八年级数学试题
2022~2023学年济南市高新区八年级上学期数学期末考试试题(含答案)
济南市高新区八年级上学期数学期末考试试题(满分150分时间120分钟)一.单选题。
(每小题4分,共40分)1.5的平方根可以表示为()A.±√5B.√±5C.±5D.√52.点A(2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,直线a,b被直线c所截,且a∥b,∠1=55°,则∠2等于()A.55°B.65°C.125°D.135°(第3题图)(第6题图)(第9题图)4.一组数据:65,57,56,58,56,58,56,这组数据的众数是()A.56B.57C.58D.655.方程组{7x+2y=4①7x-3y=﹣6②,由①-②得()A.2y-3y=4-6B.2y-3y=4+6C.2y+3y=4-6D.2y+3y=4+66.已知正比例函数图象如图所示,则这个函数的关系式为()A.y=xB.y=﹣xC.y=﹣3xD.y=﹣x37.甲,乙,丙,丁四组的人数相同,且平均升高都是1.68m,升高的方差分别是S2甲=0.15,S2乙=0.12,S2丙=0.10,S2丁=0.12,则身高比较整齐的组是()A.甲B.乙C.丙D.丁8.已知实数x,y满足|x-3|+√y-2=0,则代数式(y-x)2023的值为()A.1B.﹣1C.2023D.﹣20239.如图,在平面直角坐标系中,三角形ABC三个顶点A,B,C的坐标A(0,4),B(﹣1,b),C(2,c),BC经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值是()A.10B.11C.12D.1410.如图,A (1,0),B (3,0),M (4,3),动点P 从点A 出发,沿x 轴每秒1个单位长度的速度向右移动,且过点P 的直线y=﹣x+b 也随之平移,设移动时间为t 秒,若直线与线段BM 有公共点,则t 的取值范围是( )A.3≤t ≤7B.3≤t ≤6C.2≤t ≤6D.2≤t ≤5(第10题图)二.填空题。
八年级数学全册全套试卷易错题(Word版 含答案)
八年级数学全册全套试卷易错题(Word 版 含答案)一、八年级数学三角形填空题(难)1.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78.【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D∴∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒, ∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键.2.如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为_____.【答案】30°【解析】【分析】延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC的平分线可得出△BDE≌△BDF,故DE=DF,过D点作DG⊥AC于G点,可得出△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=53°,再根据三角形内角和定理即可得出结论.【详解】解:延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,∵BD是∠ABC的平分线在△BDE与△BDF中,ABD CBDBD BDAED DFC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE≌△BDF(ASA),∴DE=DF,又∵∠BAD+∠CAD=180°∠BAD+∠EAD=180°∴∠CAD=∠EAD,∴AD为∠EAC的平分线,过D点作DG⊥AC于G点,在Rt△ADE与Rt△ADG中,AD ADDE DG=⎧⎨=⎩,∴△ADE≌△ADG(HL),∴DE=DG,∴DG=DF.在Rt△CDG与Rt△CDF中,CD CD DG DF=⎧⎨=⎩,∴Rt△CDG≌Rt△CDF(HL),∴CD为∠ACF的平分线,∠ACB=74°,∴∠DCA=53°,∴∠BDC=180°﹣∠CBD﹣∠DCA﹣∠ACB=180°﹣23°﹣53°﹣74°=30°.故答案为:30°【点睛】本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.3.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.4.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10【解析】【分析】【详解】解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.故答案为:10 .考点:多边形的内角和定理.5.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】÷=,连续左转后形成的正多边形边数为:4559︒÷=︒.则左转的角度是360940故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.∠__________.6.如图,五边形ABCDE的每一个内角都相等,则外角CBF=【答案】72︒【解析】【分析】多边形的外角和等于360度,依此列出算式计算即可求解.【详解】360°÷5=72°.故外角∠CBF等于72°.故答案为:72︒.【点睛】此题考查了多边形内角与外角,关键是熟悉多边形的外角和等于360度的知识点.二、八年级数学三角形选择题(难)7.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D【解析】【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°【详解】】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.8.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为()A.20°B.35°C.40°D.45°【答案】B【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-505°=35°,故选:B.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.9.一个多边形内角和是900°,则这个多边形的边数是()A.7 B.6 C.5 D.4【答案】A【解析】【分析】n边形的内角和为(n-2)180°,由此列方程求n的值即可.【详解】设这个多边形的边数为n,则:(n-2)180°=900°,解得n=7.故答案为:A.【点睛】本题考查了多边形的内角和,熟练掌握该知识点是本题解题的关键.10.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()244∠=,则1α-A.14B.16C.90α-D.44【答案】A分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A .点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.11.小明把一副直角三角板如图摆放,其中90,45,30C F A D ∠=∠=︒∠=︒∠=︒,则a β∠+∠等于( )A .180︒B .210︒C .360︒D .270︒【答案】B【解析】【分析】 根据三角形外角性质分别表示出∠α与∠β,然后进一步计算即可.【详解】如图所示,利用三角形外角性质可知:∠α=∠1+∠D ,∠β=∠4+∠F ,∴∠α+∠β=∠1+∠D+∠4+∠F ,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠2+∠D+∠3+∠F=90°+30°+90°=210°,故选:B .【点睛】本题主要考查了三角形外角性质的运用,熟练掌握相关概念是解题关键.12.已知三角形的两边长分别为4和9,则下列数据中能作为第三边长的是( )A .13B .6C .5D .4 【答案】B【解析】【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】解:设这个三角形的第三边为x .根据三角形的三边关系定理“两边之和大于第三边,两边之差小于第三边”,得:94x 94-<<+,解得5x 13<<.故选:B .【点睛】本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.三、八年级数学全等三角形填空题(难)13.如图,ABC ∆中,90ACB ∠=︒,//AC BD ,BC BD =,在AB 上截取BE ,使BE BD =,过点B 作AB 的垂线,交CD 于点F ,连接DE ,交BC 于点H ,交BF 于点G ,7,4BC BG ==,则AB =____________.【答案】658【解析】【分析】 过点D 作DM ⊥BD ,与BF 延长线交于点M ,先证明△BHE ≌△BGD 得到∠EHB=∠DGB ,再由平行和对顶角相等得到∠MDG=∠MGD ,即MD=MG ,在△△BDM 中利用勾股定理算出MG 的长度,得到BM ,再证明△ABC ≌△MBD ,从而得出BM=AB 即可.【详解】解:∵AC ∥BD ,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF ⊥AB ,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD ,∴∠8=∠1,在△BHE 和△BGD 中,8143BE BD ∠=∠∠=∠⎧⎪=⎨⎪⎩,∴△BHE ≌△BGD (ASA ),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD ⊥BD∴∠BDM=90°,∴BC ∥MD ,∴∠5=∠MDG ,∴∠7=∠MDG∴MG=MD ,∵BC=7,BG=4,设MG=x ,在△BDM 中,BD 2+MD 2=BM 2,即()2227=4x x ++,解得x=338, 在△ABC 和△MBD 中=8=1BC B ACB MDB D∠∠∠∠⎧⎪=⎨⎪⎩, ∴△ABC ≌△MBD (ASA ) AB=BM=BG+MG=4+338=658. 故答案为:658.【点睛】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.14.已知:如图,△ABC 和△DEC 都是等边三角形,D 是BC 延长线上一点,AD 与BE 相交于点P ,AC 、BE 相交于点M ,AD ,CE 相交于点N ,则下列五个结论:①AD =BE ;②AP =BM ;③∠APM =60°;④△CMN 是等边三角形;⑤连接CP ,则CP 平分∠BPD ,其中,正确的是_____.(填写序号)【答案】①③④⑤.【解析】【分析】①根据△ACD ≌△BCE (SAS )即可证明AD =BE ;②根据△ACN ≌△BCM (ASA )即可证明AN =BM ,从而判断AP ≠BM ;③根据∠CBE +∠CDA =60°即可求出∠APM =60°;④根据△ACN ≌△BCM 及∠MCN =60°可知△CMN 为等边三角形;⑤根据角平分线的性质可知.【详解】①∵△ABC 和△CDE 都是等边三角形∴CA =CB ,CD =CE ,∠ACB =60°,∠DCE =60°∴∠ACE =60°∴∠ACD =∠BCE =120°在△ACD 和△BCE 中CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE (SAS )∴AD =BE ;②∵△ACD ≌△BCE∴∠CAD=∠CBE在△ACN和△BCM中ACN BCMCA CBCAN CBM∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACN≌△BCM(ASA)∴AN=BM;③∵∠CAD+∠CDA=60°而∠CAD=∠CBE∴∠CBE+∠CDA=60°∴∠BPD=120°∴∠APM=60°;④∵△ACN≌△BCM∴CN=BM而∠MCN=60°∴△CMN为等边三角形;⑤过C点作CH⊥BE于H,CQ⊥AD于Q,如图∵△ACD≌△BCE∴CQ=CH∴CP平分∠BPD.故答案为:①③④⑤.【点睛】本题主要考查了三角形全等的判定和性质的灵活运用,角的计算及角平分线的判定,熟练掌握三角形全等的证明方法,角平分线的判定及相关辅助线的作法是解决本题的关键.15.已知在△ABC 中,两边AB、AC的中垂线,分别交BC于E、G.若BC=12,EG=2,则△AEG的周长是________.【答案】16或12.【解析】【分析】根据线段垂直平分线性质得出AE=BE,CG=AG,分两种情况讨论:①DE和FG的交点在△ABC内,②DE和FG的交点在△ABC外.【详解】∵DE,FG分别是△ABC的AB,AC边的垂直平分线,∴AE=BE,CG=AG.分两种情况讨论:①当DE和FG的交点在△ABC内时,如图1.∵BC=12,GE=2,∴AE+AG=BE+CG=12+2=14,△AGE的周长是AG+AE+EG=14+2=16.②当DE和FG的交点在△ABC外时,如图2,△AGE的周长是AG+AE+EG= BE+CG+EG=BC=12.故答案为:16或12.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.16.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在_____.【答案】∠BAC的平分线上,与A相距1cm的地方.【解析】【分析】由已知条件及要求满足的条件,根据角平分线的性质作答,注意距A1cm处.【详解】工厂的位置应在∠BAC的平分线上,与A相距1cm的地方;理由:角平分线上的点到角两边的距离相等.【点睛】此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.作图题一定要找到相关的知识为依托,同时满足多个要求时,要逐个满足.17.如图,四边形ABCD是正方形,直线l1、l2、l3分别过A、B、C三点,l1∥l2∥l3,若l1与l2之间的距离为4,l2与l3之间的距离为5,则正方形的边长为______.【答案】41【解析】解:过B作直线BF⊥l3于F,交直线l1于点E.∵l1∥l3,∴∠AEB=∠BFC=90°,∴BE=4,BF=5.∵ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=90°.∵∠ABE+∠BAE=90°,∴∠BAE=∠CBF.在△ABE和△BCF中,∵∠BAE=∠CBF,∠AEB=∠BFC,AB=BC,∴△ABE≌△BCF,∴AE=BF=5.在Rt△AEB中,AB=2254=41.故答案为41.AE BE=22点睛:本题考查了全等三角形的性质和判定,正方形的性质的应用,解答本题的关键是能正确作出辅助线,并进一步求出△ABE≌△BCF,难度适中.18.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形,∠ADC=30°,若CD=6,BD=6.5,则AD=_________.【答案】2.5【解析】解:以CD为边向外作出等边三角形DCE,连接AE,∵∠ADC=30°,∴∠ADE=90°,在△ACE 与△BCD中,∵AC=BC,∠ACE=∠BCD,CE=DC,∴△ACE≌△BCD,∴BD=AE=6.5,∴AD2+DE2=AE2,∴AD3+62=6.52,∴AD=2.5.故答案为:2.5.四、八年级数学全等三角形选择题(难)19.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【答案】C【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.【详解】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.【点睛】本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.20.在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,根据图中标示的各点位置,与△ABC全等的是()A.△ACF B.△ACEC.△ABD D.△CEF【答案】C【解析】【分析】利用勾股定理先分别求得△ABC的各边长以及各选项中三角形的各边长,再根据三角形全等的判定方法进行判定即可得.【详解】在△ABC中,AB=22+=10,BC=2231+=2,AC=22,11A、在△ACF中,AF=2221+=5≠10,5≠2,5≠22,则△ACF与△ABC不全等,故不符合题意;B、在△ACE中,AE=3≠10,3≠2,3≠22,则△ACE与△ABC不全等,故不符合题意;C、在△ABD中,AB=AB,AD=2=BC,BD=22=AC,则由SSS可证明△ACE与△ABC全等,故符合题意;D、在△CEF中,CF=3≠10,3≠2,3≠22,则△CEF与△ABC不全等,故不符合题意,故选C.【点睛】本题考查了勾股定理以及全等三角形的判定,熟练掌握勾股定理以及全等三角形的判定方法是解题的关键.21.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;④QP∥AB.其中一定正确的是( )A .①②③B .①③④C .①②④D .②③④【答案】C【解析】 试题解析:∵PR ⊥AB 于点R ,PS ⊥AC 于点S ,且PR =PS ,∴点P 在∠BAC 的平分线上,即AP 平分∠BAC ,故①正确;∴∠PAR =∠PAQ ,∵AQ =PQ ,∴∠APQ =∠PAQ ,∴∠APQ =∠PAR ,QP AB ∴, 故④正确;在△APR 与△APS 中,AP AP PR PS =⎧⎨=⎩, (HL)APR APS ∴≌, ∴AR =AS ,故②正确;△BPR 和△QSP 只能知道PR =PS ,∠BRP =∠QSP =90∘,其他条件不容易得到,所以,不一定全等.故③错误.故选C.22.如图,Rt ABC ∆中,90C =∠,3,4,5,AC BC AB ===AD 平分BAC ∠.则:ACD ABD S S ∆∆=( )A .3:4B .3:5C .4:5D .2:3【答案】B【解析】 如图,过点D 作DE ⊥AB 于点E ,由角平分线的性质可得出DE=CD ,由全等三角形的判定定理HL 得出△ADC ≌△ADE ,故可得出AE=AC=3,由AB=5求出BE=2,设CD=x ,则DE=x,BD=4﹣x,再根据勾股定理知DE2+BE2=BD2,即x2+22=(4﹣x)2,求出x=32,进而根据等高三角形的面积,可得出:S△ACD:S△ABD=CD:BD=12×32×3:12×32×5=3:5.故选:B.点睛:本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.23.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC≌△DCB,则还需增加的一个条件是()A.AC=BD B.AC=BC C.BE=CE D.AE=DE【答案】A【解析】由AB=DC,BC是公共边,即可得要证△ABC≌△DCB,可利用SSS,即再增加AC=DB即可.故选A.点睛:此题主要考查了全等三角形的判定,解题时利用全等三角形的判定:SSS,SAS,ASA,AAS,HL,确定条件即可,此题为开放题,只要答案符合判定定理即可. 24.如图, AB=AC,AD=AE, BE、CD交于点O,则图中全等三角形共有()A.五对B.四对C.三对D.二对【答案】A【解析】如图,由已知条件可证:①△ABE≌△ACD;②△DBC≌△ECB;③△BDO≌△ECO;④△ABO≌△ACO;⑤△ADO≌△AEO;∴图中共有5对全等三角形.故选A.五、八年级数学轴对称三角形填空题(难)25.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______【答案】110°、125°、140°【解析】【分析】先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.【详解】解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,∴b﹣d=10°,∴(60°﹣a)﹣d=10°,∴a+d=50°,即∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,∴190°﹣α=α﹣60°,∴α=125°;②OA=OD,则∠OAD=∠ADO,∴α﹣60°=50°,∴α=110°;③OD=AD,则∠OAD=∠AOD,∴190°﹣α=50°,∴α=140°;所以当α为110°、125°、140°时,三角形AOD是等腰三角形,故答案为:110°、125°、140°.【点睛】本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.26.如图,P 为∠AOB 内一定点,M ,N 分别是射线OA ,OB 上一点,当△PMN 周长最小时,∠OPM =50°,则∠AOB =___________.【答案】40°【解析】【分析】作P 关于OA ,OB 的对称点P 1,P 2.连接OP 1,OP 2.则当M ,N 是P 1P 2与OA ,OB 的交点时,△PMN 的周长最短,根据对称的性质可以证得:∠OP 1M=∠OPM=50°,OP 1=OP 2=OP ,根据等腰三角形的性质即可求解.【详解】如图:作P 关于OA ,OB 的对称点P 1,P 2.连接OP 1,OP 2.则当M ,N 是P 1P 2与OA 、OB 的交点时,△PMN 的周长最短,连接P 1O 、P 2O ,∵PP 1关于OA 对称,∴∠P 1OP=2∠MOP ,OP1=OP ,P 1M=PM ,∠OP 1M=∠OPM=50°同理,∠P 2OP=2∠NOP ,OP=OP 2,∴∠P 1OP 2=∠P 1OP+∠P 2OP=2(∠MOP+∠NOP )=2∠AOB ,OP 1=OP 2=OP ,∴△P 1OP 2是等腰三角形.∴∠OP 2N=∠OP 1M=50°,∴∠P 1OP 2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P 1OP 2是等腰三角形是解题的关键.27.如图,1AB A B =,1112A B A A =,2223A B A A =,3334A B A A =,…,当2n ≥,70A ∠=︒时,11n n n A A B --∠=__________.【答案】1702n -︒ 【解析】【分析】先根据三角形外角的性质及等腰三角形的性质分别求出121B A A ∠,232B A A ∠及343B A A ∠的度数,再找出规律即可得出11n n n A A B --∠的度数.【详解】解:∵在1ABA ∆中,70A ∠=︒,1AB A B =∴170BA A A ∠==︒∠∵1112A A A B =,1BA A ∠是121A A B ∆的外角∴12111211703522B A A A B A BA A ︒∠=∠===︒∠ 同理可得,2321217017.542B A A BA A ︒∠===︒∠,343131708.7582B A A BA A ︒∠===︒∠ ∴111702n n n n A A B ---︒∠=. 故答案为:1702n -︒ 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据特殊情况找出规律是解题关键.28.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.【答案】27【解析】【分析】由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.【详解】解:如图,连接AC 交BD 于点O∵AB AD =,BC DC =,60A ∠=︒,∴AC 垂直平分BD ,ABD △是等边三角形∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==∵CE AB ∥∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒∴30DAO ACE ∠=∠=︒∴6AE CE ==∴2DE AD AE =-=∵60CED ADB ∠=∠=︒∴EDF 是等边三角形∴2DE EF DF ===∴4CF CE EF =-=,2OF OD DF =-=∴2223OC CF OF =-=∴2227BC BO OC +=【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.29.如图,已知每个小方格的边长为1,A 、B 两点都在小方格的格点(顶点)上,请在图中找一个格点C ,使△ABC 是等腰三角形,这样的格点C 有________个。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
八年级上数学试题及答案
八年级上数学试题及答案一、选择题(每题3分,共30分)1. 若a > 0,b < 0,且|a| > |b|,则a+b的符号为()A. 正数B. 负数C. 零D. 不确定2. 计算下列式子的结果:(-2)^3 + (-2)^2,其值为()A. 2B. -2C. -6D. 63. 已知x^2 - 5x + 6 = 0,下列哪个是方程的解?()A. x = 1B. x = 2C. x = 3D. x = 64. 一个数的相反数是-3,这个数是()A. 3B. -3C. 0D. 65. 计算下列式子的结果:(-3) × (-2),其值为()A. -6B. 6C. 0D. 96. 一个数的绝对值是5,这个数可能是()A. 5B. -5C. 5或-5D. 07. 下列哪个是不等式2x - 3 > 0的解?()A. x = 0B. x = 1C. x = 2D. x = 38. 计算下列式子的结果:(-1)^4 × (-1)^3,其值为()A. 1B. -1C. 0D. 29. 一个数的平方是9,这个数是()A. 3B. -3C. 3或-3D. 910. 计算下列式子的结果:(-5)^2 ÷ (-5),其值为()A. -1B. 1C. 5D. -5二、填空题(每题3分,共30分)11. 已知一个数的立方是-8,这个数是______。
12. 计算下列式子的结果:(-4)^2 - 4^2,其值为______。
13. 一个数的倒数是2,这个数是______。
14. 计算下列式子的结果:(-2)^3 × (-3)^2,其值为______。
15. 一个数的绝对值是-5(这是不可能的,因为绝对值总是非负的),所以这个数是______。
16. 计算下列式子的结果:(-3)^2 + (-3),其值为______。
17. 一个数的相反数是-2,这个数是______。
八年级数学测试题及答案
八年级数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是等腰三角形的性质?A. 三条边相等B. 两条边相等C. 三个角相等D. 两个角相等答案:B2. 一个数的平方根是4,那么这个数是:A. 16B. 8C. 4D. 2答案:A3. 一个圆的半径是5,那么它的周长是:A. 10πB. 20πC. 25πD. 50π答案:B4. 下列哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 3x^3D. y = 1/x答案:A5. 一个等差数列的首项是2,公差是3,那么第5项是:A. 14B. 17C. 20D. 23答案:A6. 如果一个三角形的两边长分别是3和4,那么第三边的长x满足:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 7D. 0 < x < 7答案:A7. 一个正数的倒数是1/4,那么这个数是:A. 4B. 1/4C. 1/2D. 2答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C9. 下列哪个选项是二次函数的图像?A. 一条直线B. 一个点C. 一个抛物线D. 一个圆答案:C10. 一个数的立方根是2,那么这个数是:A. 8B. 6C. 2D. 4答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,那么这个数是____。
答案:±52. 一个等腰三角形的底边长是6,两腰长是5,那么它的周长是____。
答案:163. 一个圆的直径是10,那么它的半径是____。
答案:54. 一个数列的前三项是2,4,8,那么第四项是____。
答案:165. 如果一个三角形的两边长分别是5和12,那么第三边的长x满足的条件是____。
答案:7 < x < 17三、解答题(每题10分,共50分)1. 已知一个等差数列的前三项分别是2,5,8,求第10项的值。
八年级(初二)数学(一次函数)试卷试题附答案解析
一、单选题(共10题;共分)1.下列各曲线中,不表示y是x的函数的是()A. B. C. D.2.函数的图象一定经过点()A. (3,5)B. (-2,3)C. (2,7)D. (4,10)3.y=kx+(k-3)的图象不可能是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A. 1<x<2B. x>2C. x>0D. 0<x<16.一次函数y=mx+n与正比例函数y=mnx(m、n常数,且m≠0),在同一坐标系中的大致图象是()A. B. C. D.7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y与浆洗一遍的时间x之间关系的图象大致为()A. B.C. D.8.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()A. B. C. D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.x上,若A1(1,10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y= √330),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A. 22n√3B. 22n−1√3C. 22n−2√3D. 22n−3√3二、填空题(共10题;共分)11.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________ .12.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.13.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 ________象限.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ________.15.如图,在坐标系中,一次函数y=−2x+1与一次函数y=x+k的图像交于点A(−2,5),则关于x的不等式x+k>−2x+1的解集是________.16.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t的取值范围为________.17.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是________.18.如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(4√3,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为________19.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 ________s能把小水杯注满.20.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 ________三、解答题(共2题;共22分)21.已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.22.我县为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y(元)与所用的水量x(吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y与x之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨。
八年级数学试题
18.已知反比例函数 在第一象限的图象如图所示,点 在其图象上,点 为 轴正半轴上一点,连接 、 ,且 ,则 ▲.
三、解答题(本大题共9个小题,共96分,解答时应写出文字说明、证明过程或演算步骤.)
19.计算(每题5分,共10分)
(1) (2)
27.(1)设直线DE的解析式为 ,
∵点D,E的坐标为(0,3)、(6,0),∴
解得 ∴ .…………………………2分
∵点M在AB边上,B(4,2),而四边形OABC是矩形,
∴点M的纵坐标为2.
又∵点M在直线 上,
∴2 = .∴x= 2.∴M(2,2).…………………………4分
(2)∵ (x>0)经过点M(2,2),∴ .∴ .
,
故单独租用一台车,租用乙车合算.………………8分
25.(1)恒温系统在这天保持大棚温度 的时间为10小时.………………2分
(2)∵点 (12,18)在双曲线 上,
∴ ,………………4分
∴ .………………5分
(3)当x=16时, ,
所以当x=16时,大棚内的温度约为 .………………8分
26.(1)四边形EGFH是平行四边形.…………………………1分
9.10.11.12.13.
14.15.16.17.18..
三、解答题(本大题共10个小题,共96分,解答时应写出文字说明、证明过程或演算步骤.)
19.计算(每题5分,共10分)
(1) (2)
20.解方程(每题5分,共10分)
(1) (2)
21.(本题满分8分)
22.(本题满分8分)
(1)这次抽取了名学生的竞赛成绩实行统计,其中:m=,n=;
贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)
黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。
人教八年级数学竞赛试题
人教八年级数学竞赛试题一、选择题(每题5分,共40分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333...(无限循环)D. √22. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是什么类型的三角形?A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形3. 已知一个数列的前三项为1, 2, 3,从第四项开始,每一项都是前三项的和。
这个数列的第10项是多少?A. 144B. 145C. 146D. 1474. 一个圆的半径为r,那么它的面积是多少?A. πrB. πr^2C. 2πrD. 4πr^25. 一个长方体的长、宽、高分别为a、b、c,它的体积是多少?A. abcB. a + b + cC. 2(ab + bc + ac)D. 3(a + b + c)6. 一个函数f(x) = 3x^2 - 2x + 1,当x = 2时,f(x)的值是多少?A. 7B. 8C. 9D. 107. 一个正整数n,如果它能够被2整除,但不能被3整除,那么n的最小值是多少?A. 2B. 4C. 6D. 88. 一个数的平方根是它本身,这个数是什么?A. 0B. 1C. -1D. 2二、填空题(每题5分,共30分)9. 如果一个数的立方根等于它本身,那么这个数可以是_________。
10. 一个数的绝对值是它本身,这个数可以是正数或_________。
11. 如果一个分数的分子和分母都乘以同一个数,那么这个分数的值_________。
12. 已知一个数列的前三项为2, 3, 5,从第四项开始,每一项都是前两项的平均值。
这个数列的第5项是_________。
13. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是_________。
14. 如果一个数的相反数是-5,那么这个数是_________。
三、解答题(每题15分,共30分)15. 已知一个二次方程x^2 - 5x + 6 = 0,求它的根。
八年级数学试题及解析
八年级数学试题及解析一、填空:(每题2分,共20分)考点:镜面对称.专题:几何图形问题.分析:关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相对应数字的对称性可得实际数字.解答:解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为810076,故答案为:810076.点评:考查镜面对称,得到相对应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反.2.(2分)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是DF=DE .(不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:由已知可证BD=CD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);解答:解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).理由如下:∵点D是BC的中点,∴BD=CD.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案能够是:DF=DE.点评:考查了三角形全等的判定.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.3.(2分)如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC= 10 cm.考点:全等三角形的性质.分析:根据△DEF周长是32cm,DE=9cm,EF=13cm就可求出第三边DF的长,根据全等三角形的对应边相等,即可求得AC的长.解答:解:DF=32﹣DE﹣EF=10cm.∵△ABC≌△DEF,∠E=∠B,∴AC=DF=10cm.点评:本题考查全等三角形的性质,解题时应注重识别全等三角形中的对应边,要根据对应角去找对应边.4.(2分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 55°.考点:全等三角形的判定与性质.分析:求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.解答:解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.点评:本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EAC.5.(2分)如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8 .考点:线段垂直平分线的性质.专题:压轴题.分析:由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.解答:解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.点评:本题考查了线段垂直平分线的性质;解决本题的关键是利用线段的垂直平分线性质得到相对应线段相等并实行等量代换.6.(2分)如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15 cm.考点:全等三角形的判定与性质.分析:先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.解答:解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(2分)如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有4 个.考点:全等三角形的判定;角平分线的性质.分析:根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别实行分析即可.解答:解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;所以其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(2分)如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为45 度.考点:全等三角形的判定与性质;等腰直角三角形.专题:计算题.分析:由等腰直角三角形ABC的两腰相等的性质推知AC=CB,再根据已知条件“∠ACB=∠DCE=90°”求得∠ACE=90°﹣∠ACD=∠DCB,然后再加上已知条件DC=EC,能够根据全等三角形的判定定理SAS判定△ACE≌△BCD;最后由全等三角形的对应角相等的性质证明结论即可.解答:解:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠B=∠EAC(全等三角形的对应角相等).∵∠B=45°,∴∠EAC=45°.故答案为45°.点评:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质.注意,在证明△ACE≌△BCD时,一定要找准相对应的边与角.9.(2分)如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,实行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP 与∠ODP之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系∠OEP=∠ODP或∠OEP+∠ODP=180°.考点:全等三角形的判定与性质.分析:数量关系是∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,根据SAS证△E2OP≌△DOP,推出E2P=PD,得出此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,根据等腰三角形性质推出∠PE2E1=∠PE1E2,求出∠OE1P+∠ODP=180°即可.解答:解:∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是:以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,∵在△E2OP和△DOP中,∴△E2OP≌△DOP(SAS),∴E2P=PD,即此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,故答案为:∠OEP=∠ODP或∠OEP+∠ODP=180°.点评:本题考查了全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生的猜想水平和分析问题和解决问题的水平,题目具有一定的代表性,是一道比较好的题目.10.(2分)长为20,宽为a的矩形纸片(10<a<20),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作停止.当n=3时,a的值为12或15 .考点:翻折变换(折叠问题).专题:压轴题;规律型.分析:首先根据题意可得可知当10<a<20时,第一次操作后剩下的矩形的长为a,宽为20﹣a,第二次操作时正方形的边长为20﹣a,第二次操作以后剩下的矩形的两边分别为20﹣a,2a﹣20.然后分别从20﹣a>2a﹣20与20﹣a<2a﹣20去分析求解,即可求得答案.解答:解:由题意,可知当10<a<20时,第一次操作后剩下的矩形的长为a,宽为20﹣a,所以第二次操作时剪下正方形的边长为20﹣a,第二次操作以后剩下的矩形的两边分别为20﹣a,2a﹣20.此时,分两种情况:①如果20﹣a>2a﹣20,即a<,那么第三次操作时正方形的边长为2a﹣20.则2a﹣20=(20﹣a)﹣(2a﹣20),解得a=12;②如果20﹣a<2a﹣20,即a>,那么第三次操作时正方形的边长为20﹣a.则20﹣a=(2a﹣20)﹣(20﹣a),解得a=15.∴当n=3时,a的值为12或15.故答案为:12或15.点评:此题考查了折叠的性质与矩形的性质.此题难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用,注意折叠中的对应关系.二、选择:(每题3分,共27分)11.(3分)下列轴对称图形中,只有两条对称轴的图形是()A.B.C.D.考点:轴对称图形.分析:关于某条直线对称的图形叫轴对称图形,看各个图形有几条对称轴即可.解答:解:A、有两条对称轴,符合题意;B、C、都只有一条对称轴,不符合题意;D、有六条,对称轴,不符合题意;故选A.点评:轴对称的关键是寻找对称轴,两边图象折叠后可重合.12.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),能够说明△EDC≌△ABC,得ED=AB,所以测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角考点:全等三角形的应用.分析:由已知能够得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.解答:解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.点评:本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.13.(3分)如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD 于E,图中全等三角形有()A.3对B.5对C.6对D. 7对考点:全等三角形的判定.分析:根据题目的意思,能够推出△ABE≌△CDF,△AOE≌△COF,△ABO≌△CDO,△BCO≌△DOA,△ABC≌△CDA,△ABD≌△CDB,△ADE≌△CBF.再分别实行证明.解答:解:①△ABE≌△CDF∵AB∥CD,AD∥BC∴AB=CD,∠ABE=∠CDF∵AE⊥BD于E,CF⊥BD于E∴∠AEB=∠CFD∴△ABE≌△CDF;②△AOE≌△COF∵AB∥CD,AD∥BC,AC为ABCD对角线∴OA=OC,∠EOA=∠FOC∵∠AEO=∠CFO∴△AOE≌△COF;③△ABO≌△CDO∵AB∥CD,AD∥BC,AC与BD交于点O∴OD=OB,∠AOB=∠COD,OA=OC∴△ABO≌△CDO;④△BOC≌△DOA∵AB∥CD,AD∥BC,AC与BD交于点O∴OD=OB,∠BOC=∠DOA,OC=OA∴△BOC≌△DOA;⑤△ABC≌△CDA∵AB∥CD,AD∥BC∴BC=AD,DC=AB,∠ABC=∠CDA∴△ABC≌△CDA;⑥△ABD≌△CDB∵AB∥CD,AD∥BC∴∠BAD=∠BCD,AB=CD,AD=BC∴△ABD≌△CDA;⑦△ADE≌△CBF∵AD=BC,DE=BF,AE=CF∴△DEC≌△BFA.故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS,ASA、HL.同时考查了平行四边形的性质,题目比较容易.14.(3分)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA考点:全等三角形的判定;等边三角形的性质.专题:压轴题.分析:首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.解答:解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.点评:此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.15.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为10cm,求△PAB的周长为()A.5cm B.10cm C.20cm D. 15cm考点:轴对称的性质.分析:先根据轴对称的性质得出PA=AG,PB=BH,由此可得出结论.解答:解:∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴PA=AG,PB=BH,∴△PAB的周长=AP+PB+AB=AG+AB+BH=GH=10cm.故选B.点评:本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.16.(3分)下列各条件不能作出唯一直角三角形的是()A.已知两直角边B.已知两锐角C.已知一直角边和一锐角D.已知斜边和一直角边考点:全等三角形的判定.分析:根据直角三角形全等的判定定理(SAS,ASA,AAS,SSS,HL)判断即可.解答:解:A、∵两直角边和直角对应相等,∴根据SAS能推推出两三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;B、如教师用的含30度角的三角板和学生使用的含30度的三角板符合两锐角相等,但是不能化成唯一直角三角形,故本选项正确;C、根据ASA或AAS可以推出两直角三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;D、根据HL定理即可推出两三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;故选B.点评:本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.17.(3分)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB 于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称考点:作图—基本作图;全等三角形的判定与性质;角平分线的性质.专题:压轴题.分析:连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.解答:解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.点评:本题考查了作图﹣基本作图,全等三角形的判定与性质,角平分线的性质,等腰三角形、轴对称的性质,从作图语句中提取正确信息是解题的关键.18.(3分)如图,AD平分∠BAC,EG⊥AD于H,则下列等式中成立的是()A.∠α=(∠β+∠γ)B.∠α=(∠β﹣∠γ)C.∠G=(∠β+∠γ)D.∠G=∠α考点:全等三角形的判定与性质;三角形的外角性质.分析:由于∠α是△BEC的外角,可以得到∠α=∠β+∠G ①,而∠γ是△CFG的外角,可以得到∠γ=∠CFG+∠G ②,而∠AFE和∠CFG是对顶角,由∠AD平分∠BAC,EG⊥AD于H可以推出∠α=∠AFE,然后利用①②即可得到答案.解答:解:∵∠α是△BEC的外角,∴∠α=∠β+∠G ①,∵∠γ是△CFG的外角,∴∠γ=∠CFG+∠G ②∵AD平分∠BAC,EG⊥AD于H,AH公共边,∴△AEH≌△AFH,∴AE=AF,∴∠α=∠AFE,而∠AFE=∠CFG,∴∠AFE=∠CFG=∠α,∴∠γ=∠α+∠G ③,①﹣③得∠α﹣∠γ=∠β﹣∠α,∴2∠α=∠β+∠γ,即∠α=(∠β+∠γ).故选A.点评:此题利用了全等三角形的判定与性质,三角形的内角和外角的关系等知识解题,综合性比较强.做题时,要结合已知条件与全等的判定方法对选项逐一验证.19.(3分)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68考点:全等三角形的判定与性质.专题:压轴题.分析:由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.解答:解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.点评:本题考查的是全等三角形的判定的相关知识,是中考常见题型.三、作图(4+6=10分):20.(4分)现有三个村庄甲、乙、丙,现要新建一个水泵站P,使它到三个村庄的距离相等,应建在何处?(尺规作图,不写作法,保留痕迹)考点:作图—应用与设计作图;线段垂直平分线的性质.分析:利用线段垂直平分线的作法以及其性质得出,连接各点作出任意两边垂直平分线进而得出交点即可.解答:解:如图所示:P点即为所求.点评:此题主要考查了应用设计与作图,熟练利用线段垂直平分线的性质得出是解题关键.21.(6分)已知一个三角形的两边长分别是1cm和2cm,一个内角为40°.(1)请你借助图画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在下图画这样的三角形;若不能,请说明理由.(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°,”那么满足这一条件,且彼此不全等的三角形共有几个?分别画出草图,并在图中相应位置标明数据.(画图请保留作图痕迹,并把符合条件的图形用黑色笔画出来)考点:作图—应用与设计作图;全等三角形的判定.分析:(1)利用已知条件画出符合要求的图形即可;(2)利用已知条件画出符合要求的图形即可;(3)利用已知条件画出符合要求的图形即可.解答:解:(1)如图(1)所示:(2)如图(2)所示:(3)如图所示:.点评:此题主要考查了应用设计与作图,利用三角形的形状不确定得出是解题关键.三、解答:(共43分)22.(6分)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:考点:全等三角形的判定与性质;命题与定理.专题:压轴题.分析:此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.解答:情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.点评:此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.23.(6分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.考点:等腰三角形的性质;全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD 中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.解答:证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.点评:本题考查了等腰三角形的性质及三角形的内角和定理;等量减等量差相等的利用是解答本题的关键.24.(6分)在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC 于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.考点:线段垂直平分线的性质.分析:(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC的长,进而得出结论.解答:解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.点评:本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.25.(6分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.考点:全等三角形的判定与性质.分析:(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.解答:(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.点评:此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握判定与性质是解本题的关键.26.(11分)(1)如图1,图2,图3,在△ABC中,分别以AB,AC为边,向△ABC外作正三角形,正四边形,正五边形,BE,CD相交于点O.①如图1,试说明:△ABE≌△ADC;②探究:如图1,∠BOC=120;如图2,∠BOC=90°;如图3,∠BOC=72°;(2)如图4,AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边,BE,CD的延长相交于点O,试猜想:图4中∠BOC=.(用含n的式子表示)考点:全等三角形的判定与性质;等边三角形的性质;多边形内角与外角;正方形的性质.分析:根据等边三角形的性质可以得出△DAC≌△BAE,再根据三角形的外角与内角的关系就可以求出∠BOC的值,在图2中,连结BD,然后用同样的方法证明△DAC≌△BAE,根据三角形外角与内角之间的关系就可以求出∠BOC的值,依此类推就可以得出当作n边形的时候就可以求出图4∠BOC的值.解答:①证明:如图1,∵△ABD和△AEC是等边三角,∴AD=AB,AE=AC,∠DAB=∠EAC=∠ABD=∠ADB=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE.在△DAC和△BAE中,,∴△DAC≌△BAE(SAS).②解:∵△DAC≌△BAE,∴∠CDA=∠EBA.∵∠BOC=∠BDO+∠OBD,∴∠BOC=∠BDA+∠ABE+∠OBD,∴∠BOC=∠BDA+∠ADC+∠OBA,∴∠BOC=∠BDA+∠OBD=60°+60°=120°=.如图2,连结BD,∵四边形ABFD和四边形ACGE是正方形,∴AB=AD,AE=AC,∠BAD=∠CAE=90°,∠BDA=∠DBA=45°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠CAD.在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴∠CDA=∠EBA.∵∠BOC=∠BDO+∠DBO,∴∠BOC=∠BDA+∠ADO+∠DBO,∴∠BOC=∠BDA+∠ABE+∠DBO,∴∠BOC=∠BDA+∠DBA=45°+45°=90°=;如图3,连结BD,,∵五边形ABHFD和五边形ACIGO是正五边形,∴AB=AD,AE=AC,∠BAD=∠EAC=108°,∴∠BAD+∠DAE=∠EAC+∠DAE,∠ABD=∠ADB=36°∴∠BAE=∠DAC在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴∠ABE=∠ADC.∵∠BOC=∠OBD+∠BDO,∴∠BOC=∠ADB+∠ADC+∠OBD,∴∠BOC=∠ADB+∠ABE+∠OBD,∴∠BOC=∠ADB+∠ABD=72°=.(2)以此类推,当作正n边形时,∠BOC=.故答案为:120°,90°,72°,.点评:本题考查了全等三角形的判定与性质,根据正多边形的性质证明三角形全等是解题关键.27.(8分已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF 绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=S△ABC;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.考点:旋转的性质;直角三角形全等的判定.专题:综合题.分析:先作出恰当的辅助线,再利用全等三角形的性质进行解答.解答:解:(1)显然△AED,△DEF,△ECF,△BDF都为等腰直角三角形,且全等,则S△DEF+S△CEF=S△ABC;(2)图2成立;图3不成立.图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°,又∵∠C=90°,∴DM∥BC,DN∥AC,∵D为AB边的中点,由中位线定理可知:DN=AC,MD=BC,∵AC=BC,∴MD=ND,∵∠EDF=90°,∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°,∴∠MDE=∠NDF,在△DME与△DNF中,∵,∴△DME≌△DNF(ASA),∴S△DME=S△DNF,∴S四边形DMCN=S四边形DECF=S△DEF+S△CEF,由以上可知S四边形DMCN=S△ABC,∴S△DEF+S△CEF=S△ABC.图3不成立,连接DC,证明:△DEC≌△DBF(ASA,∠DCE=∠DBF=135°)∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+,∴S△DEF﹣S△CFE=.故S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.点评:利用作出的辅助线将不规则的三角形转化为直角三角形进行解决.。
八年级趣味数学竞赛试题
八年级趣味数学竞赛试题班级姓名得分1、一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。
问他赚了多少?答案:2元2、小华的爸爸1分钟可以剪好5只自己的指甲。
他在5分钟内可以剪好几只自己的指甲?答案:20只,包括手指甲和脚趾甲3、哪一年正着念和倒着念一样?答案:1961年4、一根绳子两个头,一根半绳子有几个头?答案:4个5、桌子上原有12支点燃的蜡烛,先被风吹灭了3支,不久又被风吹灭了2支,桌子上还剩几支蜡烛呢?答案:12支6、一张照片上有3个人,但是却有2个爸爸和2个儿子,为什么?答案:照片上的人分别为爷爷、爸爸、儿子7、用放大镜不能放大的是什么?猜一几何名词。
答案:角8、5只鸡,5天生了5个蛋。
100天内要100个蛋,需要多少只鸡?答案:5只9、12356789,猜一含数字成语。
答案:丢三落四10、阿拉伯数字是哪个国家或地区的人发明创造的?()答案:AA、古印度人B、阿拉伯人C、欧洲人D、中国人11、7/8,猜一含数字成语。
答案:七上八下12、一个农夫带着三只兔到集市上去卖,每只兔大概三四千克,但农夫的秤只能称五千克以上,问他该如何称量。
答案:先称3只,再拿下一只,称量后算差。
13、一天有个年轻人来到王老板的店里买一件礼物,这件礼物成本是18元,售价是21元。
结果是这个年轻人掏出100元要买这件礼物。
王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。
但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元。
现在问题是:王老板在这次交易中到底损失了多少钱?答案:97元14、把绳子三折来量,井外余4米;把绳子四折来量,井外余1米。
求井深和绳子各是多少?15、王师傅爱喝酒,家中有24只空啤酒瓶。
某商店推出一项活动:三个空啤酒瓶可以换一瓶啤酒。
请问:王师傅家的空啤酒瓶可以换多少瓶啤酒喝?答案:12瓶。
因为三个空啤酒瓶可以换一瓶啤酒,相当于两个空瓶换一瓶酒喝。
国家八年级数学质量测试题(六套)
八年级数学测试题卷1一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....). 1.2的绝对值是( ). A .-2 B .21C . 21D .22.下表是世界五大洲的最低点及其海拔高度: 世界五大洲的最低点 亚洲死海 欧洲里海 非洲阿萨尔湖大洋洲北艾尔湖美洲死谷海 海拔∕m-422-28-153-16-85根据以上数据,海拔最低的是( ).A .美洲死谷海B .大洋洲北艾尔湖C .亚洲死海D .非洲阿萨尔湖 3.关于代数式a + 1的值,下列说法正确的是( ).A .比1大B .比1小C .比a 大D .比a 小 4.11在数轴上的对应点的位置大致是( ).A .B .C .D .5.一个不透明的口袋里装有红、白、黄、蓝四种颜色的球,这些球除颜色外其余特征都相同.其中红球有20个,白球有30个,黄球有40个,蓝球有35个.现从该口袋中随机摸出1个球,可能性最大的是( ).A .红球B .白球C .黄球D .蓝球 6.某地区研究人员发现,该地区PM 2.5有五个重要来源, 分别是机动车船排放、工业生产、燃煤、扬尘、民用,下图反 映了它们所占的比例,则下列结论正确的是( ).A .工业生产所占比例最高B .燃煤所占比例最低C .机动车船排放比民用高14.2%D .机动车船排放比扬尘低14.2%7.超市举行“满58元即可抽奖”的活动,林阿姨想买纸巾和洗衣液凑够58元,如果她买3包纸巾和1袋洗衣液,还差6元钱;如果买2包纸巾和2袋洗衣液,超出2元钱.设纸巾的单价为x 元,洗衣液的单价为y 元,则可列出的二元一次方程组为( ).-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6民用15%机动车船排放29.2%燃煤13.5%扬尘13.4% 工业生产28.9%A .⎩⎨⎧=+=+6022,523y x y xB .⎩⎨⎧=+=+5622,643y x y xC .⎩⎨⎧=+=+5622,523y x y xD .⎩⎨⎧=+=+6022,643y x y x8.如图,四个全等的长为m ,宽为n 的长方形围成了一个 大正方形,能表示阴影部分面积的代数式是( ).A .m 2+ n 2B .m 2-n 2C .(m + n )2D .(m -n )29.如图,蜂巢的横截面是由一些全等的正六边形紧密排列在一起而 形成的,根据图中标示的各点位置,与△ABC 全等的三角形是( ).A .△ABDB .△ECFC .△BCFD .△DEF10.小明买了一盒牛奶,如图1所示,正面有“牛奶”.右侧面有一根吸管,小明喝完牛奶后将纸盒剪开,展开如图2所示,那么在展开图中,吸管所在侧面的编号是( ).A .①B .②C .③D .④11.《铁路旅客运输规程》规定:每名旅客可免费携带的物品外部尺寸长、宽、高之和不超过160 cm ,若某行李箱高为30 cm ,长与宽的比为3:2,则符合免费携带物品要求的行李箱的宽的最大值为( )cm .A .26B .52C .64D .78 12.如图,在中Rt △ABC 中,∠A = 30︒.AB 的垂直平分线分别交AB , AC 于点D 、点E ,连接BE .则AE 与CE 之间的数量关系是( ).A .AE = CEB .AE =23CE C .AE = 2CE D .AE = 3CE 二、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.解二元一次方程组:⎩⎨⎧-=+=-.432,52y x y x14.计算:a 2·a 3,并用乘方的意义解释你是如何计算的.15.乘坐某交通工具,每位乘客可免费托运行李的质量最多为20 kg ,超出20 kg 的部分按每千克10元收费.(1)如果小云托运了25 kg 的行李,她需要付多少元的托运费用?牛奶吸管牛奶②①③④ACDF B EmnBCE DA(2)当质量超过20 kg 时,求小云的托运费用y (元)与行李质量x (kg )的函数表达式. (3)画出(2)中所求函数表达式的图象.16.图1是一张风筝的图片,依据风筝的形状画出一个如图2所示的四边形,我们把它称为筝形. (1)请根据筝形的图形特点,解答下面两个问题:(2)你认为筝形具有哪些性质?(请结合图2写出三条,不必说明理由)(3)请你给筝形下一个数学定义.八年级数学测试题卷2一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....) 1.3的相反数是( ).A .3B .-3C .31D .31-2.足球比赛用球的标准质量是385 g .以385 g 为标准,高出标准的记为“+”,低于标准的记为“-”.如,一个388 g 足球的质量可记为“+3 g ”.若一个足球的质量记为“-8 g ”,则它的实际质量是( ).A .-8 gB .8 gC .377 gD .393 g3.与5最.接近的整数是( ). A .2 B .3 C .4 D .54.如图,直线a ∥b ,直线c 与直线a 、b 都相交.若∠1 = 120︒,则∠2的度数为( ). A .30︒ B .60︒ C .70︒ D .120︒ 5.将x 2-9y 2分解因式的结果是( ).A .(x + 9y )(x -9y )B .(x + 3y )(x -3y )C .(x + 3)(x -3)D .(x -3y )2 6.小红统计了班里同学的上学方式,并分别绘制了如下两个统计图,则条形统计图中阴影部分所代表的上学方式是( ).A .公共交通B .骑车C .步行D .其他7.超市举行“满58元即可抽奖”的活动,林阿姨 想买纸巾和洗衣液凑够58元.如果她买3包纸巾和1袋洗衣液,还差6元钱;如果买2包纸巾和2袋洗衣液,超出2元钱.设纸巾的单价为x 元,洗衣液的单价a bc21 骑车 步行公共交通其他上学方式人数ABCD为y 元,则可列出的二元一次方程组为( ).A .⎩⎨⎧=+=+6022,523y x y xB .⎩⎨⎧=+=+5622,643y x y xC .⎩⎨⎧=+=+5622,523y x y xD .⎩⎨⎧=+=+6022,643y x y x8.如图,四个全等的长为m ,宽为n (m >n )的长方形围成了一个大长方形,能表示阴影部分面积的代数式是( ).A .m 2 + n 2B .m 2-n 2C .(m + n )2D .(m -n )2 9.如图,蜂巢的横截面是由一些全等的正六边形紧密排列在一起而形成的. 根据图中标示的各点位置,与△ABC 全等的三角形是( ).A .△ABDB .△ECFC .△BCFD .△DEF 10.小明买了一盒牛奶,如图所示,正面写有“牛奶”,右侧面有一根吸管. 小明喝完牛奶后将纸盒剪开,展开图如后,那么在展开图中,吸管所在侧面的编 号是( ).A .①B .②C .③D .④11.《铁路旅客运输规程》规定:每名旅客可免费携带的物品外部尺寸长、宽、高之和不超过160 cm .若某行李箱高为30 cm ,长与宽的比为3:2,则符合免费携带物品要求的行李箱的宽的最大值为( )cm .A .26B .52C .64D .78 12.如图,在Rt △ABC 中,∠C = 90︒,∠A = 30︒.AB 的垂直平分线分别交 AB ,AC 于点D 、点E ,连接BE ,则AE 与CE 之间的数量关系是( ).A .AE = CEB .AE =23CE C .AE = 2CE D .AE = 3CE 二、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.如图,在△ABC 中,AB = AC ,D ,E 是BC 上的两点,且AD = AE . 求证:△ABD ≌ACE .14.计算:a 2·a 3,并用乘方的意义解释你是如何计算的.15.按照国际通行的标准,当一个国家或地区60及60岁以上人口达到人口总数的10%,或65及65ACD FBEm nB CE D AABD EC牛奶吸管牛奶②①③④岁以上人口达到人口总数的7%,即意味着这个国家或地区进入老龄化社会.某中学八年级学生随机调查了某地区80名居民的年龄情况,被调查居民年龄情况的统计图如下:(1)在所调查的居民中,60及60岁以上人口占社区人口总数的百分比是多少?65及65岁以上呢? (2)根据以上数据推断,该社区是否进入了老龄化社会?并说明理由. (3)请你为该社区居委会提出一条合理化建议.(尽可能结合所学的数学知识)16.图1是一张风筝的图片,依据风筝的形状画出一个如图2所示的四边形,我们把它称为筝形.请根据筝形的图形特点,解答下面两个问题:(1)你认为筝形具有哪些性质?(请结合图2写出三条,不必说明理由) (2)请你给筝形下一个数学定义.八年级数学测试题卷3一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在答题卡的相应位置上)1.3的相反数是( ).A .3B .-3C .31D .31-2.足球比赛用球的标准质量是385 g .以385 g 为标准,高出标准的记为“+”,低于标准的记为“-”.如,一个388 g 足球的质量可记为“+3 g ”.若一个足球的质量记为“-8 g ”,则它的实际质量是( ).A .-8 gB .8 gC .377 gD .393 g 3.与5最.接近的整数是( ). A .2 B .3 C .4 D .54.如图,直线a ∥b ,直线c 与直线a 、b 都相交.若∠1 = 120︒,则∠2的度数为( ).A .30︒B .60︒C .70︒D .120︒ 5.将x 2-9y 2分解因式的结果是( ).人数年龄/岁30以下 30-54 55-59 60-64 65-69 70及以上 40 35 30 25 20 15 10 524 378542ABCDabc21A .(x + 9y )(x -9y )B .(x + 3y )(x -3y )C .(x + 3)(x -3)D .(x -3y )26.小红统计了班里同学的上学方式,并分别绘制了如下两个统计图,则条形统计图中阴影部分所代表的上学方式是( ).A .公共交通B .骑车C .步行D .其他7.小明用三根木条组成等腰三角形,则这三根木条的长度可能是( ). A .80 cm ,35 cm ,35 cm B .70 cm ,35 cm ,35 cm C .40 cm ,30 cm ,30 cm D .30 cm ,40 cm ,50 cm 8.如图,∠1,∠2,∠3,∠4,∠5分别是六边形ABCDEF 的 五个外角,且∠1 +∠2 +∠3 +∠4 +∠5 = 260︒,则∠C 等于( ).A .100︒B .90︒C .80︒D .70︒ 9.下面是某中学的平面示意图,每个方格的边长都是1, 如图旗杆所在位置的坐标为(0,0),小明所在位置的坐标为 (-6,1),那么坐标(3,-3)所代表的地点是( ).A .图书馆B .操场C .教学楼D .花坛10.小明带了20元去打印学习资料,黑白打印每页0.15元, 彩色打印每页1元,现已彩色打印15页,最多..还能黑白打印多少 页?( ).A .31B .32C .33D .3411.一滴墨水滴在了正方体的一个角上,那么正方体的展开图可能是( ).A .B .骑车 步行公共交通其他上学方式人数CDEBAF 1 23 45图书馆操场花坛教学楼 旗杆小明C .D .12.直线l 1:y = kx + b 的图象如右下图所示,直线l 2上部分点的坐标如左下表所示,那么直线l 1与l 2的交点坐标是( ).A .(3,2)B .(7,6)C .(0,-1)D .(-1,0) 二、解答题(共4题,请将解答过程写在填答卡的相应位置上.........) 13.如图,在△ABC 中,AB = AC ,D ,E 是BC 上的两点,且AD = AE . 求证:△ABD ≌△ACE .14.请你写出完全平方式(a + b )2= a 2+ 2ab + b 2的推导过程.15.按照国际通行的标准,当一个国家或地区60及60岁以上人口达到人口总数的10%,或65及65岁以上人口达到人口总数的7%,即意味着这个国家或地区进入老龄化社会.某中学八年级学生随机调查了某地区80名居民的年龄情况,被调查居民年龄情况的统计图如下:(1)在所调查的居民中,60及60岁以上人口占社区人口总数的百分比是多少?65及65岁以上呢? (2)根据以上数据推断,该社区是否进入了老龄化社会?并说明理由. (3)请你为该社区居委会提出一条合理化建议.(尽可能结合所学的数学知识)16.某校进行安全疏散演练,要求学生选择最短路线尽快到达如图所示的矩形安全区域.(1)如图1,如果小红处于点A 的位置,请用尺规作出她到达安全区域的最短路线,并说明理由(保留作图痕迹);(2)如果小明处于图1中点B 的位置,请画出他到达安全区域的最短路线,并说明理由.(3)图2中C ,D 分别表示安全区域外的另外两名同学小亮和小童所处的位置,他们中哪位同学到达x … -3 -1 3 5 … y…-123…xyl 111ABD EC人数年龄/岁30以下 30-54 55-59 60-64 65-69 70及以上 40 35 30 25 20 15 10 524 378542安全区域的最短路线的方式与小红相同?哪位同学达到安全区域的最短路线的方式与小明相同?(4)你认为安全区域的任何一名同学到达安全区域的最短路线还有其他不同的方式吗?如果有,请画出;如果没有,请说明理由.八年级数学测试题卷4一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....) 1.中新网2015年1月20日电,国家统计局发布最新人口数据:2014年末大陆人口为1367820000人,1367820000用科学记数法表示为( ).A .1.36782×108B .1.36782×109C .0.136782×1010D .13.6782×109 2.下列四个交通标志牌中,只有两条对称轴的是( ).A .B .C .D .3.图中所示是深受人们喜爱的“俄罗斯方块”的电子游戏画面.如果想使上方的方块组落下后刚好填满下方的空格,那么可以将上方的方块组( ).A .先向右平移1格,后向下平移4格B .先向右平移2格,后向下平移4格C .先向右平移3格,后向下平移3格D .先向右平移4格,后向下平移3格4.解方程3x + 5 = 2x + 7时,下列变形正确的是( ).A .3x + 2x = 7 + 5B .3x -2x = 7 + 5C .3x -2x = 7-5D .2x -3x = 7-5小明安全区域安全区域图1 图2小红·A ·B 小童 C ··D小亮5.在-1,3,2,5这四个数中,最大的数是( ).A .-1B .3C .2D .5 6.⎩⎨⎧-=-=1,2y x 是下面哪个方程的解?( ).A .2x + y = 0B .2x + y -5 = 0C .2x + y + 5 = 0D .2x -y = 0 7.小明用三根木条组成等腰三角形,则这三根木条的长度可能是( ). A .80 cm ,35 cm ,35 cm B .70 cm ,35 cm ,35 cm C .40 cm ,30 cm ,30 cm D .30 cm ,40 cm ,50 cm 8.如图,∠1,∠2,∠3,∠4,∠5分别是六边形ABCDEF 的 五个外角,且∠1 +∠2 +∠3 +∠4 +∠5 = 260︒,则∠C 等于( ).A .100︒B .90︒C .80︒D .70︒ 9.下面是某中学的平面示意图,每个方格的边长都是1, 如图旗杆所在位置的坐标为(0,0),小明所在位置的坐标为(-6,1),那么坐标(3,-3)所代表的地点是( ).A .图书馆B .操场C .教学楼D .花坛10.小明带了20元去打印学习资料,黑白打印每页0.15元, 彩色打印每页1元,现已彩色打印15页,最多..还能黑白打印 多少页?( ).A .31B .32C .33D .34二、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.计算:2422-÷-x xx x .14.请你写出完全平方式(a + b )2 = a 2 + 2ab + b 2 的推导过程.15.如图1,公路上依次有A ,B ,C 三点,AB 间的距离为2 km ,BC 间的距离为4 km ,小张和小丽分别从A ,B 两地同时出发匀速去往C 地,图2是小张和小丽出发t (h )后分别与A 地相距s 1(km )和s 2(km )的函数图像.CDEBAF 1 2345 图书馆操场花坛教学楼 旗杆小明(1)图2中,表示小张运动过程的线段是 ,表示小丽运动过程的线段是 ; (2)分别求出s 1 ,s 2与t 的函数关系式; (3)说出图2中点N 的实际意义.16.某校进行安全疏散演练,要求学生选择最短路线尽快到达如图所示的矩形安全区域.(1)如图1,如果小红处于点A 的位置,请用尺规作出她到达安全区域的最短路线,并说明理由(保留作图痕迹);(2)如果小明处于图1中点B 的位置,请画出他到达安全区域的最短路线,并说明理由.(3)图2中C ,D 分别表示安全区域外的另外两名同学小亮和小童所处的位置,他们中哪位同学到达安全区域的最短路线的方式与小红相同?哪位同学达到安全区域的最短路线的方式与小明相同?(4)你认为安全区域的任何一名同学到达安全区域的最短路线还有其他不同的方式吗?如果有,请画出;如果没有,请说明理由.八年级数学测试题卷5一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....) 1.中新网2015年1月20日电,国家统计局发布最新人口数据:2014年末大陆人口为1367820000人,1367820000用科学记数法表示为( ).A .1.36782×108B .1.36782×109C .0.136782×1010D .13.6782×109 2.下列四个交通标志牌中,只有两条对称轴的是( ).s/km6 4 NQP Ot/h0.42ABC小张 小丽小明安全区域安全区域图1 图2小红·A ·B 小童 C ··D小亮A.B.C.D.3.图中所示是深受人们喜爱的“俄罗斯方块”的电子游戏画面.如果想使上方的方块组落下后刚好填满下方的空格,那么可以将上方的方块组().A.先向右平移1格,后向下平移4格B.先向右平移2格,后向下平移4格C.先向右平移3格,后向下平移3格D.先向右平移4格,后向下平移3格4.解方程3x + 5 = 2x + 7时,下列变形正确的是().A.3x + 2x = 7 + 5 B.3x-2x = 7 + 5 C.3x-2x = 7-5 D.2x-3x = 7-55.在-1,3,2,5这四个数中,最大的数是().A.-1 B.3 C.2D.56.⎩⎨⎧-=-=1,2yx是下面哪个方程的解?().A.2x + y = 0 B.2x + y-5 = 0 C.2x + y + 5 = 0 D.2x-y = 07.小明和小华约定同时各自从家骑车出发去附近的早餐店吃早餐.如图,每一个小方格的边代表实际长度为100 m的街道,他们各自选择沿小方格的边......以最短路线去早餐店,经过t min同时到达,那么小明的速度比小华的速度快().A.t500m∕min B.t400m∕min C.t300m∕minD.t200m∕min 8.平面直角坐标系内有五个点:A(4,2),B(4,-2),C(-4,2),D(-4,-2),E(3,-1),将点A,B,C,D分别与点E连接,在所得的线段中,与x轴及y轴都相交的线段是().A.AE B.BE C.CE D.DE9.下图分别是某中学七年级和八年级男、女学生人数的分布图,关于这两个年级女生人数说法正确的是().A.七年级较多B.八年级较多C.一样多D.无法比较10.在矩形ABCD中,AD = 5,AB = 4,以A为圆心,小华家早餐店小明家女生60%男生40%女生54%男生46%八年级男、女学生人数分布七年级男、女学生人数分布AD 长为半径画弧,交BC 于点E ,那么BE 的长为( ).A .1B .2C .3D .411.一次函数y = kx + b 中x ,y 的几组对应值如下表,可以得到m 的值为( ).x … -2 0 2 4 … y…4m810…A .5B .6C .7D .012.用两个图钉将一个橡皮筋的两个端点A ,B 固定在桌面上,拉动橡皮筋构成△ABP ,点C 、点D 分别为AP ,BP 的中点,拉动点P 至P ′ 的过程中,CD 的长度( ).A .增长B .缩短C .不变D .先增长后缩短三、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.计算:2422-÷-x xx x . 14.已知A ,B ,C 三点不在一条直线上,请你只用一把带有刻度........的直尺,画出平行四边形ABCD ,简述你的理由.15.如图1,公路上依次有A ,B ,C 三点,AB 间的距离为2 km ,BC 间的距离为4 km ,小张和小丽分别从A ,B 两地同时出发匀速去往C 地,图2是小张和小丽出发t (h )后分别与A 地相距s 1(km )和s 2(km )的函数图像.(1)图2中,表示小张运动过程的线段是 ,表示小丽运动过程的线段是 ; (2)分别求出s 1 ,s 2与t 的函数关系式; (3)说出图2中点N 的实际意义.16.计算从11到19这九个两位数中任何两个数的乘积, 有一些有趣的做法,例如:11×12 =(11 + 2)×10 + 1×2 = 130 + 2 = 132; 13×17 =(13 + 7)×10 + 3×7 = 200 + 21 = 221; 17×16 =(17 + 6)×10 + 7×6 = 230 + 42 = 272. (1)类比上述做法,再写出1个相同类型的式子; (2)请用字母表示上述做法的规律,并说明其合理性; (3)受到上述过程的启发,请你再提出1个数学问题.A BCEDAB CDPP ′ s/km6 4NQP Ot/h0.42ABC小张 小丽八年级数学测试题卷6一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....) 1.2的绝对值是( ). A .-2 B .21C .21D .22.下表是世界五大洲的最低点及其海拔高度 世界五大洲的最低点亚洲死海 欧洲里海 非洲阿萨尔湖大洋洲北艾尔湖美洲死谷海 海拔∕m-422-28-153-16-85根据以上数据,海拔最低的是( ).A .美洲死谷海B .大洋洲北艾尔湖C .亚洲死海D .非洲阿萨尔湖 3.关于代数式a + 1的值,下列说法正确的是( ).A .比1大B .比1小C .比a 大D .比a 小 4.11在数轴上的对应点的位置大致是( ).A .B .C .D .5.一个不透明的口袋里装有红、白、黄、蓝四种颜色的球,这些球除颜色外其余特征都相同.其中红球有20个,白球有30个,黄球有40个,蓝球有35个.现从该口袋中随机摸出1个球,可能性最大的是( ).A .红球B .白球C .黄球D .蓝球6.某地区研究人员发现,该地区PM 2.5有五个重要来源,分别是机动车船排放、工业生产、燃煤、扬尘、民用,下图反映了它们所占的比例,则下列结论正确的是( ).A .工业生产所占比例最高B .燃煤所占比例最低C .机动车船排放比民用高14.2%D .机动车船排放比扬尘低14.2% 7.小明和小华约定同时各自从家骑车出发去附近的早餐店吃早餐. 如图,每一个小方格的边代表实际长度为100 m 的街道,他们各自选择 沿小方格的边......以最短路线去早餐店,经过t min 同时到达,那么小明的 速度比小华的速度快( ).-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6民用15%机动车船排放29.2%燃煤13.5%扬尘13.4% 工业生产28.9%小华家早餐店小明家A .t 500m ∕min B .t 400m ∕min C .t300m ∕min D .t 200m ∕min8.平面直角坐标系内有五个点:A (4,2),B (4,-2),C (-4,2),D (-4,-2),E (3,-1),将点A ,B ,C ,D 分别与点E 连接,在所得的线段中,与x 轴及y 轴都相交的线段是( ).A .AEB .BEC .CED .DE 9.下图分别是某中学七年级和八年级男、女学生人数的 分布图,关于这两个年级女生人数说法正确的是( ).A .七年级较多B .八年级较多C .一样多D .无法比较10.在矩形ABCD 中,AD = 5,AB = 4,以A 为圆心, AD 长为半径画弧,交BC 于点E ,那么BE 的长为( ).A .1B .2C .3D .411.一次函数y = kx + b 中x ,y 的几组对应值如下表,可以得到m 的值为( ).x … -2 0 2 4 …y…4m810…A .5B .6C .7D .012.用两个图钉将一个橡皮筋的两个端点A ,B 固定在桌面上,拉动橡皮筋构成△ABP ,点C 、点D 分别为AP ,BP 的中点,拉动点P 至P ′的过程中,CD 的长度( ).A .增长B .缩短C .不变D .先增长后缩短 二、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.解二元一次方程组:⎩⎨⎧-=+=-.432,52y x y x14.已知A ,B ,C 三点不在一条直线上,请你只用一把带有刻度........的直尺,画出平行四边形ABCD ,简述你的理由.15.乘坐某交通工具,每位乘客可免费托运行李的质量最多为20 kg ,超出20 kg 的部分按每千克10元收费.(1)如果小云托运了25 kg 的行李,她需要付多少元的托运费用?(2)当质量超过20 kg 时,求小云的托运费用y (元)与行李质量x (kg )的函数表达式; (3)画出(2)中所求函数表达式的图象.女生 60%男生 40%女生 54%男生 46%八年级男、女学生人数分布七年级男、女学生人数分布 ABCEDAB CDPP ′16.计算从11到19这九个两位数中任何两个数的乘积,有一些有趣的做法,例如:11×12 =(11 + 2)×10 + 1×2 = 130 + 2 = 132;13×17 =(13 + 7)×10 + 3×7 = 200 + 21 = 221;17×16 =(17 + 6)×10 + 7×6 = 230 + 42 = 272.(1)类比上述做法,再写出1个相同类型的式子;(2)请用字母表示上述做法的规律,并说明其合理性;(3)受到上述过程的启发,请你再提出1个数学问题.。
八年级上册数学测试题全套
八年级上册数学测试题全套一、选择题(每题3分,共12分)1. 下列长度的三条线段能组成三角形的是()- A. 1,2,3.- B. 2,2,4.- C. 3,4,5.- D. 3,4,8.解析:根据三角形三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。
- 选项A:1 + 2=3,不满足两边之和大于第三边,不能组成三角形。
- 选项B:2+2 = 4,不满足两边之和大于第三边,不能组成三角形。
- 选项C:3+4>5,4 + 5>3,3+5>4,且|3 - 4|<5,|4 - 5|<3,|3 - 5|<4,能组成三角形。
- 选项D:3+4<8,不满足两边之和大于第三边,不能组成三角形。
- 答案:C。
2. 等腰三角形的一个角是80^∘,则它的底角是()- A. 50^∘- B. 80^∘- C. 50^∘或80^∘- D. 20^∘或80^∘解析:当80^∘角为等腰三角形的顶角时,底角=(1)/(2)(180^∘-80^∘) = 50^∘;当80^∘角为底角时,也符合等腰三角形的性质。
所以底角是50^∘或80^∘。
答案:C。
3. 点M(3,-2)关于y轴对称的点的坐标为()- A. (-3, - 2)- B. (3,2)- C. (-3,2)- D. (2,-3)解析:关于y轴对称的点纵坐标不变,横坐标互为相反数。
所以点M(3,-2)关于y轴对称的点的坐标为(-3,-2)。
答案:A。
4. 下列运算正确的是()- A. a^2· a^3=a^6- B. (a^2)^3=a^5- C. (2a)^2=4a^2- D. a^6÷ a^3=a^2解析:- 选项A:a^2· a^3=a^2 + 3=a^5≠ a^6。
- 选项B:(a^2)^3=a^2×3=a^6≠ a^5。
- 选项C:(2a)^2=2^2× a^2=4a^2,正确。
八年级数学测试题及答案
八年级数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. √2D. 0.33333…(循环小数)答案:C2. 已知a > 0,b < 0,c < 0,下列不等式成立的是:A. a + b < 0B. a - c > 0C. b - c < 0D. a × b < 0答案:D3. 若x² + 5x + 6 = 0,下列哪个是方程的解?A. x = -1B. x = -6C. x = -2 或 x = -3D. x = 2 或 x = 3答案:C4. 下列哪个是二次根式?A. √3x²C. √xD. √x²答案:B5. 函数y = 3x + 5的斜率是:A. 3B. 5C. -3D. -5答案:A6. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A7. 已知一个数列1, 3, 5, 7, ...,这个数列的第10项是:A. 17B. 19C. 21D. 23答案:B8. 下列哪个是完全平方数?B. 25C. 27D. 29答案:B9. 一个圆的半径是5,那么它的周长是:A. 10πB. 20πC. 30πD. 40π答案:B10. 一个长方体的长、宽、高分别是2, 3, 4,它的体积是:A. 24B. 12C. 36D. 48答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,这个数是________。
答案:1612. 一个数的相反数是-7,这个数是________。
答案:713. 一个数的绝对值是5,这个数可能是________或________。
答案:5 或 -514. 一个二次方程的一般形式是________。
答案:ax² + bx + c = 0(a≠0)15. 一个正数的倒数是1/8,这个正数是________。
人教版八年级上数学试题
人教版八年级上数学试题一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 1,2,3B. 3,4,8C. 5,6,10D. 5,6,11解析:根据三角形三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。
选项A:公式,不满足两边之和大于第三边,不能组成三角形。
选项B:公式,不满足两边之和大于第三边,不能组成三角形。
选项C:公式,公式,公式,满足三边关系,可以组成三角形。
选项D:公式,不满足两边之和大于第三边,不能组成三角形。
所以答案是C。
2. 一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形解析:多边形的外角和是公式,设这个多边形有公式条边。
根据内角和公式公式,由题意得公式公式公式公式所以这个多边形是六边形,答案是C。
二、填空题(每题3分,共15分)1. 等腰三角形的一个底角为公式,则它的顶角为______。
解析:等腰三角形两底角相等,三角形内角和为公式。
所以顶角公式。
2. 若点公式与点公式关于公式轴对称,则公式______,公式______。
解析:关于公式轴对称的点纵坐标相等,横坐标互为相反数。
所以公式,公式。
三、解答题(共55分)1. (10分)如图,在公式中,公式,公式,公式是公式的角平分线,求公式的度数。
解析:1. 首先求公式的度数:在公式中,根据三角形内角和为公式,已知公式,公式,则公式。
2. 然后求公式的度数:因为公式是公式的角平分线,所以公式。
2. (12分)已知公式,公式两点在一次函数公式的图象上,且公式,公式,试比较公式与公式的大小。
解析:1. 对于一次函数公式,当公式时,公式随公式的增大而减小。
2. 已知公式,根据公式随公式的增大而减小的性质,可得公式。
八年级数学测试题及答案
八年级数学测试题及答案一、选择题(本大题共12题,每小题3分,共36分)1.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是().a、21:10b、10:21c、10:51d、12:01u第1题图2、点m(1,2)关于x轴对称点的座标为().a.(-1,-2)b.(-1,2)c.(1,-2)d.(2,-1)3.例如图△abc中,ab=ac,∠b=30°,ab⊥ad,ad=4cm,则bc的短为().a、8mb、4mc、12md、6m4、若等腰三角形的周长为26cm,一边为6cm,则腰长为().a.6cmb.10cmc.6cm或10cmd.以上都不对5.如图,∠bac=110°若mp和nq分别垂直平分ab和ac,则∠paq的度数是()a、70°b、40°c、50°d、60°6.等腰三角形一腰上的低与另选贤任能的夹角为300,则顶上角度数为()a、300b、600c、900d、1200或6007.下面是某同学在一次测验中的计算摘录①3a?2b?5ab;②4m3n?5mn3??m3n;③3x3?(?2x2)??6x5④4a3b?(?2a2b)??2a;⑤?a3?2?a5;⑥??a?3aa2.其中正确的个数有()a.1个b.2个c.3个d.4个8.下列各式是完全平方式的是().a.x2-x+14b.1+x2c.x+xy+1d.x2+2x-1;9.例如(x+m)与(x+3)的乘积中不不含x的一次项,则m的值().a.-3b.3c.0d.1[来源学科网z.x.x.k]10.(?5a2?4b2)(______)?25a4?16b4括号内应填()a、5a?4bb、5a?4bc、?5a?4bd、?5a?4b11.以下水解因式恰当的就是()a.x3?x?x(x2?1).b.(a?3)(a?3)?a2?9c.a2?9?(a?3)(a?3).d.x2?y2?(x?y)(x?y).12.下列各式从左到右的变形,正确的是().a.-x-y=-(x-y)b..(y?x)2?(x?y)2c.(x?y)2?(?x?y)2d.(a?b)3?(b?a)3二、填空题(每小题4分后,共24分后)13、等腰三角形的一内角等于50°,则其它两个内角各为.14.计算(-3x2y)2(222222221231xy)=__________.()2021?(?1)2021?34315.若3x=10,3y=5,则32x―y=.216.已知4x+mx+9是完全平方式,则m=_________17、例如图:点p为∠aob内一点,分别做出p点关于oa、ob的对称点p1,p2,相连接p1p2交oa于m,交ob于n,△pmn的周长为15cm,p1p2=.18.a+1+a(a+1)+a(a+1)+......+a(a+1)2021=.三、解答题:(602p1mpa分)第17题图onp2b19.(6分)如图:某地有两所大学和两条相交叉的公路,(点m,n表示大学,ao,bo表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。
数学测试题及答案八年级
数学测试题及答案八年级一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的平方等于它本身,这个数是:A. 0B. 1C. -1D. 0和1答案:D3. 计算下列哪个表达式的结果等于9?A. 3 * 3B. 2 * 4 + 1C. 5 - 4D. 6 / 2答案:A4. 一个等腰三角形的两个底角相等,如果一个底角是40度,那么顶角的度数是:A. 40度B. 100度C. 140度D. 160度答案:B5. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 所有选项答案:B6. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 20厘米C. 25厘米D. 15厘米答案:A8. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0、1和-1答案:D9. 计算下列哪个表达式的结果等于-8?A. 2 * (-4)B. (-2) * 4C. -2 * (-4)D. 4 * (-2)答案:A10. 一个直角三角形的两个锐角分别是30度和60度,那么斜边的长度是:A. 2倍的较短直角边B. 3倍的较短直角边C. 4倍的较短直角边D. 5倍的较短直角边答案:A二、填空题(每题4分,共20分)1. 一个数的相反数是-8,那么这个数是______。
答案:82. 如果一个数的平方等于36,那么这个数可以是______。
答案:±63. 一个三角形的内角和等于______度。
答案:1804. 一个数的立方根是2,那么这个数是______。
答案:85. 一个数除以它本身等于______。
答案:1(非零数)三、解答题(每题10分,共50分)1. 解方程:2x - 3 = 5答案:x = 42. 计算:(3x - 2)(x + 4) = 0,求x的值。
八年级数学第一章测试题
八年级数学第一章测试题一、选择题(每题3分,共30分)A. 1cm,2cm,3cmB. 2cm,3cm,4cmC. 4cm,6cm,10cmD. 5cm,12cm,6cm解析:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。
A选项,1 + 2=3,不满足两边之和大于第三边,不能组成三角形。
B选项,2+3 > 4,3 + 4>2,2+4>3,且4 2 < 3,4 3<2,3 2<4,可以组成三角形。
C选项,4+6 = 10,不满足两边之和大于第三边,不能组成三角形。
D选项,5+6<12,不满足两边之和大于第三边,不能组成三角形。
答案:B2. 三角形按角分类可以分为()A. 锐角三角形、直角三角形、钝角三角形B. 等腰三角形、等边三角形、不等边三角形C. 直角三角形、等腰直角三角形、等边三角形解析:三角形按角分类分为锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。
答案:A3. 一个三角形的三个内角的度数之比为2:3:4,则这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形解析:设三个内角分别为2x,3x,4x,因为三角形内角和为180°,则2x+3x +4x=180°,9x = 180°,x = 20°。
所以三个角分别为40°,60°,80°,都是锐角,这个三角形是锐角三角形。
答案:A4. 能将三角形的面积平分的是三角形的()A. 角平分线B. 高C. 中线解析:三角形的中线把三角形分成两个等底同高的三角形,所以能将三角形的面积平分。
答案:C5. 已知等腰三角形的两边长分别为3和6,则它的周长为()A. 12B. 15C. 12或15D. 18解析:当3为腰长时,三边为3,3,6,因为3+3 = 6,不满足三角形三边关系,不能构成三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期末质量监测 第 1页 共4页
2014-2015学年度第二学期基础教育质量监测期末评价
八年级数学试卷
(全卷共五个大题,满分150分,考试时间120分钟)
一、选择题:(本大题共12个小题,每小题4分,共48分)每小题都给出的代号为A 、B 、
C 、
D 的四个答案,其中只有一个是正确的,请将正确答案的代号填写在答题卷上.
1.下列运算正确的是
A .
B .
C .
D .
2.使代数式221
x x +有意义的的取值范围是 A .12x ≥- B .12x ≤- C .12
x >- D .12x <-
3.在平面直角坐标系中,函数1+-=x y 的图象不经过 A .第四象限 B .第三象限 C .第二象限 D .第一象限
4.下列四组数据中,不能是直角三角形的三边的长的一组数据是
A .12,16,20
B .3,7 ,9
C .6,8,10
D .5,12,13
5.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲成绩的方差为1.96,乙成绩的方差为2.98,由此可知
A .甲比乙的成绩稳定
B .乙比甲的成绩稳定
C .甲、乙两人的成绩一样稳定
D .无法确定谁的成绩更稳定
6.如图,若四边形ABCD 是平行四边形,则下列结论中不正确的是
A .当o 90ABC ∠=时,四边形ABCD 是矩形
B .当A
C B
D ⊥时,四边形ABCD 是菱形
C .当AB BC =时,四边形ABC
D 是菱形
D .当AC BD =时,四边形ABCD 是正方形 7.对于数据组3,3,2,3,6,3,10,3,6,3,2 .①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值不等;④这组数据的平均数与众数的数值不等.其中正确的结论有
A .1个
B .2个
C .3个
D .4个
8.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是
A .△ABD 与△ABC 的周长相等
B .△AD
C 与△ABC 的周长相等
523=+623=⨯13)13(2-=-353522-=-x A B C D (6题图)
八年级数学期末质量监测 第 2页 共4页
C .菱形的周长等于两条对角线之和的两倍
D .菱形的面积等于两条对角线之积的两倍
9.如图,在矩形ABCD 中,5AB =,12AD =,则点A 到对角线BD 的距离为
A .12
B .
6512 C .5 D .6013
(8题图) 10. 如图,F 是正方形ABCD 的边CD 上的一个动点,BF 的垂直平分线交对角线AC 于点E ,连接BE ,FE ,则∠EBF 的度数是
A .45°
B . 50°
C . 60°
D . 不确定 11. 如右图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为,高度为,则关于的函数图像大致是
12.如图,直线233+-=x y 与x 轴,y 轴分别交于B A ,两点, 把AOB ∆沿着直线AB 翻折后得到B O A '∆,则点O '的坐标是
A .)4,32(
B .)32,2(
C . )3,3(
D . )3,3(
二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小
题中,请将答案填在答题卷的横线上.
15. 化简:2
324535xy xy - = .
y x y x A B O O ' x y 12题图 A B C D (9题图)
八年级数学期末质量监测 第 3页 共4页
13. 一次函数24y x =-与坐标轴所围成的三角形的面积为__________.
14. 一次函数1y =kx b +与2y =x a +的图象如下图所示,则kx b +>x a +的解集是 .
16.某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄 (结果取整数).
17.若菱形ABCD 的相邻两个顶点的坐标分别为 (2, 1)A -、 (5, 3)B --,则此菱形的周长为____________.
18.如图,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,O 是坐标原点,且6OA =.D 是边AB 上一点,3AB BD =,连接CD ,将BCD ∆沿CD 翻折,使点B 落在此正方形内的点E 处,连接DE 并延长DE 交x 轴于点F ,则点F 的坐标为___________.
三、解答题(本大题共2个小题,每小题7分,共14分)请将解答写在答题卷上.
19.计算:
(1)()2227122+--; (2)220343⨯÷.
20.如图,四边形ABCD 是平行四边形,点E 、F 分别在BC 、AD 上,且AF =CE . 求证:AE =CF .
四、解答题:(本大题共4个小题,每小题10分,共40分)请将解答写在答题卷上.
21.如图,在ABC ∆中,o 90C ∠=,5AC =,AD 是ABC ∆的中线,且o 45CAD ∠=,
求△ABC 的周长(结果保留根号).
22.在“爱心助残”自愿捐款活动中,我县某中学进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3∶4∶5∶7∶6,又知此次调查中捐款25元和30元的学生一共26人.
(1)这次一共调查了多少人?
(2)这次调查学生捐款数的平均数和众数各是多少?
(3)若该校共有1500名学生,估计全校共捐款多少元?
23. 百舸竞渡,激情飞扬. 端午节期间,我区在璧南河举行龙舟比赛,甲、乙两支龙舟队在比赛时路程y (米)与时间x (分钟)之间的函数图象如图所示,甲队的图象为实线,乙队的图象为虚线.请你根据图象回答下列问题:
(1)1.8分钟时,队处于领先位置?
(2)在这次龙舟赛中,队先到达终点?先到达分钟?
(3)求甲队加速后,路程y(米)与时间x(分钟)之间的函数关系式;
(4)比赛开始后,甲队在何时追上乙队?
24.如图,BD是菱形ABCD的对角线,点E是边BC上的动点,连接AE,点F在线段AE 上,连接BF,DF,且o
60
AFB
∠=,AB BD
=.
(1)若6
AB=,求四边形ABCD的面积;
(2)求证:AF DF BF
=+.
五、解答题:(本大题共2个小题,每小题12分,共24分)请将解答写在答题卷上.
25.某工厂有一种材科,可加工甲、乙、丙三种型号机械配件共230个.厂方计划由20个工人一天内加工完成,并要求每人只加工一种配件.根据下表提供的信息,解答下列问题:配件种类甲乙丙
每人每天可加工配件的数量16 13 10
每个配件获利(元) 6 8 5 (2)如果加工每种配件的人数均不少于2人.那么加工配件的人数安排方案有几种?并写出每种安排方案.
(3)要使此次加工配件的利润最大,应采用(2)中哪种方案?并求出最大利润值.26.如图,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,连接AB,过点C作CD AB
⊥,垂足为E,且CE ED
=,连接AD交OB于点F,2
OA=,o
30
OAF
∠=.
(1)求OBA
∠的度数;
(2)若某一次函数的图象过C,D两点,求该一次函数的解析式;
(3)在图中的直角坐标系中是否存在点P,使以点A、C、D、
P为顶点的四边形是菱形?若存在,请直接写出点P的坐标;
八年级数学期末质量监测第4页共4页
若不存在,请说明理由.
八年级数学期末质量监测第5页共4页。