毕奥—萨伐尔定律,安培环路定理
毕奥萨伐尔定律安培环路定律磁通连续原理
朱英伟
教案邮箱: 2015142536
第三章 恒定磁场
导体中通有直流电流时,在导体内部和它周围 的媒质中,不仅有电场还有不随时间变化的磁场, 称为恒定磁场。
恒定磁场和静电场是性质完全不同的两种场, 但在分析方法上却有许多共同之处。学习本章时, 注意类比法的应用。
实验测得电流回路 l’ 对电流回路 l 的作用力F
F 0
Idl (I 'dl ' eR )
4π l l'
R2
式中, 为真空中的磁导率 0
Idl 是元电流,R 是两电流元之间距离。
两载流回路间的相互作用力
上式就是真空中的安培力定律。 ➢ 安培力定律是多年经实验验证的,是电磁学基础定律。
3.1.2 毕奥—沙伐定律 、磁感应强度
比较静电场与恒定磁场的知识结构和分析方法。
基本实验定律 (安培力定律) 磁感应强度(B)(毕奥—沙伐定律)
H 的旋度 基本方程 B 的散度
磁位(m) 分界面衔接条件 磁矢位(A)
数值法
边值问题
解析法
有限差分法 有限元法 分离变量法 镜像法
电感的计算 磁场能量及力 磁路及其计算
§3.0 磁力和磁场 磁感应强度
m IS
B
0m 2 x3
3.2 安培环路定律
考虑磁场矢量线积分的特性。 3.2.1 真空安培环路定律
首先计算简单实例——无限长直导线的磁场环量, 然后推广——认为任意情形下磁场的环量都满足特例的结果 这一结果称为安培环路定理。
3.2.2 媒质的磁化及一般形式安培定律
引入磁场强度 H ,得到一般形式的安培环路定律。
B Bxex
稳恒磁场(毕奥萨伐尔定律、安培环路定理等)
物理(下)作业专业班级:姓名:学号:第十二章稳恒磁场(1)一、选择题1、在真空中设置一直角坐标系oxyz ,在其坐标原点处放置一电流元l Id,电流方向沿y轴正向。
则根据毕奥—萨伐尔定律,该电流元在(0,a ,0)点处的磁感应强度的大小为(A )、024Idla;(B )、04Idla;(C )、024Ia;(D )、0。
[]2、真空中有一载流直导线,如图所示。
则在纸面内P 、M 两点的磁感应强度分别为P B和M B,它们的方向应为:(A )、P B 垂直纸面向里,M B也垂直纸面向里;(B )、P B 垂直纸面向里,M B 垂直纸面向外;(C )、P B 垂直纸面向外,M B 垂直纸面向里;(D )、P B 垂直纸面向外,M B 也垂直纸面向外。
[]二、填空题1、设在真空中有一半径为R 的圆形载流线圈,共有N 匝,其上通有电流I 。
则在其圆心处的磁感应强度的大小为____________________。
2、如图所示,一无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O点的磁感应强度大小等于____________________;其方向为__________________。
3、一正方形线圈ABCD ,每边长度为a ,通有电流为I ,则正方形中心O 处的磁感应强度大小为__;及其方向为__________________。
三、计算题1、(2019暨南大学)两根直导线沿铜环的半径方向在A 、B 两点与铜环连接,铜环粗细均匀,半径为R 。
现向直导线中通入强度为I 的电流,流向如图所示,求铜环中心O 处的磁感应强度.MD2、如图,一根无限长的直导线,通有电流I,中部一段弯成半径为a的圆弧形,求图中P 点磁感应强度的大小。
四、简答题(2016年兰州大学)简述毕奥--萨伐尔定律。
物理(下)作业专业班级:姓名:学号:第十二章稳恒磁场(2)一、选择题1、如图所示,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L 。
由毕奥萨伐尔定律导出安培环路定理
由毕奥萨伐尔定律导出安培环路定理好呀,咱们今天就来聊聊毕奥萨伐尔定律和安培环路定理,这可是一对好搭档,像老夫老妻一样,彼此相辅相成。
你可能会想,这俩定律有什么特别之处,能让人如此兴奋呢?别急,慢慢来,咱们一步步揭开它们的神秘面纱。
毕奥萨伐尔定律。
这名字听着就挺复杂,不过其实说白了,就是讲磁场和电流的关系。
想象一下,你在海边,看到水波荡漾。
电流就像那海浪,一波接一波,而磁场就是那些水波掀起的涟漪。
电流越强,涟漪就越大,形成的磁场也就越强。
是不是有点儿形象?你要是拿个电流计,把电流一开,磁场就像调皮的孩子一样,立马跑出来,四处捣乱。
这时候,你就能感受到电流产生的磁场影响了。
安培环路定理又是什么呢?听起来好像很严肃,其实它告诉我们,磁场和电流之间的关系更是深得不得了。
安培可真是个聪明的人,他意识到,磁场的形成不是随意的,而是有规律可循的。
就像你去一家餐馆,服务员会告诉你菜单上的菜如何搭配,磁场也是有自己的“菜单”的。
通过安培的定理,我们可以知道,围绕电流流动的路径,磁场会形成一个闭合的环路,就像是舞会上人们手拉手围成的圆圈。
电流在中间转悠,磁场就在旁边欢快地跳舞。
咱们就要把这俩定律捏合在一起,看看它们怎么亲密无间地合作。
想象一下你手里拿着一个导线,电流在里面欢快地游来游去。
根据毕奥萨伐尔定律,你知道这个电流会在周围制造出一个磁场,而这个磁场的强度和方向,取决于电流的强度和位置。
你绕着这个导线走一圈,就能用安培环路定理来测量这个磁场。
听起来像个科学实验,是吧?其实这就是物理学的魅力,越是深入,越是让人惊叹。
哦,还有一点要提的是,毕奥萨伐尔定律其实是从微观层面出发的,它告诉我们每一小段电流都会产生一个微小的磁场,而安培环路定理则把这些小磁场结合在一起,形成了一个整体的磁场。
就像是拼积木,每一块都有它的位置,最终组合成一座宏伟的建筑。
每当你看到这些小块搭起来,心里是不是也会产生一丝成就感呢?有趣的是,咱们在生活中也能见到这些原理的身影。
10.3-4a 毕奥萨伐尔定律及安培环路定理
0 NI / 2 2 0 sin d R
0 NI NI 0 R 4 4R
R d r O ⊙
⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙⊙⊙
x
x
21
三、安培环路定理
1.定理表述 磁感应强度沿闭合回路的线积分等于环路所包围 的电流代数和乘以 0。 数学表达式:
2 2 5.由 B Bx By Bz2 求总场。
4
例1:一段有限长载流直导线,通有电流 I ,求距 a 处 P 点的磁感应强度。 l
0 Idl sin dB 2 4 r l actg( ) actg
解: 分割电流元
2
Idl
dl a csc d a r sin r a csc
R B o
I
Bo
0 I
2R
11
归纳:(1)载流圆环轴线上
B 2 x R
2
Idl
0 IR2
2 3/ 2
I
R
o
Idl
r dB dB来自(2)载流圆环环心处 Bo 2R (3)半圆圆心处:
B
0 I
dBx x P dBx ' x dB ' dB '
r dN dB
Idl
S
P
16
例6:氢原子中的电子,以速率v在半径为r的圆周轨道 上作匀速率运动。求电子在轨道中心产生的磁感应强 度。 v 解: 应用运动电荷的磁场公式:
0 q v r 可得: B 4 r3 0 ev B 2 方向如图所示。 4 r I
R sin r 2R
安培环路定理推导毕奥萨伐尔定律
安培环路定理是电磁学中非常重要的原理之一,它描述了磁场的环路积分与通过该环路的电流之间的关系。
而毕奥萨伐尔定律则是安培环路定理的应用,它指出了磁场的旋度与电流密度之间的关系。
本文将围绕这两个定律展开,从安培环路定理的推导开始,逐步深入探讨毕奥萨伐尔定律的相关内容。
1. 安培环路定理的推导安培环路定理是从麦克斯韦方程组中的法拉第电磁感应定律和高斯定理推导而来的。
首先我们回顾一下这两个定律的表达式:- 法拉第电磁感应定律:$\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d} \boldsymbol{\ell}=-\frac{\partial}{\partialt}\int_{\Sigma} \mathbf{B} \cdot \mathrm{d} \mathbf{S}$- 高斯定理:$\oint_{\partial V} \mathbf{F} \cdot \mathrm{d}\mathbf{S} = \int_V \nabla \cdot \mathbf{F} \, \mathrm{d}V$其中,$\Sigma$ 为任意闭合曲面,$\partial \Sigma$ 为该闭合曲面的边界,$\mathbf{E}$ 为电场强度,$\mathbf{B}$ 为磁感应强度,$\mathbf{F}$ 为任意矢量场,$\mathbf{S}$ 为曲面的法向量,$\boldsymbol{\ell}$ 为曲线的切向量,$V$ 为任意闭合曲面围成的体积。
通过对法拉第电磁感应定律取环路积分,我们可以得到:$\oint_{\partial \gamma} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} = -\frac{\partial}{\partial t} \iint_{\Sigma}\mathbf{B} \cdot \mathrm{d} \mathbf{S}$再根据斯托克斯定理,上式可以转化为:$\oint_{\partial \gamma} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} = -\frac{\partial}{\partial t} \iint_{\Sigma}\nabla \times \mathbf{A} \cdot \mathrm{d} \mathbf{S}$其中,$\mathbf{A}$ 为矢量势。
毕奥萨伐尔定律、安培环路定律、磁通连续原理
认为: 磁场力 = 电流 磁感应强度
定义:磁感应强度 B (又称磁通密度)
B 0 4π
I 'd l eR l R2
0
4π
I dl (r r) l r r 3 单位 T(Wb/m2)
——毕奥—沙伐定律的积分形式
磁场对回路电流的作用力 磁场对运动电荷的作用力
F l Id l B
f qv B
B, r
BH
r H
0
H
单向电流励磁
B Br
Hc 0
Hc
H
正反电流励磁和退磁
3.2 磁通连续性原理
为了形象地描述磁场, 引入磁感应线(也称磁力线)。
➢ 磁力线有以下特点: (1) 磁力线是无头无尾的闭合曲线(或两端伸向无 穷远处)。所以磁场是涡旋场。 (2) 磁力线与载流电路互相铰链(即每条磁力线都 围绕着载流导线)。 (3) 任两条磁力线都不相交。
解: 采用圆柱坐标系,取电流 I dl,
B 0 Idl eR 4π L R2
式中 R 2 2 z 2
dl eR dz sin e dz sin e R dze
B
0
4π
L1
I dz
L2 ( 2 z 2 )3 2
0I [ L1 L2 ] 4π 2 L12 2 L22
Idl 是元电流,R 是两电流元之间距离。
两载流回路间的相互作用力
上式就是真空中的安培力定律。 ➢ 安培力定律是多年经实验验证的,是电磁学基础定律。
3.1.2 毕奥—沙伐定律 、磁感应强度
安培力定律公式可改写为:
F
Id l ( μ0
l
4π
l
I
d
l R2
eR
安培环路定理和毕奥萨伐尔定律
安培环路定理和毕奥萨伐尔定律是电磁学中重要的定理和法则,它们在描述电路中电流和磁场的关系上起着关键作用。
下面将分别对这两个定理进行介绍和解析。
一、安培环路定理安培环路定理又称安培定律,是电磁学中重要的定理之一,它描述了磁场中闭合曲线上的磁场强度与该曲线所围成的电流的关系。
安培环路定理可以总结为以下几点:1. 磁场环路定理的表述在闭合曲线上的磁场强度的矢量和等于该曲线所围成的电流的矢量和乘以一个常数μ0,即ΣH·dl=μ0ΣI。
2. 安培环路定理的数学表达式安培环路定理的数学表达式为∮H·dl=μ0∑I,其中∮H·dl表示磁场强度矢量沿着曲线的积分,μ0为真空磁导率,∑I表示曲线所围成电流的代数和。
3. 安培环路定理的应用安培环路定理可以用于计算闭合曲线中的磁场强度,是电磁学中重要的工具之一。
通过安培环路定理,可以求解复杂电路中的磁场分布,为电磁学的研究和应用提供了重要的方法。
二、毕奥萨伐尔定律毕奥萨伐尔定律是电磁学中描述通过导体中电流产生的磁场的定律,它对于电路和电磁场的分析具有重要意义。
以下是毕奥萨伐尔定律的主要内容:1. 毕奥萨伐尔定律的表述毕奥萨伐尔定律指出,通过导体中电流产生的磁场的强度与导体上任意点到电流元素的距离成正比,在大小和方向上满足右手定则。
2. 毕奥萨伐尔定律的数学表达式毕奥萨伐尔定律的数学表达式为B=μ0/4π∫(Idl×r)/r^3,其中B表示磁场强度,μ0为真空磁导率,Idl表示电流元素,r为导体上任意点到电流元素的距离。
3. 毕奥萨伐尔定律的应用毕奥萨伐尔定律可用于计算导体中的磁场分布,也可以应用于分析电路中的电流产生的磁场对周围环境的影响。
在电磁学的理论研究和工程实践中,毕奥萨伐尔定律都具有重要的应用价值。
总结安培环路定理和毕奥萨伐尔定律是描述电流和磁场之间关系的重要定理,在电磁学的理论研究和工程应用中起着关键作用。
通过学习和理解这两个定律,可以更好地理解电磁学的基本原理,为电路和电磁场的分析提供重要的方法和工具。
大学物理第九章磁场
第九章磁场Stationary Magnetic Field磁铁和电流周围存在着磁场,磁现象的本质就是电荷的运动, 磁场的基本特性是对位于其中的运动电荷有力的作用.1、磁感应强度的定义;2、毕奥-萨伐尔定律,安培环路定理;3、几种电流产生的磁感应强度的计算;4、磁场对运动电荷、载流导线、载流线圈的作用;5、磁场和磁介质之间的相互作用.第一节磁场磁感应强度磁现象永磁体——磁铁的性质S N(1)具有磁性(magnetism),能吸引铁、钴、镍等物质;(2)永磁体具有磁极(magnetic pole),磁北极和磁南极;(3)磁极之间存在相互作用,同性相斥,异性相吸;(4)磁极不能单独存在.奥斯特实验(1819年)NS I在载流导线附近的小磁针会发生偏转Hans ChristianOersted,1777~1851年丹麦物理学家1820年安培的发现SN F I 放在磁体附近的载流导线或线圈会受到力的作用而发生运动.安培分子电流假说(1822年)一切磁现象的根源是电流!磁性物质的分子中存在着“分子电流”,磁性取定于物质中分子电流的磁效应之和.一、磁场(Magnetic Field)电流~~~磁铁、电流~~~电流运动电荷~~~运动电荷、运动电荷~~~磁铁通过一种特殊物质的形式——磁场来传递的.磁铁周围存在磁场,运动电荷和载流导线周围也存在磁场.磁场对其中的运动电荷和载流导线有力的作用;磁力也能做功,具有能量.电流与电流之间的相互作用I I ++--II ++--磁场对运动电荷的作用S +电子束N运动电荷磁场运动电荷从运动的点电荷在磁场中所受的磁力来定义磁感应强度的大小和方向!B 方向:小磁针在磁场中,其磁北极N 的指向B 二、磁感应强度(Magnetic Induction)磁感应强度:描述磁场性质的物理量B点电荷在磁场中运动的实验+B v F max c 、电荷q 沿磁场方向运动时,F = 0;b 、F 大小随v 变化;d 、电荷q 沿垂直磁场方向运动时,F max .(2)在垂直磁场方向改变速率v ,改变点电荷电量q在磁场中同一点,F max /qv 为一恒量,而在不同的点上,F max /qv 的量值不同.(1)点电荷q 以不同运动v a 、受磁力,;F v磁感应强度的大小:qv F B m ax =单位:T 特斯拉(Tesla)G 高斯(Gauss)T10G 14-=磁感应强度的方向:max F vB a.由小磁针的N 极指向定,b.由到的右手螺旋法则定max F v三、磁感应线用磁感应线来形象地描写磁感应强度这一矢量场在空间的分布:曲线上某点处的切向表示该点的方向;曲线在某处的疏密表示该点的大小.B B 磁感应线的特点★任一条磁感应线是闭合的,或两端伸向无穷远;★磁感应线与载流回路互相套联;★任两条磁感应线不能相交.IB四、磁通量(Magnetic Flux)通过磁场中某给定面的磁感应线的总数.θcos d d m S B Φ=⎰⎰=⋅=S S m S B S B Φd cos d θ 单位:Wb ,1Wb=1T ﹒m 2磁通量:穿过磁场中任意闭合曲面的磁通量为零.磁场是无源场:其磁感应线闭合成环,无头无尾;同时也表示不存在磁单极,无单个的N 或S 极.The total magnetic flux through a closed surface is always zero.d 0S B S ⋅=⎰ 五、磁场的高斯定理(Gauss’s law for magnetism)寻找磁单极子1975 年:美国加州大学,休斯敦大学联合小组报告,用装有宇宙射线探测器气球在40 km 高空记录到电离性特强离子踪迹,认为是磁单极. 为一次虚报.1982年,美国斯坦福大学报告,用d = 5 cm 的超导线圈放入D =20 cm 超导铅筒. 由于迈斯纳效应屏蔽外磁场干扰,只有磁单极进入会引起磁通变化,运行151天,记录到一次磁通突变, 改变量与狄拉克理论相符. 但未能重复,为一悬案.人类对磁单极的探寻从未停止,一旦发现磁单极,将改写电磁理论.1820年实验得到:长直载流导线周围的磁感应强度与距离成反比与电流强度成正比. r I B Laplace 对此结果作了分析整理,得出了电流元产生的磁场的磁感应强度表达式.一、毕奥—萨伐尔定律(Law of Biot and Savart)I B r 第二节毕奥—萨伐尔定律d I l IBd l r d I l02d sin d 4I l B r μθπ=002d d 4I l r B r μπ⨯= μo 为真空中的磁导率:μo = 4 π⨯10-7 T·m·A -1. 整个载流导线在P 点产生的磁感应强度为:002d d 4L LI l r B B r μπ⨯==⎰⎰ P d I l θr d Bnqvs I =0024qv r B r μπ⨯= ++++++I S v d I l 导体中带电粒子的定向运动形成电流I ,并由此可分析得到运动电荷产生的磁场.+v r B ×-v r B·二、运动电荷的磁场圆电流轴线上的磁感应强度02d sin d 4I l B r μθπ=02d sin 90cos d cos 4x I l B B B r μααπ︒===⎰⎰22xR r +=22cos R R x α=+x x P R αr d B d I ld B x d B y 毕奥—萨伐尔定律的应用d I l r ⊥ 注意到,通过对称性分析,可知B y = 0,因此:()()2200323222220d 42RR l IR B R x R x πμμπ==++⎰方向:沿轴线与电流成右手螺旋关系.()2032222IRB R x μ=+定义圆电流磁矩:mp IS ISn == 在圆心处x = 0,B 大小:R IB 20μ=IS m p ()2322m 02x R P B += πμ圆电流轴线上磁场的另一种表达式:例:亥姆霍兹圈:两个完全相同的N 匝共轴密绕短线圈,其中心间距与半径R 相等,通有同向平行等大电流I . 求轴线上O 1、O 2之间的磁场.x I P1o 匝N R ⋅⋅R R 匝N o 2o I x o1o 2B 1B 2o 实验室用近似均匀磁场解20322222P NIR B R R x μ=+⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦20322222NIRR R x μ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦00.72O NIB Rμ=0120.68O O NIB B Rμ==θ2Oθ1Pa d xx载流长直导线的磁感应强度02d sin d 4I x B rμθπ=tan x a θ=-2d d sin a x θθ=θsin a r =2022sin d sin d 4sin I aB B aμθθθπθ==⎰⎰Iθrd B 210sin d 4I B a θθμθθπ=⎰()012cos cos 4I a μθθπ=-方向:对图中所在的P 点,磁感应强度垂直纸面向外.()012cos cos 4I B aμθθπ=-对无限长载流导线θ1= 0 , θ2= π:02I B aμπ=半无限长载流导线θ1= π/2 , θ2 = π:04I B aμπ=若P 点在导线延长线上:B =导线密绕,且长度远大于直径:=外B 实验可知:内部的磁感应强度只有平行于轴线的分量;并且平行于轴的任一直线上各点大小相等.︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BI单位长度上的匝数n载流长直螺线管内部的磁场︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BInIB 0μ=内部为均匀磁场,在长直螺线管的两端点处的磁场为中间的一半:012S B nIμ=0nIμ012nI μ通过对圆电流的磁感应强度的叠加积分,可以求得螺线管中间的磁感应强度大小为:方向由右手螺旋法则确定.恒定磁场是无源场,静电场是有源场;静电场是保守场,是无旋场;对静电场和恒定磁场作类比分析:1d SE S q ε⋅=∑⎰d 0LE l ⋅=⎰d 0SB S ⋅=⎰d ?LB l ⋅=⎰表达了恒定磁场的什么性质?第三节安培环路定理安培环路定理:0d LB l Iμ⋅=∑⎰L 磁场中任一闭合曲线—具有一定绕向的环路是环路上各点的磁感应强度,为空间所有电流产生,包括穿过L 的和不穿过的电流.:B:穿过以L 为边界的任意曲面的电流的代数和.I ∑------对L 包围的电流求代数和,并且规定:与L 绕向成右旋关系的电流I i >0,否则I i <0.以长直电流的磁场为例验证1) 路径选在垂直于长直载流导线的平面内,以导线与平面交点O 为圆心,半径为r 的圆周路径L ,其指向与电流成右手螺旋关系.BIr oL00200cos 0d d =d 22rL L I I B l l l r rIπμμππμ⋅=⋅=⎰⎰⎰BIr oL若电流反向:02000d d 2 =d 2cos L L rI I B l l r I l rππμπμμπ⋅=⋅-=-⎰⎰⎰2) 在垂直于导线平面内围绕电流的任意闭合路径Bθϕd ld rLI 02020000d 2 =d 2 d cos 2d L L I B l r I r r I I l ππμπμϕπμϕπμθ⋅=⋅==⎰⎰⎰⎰同理,在电流反向时------积分结果取负.3) 闭合路径不包围电流ϕ1L 2L I()()[]121200d d d =d d 2 02LL L L L B l B l B l I Iμϕϕπμϕϕπ⋅=⋅+⋅+=+-=⎰⎰⎰⎰⎰4) 空间存在多个长直电流时()12110in d d d d =L LLLiLB l B B l B l B l I μ⋅=++⋅=⋅+⋅+⎰⎰⎰⎰∑安培环路定理揭示磁场是非保守场,是涡旋场.l B L d ⋅⎰穿过的电流:对和均有贡献BL 不穿过的电流:对上各点有贡献;对无贡献BL l B Ld ⋅⎰L 0d LB l Iμ⋅=∑⎰可证对任意的稳恒电流和任意形式的闭合环路均成立.注意:练习:如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中那一个是正确的?⊗∙I 21L 2L 3L 4L I10 ( d )2A L B l I μ⋅=⎰ 20(B) d L B l I μ⋅=⎰30 d (C)L B l I μ⋅=-⎰40(D) d L B l I μ⋅=-⎰Br RB RrP IQ 长直圆柱形载流导线内外的磁场圆柱截面半径为R ,电流I 沿轴流动.过P 点(或Q 点)取半径为r 的磁感应线为积分回路,求出B 矢量的环流:0d 2LB l B r I πμ⋅=⋅=∑⎰r ≥R012I I I B r r μπ==∝∑,r< R20222I r IrI B r R Rπμππ==∝∑,方向沿圆周与电流成右手关系!or LL BoRrr1∝B r∝思考:无限长均匀载流直圆筒,B ~r 曲线?BoRr管外磁场为零.无限长直载流螺线管内磁场︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BI单位长度上的匝数n解密绕长螺线管,已知I , n ,计算管内的磁感应强度.dc ab 作矩形安培环路abcd 如图,绕行方向为逆时针.00d d 000=b c d a LabcdB l B l B dl B dl B dlBcd I ncdIμμ⋅=⋅+⋅+⋅+⋅=+++=⎰⎰⎰⎰⎰∑0B nIμ=无限长螺线管磁场为均匀.求螺线环内的磁感应强度I l B L∑=⋅⎰0d μ 02B r NIπμ⋅=rNI B πμ20=2N n rπ=nIB 0μ=Or 1r 2Pr 为平均半径, 考虑到对称性,环内磁场的磁感应线都是同心圆,选择通过管内某点P 的磁感应线L 作为积分环路:方向由电流方向通过右手法则判断.第四节磁场对运动电荷的作用一. 洛仑兹力磁场对运动电荷的作用f qv B=⨯ 大小:θsin qvB F =特点:不改变大小,只改变方向,不对做功.vq v vBf运动正电荷受力方向垂直于和构成的平面,成右手螺旋.v B1、运动方向与磁场方向平行sin F qvB θ=θ= 0 , F = 0带电粒子在均匀磁场中的运动匀速直线运动θBvq+f⊗θBvq-fB+v⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯B 2、运动方向与磁场方向垂直RvmqvB 2=qBmv R =v B f qvB⊥⇒=R22R m T v qBππ==匀速圆周运动周期f+v半径托克马克装置3、沿任意方向方向运动匀速圆周运动与匀速直线运动的合成——轨迹为螺旋线qBmv R θsin =qBm T π2=螺距//2cos m h v T v qBπθ==h +B ⊥v //v θv例有一均匀磁场,B = 1.5 T ,水平方向由南向北. 有一5.0 兆电子伏特的质子沿竖直向下的方向通过磁场,求作用在质子上的力?(m = 1.67⨯10-27 kg )) J (100.8) eV (100.5211362k -⨯=⨯==mv E ) s m (101.31067.1100.822172713k ---⋅⨯=⨯⨯⨯==m E v ︒⨯⨯⨯⨯⨯==-90sin 5.1101.3106.1sin 719θqvB F )N (104.712-⨯=解方向向东F q v 下B 北二、质谱仪(mass spectrograph)R +-⋅⋅⋅P ⋅⋅⋅⋅⋅⋅⋅⋅⋅N ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅B N :粒子源,P :速度选择器 qE qvB v E B ''=⇒=质谱分析:qB mv R x 22==E x B qB m 2'=谱线位置:同位素质量;谱线黑度:相对含量.B’三、霍尔效应(Hall effect)现象:通电流I ,磁场垂直于I ,在既垂直于I ,又垂直于的方向出现电势差∆U. B B m e F qv B F qE =⨯= H I IB U Bb R nqbd d∆==霍尔电势差:解释:载流子q 以漂移,受到磁场力,正负电荷上下两侧积累,形成电场,受力平衡时,有稳定的霍尔电场.v x y zB I b d P 型半导体v q +++++++-+------e F m F I nqvbd =霍尔系数R H 与载流子浓度n 成反比. 在金属中,由于载流子浓度很大,因此霍尔系数很小,相应地霍尔效应也很弱; 而在半导体中,载流子浓度较小,因此霍尔效应也较明显. 霍尔效应是半导体研究的重要手段. 问题:对n 型半导体,霍尔电势差的方向如何?应用:测载流子浓度测载流子电性—半导体类型B 测磁场(霍耳元件)H 1R nq霍尔系数(Hall coefficient):一、安培定律(Ampère Law )磁场对电流元的作用Bl I F ⨯=d d 载流导线所受磁场力d d L L F F I l B ==⨯⎰⎰ 第五节磁场对电流的作用磁矩L I B d I l Fm F qv B =⨯ d F qv BdN qv BnSdl =⨯=⨯载流直导线在均匀磁场中所受的力d L F I l B =⨯⎰ sin d L F IB l θ=⎰θsin ILB F =sin d L IB l θ=⎰安培力的方向由右手螺旋法则可知为垂直纸面向里×IBθFB θd I lLA B C D I 1I 21d I l 2d I l 1B 2B 1d F 2d F 平行长直载流导线间的相互作用力距a 的两无限长直导线,I 1、I 2,导线CD 上的电流元受力:2222d d sin F B I l θ=012 ,22I B a μπθπ==CD 单位长度受力:2012121d d d 2d F I I F l a l μπ==安培:真空中相距为1m 的无限长直细导线,载有相等的电流,若每米导线上受力正好为2⨯10-7N ,则导线内电流定义为1A.例:如图,均匀磁场垂直纸面向外,半径为R 的半圆导线通有电流I ,求作用在导线上的安培力.解R y x Bd θθd I l d F d x F d y F d F =IB d l =IBR d θd d F I l B =⨯ 0d (d )sin 2y y L F F F IBR IBR πθθ====⎰⎰方向为y 轴正向.推广:起点终点相同的载流直导线所受的力?对称性-----各电流元受力水平分量之和为零。
磁学公式推导及应用
磁学公式推导及应用磁学是物理学中的重要分支,研究磁场的性质和行为。
在磁学中,一系列重要的公式被用于推导和解释磁场相关的现象,同时也被广泛应用于磁学的实际问题。
本文将深入探讨磁学公式的推导过程,并介绍其应用。
一、磁学公式的推导1. 安培环路定理安培环路定理是磁学中的基本公式之一,描述了磁场沿闭合路径的环路积分等于该路径内的电流总和的倍数。
设有一闭合路径,其长度为l,方向为顺时针方向。
在该路径上有n根电流为I1、I2、...、In的导线。
安培环路定理可表达为:∮B·dl = μ0ΣIn,其中B为磁感应强度,dl为路径微元,μ0为真空磁导率。
通过对每根导线的磁场贡献进行积分,可以推导得到安培环路定理。
2. 洛仑兹力公式洛仑兹力公式描述了带电粒子在磁场中所受到的力的大小和方向。
设带电粒子电荷为q,速度为v,在磁感应强度为B的磁场中运动。
洛仑兹力公式可表达为:F = qv×B,其中×表示叉乘。
利用洛仑兹力公式,可以推导出轨道半径、回旋频率等与粒子的运动轨迹相关的物理量。
3. 毕奥-萨伐尔定律毕奥-萨伐尔定律描述了任意一点P由一小电流元dI产生的磁场强度dH和力矩dM。
设导线上有一小电流元dI,其长度为dl。
毕奥-萨伐尔定律可表达为:dH = (μ0/4π)·(dI×r/r^3),dM = dI×r/H其中μ0为真空磁导率,r为待求点到电流元的矢量。
通过对导线上所有小电流元的贡献进行积分,可以得到某一点由整个导线所产生的磁场强度和力矩。
二、磁学公式的应用1. 磁场分布计算利用上述推导得到的磁学公式,可以根据不同的电流分布情况计算磁场在空间中的分布。
例如,当电流分布呈直线导线时,可以利用洛仑兹力公式计算导线附近的磁场强度。
当电流分布呈环形导线时,可以利用安培环路定理计算环心、环外等不同位置的磁场强度。
2. 电磁感应现象电磁感应现象是指磁场的变化可以诱导电场、电流的产生。
毕奥萨伐尔定律及安培环路定理
2
说明r的:方向dB:从4电0 流Id元lr3所r在位置指向场点IdPl。
P
r
dB
•大小o:dBo1c2440Id1l 0rs2i7n(
N
/
A2
)
真空中的磁导率
dB
Idl
•方 为向I:dlI与dlr之r间的的方夹向角。。
r
dB 的方向垂直于Idl和r 所形
成的平面。 2. 一段载流导线产生的磁场:
1 0, 2 ;
I
B 0
2a
l 2
Idl
lr
o
1 a
2.半无限长载流直导线的磁场:
1
2
,
2
;
B 0I 4a
I
3.半无限长载流直导线的磁场:
1
,
2
;
B 0I (cos 1) 4a
I
P a
dB
Px
P a
6
4.载Id流l导//线r,延I长dl线上r任一0 点的B磁场0
a P
I
例2:一正方形载流线圈边长为 b,通有电流为 I,求正
.... . . .... . . . . ..
r
A1
p
A2
B
I
B 2
0 IR 2
x2 R2
3/ 2
l R cot dl R csc2 d
R2 l2 r2
B
dB
0 R2Indl
2
(
R2
l
2
3
)2
sin 2
R2 r2
R2
l2
R2
sin2
R2
csc2
B
2(
1
安培定律和毕奥萨伐尔定律的区别
安培定律和毕奥萨伐尔定律的区别安培定律和毕奥萨伐尔定律是物理学中两个重要的定律,它们分别用于描述电流和磁场之间的关系以及电流元与磁场之间的关系。
虽然这两个定律都涉及到电流和磁场,但它们在物理概念、应用场景和数学表述上存在一定的区别。
一、物理概念安培定律安培定律描述了电流和磁场之间的关系,它表示电流可以产生磁场,而磁场也可以产生电流。
具体来说,安培定律表明,在一个封闭的电路中,磁场的总强度与电路中的电流成正比。
也就是说,当电路中的电流增大时,所产生的磁场也会相应增强。
安培定律是电磁学中最基本的定律之一,它奠定了电磁学的基础,为我们提供了理解和研究电磁现象的重要工具。
毕奥萨伐尔定律毕奥萨伐尔定律描述了电流元与磁场之间的关系,它表示电流元在周围空间产生的磁场遵循一定的规律。
具体来说,毕奥萨伐尔定律表明,一个电流元在周围空间产生的磁场与电流元的位置和方向有关。
如果一个电流元沿着一条直线移动,那么它在空间中产生的磁场线是一些以电流元为顶点的同心圆。
毕奥萨伐尔定律是电磁学中的一个重要定律,它为我们提供了计算和预测电流在空间中产生的磁场的重要方法。
二、应用场景安培定律的应用安培定律在电磁学中有着广泛的应用,它主要用于描述电路中的磁场以及磁场与电流之间的关系。
例如,在研究电磁铁、电动机、发电机等电磁装置时,我们可以使用安培定律来分析其中的磁场和电流之间的关系。
此外,安培定律还可以用于计算电路中的磁通量、磁感应强度等物理量,以及研究电磁场的分布和变化规律。
毕奥萨伐尔定律的应用毕奥萨伐尔定律主要用于计算和预测电流在空间中产生的磁场。
例如,在研究电磁辐射、电磁感应、磁屏蔽等问题时,我们可以使用毕奥萨伐尔定律来计算电流在空间中产生的磁场。
此外,毕奥萨伐尔定律还可以用于研究磁场的均匀性、磁场的矢势、磁场的路径积分等问题。
在某些情况下,毕奥萨伐尔定律还可以用于计算带电粒子在磁场中的运动轨迹和作用力。
三、数学表述安培定律的数学表述安培定律的数学表述通常涉及电流的路径和磁场的强度。
毕沙定律安培环路定理
P1dBr
2 R
dI
2
1
1 2
0nI
sin
××××××
d
l
×××××
I
B
1 2
0nI
cos2
cos1
方向:
B
B
右手螺旋
O
x
讨论
B
1 2
0nI
(cos
2
cos1
)
...........
(1)无限长螺线管
1 π, 2 0 B 0nI
.A1
1
2
B
×××××××××××
(2)半无限长螺线管端点中心处,例 A1 点
dq 2π r dr
Q π R2
dI dq 2π r dr
T 2π
dI r dr
(2) 该电流元在场点 P 处旳磁场
dB
0r 2dI
3
0r 2
r dr
3
2 r2 x2 2
2
r
2
x
2
2
(3) 分析另一环状电流元在场点 P 处旳dB 旳方向,与 dB 方向相同。
(4) 统一变量,计算成果。
0 Ix
2π b
d
dx 2x
2
Bx
dBx
0 Id
2π b
bb22
d
dx 2x
2
0I
πb
arctan b 2d
By dBy
0 I
2π b
bb22
d
xdx 2 x2
0
P
dB dB
可由电流分布具有对称性得到。
B
Bx
0I
πb
arctan b 2d
电磁学公式大全
电磁学公式大全电磁学是物理学的一个重要分支,研究电荷和电流所产生的电场和磁场以及它们之间的相互作用。
在电磁学中,有许多重要的公式,它们描述了电场、磁场、电荷、电流等物理量之间的关系。
这些公式在电磁学的理论研究和工程应用中起着至关重要的作用。
下面我们将列举一些重要的电磁学公式,以便于大家学习和参考。
1. 库仑定律。
库仑定律描述了两个电荷之间的电力作用,它的数学表达式为:F = k |q1 q2| / r^2。
其中,F为两个电荷之间的电力,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
2. 电场强度公式。
电场强度描述了电场对单位正电荷的作用力,它的数学表达式为:E =F / q。
其中,E为电场强度,F为电场对单位正电荷的作用力,q为单位正电荷的大小。
3. 高斯定律。
高斯定律描述了电场的产生和分布,它的数学表达式为:∮E·dA = Q / ε0。
其中,∮E·dA表示电场强度在闭合曲面上的通量,Q为闭合曲面内的电荷总量,ε0为真空介电常数。
4. 毕奥-萨伐尔定律。
毕奥-萨伐尔定律描述了电流元产生的磁场,它的数学表达式为:dB = (μ0 / 4π) (I dl × r) / r^3。
其中,dB为磁场强度的变化,μ0为真空磁导率,I为电流元的大小,dl为电流元的长度,r为电流元到观察点的位矢。
5. 洛伦兹力公式。
洛伦兹力描述了电荷在电场和磁场中受到的合力,它的数学表达式为:F = q (E + v × B)。
其中,F为洛伦兹力,q为电荷的大小,E为电场强度,v为电荷的速度,B为磁感应强度。
6. 安培环路定理。
安培环路定理描述了磁场的产生和分布,它的数学表达式为:∮B·dl = μ0 I。
其中,∮B·dl表示磁感应强度在闭合回路上的环路积分,μ0为真空磁导率,I为闭合回路内的电流总量。
以上是一些电磁学中的重要公式,它们在电磁场的理论研究和工程应用中具有重要的意义。
稳恒磁场中的安培环路定理与毕奥-萨伐尔定律比较
稳恒磁场中的安培环路定理与毕奥-萨伐尔定律比较简介稳恒磁场是物理学中的重要概念,描述了一个恒定且均匀的磁场空间。
在磁场中,安培环路定理和毕奥-萨伐尔定律是两个关键的物理定律,用于描述磁场中磁场线圈的环路积分。
本文将比较这两个定律的异同点,探讨它们在不同场景中的适用性和优势。
安培环路定理安培环路定理是电磁学中的基本定律之一,它描述了通过闭合路径的磁场线圈的磁场总强度。
根据安培环路定理,通过一条封闭路径的磁场总强度等于路径上的环路积分。
数学表达式如下:$$\\oint \\vec{B} \\cdot d\\vec{l} = \\mu_0i_{\\text{enc}}$$在这里,$\\vec{B}$ 是磁场密度的矢量,$d\\vec{l}$ 是路径的微元位移,$\\mu_0$ 是真空的磁导率,$i_{\\text{enc}}$ 是当前通过路径围绕的电流。
毕奥-萨伐尔定律毕奥-萨伐尔定律描述了通过任意闭合曲面的磁场总通量,通过这个曲面的磁感应强度等于曲面上的通量。
数学表达式如下:$$\\Phi_B = \\oint \\vec{B} \\cdot d\\vec{A} = 0$$在这里,$\\Phi_B$ 是磁通量,$\\vec{B}$ 是磁场密度的矢量,$d\\vec{A}$ 是曲面元。
比较1.适用性:–安培环路定理更加适用于描述磁场中的环路磁场分布,特别适合计算磁场线圈产生的磁场。
–毕奥-萨伐尔定律更适用于描述磁场中的磁通量,特别适合分析磁场的分布和变化。
2.物理意义:–安培环路定理揭示了磁场中环路的特性,强调了路径积分和电流的关系。
–毕奥-萨伐尔定律关注磁通量的总量,强调了磁场的整体性质。
3.数学表达:–安培环路定理通过路径的积分表述磁场参数与电流之间的关系。
–毕奥-萨伐尔定律通过曲面上的通量表述磁场的整体情况。
4.应用:–安培环路定理在电路设计、电磁感应、发电机等方面有着广泛应用。
–毕奥-萨伐尔定律在磁场分析、磁铁设计、磁共振成像等领域具有重要意义。
大学物理第六章稳恒磁场重点内容
第六章稳恒磁场
1、主要的概念:电流强度,磁感应强度,电流元,磁感应线,磁通量,磁化和磁介质。
2、主要的了解定律:磁场叠加原理,毕奥—萨伐尔定律(推导一些特殊载流导线和运动电荷的B),磁场中的高斯定律,安培环路定律。
(了解定理的导出以及其重要的物理意义)
3、主要计算:利用毕奥—萨伐尔定律、安培环路定理计算一些特殊载流导线产生的磁感应强度;安培力和洛伦兹力的计算;磁介质中的磁化,以及应用介质中的安培环路定理计算磁场强度矢量(H)和磁感应强度(B)。
4、重点内容:毕奥—萨伐尔定律、安培环路定理、磁场力、力矩;磁介质的磁化、介质中的安培环路定理。
2.磁场方程: 磁场高斯定理:
(表明磁场是无源场)
(表明磁场是有旋场)
掌握推导过程
*通过霍尔电压可以求得磁场和电流大小。
6. 均匀磁化的B 、H 、M 关系及表面磁化电流密度与磁化强度的关系
)
(M H B 0 +=μ H M m χ= m r 1χμ+=
B 代表 H 代表 M 代表
—
——m r 0χμμ 4.载流线圈的磁矩 3.电磁相互作用 B
l Id f d ⨯=2)磁场对载流导线的安培力
⎰⨯=l
B
l Id f 3)磁场对载流线圈的作用力矩 B
m M
⨯=4)5.霍耳电压
1)安培定律。
电磁场课件9毕奥萨伐尔定律、安培环路定律、磁通连续原理-zyw教程
0 I 0 M dl
l
移项,除去系数
B l ( 0 M ) dl I
B H -M 0
H 与I 成右螺旋关系
定义:磁场强度
A/m
则有
H dl I
l
媒质安培环路定律
一般式:
H dl I
l
磁场强度 H 沿任一闭合路径的线积分等于穿过该回路 所包围面积的传导电流 I 的代数和。
P
长直导线的磁场
例 3.1.2 真空中有一载流为 I,半径为 R 的圆环, 试求其轴线上 P 点的 磁感应强度 B 。 解:元电流 Idl 在 P 点产生的 dB 为
dB
0 Id l e r
4π r
2
( Id l
er )
dB
2 4π( R 2 x 2 )
0 Idl sin
1820年,奥斯特发现通有 电流的导线能使附件的磁针发 生偏转,即电流的磁效应。 I
N S
同时,人们还发现: 磁铁对载流导线也有力的作用; 磁铁对运动电荷也有力的作用; 电流与电流之间也有力的相互作用。
安培对这些实验事实进行分析,提出物质磁性本质假说:
一切磁现象都起源于电荷的运动(电流)。
物质间的磁力相互作用是以什么方式进行的呢 ? 近代的理论和实验都表明,物质间的磁力作用是通过 磁场传递的。即
磁通量
磁场中,通过给定曲面的磁力线数目,称为通过该曲面的磁通量。
m B d S BdS cos
s
s
在国际单位制中,磁通量的单位为韦伯(wb)。
磁通连续性原理 由于磁力线是闭合曲线,既无始端又无终端, 因此,通过任一闭合曲面磁通量的代数和(净通量) 必为零。
安培定律和毕奥萨伐尔定律的区别
安培定律和毕奥萨伐尔定律的区别本文介绍安培定律和毕奥萨伐尔定律的定义、应用和区别。
下面是本店铺为大家精心编写的3篇《安培定律和毕奥萨伐尔定律的区别》,供大家借鉴与参考,希望对大家有所帮助。
《安培定律和毕奥萨伐尔定律的区别》篇1一、引言在电磁学中,安培定律和毕奥萨伐尔定律都是描述电流和磁场之间关系的定律。
它们都可以用来求解磁场强度 B,但它们的应用场景和推导方式略有不同。
本文将介绍它们的定义、应用和区别。
二、安培定律安培定律,也称为安培定理,是由法国物理学家安培提出的。
它描述了通过一条导线的电流元产生的磁场强度与该电流元长度之比。
数学表达式为:B = μ * J / (2 * pi * r)其中,B 为磁场强度,μ为真空磁导率,J 为电流元,r 为观测点与电流元之间的距离。
安培定律适用于求解无限长导线产生的磁场强度。
在实际应用中,可以通过将导线分割为许多无限小的单元,计算每个单元产生的磁场强度,再求和得到整个导线产生的磁场强度。
三、毕奥萨伐尔定律毕奥萨伐尔定律,也称为毕奥定律,是由丹麦物理学家毕奥萨伐尔提出的。
它描述了在静止的导线圈中,磁场强度 B 与电流 I 之间的关系。
数学表达式为:B = μ * I / (2 * pi * r)其中,B 为磁场强度,μ为真空磁导率,I 为电流,r 为观测点与导线圈之间的距离。
毕奥萨伐尔定律适用于求解静止的闭合导线圈产生的磁场强度。
在实际应用中,可以通过将导线圈分割为许多无限小的单元,计算每个单元产生的磁场强度,再求和得到整个导线圈产生的磁场强度。
四、区别与联系安培定律和毕奥萨伐尔定律都是描述电流和磁场之间关系的定律,但它们的应用场景和推导方式有所不同。
安培定律适用于求解无限长导线产生的磁场强度,可以通过将导线分割为许多无限小的单元,计算每个单元产生的磁场强度,再求和得到整个导线产生的磁场强度。
毕奥萨伐尔定律适用于求解静止的闭合导线圈产生的磁场强度,可以通过将导线圈分割为许多无限小的单元,计算每个单元产生的磁场强度,再求和得到整个导线圈产生的磁场强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长直线
长
内
直
圆
柱外
面
长 直
内
圆
柱 体
外
B 0I 2r
B0
第八章
B 0I 2r
B
0 Ir 2R 2
B 0I 2r
恒定电流的磁场
8-4磁场的安培环路定理
练习:求同轴B的的两分筒布状。导线通有等值反向的电流I,
(1) r R2 , B 0
R2
R1
(2)
R1
r
R2 ,
B
0I 2r
I
rI
(3) r R1, B 0
B • dl 0
第八章 恒定电流的磁场
8-4磁场的安培环路定理
安培环路定理
在稳恒磁场中,磁感应强度
B
在闭合曲线
上的环流,等于该闭合曲线所包围的电流的代
数和与真 空中的磁导率的乘积。即
B • dl 0 Ii
说明:
I4
I1 I2 I3
电流取正时与环路成右旋关系
l
B • dl 0 Ii
.. . . .
R1 R2
.. . .
..r...............
q
v
第八章 恒定电流的磁场
8-4磁场的安培环路定理
一、 安培环路定理
静电场 E dl 0
l
磁 场 B dl ?
1、圆形积分回路
B
dl
0I 2r
dl
0I
2r
dl
0I 2r
2r
B dl 0I
I
r
B
B
0I
2r
第八章 恒定电流的磁场
8-4磁场的安培环路定理
I
改变电流方向
l
B dl 0I
Bdl cos
da
Bdl
cos
2
B ab
利用安培环路定理求 B
B • dl 0nabI
............... B
B
0nI 0
内 外
第八章
a
b
d 恒定电流的磁场
cI
3. 环形载流螺线管
已知:I 、N、R1、R2
N——导线总匝数
分析对称性
磁力线分布如图
作积分回路如图
方向
右手螺旋
. . . . .
0(I2 I3)
第八章 恒定电流的磁场
8-4磁场的安培环路定理
由环路内电流决定
B • dl 0 Ii 0 (I2 I3 )
环路所包围的电流
I1 I2
I4
I3
l
第八章 恒定电流的磁场
8-4磁场的安培环路定理
不变
? ? B • dl 0 Ii 0 (I2 I3 )
? 改变
0 Ir
B
2R
2
B
0I 2r
0I 2R
rR
rR
B
I
B
O
R
r
第八章 恒定电流的磁场
8-4磁场的安培环路定理
讨论: 长直 载流圆柱面。已知:I、R
B • dl Bdl 2rB
0
Ii
0 I0B源自0I 2rrR rR
rR
rR
I
R
0I B
2R
O 第八章 恒定电流的磁场
R
r
8-4磁场的安培环路定理
8-3 毕奥—萨伐尔定律
任意载流导线在点 P 处的磁感强度
B
dB
0I
4π
dl
r
r3
Idl
磁感应强度矢量叠加
I
dB
P
r
第八章 恒定电流的磁场
三、运动电荷的磁场
电流 电荷定向运动
电流元 Idl
8-3 毕奥—萨伐尔定律
I
q v
S
dl
dB
0
Idl r
0
nSqdlv r
4 r 3
8. -.4磁. 场. 的. 安. 培. 环. 路. .定.理
.
.
r
R1
...
. ...
.
.
R2 ...
.
.
.
...
I 第八章 恒定电流的磁场
8-4磁场的安培环路定理
计算环流
B • dl
Bdl
2rB
利用安培环路定理求
B
B • dl 0NI
B
0 NI 2r
内
0 外
B
.. . . .. .
.. ..
第八章 恒定电流的磁场
8-4磁场的安培环路定理 2. 长直载流螺线管。
已知:I、n(单位长度导线匝数)
分析对称性
管内磁力线平行于管轴 管外磁场为零
...............
B
I
第八章 恒定电流的磁场
计算环流
8-4磁场的安培环路定理
B
•
dl
ab Bdl
cos 0
bc Bdl
cos
2
d
c
r
B
B 0I 2r
第八章 恒定电流的磁场
8-4磁场的安培环路定理
2、任意 积分回路
B dl B cos dl
0I 2r
cosdl
0I 2r
rd
0 I 2
2
B • dl 0I
.I
B
rd
dl
cosdl rd
第八章 恒定电流的磁场
8-4磁场的安培环路定理 3、回路中包含多根电流
静电场是有源场
第八章
B • dS 0
磁力线闭合、 无自由磁荷
磁场是无源场
恒定电流的磁场
8-4磁场的 安培环路定理
二、安培环路定理的应用 B • dl 0 Ii
当场源分布具有高度对称性时,利用安培环路定理
计算磁感应强度
1. 无限长载流圆柱导体
I
已知:I、R
R
电流沿轴向,在截面上均匀分布
分析对称性
I1
I3 I4
I2
B • dl 0 Ii
第八章 恒定电流的磁场
8-4磁场的安培环路定理
4、回路不环绕电流
B
0I
2r
r
B1
dl
0I 2r1
cos1dl
B1
1
.
B2
dl
0I 2r2
cos2dl
d
B2
r2
cos1dl r1d cos2dl r2d
B1 dl B2 dl 0
电流分布——轴对称
磁场分布——轴对称
第八章 恒定电流的磁场
8-4磁场的安培环路定理
B 的方向判断如下:
r
dS1
O
l
dS2
dB
dB2 dB1
P
第八章 恒定电流的磁场
8-4磁场的安培环路定理 作积分环路并计算环流
如图 r
R
B • dl Bdl 2rB
利用安培环路定理求 B
0
B • dl 0 I
不变
I1 I2
I4
I3
l
I1 I2
I4
I3
l
位置移动 第八章 恒定电流的磁场
8-4磁场的安培环路定理
静电场
E dl 0
电场有保守性,它是 保守场,或有势场
稳恒磁场
B dl 0 Ii i
磁场没有保守性,它是 非保守场,或无势场
1
E • dS
s
0
qi
电力线起于正电荷、
止于负电荷。
2rB 0 I
B 0I 2r
第八章
恒定电流的磁场
I R
r
B
8-4磁场的安培环路定理
作积分环路并计算环流
I
如图 r R
R
B • dl
Bdl
2rB
利用安培环路定理求 B
B • dl 0 I
I
0
B
r
0
I
R2
r 2
B
0 Ir 2R 2
第八章 恒定电流的磁场
8-4磁场的安培环路定理
结论:无限长载流圆柱导体。已知:I、R
4
r3
dN nSdl
dB
0 4
qdNv r
r3
I Q qnSl qnSv tt
B
0 4
qv r
r3
实用条件 v c
第八章 恒定电流的磁场
8-3 毕奥—萨伐尔定律
B
0 4
qv r0
r2
若q 0, B与v r同向 若q 0, B与v r反向
•B r
B
r
q v