第三讲晶面和晶向
晶面和晶向
所谓某晶面的原子密度指其单位面积中的 原子数,而晶向原子密度则指其单位长度 上的原子数。在各种晶格中,不同晶面和 晶向上的原子密度都是不同的。例如,在 体心立方晶格中的各主要晶面和晶向的原 子密度见表1-2
1.2.3 金属的同素异构转变
实际金属中的缺陷对材料力学性能 的影响如下:
点缺陷的存在,提高了材料的硬度和强度, 降低了材料的塑性和韧性,增加位错密度 可提高金属强度,但塑性随之降低
面缺陷能提高金属材料的强度和塑性 细化晶粒是改善金属力学性能的有效手段
某些金属在不同温度和压力下呈不同的晶体结构,同一 种固态的纯金属(或其他单相物质),在加热或冷却时 发生由一种稳定状态转变成另一种晶体结构不同的稳定 状态的转变,称为同素异构转变。此时除体积变化和热 效应外还会发生其他性质改变。例如Fe、Co、Sn、Mn 等元素都具有同素异构特性。
铁在结晶后继续冷却至室温的过程中,将发生两次晶格 转变,其转变过程如图1.2-14所示。铁在1394℃以上时具 有体心立方晶格,称为δ-Fe;冷却至1394~912℃之间, 转变为面心立方晶格称为γ-Fe;继续冷却至912℃以下又 转变为体心立方晶格,称为α-Fe。
2)确定晶面指数的步骤如下:
(1)设晶格中某一原子为原点,通过该点平行于 晶胞的三棱边作OX、OY、OZ三个坐标轴,以晶 格常数a、b、c分别作为相应的三个坐标轴上的量 度单位,求出所需确定的晶面在三坐标轴上的截 距(见图1.2-6)。
(2)将所得三截距之值变为倒数; (3)再将这三个倒数按比例化为最小整数,并加
3. 晶格的晶面和晶向
(1)晶面指数及晶向指数 (2)晶面及晶向的原子密度
1)晶面指数及晶向指数
晶体生长原理与技术第三讲_晶面和晶向
r a1cos a1 ,n d
A3
Nn
s a2cos a2 ,n d
t a3cos a3 ,n d a 3 d a 2
A2
取a1,a2,a3为天然长度单位,则得: O a 1
A1
111
ca o 1 ,n s : ca o 2 ,n s : ca o 3 ,n s :: rst
向是该晶面的法线方向,它的大小则为该晶面族面间距倒数的
2倍。
1.4.2 倒格与正格的关系
1. ai bj 2πij 2π (ij)
0 ij
a1b1a12πa2a3 Ω
2π
a1b2a12πa3a1 0 Ω
2. Rl Kh 2π (为整数)
解: OB i , OEijk,
BE OE O Bjk
晶列BE的晶列指数为:[011]
c
b
Oa
C
D B
求AD的晶列指数。
E
OA k , OD i 1 j,
A
2
AD O D O Ai1jk c
2
b
AD的晶列指数为: [ 21 2 ] 注意:
Oa
C
D B
(1)晶列指数一定是一组互质的整数; 晶列(11-1)
任一晶面在坐标轴上的截距r,s,t必是一组有理数。
可以证明h1,h2,h3一定是互质的,称它们为该晶面族的 面指数,记为(h1h2h3 ) 。
综上所述,晶面指数(h1h2h3 )表示的意义是;
(1)基矢a1,a2,a3 被平行的晶面等间距的分割成h1、h2、h3 等份;
(2)以 a1,a2,a3为各轴的长度单位所求得的晶面在坐标轴
晶向与晶面
(2)晶面夹角
两晶向[u1v1w1]与[u2v2w2]间夹角:
cos
u1u2 v1v2 w1w2
u12 v12 w12 u2 2 v2 2 w2 2
晶面(hkl)与晶向[uvw]间夹角:
<111>晶向族如右图。
(2)晶面指数-------(hkl)
例3:
(1)截距r、s、t分别为3,3,5
z
(2)1/r : 1/s : 1/t = 1/3 : 1/3 : 1/5
(3)最小公倍数15,
(4)于是,1/r,1/s,1/t分别
c
乘15得到5,5,3,
ab
y
因此,晶面指标为(553)。
三、晶体的对称性 crystalline symmetry symmetrization of crystals
对称性——晶体的基本性质
对称元素(symmetry elements)
回转对称轴(n)1,2,3,4,6
宏观对称性 元素 对称面(m)
对称中心(i) 回转 — 反演轴 1,2,3,4,6
负号记在上方 [uv w] 。
1、红线代表的晶向由两个结点的坐标之差确定
2、晶向指数同乘、除一个数,晶向不改变。 如[012]---[0 ½ 1]
▪ 如图为立方晶系: X轴、Y轴、
Z轴;长度单位a=b=c=1。
▪例: OD为[101];
▪ Om为:坐标1/2、1、1/2;化
简后[121];
▪EF为:[111]
例如:a1轴的指标可以是[1000],也可以是 [2110].
解决方法:加限制条件:前三个指标之和为0 例如:晶向指标为[u v t w],则u+v+t=0,故a1轴的指
晶向、晶面和它们的标志
[001]
[010]
[100]
[010] [001]
[100]
向为等效晶向,写成<100>。
1.3.2 晶面及密勒指数
1.晶面
在晶格中,通过任意三个不在同一直线上的格点作一平面, 称为晶面,描写晶面方位的一组数称为晶面指数。 /
(1)平行的晶面组成晶面族,晶面族包含所有格点;
O a1 cosa1 , n : cosa2 , n : cosa3 , n h1 : h2 : h3
晶面的法线与三个基矢的夹角余弦之比等于三个整数之比。
1 1 1 又 cos a1 , n : cos a2 , n : cos a3 , n : : r s t
(1)晶列指数一定是一组互质的整数; 晶列(11-1) (2)晶列指数用方括号表示[ ]; 晶列[11-1] 晶列(111) 晶列[111] /
(3)遇到负数在该数上方加一横线。
(4)等效晶向。
在立方体中有,沿立方边的 晶列一共有6个不同的晶向,由于 晶格的对称性,这6个晶向并没有 什么区别,晶体在这些方向上的 性质是完全相同的,统称这些方
(hkl)
AEG 的密勒指数是(111); OEFG的密勒指数是(001); DIHG的密勒指数是(120)。
C B I
G
a
O
E
H
F
/
例3:
在立方晶系中画出(210)、 (121) 晶面。
晶面在三个坐标轴上的截距分别为:
a
(210)
1 2
1
b1Leabharlann c 1CE
B D A
a
c
G
O a E H DIHG 2 1
F
材料物理基础第二章固体结构-(3)晶面与晶向-201209
{123} = (123) + (123) + (123) + (123) + (132) + (132) + (132) + (132) + (231) + (231) + (231) + (23 1) + (213) + (213) + (2 13) + (213) + (312) + (312) + (3 12) + (312) + (321) + (321) + (321) + (32 1)
⎛ k1l1 ⎞ ⎛ l1h1 ⎞ ⎛ h1k1 ⎞ u :v:w = ⎜ ⎟:⎜ ⎟:⎜ ⎟ ⎝ k 2 l2 ⎠ ⎝ l 2 h2 ⎠ ⎝ h 2 k2 ⎠
27
u = k1l2 − k2l1 , v = l1h2 − l2 h1 ,
w = h1k2 − h2 k1
固体结构 — 晶面与晶向
课堂练习: (1)求(112)和(123)晶面的晶带轴。 (2)判断空间两个晶向或两个晶面是否相互垂直。
材料物理基础
Fundamentals of Materials Sciences
第二章 固体结构 (3)晶面与晶向
2012年9月
1
固体结构 — 晶面与晶向
晶面指数和晶向指数标定
y三轴坐标系 y四轴坐标系
术语,符号 概念,定义
重要概念
y晶面,晶向,晶面族,晶向族, y晶带,晶带轴,晶带面 y球面投影,极射投影
(110), (112), (111), (021)
(3)判断某一晶向是否在某一晶面上(或平行于该晶面)。 (4)已知晶带轴,判断哪些晶面属于该晶带。 [hkl] [uvw] (hkl)
晶向与晶面
晶带轴[u v w]与该晶带的晶面(h k l)之间存在以下 关系
hu + kv + lw=0 ————晶带定律 凡满足此关系的晶面都属于以[u v w]为晶带轴的晶带
如果(h1k1l1)(h2k2l2)(h3k3l3)属于同一 晶带,则(nh1+mh2+jh3 nk1+mk2+jk3 nl1+ml2+jl3)仍属于上述晶带.
(012)和(123)晶面的确定
例6:立方晶系晶面指数的标注
几点说明:
1.hkl分别对应xyz上的截距,不可互换; 2.若晶面与对应坐标平行,则截距为∞,在该坐标上
的指数为0. 晶面指数规律: (1)某一晶面指数代表了一组相互平行且无限大的
晶面。 (2) 若晶面指数相同,但正负符号相反,则两晶面
(1)晶向指数----[uvw]
求法1(平移法) 1) 确定坐标系 2) 过坐标原点,作直线 (OP)与待求晶向平行; 3) 在该直线上取点(距原 点最近),并确定该点P的 坐标(x,y,z) 4)该值乘最小公倍数化成 最小整数u,v,w并加以方 括号[u v w]即是。
设坐标,求坐标,化整数,列括号
求法2(两点法)
1. 以晶胞的某一阵点为原点,以晶 轴为坐标轴X、Y、Z,以晶胞的边 长为三坐标轴的长度单位。
2. 确定晶向上任两点的坐标 (x1,y1,z1) (x2,y2,z2)。
3. 计算x2-x1 : y2-y1 : z2-z1 ; 4. 化成最小、整数比u:v:w ; 5. 放在方括号[uvw]中,不加逗号,
例如:a1轴的指标可以是[1000],也可以是 [2110].
解决方法:加限制条件:前三个指标之和为0 例如:晶向指标为[u v t w],则u+v+t=0,故a1轴的指
第3章 晶体学基础 - 晶体结构、晶向、晶面(完整版)
2020/2/13
此处添加公司信息
4
3.1.2 晶体结构和空间点阵
LOGO
晶体结构:晶体中的组成粒子在三维空间作有规则 的周期性重复排列,这种规则排列的方式即称晶体 结构。
2020/2/13
此处添加公司信息
5
3.1.2 晶体结构和空间点阵
LOGO
➢晶格:为了便于表明晶体内部原子排列的规律, 有必要把原子抽象化,把每个原子看成一个点,这 个点代表原子的振动中心。把这些点用直线连接起 来 ,便形成一个空间格子,叫做晶格。 ➢晶胞:能代表晶格原子排列规律的最小几何单元. ➢原子半径:晶胞中原子密度最大方向上相邻原子 间距的一半。 ➢晶胞原子数:一个晶胞内所包含的原子数目。 ➢配位数:晶格中与某一原子距离最近且距离相等 的原子数目。 ➢致密度:晶胞中原子本身所占的体积百分数。
2020/2/13
此处添加公司信息
16
3.3.1晶向指数的标定 LOGO 17
若原点不在待标晶向上,还可以这样操作:
LOGO
(1)找出该晶向上两点的坐标(x1,y1,z1)和(x2,y2,z2); (2)将(x1-x2),(y1-y2),(zl-z2)化成互质整数u,v,w; (3)满足u:v:w=(x1一x2):(y1一y2) :(zl—z2)。
2020/2/13
此处添加公司信息
10
2)面心立方晶胞 FCC
晶格常数:a(a=b=c)
原子半径: r 2 a 4
原子个数:4 配位数: 12 致密度:0.74 常见金属:-Fe、Ni、 Al、 Cu、Pb等
2020/2/13
此处添加公司信息
LOGO
11
3.2.3 常见的三种晶体结构
1.3晶面和晶向解析
O a1 cosa1 , n : cosa2 , n : cosa3 , n h1 : h2 : h3
晶面的法线与三个基矢的夹角余弦之比等于三个整数之比。
1 1 1 又 cos a1 , n : cos a2 , n : cos a3 , n : : r s t
AD的晶列指数为: [212] 注意:
1 OD i j , 2
C D
a
O
B
(1)晶列指数一定是一组互质的整数; 晶列(11-1) (2)晶列指数用方括号表示[ ]; 晶列[11-1] 晶列(111) 晶列[111]
(3)遇到负数在该数上方加一横线。
(4)等效晶向。
在立方体中有,沿立方边的 晶列一共有6个不同的晶向,由于 晶格的对称性,这6个晶向并没有 什么区别,晶体在这些方向上的 性质是完全相同的,统称这些方
如图取一格点为顶点,原胞的三 个基矢 a1 , a 2 , a 3 为坐标系的三个轴, A3
设某一晶面与三个坐标轴分别交于
A1,A2,A3,设晶面的法线ON交晶面 A1A2A3于N,ON长度为d,d为该晶 面族相邻晶面间的距离,为整数, 该晶面法线方向的单位矢量用 示,则晶面A1A2A3的方程为:
l1 1, l2 2, l3 1
[ l1 , l2 , l3]晶列上格点的周期= ?
(2)以布拉维原胞基矢表示
如果从晶列上一个格点沿晶向到任一格点的位矢为
R m a nb p c
a , b , c 为布拉维原胞基矢
E
其中 m , n , p 为有理数,将 m , n , p化为互质的整数 m,n,p, 记为[mnp],[mnp]即为该晶列的晶列指数.
h1 : h2 : h3
固体物理1-3晶向、晶面
立方晶格中的[100],[110], [111]晶向
立方边,面对角线,体对角线,不止一个,它们的晶向 指数确定方法同上.
简单立方晶格 立方边共有6 个不同的晶向:
[001]
av3 av2
av1
[100]
[100],[010],[001]
[100],[0 10][00 1]
由于立方晶格的对称 性,6个晶向是等效 的,<100 >晶向族
立方边[100] 垂直的晶面(100) 面对角线[110] 垂直的晶面(110) 体对角线[111] 垂直的晶面(111)
av3
(
v k)
av2
(
v j)
av1
v (i )
3 、密勒指数计算方法:
p
具体步骤:
m
n
① 建立坐标系:以晶胞的某一点格点为原点,过原 点平行于晶胞的三棱边为坐标轴,晶格常数为坐 标轴的度量单位。注意:坐标原点不能在待定晶 面上。
对立方晶系 a b c
h : k : l cos : cos : cos
• 练习: • 在一个面心立方晶胞中画出[012][123] • 在一个面心立方晶胞中画出(012)(123)
{110}: (110), (011), (101)
(1 10), (01 1),10 1
立方晶格中与(111)面 等效的晶面:4 个
{111}: (111),(111),(111),111
符号相反的晶面指数只是在区别晶体的外 表面时才有意义,在晶体内部这些面都是 等效的。
简单立方晶格中,一个晶面的密勒指数和晶面法 线的晶向指数完全相同。
E A
c
b
Oa
C
D B
晶面与晶向
晶格、晶列、晶面理想晶体可以看作0维原子质点在三维方向的周期排列一维原子阵列在二维方向的周期排列二维原子平面在一维方向的周期排列(本讨论假设一个晶格格点只有原子)1. 晶面:晶面指数•一个晶面不是指一个原子面,而是指晶体中一系列周期性排列的原子面;•晶面可以用三个整数标识。
标识晶面的三个整数称为晶面指数(密勒指数)。
acb xyz晶胞晶面指数这样确定:①选晶胞的任一顶点为原点,三条棱为坐标轴,建立坐标系;②以晶胞常数为单位,求出晶面中某原子面在三个坐标轴X、Y、Z上的截距(x、y、z),取其倒数。
注意截距可正可负;③将三个倒数约化为最小互质整数h、k、l,并用圆括号(hkl)表示,即为晶面指数。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店1.晶面:晶面指数确定示例如图:某晶面的一个原子面与X 、Y 、Z 轴的截距分别是1/2、1/3、2/3,其倒数分别为2、3、3/2,约化为互质整数为4、6、3,则包含该原子面的晶面为(463)。
a cb xy z晶胞a, b, c :晶格常数x=1/2, y=1/3, z=2/3:截距值1. 晶面:已知晶面指数确定晶面取向示例确定(123)晶面的取向:如图,取X 、Y 、Z 轴上的截距分别是相应晶面指数的倒数1、-1/2、1/3,将三点连接得到的面,即得该晶面的取向。
如果将该面按照如图所示沿Y 轴平移一个单位,也是该晶面的取向。
a cbx y z晶胞a, b, c :晶格常数x=1, y=-1/2, z=1/3:截距值1. 晶面:晶面族晶面族:原子排列完全相同,仅仅是空间位向不同的各个晶面的集合。
{hkl}。
{110}{111}{100}立方晶系的晶面2. 晶向(晶列)•一个晶列不是指一列原子,而是指 晶体中一系列周期性平行排列的同向原子列的集合;•晶列的方向称为晶向,可用三个整数标识。
标识晶列的三个整数称为晶向指数(晶列指数);•晶向指数这样确定:①选晶胞的任一顶点为原点,三条棱为坐标轴,建立坐标系。
1.3 晶向、晶面和他们的标志
晶面的标志 晶体的晶面 —— 在布拉伐格子中作一簇平行的平面,这些 相互平行、等间距的平面可以将所有的格点包括无遗 —— 这些相互平行的平
面称为晶体的晶面
1.3 晶向 晶面和它们的标志 —— 晶体结构
同一个格子,两组不同的晶面族
1.3 晶向 晶面和它们的标志 —— 晶体结构
取某一格点为原点O,原胞的三个基矢 为坐标系的三个轴______不一定相互正交 —— 晶格中一族的晶面不仅平行,并且等距
。
在三个坐标 轴上的截距
AEG 1
1
ABCD
1
1
D
C
A
BI
c
G
b
F
O a EH
DIHG
2
1
1.3 晶向 晶面和它们的标志 —— 晶体结构
在三个坐标 轴上的截距
AEG 1
1
1
h1 : h2 : h3
1:1:1 (111)
ABCD 1
1 11 ::
1
(001)
DIHG 2
1 1:1: 1 21 (120)
§1.3 晶向 晶面和它们的标志 布拉伐格子的特点 —— 所有格点周围的情况都是一样的
—— 晶体的晶列 —— 在布拉伐格子中 作一簇平行的直线, 这些平行直线可以将 所有的格点包括无遗
平行直线系—— 晶列
1.3 晶向 晶面和它们的标志 —— 晶体结构
—— 在一个平面里,相邻晶列之间的距离相等 —— 每一簇晶列定义了一个方向 —— 晶向
AEG 的密勒指数是(111); ABCD的密勒指数是(001); DIHG的密勒指数是(120)。
D
C
A
BI
c bG
Oa
F
第3章 晶体学基础 - 晶体结构、晶向、晶面
(3) 晶面指数是截距系数的倒数,因此,截距系数越大, 则相应的指数越小,而当晶面平行某一晶轴时,其截距 系数为∞,对应的指数为1/∞=0.
23
(100)与 [100]有何关系?
LOGO
(4)立方晶系中:相同指数(指数和符号均相同)的晶向和 晶面互相垂直,即同指数的晶向是晶面的法线方向。如: [111] ⊥(111)、[110] ⊥(110)、[100] ⊥(100)。 该规律适用于三根晶轴相互垂直时,如果三轴不相互垂直, 则(hkl)与[hkl]不垂直。
LOGO
21
LOGO
1.动画--晶面指数的确定方法
22
2.晶面指数特点与规律:
LOGO
(1)与原点位置无关;每一晶面符号对应一组相互平行的晶面。 晶面符号代表在原点同一侧的一组相互平行且无限大的 晶面,而不是某一晶面。 (2) 若晶面指数相同,但正负符号相反,则两晶面是以点为 对称中心,且相互平行的晶面。如(110)和(110)互 相平行。
(3)如果是非立方晶系,改变晶向指数的顺序所表 示的晶向可能不等同。如正交晶系[100]、[010]、 [001] 19
LOGO
<U V W>晶向族:等价晶向 e.g., <100>=[100]+[010]+[001] +[100]+[010]+[001] (立方晶体)
20
3.3.2 晶面指数的标定
28
立方晶系: {111}=?
LOGO
Total:? 立方晶系:
{112} (112) ( 1 12) (1 1 2) (112) (121) ( 1 21) (121) (12 1 ) (211) ( 211) (2 1 1) (21 1 )
晶面与晶向(范文3篇)
晶面与晶向(范文3篇)以下是网友分享的关于晶面与晶向的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。
晶面与晶向(一)晶向指数与晶面指数在晶体物质中,原子在三维空间中作有规律的排列。
因此在晶体中存在着一系列的原子列或原子平面,晶体中原子组成的平面叫晶面,原子列表示的方向称为晶向。
晶体中不同的晶面和不同的方向上原子的排列方式和密度不同,构成了晶体的各向异性。
这对分析有关晶体的生长、变形、相变以及性能等方面的问题时都是非常重要的。
因此研究晶体中不同晶向晶面上原子的分布状态是十分必要的。
为了便于表示各种晶向和晶面,需要确定一种统一的标号,称为晶向指数和晶面指数,国际上通用的是密勒(Miller)指数。
一、晶向指数晶向指数是按以下几个步骤确定的:1.以晶胞的某一阵点为原点,三个基矢为坐标轴,并以点阵基矢的长度作为三个坐标的单位长度;2.过原点作一直线OP,使其平行于待标定的晶向AB(见图1),这一直线必定会通过某些阵点;3.在直线OP 上选取距原点O 最近的一个阵点P,确定P 点的坐标值;4.将此值乘以最小公倍数化为最小整数u、v、w,加上方括号,[uvw] 即为AB 晶向的晶向指数。
如u、v、w中某一数为负值,则将负号标注在该数的上方。
图2给出了正交点阵中几个晶向的晶向指数。
显然,晶向指数表示的是一组互相平行、方向一致的晶向。
若晶体中两直线相互平行但方向相反,则它们的晶向指数的数字相同,而符号相反。
如[21]和[1]就是两个相互平行、方向相反的晶向。
图 1. 晶向指数的确定图 2.正交点阵中几个晶向的晶向指数晶体中因对称关系而等同的各组晶向可归并为一个晶向族,用表示。
例如,对立方晶系来说,[100]、[010]、[001]和[00]、[00]、[00]等六个晶向,它们的性质是完全相同的,用符号表示。
如果不是立方晶系,改变晶向指数的顺序,所表示的晶向可能不是等同的。
例如,对于正交晶系[100]、[010]、[001]这三个晶向并不是等同晶向,因为以上三个方向上的原子间距分别为a、b、c,沿着这三个方向,晶体的性质并不相同。
《讲晶面和晶向》课件
晶面的符号表示和表达方法
晶面可以用米勒索引、穆勒索引或汉索式表示。米勒索引是使用方向余弦表示,穆勒索引是使用坐标轴上的直 线截距表示,而汉索式是使用晶体的理想晶面来表示。
晶向的表示和计算方法
晶向可以用布拉维指数法或符号法表示。布拉维指数法使用整数序列来表示 晶向,而符号法使用希腊字母和方向余弦来表示。
《讲晶面和晶向》PPT课 件
欢迎大家来到本次关于晶面和晶向的课程。本课程将带您深入了解晶面和晶 向的定义、符号表示、计算方法,以及它们在晶体结构分析中的应用。让我 们一起开始探索晶体世界的奥秘吧!
晶面和晶向的定义
晶面是晶体中原子排列相对规则的表面,具有特定的晶面间距和晶面角度。 晶向是晶面的延长线方向,用来描述晶体中原子间的相对位置和排列方向。
3
案例三
使用扫描电镜观察晶胞参数和晶面形貌,研究矿物颗粒的晶体生长机制。
总结和要点
晶面和晶向是晶体结构 分析的重要概念。
它们可以用来描述晶体中原 子的相对位置和排列方向。
晶面的符号表示和计算 方法
可以使用米勒索引、穆勒索 引或汉索式。
晶向的表示和计算方法
可以用布拉维指数法或符号 法表示。
晶面和晶向的关系
晶面是晶向的延长线经过相邻原子所形成的表 面。
晶面和晶向在晶体结构分析中的应用
可用于确定晶体的晶系、解析晶格常数、预测 物理性质等。
晶面和晶向的关系
晶面和晶向之间存在一种对应关系,晶面是晶向的延长线经过晶体中的相邻 原子后所形成的表面。 通过研究晶面和晶向之间的关系,我们可以更好地理解晶体的结构和性质。
晶面和晶向在晶体结构分析中的应用
1 确定晶体的晶系和结 2 解析晶格常数和晶胞 3 预测晶体的物理性质
晶向、晶面与晶带
Z
[123-]
X
1/3, 2/3, -1
Y
O1
O
P
10
2021年5月13日2时31分
注意: 晶向是一个矢量,有方向的区别; 一个晶向跟它的倍数是相同的; 对于高对称性的晶体来说,晶体学上等价的晶向具有相似的晶向指数。
这些等价的晶向构成的集合,称为晶向族 。也就是互相不平行而原子 排列规律相同的晶向的集合; 在立方体中有,沿立方边的晶列一共有6个不同的晶向,由于晶格的 对称性,这6个晶向并没有什么区别,晶体在这些方向上的性质是完 全相同的,统称这些方向为等效晶向,写成<100>; 同一晶向族中的指数相同,只是排列顺序或符号不同; 立方晶系中的一些重要的晶向族有6种轴向<100>、12种面对角线方向 <110>、8种体对角线方向<111>和顶点到面心的方向<112>。
写出立方晶系的{123}晶面族和<112>晶向族中的全部等 价晶面和晶向的具体指数。
{123} (123) (123) (123) (123)
(132) (132) (132) (132)
(213) (213) (2 13) (213)
(231) (231) (231) (23 1)
3.已为最小的整数,记作 (010)
练习
G
Z
EFB晶面 BFGD晶面
E
ACD晶面
F
D
C
X
19
A
B
Y
_
EBFFBG晶D晶面面(1(111_)10) __
D晶面 (112)
2021年5月13日2时31分
例:在下图中画出(012)和(123)晶面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称为晶面,描写晶面方位的一组数称为晶面指数。
(1)平行的晶面组成晶面族,晶面族包含所有格点; (2)晶面上格点分布具有周期性; (3)同一晶面族中的每一晶面上,格点分布(情况)相同; (4)同一晶面族中相邻晶面间距相等。
同一个格子,两组不同的晶面族
2.晶面指数
晶面方位
晶面的法线方向(法线方向与三个坐标轴夹角) 晶面在三个坐标轴上的截距
C EB
cD
b aF GA
密勒指数是(210) 的晶面是ABCD面;
密勒指数是 (121) 的晶面是EFG面;
§1.4 倒格子 —— 晶格具有周期性,一些物理量具有周期性 势能函数 势能函数是以
为周期的三维周期函数
1.4.1倒格与傅里叶变换
在任意两个原胞的相对应点上,晶体的物理性质相同。
r Rl r
可以证明:r,s,t必是一组有理数---阿羽依的有理数定理。
设a1,a2 ,a3的末端上的格点分别在离原点距离h1d、h2d、
h3d的晶面上,这里 h1、h2、h3为整数 。
(1)所有格点都包容在一族晶面上;因此给定晶面族中必
有一个晶面通过坐标系的原点;在基矢 a1,a2,a3 末端上的格点 也一定落在该晶面族的晶面上;
倒格 倒格基矢 b1,b2 ,b3 倒格(点位)矢:
Rn n1a1 n2 a2 n3 a3
K n h1b1 h2b2 h3b3
1.4.1 倒格定义
倒格基矢定义为:
b1 2π a2 a3 Ω
b2 2π a3 a1 Ω 2π b3 a1 a2
Ω
其中 a1 , a2 , a3 是正格基矢,
(1)基矢a1,a2,a3 被平行的晶面等间距的分割成h1、h2、h3
等份;
(2)以 a1 ,a2 ,a3为各轴的长度单位所求得的晶面在坐标轴
上的截距倒数的互质比;
(3)晶面的法线与基矢夹角的方向余弦的比值。
设
末端上的格点分别落在离原点的距离
的晶面上
—— 整数 —— 晶面间距
—— 最靠近原点的晶面 在坐标轴上的截距
§1.3 晶向、晶面和它们的标志
1.3.1 晶向及晶向指数
1.晶向 通过晶格中任意两个格点 连一条直线称为晶列,晶列的 取向称为晶向,描写晶向的一 组数称为晶向指数(或晶列指数 )。 过一格点可以有无数晶列。
(1)平行晶列组成晶列族,晶列 族包含所有的格点;
(2)晶列上格点分布是周期性的; (3)晶列族中的每一晶列上, 格点分布都是相同的;
取a1 ,a2 ,a3为天然长度单位得:
O a1
A1
cosa1 , n : cosa2 , n : cosa3 , n h1 : h2 : h3
晶面的法线与三个基矢的夹角余弦之比等于三个整数之比。
又
cosa1 , n :
cosa2 , n :
cosa3 , n
1 r
:
1 s
:
1 t
h1
: h2
: h3
记为[ l1l2l3], [l1l2l3 ]即为该晶列的晶列指数。
如遇到负数,将该数的上面加一横线。
如[121]表示 l1 1, l2 2, l3 1
(2)以布拉维原胞基矢表示
如果从晶列上一个格点沿晶向到任一格点的位矢为
R ma nb p c a ,b ,c 为布拉维原胞基矢
其中 m,n, p 为有理数,将 m,n, p化为互质的整数 m,n,p,
1 r
:
1 s
:1 t
h1
: h2
: h3
1 : 1 :1 r st
因为h1、h2、h3为整数,所以r、s、t必为有理数。
任一晶面在坐标轴上的截距r,s,t必是一组有理数。
可以证明h1,h2,h3一定是互质的,称它们为该晶面族的 面指数,记为(h1h2h3 ) 。
综上所述,晶面指数(h1h2h3 )表示的意义是;
晶列一共有6个不同的晶向,由于
晶格的对称性,这6个晶向并没有[100]
什么区别,晶体在这些方向上的
[001] [010] [100]
性质是完全相同的,统称这些方 向为等效晶向,写成<100>。
[010] [001]
1.3.2 晶面及密勒指数
1.晶面
在晶格中,通过任意三个不在同一直线上的格点作一平面,
Ωa1
Ω*
2π 3
a2
a3
Ω
Ω
a1
2π3
Ω
4.倒格矢 K h h1b1 h2 b2 h3 b3 与正格中晶面族(h1h2h3)
正交,且其长度为 2π 。
d h1h2h3
(1)证明 K h h1b1 h2 b2 h3 b3 与晶面族(h1h2h3)正交。
设ABC为晶面族(h1h2h3)中离原点最近的晶面,
(2)同一晶面族中的晶面平行且相邻晶面间距相等,故在原
点与基矢的末端间一定只有整数个晶面。
a1 n h1d a2 n h2d
a1 cos a1,n h1d a2 cos a2,n h2d
X n d
A3
Nn
a3 n h3d
a3 cos a3,n h3d a 3 d
a2
A2
—— 同族中其它晶面的截距是
的整数倍
的倒数是晶面族中最靠近原点的晶面的截距
晶面指数 —— 标记这个晶面系
以布拉维原胞基矢 a, b,c 为坐
标轴来表示的晶面指数称为密勒
指数,用(hkl)表示。
立方晶格的几种主要晶面标记
例2:如图所示 abc ,I和H
分别为BC,EF之中点,试求晶面
AEG,ABCD,OEFG,DIHG的密
(4)在同一平面内,相邻晶列间的 距离相等。
晶列的特点
2.晶向指数
(1) 用固体物理学原胞基矢表示
如果从晶列上一个格点沿晶向到任一格点的位矢为
R l1a1 l2 a2 l3 a3 a1,a 2 ,a 3 为固体物理学原胞基矢
其中
l1,
l
2
,
l
3
为整数,将
l1,
l
2
,
l
3
化为互质的整数
l1 , l2 , l3 ,
记为[mnp],[mnp]即为该晶列的晶列指数.
例1:如图在立方体中,a i,b j,c k
E
D是BC的中点,求BE,AD的晶列指数。 A
解: OB i , OE i j k,
BE OE OB j k
晶列BE的晶列指数为:[011]
c
b
Oa
C
D B
求AD的晶列指数。
E
OA k , OD i 1 j , 2
2π
a1 b2 a1 2π a3 a1 Ω
0
2. Rl K h 2π (为整数)
其中Rl和K h分别为正格点位矢和倒格点位矢。
Rl l1 a1 l2 a 2 l3 a 3 K h h1 b1 h2 b2 h3 b3
Rl K h (l1 a1 l2 a 2 l3 a 3 ) (h1 b1 h2 b2 h3 b3 ) 2π( l1h1 l2h2 l3h3 )
a2
a1
b1
a2 a3 2π
2π
Ω
d1
b2 2π d2
b1
2π b3
d3
一个倒格基矢是和正格原胞中一组晶面相对应的,它的方
向是该晶面的法线方向,它的大小则为该晶面族面间距倒数的
2倍。
1.4.2 倒格与正格的关系
1. ai b j 2π ij 2π ( i j )
0 i j
a1 b1 a1 2π a 2 a 3 Ω
1 1:1: 1 21 (120)
AEG 的密勒指数是(111); OEFG的密勒指数是(001); DIHG的密勒指数是(120)。
D
C
A
BI
c bG
Oa
F
EH
例3: 在立方晶系中画出(210)、 Nhomakorabea121) 晶面。
晶面在三个坐标轴上的截距分别为:
a (210) 1
2
bc 1
(121) 1
1
1
2
Rl 是正格矢。
上式两边分别按傅里叶级数展开:
r (K h) eiKhr
h
r Rl
K ei K h rRl h
h
K h Rl 2π
K h 一定是倒格矢。
§1.4 倒格
晶体结构=晶格+基元
一个晶体结构有两个格子,一个是正格,另一个为倒格。
正格 正格基矢 a1 , a 2 , a 3 正格(点位)矢:
Ω a1 a2 a3
是固体物理学原胞体积
与 K n h1b1 h2b2 h3b3 (h1, h2, h3为整数)所联系的各点
的列阵即为倒格。
倒格基矢的方向和长度如何呢?
b1 2π a2 a3 Ω
b2 2π a3 a1 Ω
b3 2π a1 a2 Ω
b3 ab3 2
ABC在基矢
a1,a2,a3上的 截距分别为
a1 , a2 , a3 。
h1 h2 h3
a3
由图可知: CA OA OC a1 a3 h1 h3
C
Kh
CB OB OC a2 a3
h2 h3 O
a2 B
A a1
K
h
CA
(h1b1
h2 b2
h3 b3 )
a1 h1
a2 h2
0
Kh
倒格 基矢
倒格
b1 2π a2 a3 Ω
b2 2π a3 a1 Ω
b3 2π a1 a2 Ω
a1 ,a2 ,a3 b1 ,b2 ,b3
2π ( i j )