/模与模/数转换
2021/8/13
1. 数模转换和模数转换基本概念 数字电路和计算机只能处理数字信号,不能处理模拟信号。若

电路中的模数转换与数模转换的原理与应用

电路中的模数转换与数模转换的原理与应用

电路中的模数转换与数模转换的原理与应用在现代电子设备中,模数转换和数模转换是一些关键的技术,广泛应用于音频、视频和通信等领域。

这些转换技术允许我们将模拟信号和数字信号之间进行转换,并在电路设计中发挥重要作用。

本文将探讨模数转换和数模转换的原理和应用。

一、模数转换(ADC)模数转换(Analog-to-Digital Conversion,简称ADC)是将连续的模拟信号转换为离散的数字信号的过程。

它的原理基于量化和编码两个步骤。

首先,量化将连续的模拟信号分为不同的离散级别。

这个过程类似于将一个连续的信号映射到一组离散的数值上。

量化程度的精确度决定了数字信号的分辨率。

常见的量化方法有线性量化和非线性量化。

接下来,编码将量化后的数值转换为数字信号。

常见的编码方式包括二进制编码、格雷码和翻转码等。

其中,二进制编码是最常用的编码方式,它将每个量化级别与一个二进制码相对应。

模数转换器的应用非常广泛。

例如,在音频信号处理中,模数转换器将模拟音频信号转换为数字形式,使得我们可以进行数字信号处理,如音频编码和音频分析等。

此外,在通信系统中,模数转换器将模拟语音信号转换为数字信号,使得我们可以进行数字通信,如电话和移动通信等。

二、数模转换(DAC)数模转换(Digital-to-Analog Conversion,简称DAC)是将离散的数字信号转换为连续的模拟信号的过程。

它的原理与模数转换相反,包括解码和重构两个步骤。

首先,解码将数字信号转换为对应的离散数值。

解码过程与编码过程相反,常见的解码方式包括二进制解码和查找表解码等。

接着,重构将解码后的数值转换为模拟信号。

重构过程类似于对数字信号进行插值和滤波,以恢复出连续的模拟信号。

数模转换器在许多领域中也得到广泛应用。

例如,在音频播放器中,数模转换器将数字音频信号转换为模拟音频信号,供扬声器播放。

此外,在调制解调器中,数模转换器将数字通信信号转换为模拟信号,使其可以被传输和接收。

数字逻辑:数模与模数转换电路

数字逻辑:数模与模数转换电路

模拟信号
连续的、时间上连续变化 的信号,如声音、光线等 。
转换方式
数字信号可以通过数模转 换器转换为模拟信号,模 拟信号也可以通过模数转 换器转换为数字信号。
数字逻辑的基本门电路
AND门
当所有输入都为高电平(1)时,输 出才为高电平(1)。
NOT门
对输入信号取反,输入为高电平(1 )时输出为低电平(0),输入为低 电平(0)时输出为高电平(1)。
数字逻辑数模与模 数转换电路
目录
• 数字逻辑基础 • 数模转换电路(DAC) • 模数转换电路(ADC) • 数模与模数转换的应用 • 数模与模数转换的发展趋势
01
CATALOGUE
数字逻辑基础
数字信号与模拟信号的区别
01
02
03
数字信号
离散的、不连续的信号, 只有0和1两种状态,通常 用于表示二进制数。
集成化、微型化的电路设计
集成化
随着半导体工艺的进步,数模与 模数转换电路可以更加集成化, 减小电路体积,提高可靠性。
微型化
微型化设计可以减小电路板空间 占用,使得数模与模数转换电路 更加适用于小型化设备。
智能化的数据处理技术
数据校准
通过算法和校准技术,对数模与模数 转换电路的输出数据进行校准和修正 ,以提高转换精度。
权电阻型
根据输入数字码改变相应的权电阻的接 通或断开,从而改变输出电压。
权电容型
根据输入数字码改变相应的权电容的 充放电状态,从而改变输出电压。
权电流型
根据输入数字码改变相应的权电流源 的开关状态,从而改变输出电压。
权电压型
根据输入数字码改变相应的权电压源 的开关状态,从而改变输出电压。
DAC的性能参数

数模与模数转换电路

数模与模数转换电路
7.2.4 D/A转换器的主要参数
1. D/A转换器的转换精度
转换精度是指输出模拟量的实际值与理想值之差,差值越小, 其转换精度越高。转换误差原因很多,如转换器中各元件参数 的误差、运算放大器零漂的影响、基准电源不够稳定等。
D/A转换器误差主要有: (1)非线性误差
通常把在满量程范围内偏离转换特性的最大误差称非线性 误差,它与最大量程的比值称非线性度。产生的原因一个是 电阻网络中电阻值的偏差,另一个是模拟开关的导通电阻和 导通压降的实际值不等于零,且呈非线性。
(7.2.5) (7.2.6)
支路的电流表达式为
(7.2.7)
综上所述,集成运算放大器反向端的总电流为
根据运算放大器输入端“虚断”,有
(7.2.8) (7.2.9)
从上式可见,输出的模拟电压Uo与输入的数字量成正比, 从而实现了数字量到模拟量的转换。由于在倒T型电阻网络D/A 转换器中,各支路电流直接流入运算放大器的输入端,它们之间 不存在传输上的时间差,这一特点,不仅提高了转换速度,也减 少了动态过程中输出端可能出现的尖脉冲。常用的CMOS开关倒 T型电阻网络D/A转换器的集成电路有AD7520、DAC1210等。
图7.3.3 取样保持电路
当UL=1时,模拟开关S闭合。A1、A2接成电压跟随器,所以 输出Uo=U'o=UL。同时,U'o通过电阻R2对外接电容CH充电, 使UCH= UL.因电压跟随器的输出电阻非常小,所以对外接电容 CH的充电时间很短。
当UL=0时,模拟开关S断开,取样过程结束。由于UCH无放 电通路,所以UCH上的电压值能保持一段时间不变,使取样结果 Uo保持下来。
3.量化与编码
数字量在时间上和数值上是离散的。任何一个数字量的大小, 都是以某个最小数量单位的整数倍来表示的,因此,用数字量 表示取样电压时,就必须把它转化成这个最小数量单位的整数 倍,这个过程称为量化。最小数量单位叫做量化单位,用Δ表 示。由于输入电压是连续变化的,它的幅值不一定能被Δ整除, 因而不可避免地会引入误差,这种误差称为量化误差。量化误 差属于原理误差,是不可被消除的。A/D转换器的位数越多, 量化误差的绝对值就越小。

如何设计简单的模数转换器和数模转换器电路

如何设计简单的模数转换器和数模转换器电路

如何设计简单的模数转换器和数模转换器电路在电子领域中,模数转换器(ADC)和数模转换器(DAC)是常见的电路设备,它们可以将模拟信号转换为数字信号或将数字信号转换为模拟信号。

本文将介绍如何设计一种简单但有效的模数转换器和数模转换器电路。

一、模数转换器(ADC)电路设计:ADC的作用是将模拟信号转换为数字信号。

以下是一个简单的ADC电路设计方案:1. 采样电路:ADC的第一阶段是采样,即对模拟信号进行定期的采样。

可以使用开关电容电路或样保持电路来实现这一功能。

这些电路可以将输入信号保持在一个电容中,然后在固定的采样时间内读取电容电压。

2. 量化电路:采样之后,接下来需要将模拟信号量化为数字信号。

使用比较器和计数器可以实现这一过程。

比较器将采样信号与一个参考电压进行比较,并产生高低电平的输出信号。

计数器用于计算比较器输出信号的个数,并将其转换为数字表示。

3. 数字处理电路:ADC的最后一步是数字处理,即将量化后的数字信号进行处理和滤波。

这个过程可以使用微处理器或数字信号处理器(DSP)来完成。

数字处理电路可以对信号进行滤波、平滑和放大等操作,以提高最终输出结果的质量。

二、数模转换器(DAC)电路设计:DAC的作用是将数字信号转换为模拟信号。

以下是一个简单的DAC电路设计方案:1. 数字信号处理:DAC的第一步是对数字信号进行处理。

这可以通过计算机、FPGA或其他数字处理设备来完成。

在这一步中,将数字信号转换为对应的数值表示。

2. 数字到模拟转换:将处理后的数字信号转换为模拟信号的常用方法是使用数字锯齿波发生器。

数字锯齿波发生器通过逐步增加或减小电压的值来产生连续的模拟输出信号。

可以使用操作放大器和运算放大器来实现这个功能。

3. 输出放大和滤波:模拟信号产生后,可能需要通过放大器进行放大以适应实际应用场景。

此外,还可以使用滤波器来去除模拟信号中的噪声和杂散成分,以提高输出信号的质量和稳定性。

总结:通过以上简单的电路设计方案,我们可以实现基本的模数转换器和数模转换器。

数模和模数转换电路

数模和模数转换电路

;的模拟量
INC A
;A中内容加1
LJMP LOOP
;继续循环转换
(2)方波
(2)产生方波
MOV DPTR,#7FFFH ;指向0832的口地址
LOOP:MOV A,#0FFH
;将最大数字量0FFH送A
MOVX @DPTR,A ;送D/A转换输出对应的模拟量
LCALL DEL
;调延时子程序
MOV A,#00H
D/A转换器的基 准电压VREF由稳 压管上的电压分 压后提供。图中 运算放大器的作 用将D/A转换器 输出电流转换成 电压输出。
图中的接法是采用线选法把DAC0832当作8031扩展的一个并行I/ O口,当P2.7=0时,则信号/CS和/XFER有效,若设其它无关的地 址位为“1”,则DAC0832的口地址为7FFFH。将一个8位数据送 入DAC0832完成转换的指令如下: MOV DPTR,#7FFFH ;指向0832的口地址 MOV A,#data ;待转换的数据送A MOVX @DPTR,A ;写入0832,即实现一次转换并输出
14.2.2 DAC0832的工作方式
3.双缓冲工作方式 2双1..缓单直冲缓通工冲工作工作方作方式方式是式使输入寄存 单器缓和当D冲0A8工C32作寄所方存有式器的是都控使处制两于信个受号寄控存状 器态(/C始。S终这、有主/W一要R个用1、于(多/W多为R路D2DA、/CIL寄AE转存、换器) 处系/X于统FE直以R通实)都状现为态多有,路效另模时一拟,个信两处号个于的寄受同 控步存状输器态出处。于如例直使 如通有/状W三R态2个,=八0此和位时二数进据 /制线XF数的E,R数=分字0别,信先或号后将经进/两W入个R1三寄与个存/W器R直2 相D接A连进C及0入8/D3X2F/芯EAR片转与的换/C输器S入相进寄连行存,转器则换, D这并A时输C若寄出将存。三器此个处工D于作A直方C通0式8状适32态用的,于DA输连C 入寄续寄存反存器馈器的控处锁制于 存中受信。控号状同态时。变为低 应电用平系(统三中个D如A只C有08一32路的D引/脚A转 换/W,R2或、有/X多F路ER转分换别但接不在要一求起同, 步即输可出达时到,此可目采的用)单,缓冲工作 则分别先后锁存在三个DAC0832方芯式片。的输入寄存器中的数据同

第九章数模(DA)和模数(AD)转换电路

第九章数模(DA)和模数(AD)转换电路

第九章 数模(D/A )和模数(A/D )转换电路一、 内容提要模拟信号到数字信号的转换称为模—数转换,或称为A/D (Analog to Digital ),把实现A/D 转换的电路称为A/D 转换器(Analog Digital Converter ADC );从数字信号到模拟信号的转换称为D/A (Digital to Analog )转换,把实现D/A 转换的电路称为D/A 转换器( Digital Analog Converter DAC )。

ADC 和DAC 是沟通模拟电路和数字电路的桥梁,也可称之为两者之间的接口。

二、 重点难点本章重点内容有:1、D/A 转换器的基本工作原理(包括双极性输出),输入与输出关系的定量计算;2、A/D 转换器的主要类型(并联比较型、逐次逼近型、双积分型),他们的基本工作原理和综合性能的比较;3、D/A 、A/D 转换器的转换速度与转换精度及影响他们的主要因素。

三、本章习题类型与解题方法 DAC网络DAC 权电阻 ADC 直接ADC间接ADC权电流型DAC权电容型DAC开关树型DAC输入/输出方式 并行 串行 倒梯形电阻网络DAC这一章的习题可大致分为三种类型。

第一种类型是关于A/D 、D/A 转换的基本概念、转换电路基本工作原理和特点的题目,其中包括D/A 转换器输出电压的定量计算这样基本练习的题目。

第二种类型是D/A 转换器应用的题目,这种类型的题目数量最大。

第三种类型的题目是D/A 转换器和A/D 转换器中参考电压V REF 稳定度的计算,这种题目虽然数量不大,但是概念性比较强,而且有实用意义。

(一)D/A 转换器输出电压的定量计算【例9 -1】图9 -1是用DAC0830接成的D/A 转换电路。

DAC0830是8位二进制输入的倒T 形电阻网络D/A 转换器,若REF V =5 V ,试写出输出电压2O V 的计算公式,并计算当输人数字量为0、12n - (72)和2n -1(82-1)时的输出电压。

数模转换器与模数转换器基本原理

数模转换器与模数转换器基本原理

数模转换器与模数转换器基本原理数模转换器(DAC)和模数转换器(ADC)是现代电子设备中常见的模拟信号处理电路,它们用于将数字信号转换为模拟信号或将模拟信号转换为数字信号。

本文将详细介绍数模转换器和模数转换器的基本原理。

一、数模转换器(DAC)基本原理数模转换器将数字信号转换为模拟信号,通常用于将数字数据转换为模拟信号输出,如音频、视频等。

数模转换器的基本原理如下:1. 数字信号表示:数字信号由一系列离散的数值表示,通常用二进制表示。

比如,一个八位的二进制数可以表示0-255之间的数字。

2. 数字量化:数字量化是将连续的模拟信号离散化,将其转换为一系列离散的数值。

这可以通过将模拟信号分成若干个均匀的间隔来实现。

例如,将模拟信号分为256个等间隔的量化等级。

3. 数字到模拟转换:数字到模拟转换的过程是将离散的数字信号转换为连续的模拟信号。

这可以通过使用数字信号的离散值对应的模拟信号的电压值来实现。

比如,将一个八位的二进制数转换为0-5V之间的电压。

4. 输出滤波:为了减少转换过程中的噪声和失真,通常需要对转换器的输出信号进行滤波。

滤波器可以通过消除高频噪声、平滑信号等方式来实现,以获得更好的模拟输出信号。

二、模数转换器(ADC)基本原理模数转换器将模拟信号转换为数字信号,通常用于模拟信号的数字化处理,如传感器信号采集、音频信号编码等。

模数转换器的基本原理如下:1. 模拟信号采样:模拟信号是连续变化的信号,模数转换器需要将其离散化。

采样是指周期性地测量模拟信号的幅度。

采样频率越高,采样精度越高,对原始模拟信号的还原能力越强。

2. 量化和编码:量化是将采样后的模拟信号转换为离散的数字量,包括离散幅度和离散时间。

编码是将量化后的信号用二进制表示。

常用的编码方式有二进制编码、格雷码等。

3. 数字信号处理:模数转换器的输出是数字信号,可以通过数字信号处理进行后续的处理和分析。

例如,可以对采集到的传感器数据进行滤波、数学运算等。

电路数模转换与模数转换理解模拟与数字信号的转换

电路数模转换与模数转换理解模拟与数字信号的转换

电路数模转换与模数转换理解模拟与数字信号的转换在现代电子技术中,模拟信号和数字信号的转换是非常重要的。

模拟信号是连续变化的,它可以应用于音频、视频和传感器等领域。

而数字信号是离散的,能够以二进制形式表示,广泛应用于计算机和通信系统。

为了实现模拟和数字信号之间的转换,人们发展了数模转换和模数转换技术。

1. 数模转换数模转换是将数字信号转换为模拟信号的过程。

在这个过程中,将离散的数字信号转换为连续变化的模拟信号。

数模转换器(DAC)是实现这一转换的关键设备。

数模转换的基本原理是根据数字信号的大小,控制输出信号的幅度。

数模转换器内部存储有一系列的数字值,通过选择合适的数字值,即可获得所需的输出模拟信号。

数模转换器通常包括采样和保持电路、数字/模拟转换电路和滤波电路。

2. 模数转换模数转换是将模拟信号转换为数字信号的过程。

在这个过程中,将连续变化的模拟信号转换为离散的二进制数字信号。

模数转换器(ADC)是实现这一转换的关键设备。

模数转换的基本原理是通过对模拟信号进行采样和量化,再将采样和量化数据编码为二进制形式。

模数转换器通常包括滤波电路、采样电路、量化电路和编码电路。

3. 模拟与数字信号的转换应用模拟与数字信号的转换应用广泛,下面以音频和通信领域为例进行讨论。

3.1 音频领域在音频领域,模拟与数字信号的转换被广泛应用于音频播放和录制设备中。

通过ADC将声音转换为数字信号后,可以方便地进行数字处理和存储。

而通过DAC将数字信号转换为模拟信号后,可以驱动扬声器产生声音。

3.2 通信领域在通信领域,模拟与数字信号的转换被广泛应用于调制解调器和通信系统中。

调制解调器通过模数转换将模拟信号转换为数字信号用于传输,再通过数模转换将数字信号转换为模拟信号用于接收。

这种方式可以有效地提高通信系统的抗干扰性能和信息传输速率。

总结:电路中的数模转换和模数转换是实现模拟与数字信号转换的重要技术。

数模转换器和模数转换器在音频、通信等领域具有广泛的应用。

电路中的模数转换与数模转换

电路中的模数转换与数模转换

电路中的模数转换与数模转换在电路中,模数转换和数模转换是非常重要的概念。

它们分别指的是将模拟信号转换为数字信号和将数字信号转换为模拟信号的过程。

首先,让我们来了解一下什么是模拟信号和数字信号。

模拟信号是连续变化的信号,可以取任何值,例如声音、光线、温度等。

而数字信号是离散的信号,只能取有限个特定的值,通常用0和1表示。

数字信号常用于计算机和通信系统中,因为它们易于处理和传输。

模数转换是指将模拟信号转换为数字信号的过程。

这个过程通常由模数转换器(ADC)完成。

ADC将连续的模拟信号按照一定的采样率进行采样,并将每个采样点的模拟值转换为对应的数字值。

这些数字值可以代表模拟信号的幅度、频率等信息。

模数转换的精度取决于ADC的位数,位数越高,转换精度越高。

模数转换在很多领域中发挥着重要作用。

例如,音频系统中的模数转换用于将声音信号转换为数字信号,以便在计算机中进行音频处理和存储。

在医疗设备中,模数转换被用来测量生理信号,如心电图、血压等。

在工业控制系统中,模数转换被用来监测和控制各种物理量,如温度、湿度、压力等。

接下来,让我们来谈谈数模转换,它是将数字信号转换为模拟信号的过程。

数模转换通常由数模转换器(DAC)完成。

DAC接收一串二进制数字,并将其转换为对应的模拟值。

数模转换的精度也取决于DAC的位数,位数越高,转换精度越高。

数模转换常用于数字系统与模拟设备之间的接口。

例如,在音频系统中,数模转换器将数字音频信号转换为模拟音频信号,以便输出到扬声器中。

在图像系统中,数模转换器将数字图像信号转换为模拟图像信号,以便输出到显示屏上。

除了模数转换和数模转换,还有一些相关的概念值得一提。

一个是采样率,它表示模拟信号的采样频率。

采样率越高,可以获取到更多的模拟信号细节,但也会增加处理和存储的成本。

另一个是量化误差,它表示模拟信号与转换后的数字信号之间的差异。

量化误差取决于ADC或DAC的精度,以及信号的动态范围。

电路中的数模转换器与模数转换器

电路中的数模转换器与模数转换器

电路中的数模转换器与模数转换器电子设备在现代社会中扮演着重要的角色,而电路则是电子设备的基础。

在电路中,数模转换器和模数转换器是两种常见的组件,它们在数字信号和模拟信号之间起着桥梁的作用。

本文将就数模转换器和模数转换器进行探讨。

一、数模转换器数模转换器(DAC)是将数字信号转换为模拟信号的装置。

在电子设备中,数字信号通常是通过二进制编码来表示的,而模拟信号是连续变化的。

数模转换器的作用就是将数字信号转化为与之对应的模拟信号。

数模转换器通常由数字信号输入端、模拟信号输出端和控制端组成。

其中,数字信号输入端接收来自计算机或其他数字设备的二进制编码信号,而控制端可以进行精确的调节和控制。

通过内部的数学运算和电流输出,数模转换器能够将离散的数字信号转换为连续的模拟信号。

数模转换器在各个领域中都得到了广泛的应用。

在音频设备中,数模转换器能够将数字音频信号转换为模拟音频信号,使得人们能够用耳朵听到音乐。

在通信设备中,数模转换器则起到将数字信号转换为模拟信号的作用,使信息能够在物理媒介上传输。

二、模数转换器模数转换器(ADC)则是将模拟信号转换为数字信号的装置。

在电子设备中,模拟信号是连续变化的,而数字信号是离散的。

模数转换器的作用就是将模拟信号转化为与之对应的数字信号。

与数模转换器类似,模数转换器通常由模拟信号输入端、数字信号输出端和控制端组成。

模拟信号输入端接收来自传感器或其他模拟设备的信号,而控制端则用于对转换过程进行调节和控制。

通过内部的采样和量化处理,模数转换器能够将连续的模拟信号转换为离散的数字信号。

模数转换器同样在各个领域中发挥着重要作用。

在测量仪器中,模数转换器能够将模拟信号转换为数字信号,使得数据能够被处理和分析。

在自动控制系统中,模数转换器则起到将模拟输入转换为数字输入的作用,使得系统能够进行数字化的操作。

结语数模转换器和模数转换器在电子设备中起到了桥梁的作用,将数字信号和模拟信号进行转化。

数模与模数转换电路(20210201131153)

数模与模数转换电路(20210201131153)

D o D 1D/A 转换器V o4D n-1 输入输出数模与模数转换电路随着数字技术,特别是计算机技术的飞速发展与普及, 在现代控制、通信及检测领域中, 对信号的处理广泛采用了数字计算机技术。

由于系统的实际处理对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别和处理这些信号,必须首 先将这些模拟信号转换成数字信号; 而经计算机分析、处理后输出的数字量往往也需要将其 转换成为相应的模拟信号才能为执行机构所接收。

这样,就需要一种能在模拟信号与数字信 号之间起桥梁作用的电路一一模数转换电路和数模转换电路。

能将模拟信号转换成数字信号的电路,称为模数转换器(简称 A/D 转换器);而将能把 数字信号转换成模拟信号的电路称为数模转换器(简称 D/A 转换器),A/D 转换器和D/A 转换器已经成为计算机系统中不可缺少的接口电路。

在本章中,将介绍几种常用 A/D 与D/A 转换器的电路结构、工作原理及其应用。

1 D/A 转换器一. D/A 转换器的基本原理数字量是用代码按数位组合起来表示的, 对于有权码,每位代码都有一定的权。

为了将 数字量转换成模拟量, 必须将每1位的代码按其权的大小转换成相应的模拟量, 然后将这些模拟量相加,即可得到与数字量成正比的总模拟量, 从而实现了数字一模拟转换。

这就是构成D/A 转换器的基本思路。

图9.1— 1所示是D/A 转换器的输入、输出关系框图,D o 〜D n-i 是输入的n 位二进制数, V 。

是与输入二进制数成比例的输出电压。

图9.1— 2所示是一个输入为 3位二进制数时D/A 转换器的转换特性,它具体而形象地 反映了 D/A 转换器的基本功能。

图9.1 — 1 D/A 转换器的输入、输出关系框图 图9.1— 2 3位D/A 转换器的转换特性倒T 形电阻网络D/A 转换器在单片集成D/A 转换器中,使用最多的是倒T 形电阻网络D/A 转换器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章 模/数与数/模转换电路
三. 其他类型DAC
1. 权电流型DAC
电路结构与权电阻网络DAC类似,内部使用多个恒流源, 其大小依次为前一个的一半,从而构成“权结构”。
2. 权电容型DAC
仍采用权电阻网络DAC类似的电路结构,但用多个电容替 代了权电阻网络中的各电阻,且电容大小仍满足“权结构”。
1. 分辨率
DAC输入的最小有效数字“00…01” 和最大有效数字“11…11”分别对应 的输出模拟量的比值,即MSB和
分辨率
MSB FSR
1 2n 1
FSR对应的输出模拟量的比值。
VMSB VFSR
VREF 2n
1
VREF 2n
(2n
1)
1 2n 1
n 位DAC器件,常常直接把 “2n”或者“n位”称为分辨率。 例如:8位DAC的分辨率就是
第12章 模/数与数/模转换电路
二. 转换速度(建立时间)
DAC的转换速度通常用建立时间来描述,指从数字信号 输入DAC开始,到输出端对应得到稳定的模拟信号为止,整 个转换过程所需要的时间。
建立时间 tset 的定量: 从输入数字量发
生突变开始,到输出 模拟量进入与稳态值 相差±(1/2)LSB 范围 以内的这段时间。
255,或者8位。
第12章 模/数与数/模转换电路
一. 转换精度 2. 转换误差
由于DAC电路内各环节不可避免地存在与理论性 能不一致的差异,因此实际的输出模拟量和理论输出 量之间存在一定误差,这种误差的最大差值称为DAC 的转换误差。
转换误差是一个综合性的静态指标,它通常包括 比例系数误差、非线性误差、漂移误差等多个成分, 这些误差的绝对值之和,就是DAC的转换误差大小。
★ 另一类内部还集成了运算放大器和参考电压源发生器。 使用更方便,转换速度也更快。
第12章 模/数与数/模转换电路
12.3 A/D 转换器
12.3.1 D/A 转换原理
模拟信号
A / D转换器 数字信号 (模数转换器)
(ADC)
★ 直接ADC
通过一套基准电压与取样保持信号相比较,从而直接转换为
数字量。一般而言,转换速度较快,转换精度与基准电压设定精 度有很大关系。常见的有并联比较型ADC、逐次逼近型ADC 等。
第12章 模/数与数/模转换电路
12.1 概述 12.2 D/A转换器 12.3 A/D转换器 12.4 本章小结
数字电子技术基础
12.1
第12章 模/数与数/模转换电路
概述
模数转换器
(Analog - Digital Converter),简称A/D转换器、ADC 模数转换器一般属于系统的前级电路,完成模拟电
n1

uO k (Di 2i )
dn-1
i0
例如: (1101)2 1 23 1 22 1 20 8 4 1 13
输出模拟电压实际是不连续的,而是由一系列“台阶电压”组成。
其最小单位就是输入“00…01”所对应的模拟电压大小,就
是比例系数 k 的大小。
MSB:输入n位二进制数 的最高位;
LSB:最低位; FSR:最大输入数字量
“11…11”。
uO/V 7 6 5 4 3 2 1
001 010 011 100 101 110 111 D
第12章 模/数与数/模转换电路
一. 权电阻网络DAC 2. 工作原理
1. 电路结构
uO
RF
i
R 2
(I3
I2
I1
I0 )
I3
VREF R
d3
I2
VREF 2R
d2
I1
VREF 22 R
d1
I0
VREF 23 R
d0
10 10 10 10
uO
R 2
(VREF R
d3
VREF 2R
d2
VREF 22 R
d1
VREF 23 R
d0 )
VREF 24
(d3 23
d2 22
d1 21
d0 20
)
uO
VREF 2n
(dn1 2n1
dn2 2n2
d1 21
d0 20 )
VREF 24
Dn
一. 权电阻网络DAC 1. 电路结构
10 10 10 10
第12章 模/数与数/模转换电路
3. 器件特点
优点: 电路结构简单; 转换速度也比较快。
缺陷: 电路中电阻大小各不相
同,且差异很大,转换器 位数越大,这种差异就越 大。权电阻的阻值精度直 接限制了转换精度。同时 不利于集成化。
电子开关的导通电阻和 导通压降都会影响转换精 度和转换速度。
二. 倒 T 形电阻网络DAC 1. 电路结构
第12章 模/数与数/模转换电路
0 1 01 01 01
RRRR
第12章 模/数与数/模转换电路
2. 工作原理
外接电压VREF 输出的总电流:
I VREF R
i
I 2
d3
I 4
d2
I 8
d1
第12章 模/数与数/模转换电路
现在常用的集成DAC器件从内部组成上区分,有两大类: ★ 内部只包含电阻网络(或恒流源网络、电容网络等) 和电子开关。 使用时需要外接运算放大器和参考电压源,其转换
速度相对较慢,建立时间比第二类大一些。同时,要选 用高稳定度的参考电压源和低漂移高精度的运算放大器, 以降低转换误差。
I 16
d0
VREF R
1 (
2
d3
1 22
d2
1 23
d1
1 24
d0 )
uO
R i
VREF 24
(d3 23
d2 22
ቤተ መጻሕፍቲ ባይዱ
d1 21
d0 20 )
3. 器件特点
只使用两种阻值的电阻,易于集成,且转换精度提高很多。
倒 T 型电阻网络DAC的转换精度和转换速度,都优于权电 阻网络DAC,许多型号的集成DAC芯片都采用此结构。
★ 间接ADC
将输入的模拟信号首先转换为与其成正比的时间或频率,然
后再以某种方式将中间量转换为数字量,也常称为计数式ADC。 可实现很高的转换精度,但转换速度往往不如直接ADC。常见 的有双积分型ADC(V-T 变换型)、V-f 变换型ADC等。
信号到数字电信号的转换。
数模转换器
(Digital - Analog Converter),简称D/A转换器、DAC 数模转换器一般属于系统的后级电路,完成数字电
信号到模拟电信号的转换。
第12章 模/数与数/模转换电路
12.2 D/A 转换器
12.2.1 D/A 转换原理
d0 d1
DAC uO或iO
3. 双极性输出型DAC
实际工作中常常需要将带符号(可正、可负)的数字信号 转换为对应的模拟信号,此时就需要使用双极性输出型DAC。
第12章 模/数与数/模转换电路
12.2.2 D/A 转换器的性能指标 一. 转换精度
分辨率 表征DAC的理论转换精度。
转换误差 表示器件实际输出模拟量和理论输出量之间的偏差。
相关文档
最新文档