《离散数学》命题逻辑1解析
离散数学第一章命题逻辑知识点总结
数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
离散数学 数理逻辑__命题逻辑_(1)
EX9:“如果张三能考90分,
那么李四也能考90分。”
P :“张三能考90分”。
Q :“李四能考90分”。
P
Q
T
T
•P→Q: “如果张三能考90分,
T
F
那么李四也能考90分。”
F
T
F
F
P→Q T F T T
17
EX10:如果你今年离散数学考100分,那么就奖励你100元。 P:你今年离散数学考100分。 Q:奖励你100元。
8
1、否定联结词
EX3:求“我们班上所有的同学都大于18岁”的否定。 P:我们班上所有的同学都大于18岁。 ① P:我们班上所有的同学不都大于18岁。 ② P:我们班上所有的同学都不大于18岁。
9
2、合取联结词
设P、Q为两个命题,复合命题“P而且Q”称为P、Q的合取式, 记为P∧Q,“∧”称为合取联结词。 P∧Q为真当且仅当P 与 Q 为同时为真。一般地“既P又Q”,“不仅P而且Q”, “虽 然P但是Q”都可以符号化的含义去理解。
11
EX5:求“今天下雪且今天下雨”的否定。 P:今天下雪。 Q:今天下雨。
P Q (P∧Q)
TT
F
TF
T
FT
T
FF
T
12
思考:将“小王和小李是夫妻俩,他们都很贪婪。” 符号化。 令p:小王和小李是夫妻俩; q:小王很贪婪; r:小李很贪婪; 则可符号化为: p∧q∧r 。
5
4、联结词和复合命题
➢ 联结词: 通常“并非”, “并且”, “或”,“如果…那 么…”,“只要…就…”, “当且仅当”等词称为联结词。
在命题逻辑中主要研究由简单命题用联结词连接而成的 命题称为复合命题;相对地,不能分解为更简单命题的 命题称为简单命题。(命题的分类) 注:简单命题和复合命题的划分具有相对性。 复合命题的真假完全由构成它的简单命题的真假所决定。
离散数学第一章命题逻辑知识点总结
数理逻辑部分第1章命题逻辑1.1 命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“⌝”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作⌝p. 符号⌝称作否定联结词,并规定⌝p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧⌝q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧⌝u) ∨(⌝t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧⌝w)∨(⌝v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“→”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p→q,并称p是蕴涵式的前件,q为蕴涵式的后件. →称作蕴涵联结词,并规定,p→q为假当且仅当p 为真q 为假.p→q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p→q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“↔”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p↔q. ↔称作等价联结词.并规定p↔q为真当且仅当p与q同时为真或同时为假.说明:(1) p↔q 的逻辑关系:p与q互为充分必要条件(2) p↔q为真当且仅当p与q同真或同假联结词优先级:( ),⌝, ∧, ∨, →, ↔同级按从左到右的顺序进行以上给出了5个联结词:⌝, ∧, ∨, →, ↔,组成一个联结词集合{⌝, ∧, ∨, →, ↔},联结词的优先顺序为:⌝, ∧, ∨, →, ↔; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.⏹命题常项⏹命题变项1.2 命题公式及分类▪命题变项与合式公式▪命题常项:简单命题▪命题变项:真值不确定的陈述句▪定义合式公式 (命题公式, 公式) 递归定义如下:▪(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1▪是合式公式▪(2) 若A是合式公式,则 (⌝A)也是合式公式▪(3) 若A, B是合式公式,则(A∧B), (A∨B), (A→B), (A↔B)也是合式公式▪(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式▪说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=⌝B, B是n层公式;(b) A=B∧C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B∨C, 其中B,C的层次及n同(b);(d) A=B→C, 其中B,C的层次及n同(b);(e) A=B↔C, 其中B,C的层次及n同(b).例如公式p 0层⌝p 1层⌝p→q 2层⌝(p→q)↔r 3层((⌝p∧q) →r)↔(⌝r∨s) 4层▪公式的赋值▪定义给公式A中的命题变项p1, p2, … , p n指定▪一组真值称为对A的一个赋值或解释▪成真赋值: 使公式为真的赋值▪成假赋值: 使公式为假的赋值▪说明:▪赋值α=α1α2…αn之间不加标点符号,αi=0或1.▪A中仅出现p1, p2, …, p n,给A赋值α1α2…αn是▪指p1=α1, p2=α2, …, p n=αn▪A中仅出现p,q, r, …, 给A赋值α1α2α3…是指▪p=α1,q=α2 , r=α3 …▪含n个变项的公式有2n个赋值.▪真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q→p) ∧q→p的真值表例 B = ⌝ (⌝p∨q) ∧q的真值表例C= (p∨q) →⌝r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q→p)∧q→p,B =⌝(⌝p∨q)∧q,C= (p∨q)→⌝r1.3 等值演算⏹等值式定义若等价式A↔B是重言式,则称A与B等值,记作A⇔B,并称A⇔B是等值式说明:定义中,A,B,⇔均为元语言符号, A或B中可能有哑元出现.例如,在 (p→q) ⇔ ((⌝p∨q)∨ (⌝r∧r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p→(q→r) ⇔ (p∧q) →rp→(q→r) (p→q) →r⏹基本等值式双重否定律 : ⌝⌝A⇔A等幂律:A∨A⇔A, A∧A⇔A交换律: A∨B⇔B∨A, A∧B⇔B∧A结合律: (A∨B)∨C⇔A∨(B∨C)(A∧B)∧C⇔A∧(B∧C)分配律: A∨(B∧C)⇔(A∨B)∧(A∨C)A∧(B∨C)⇔ (A∧B)∨(A∧C) 德·摩根律: ⌝(A∨B)⇔⌝A∧⌝B⌝(A∧B)⇔⌝A∨⌝B吸收律: A∨(A∧B)⇔A, A∧(A∨B)⇔A零律: A∨1⇔1, A∧0⇔0同一律: A∨0⇔A, A∧1⇔A排中律: A∨⌝A⇔1矛盾律: A∧⌝A⇔0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A⇔B, 则Φ(B)⇔Φ(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p→(q→r) ⇔ (p∧q)→r证p→(q→r)⇔⌝p∨(⌝q∨r) (蕴涵等值式,置换规则)⇔(⌝p∨⌝q)∨r(结合律,置换规则)⇔⌝(p∧q)∨r(德⋅摩根律,置换规则)⇔(p∧q) →r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p→(q→r) (p→q) →r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q∧⌝(p→q)解q∧⌝(p→q)⇔q∧⌝(⌝p∨q) (蕴涵等值式)⇔q∧(p∧⌝q) (德⋅摩根律)⇔p∧(q∧⌝q) (交换律,结合律)⇔p∧0 (矛盾律)⇔ 0 (零律)由最后一步可知,该式为矛盾式.(2) (p→q)↔(⌝q→⌝p)解 (p→q)↔(⌝q→⌝p)⇔ (⌝p∨q)↔(q∨⌝p) (蕴涵等值式)⇔ (⌝p∨q)↔(⌝p∨q) (交换律)⇔ 1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p∧q)∨(p∧⌝q))∧r)解 ((p∧q)∨(p∧⌝q))∧r)⇔ (p∧(q∨⌝q))∧r(分配律)⇔p∧1∧r(排中律)⇔p∧r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A⇔0A为重言式当且仅当A⇔1说明:演算步骤不惟一,应尽量使演算短些1.5 对偶与范式对偶式与对偶原理定义在仅含有联结词⌝, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) ⌝A(p1,p2,…,p n) ⇔A* (⌝p1, ⌝p2,…, ⌝p n)(2) A(⌝p1, ⌝p2,…, ⌝p n) ⇔⌝A* (p1,p2,…,p n)定理(对偶原理)设A,B为两个命题公式,若A ⇔ B,则A*⇔ B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, ⌝q, p∨⌝q, p∨q∨r, …简单合取式:有限个文字构成的合取式如p, ⌝q, p∧⌝q, p∧q∧r, …析取范式:由有限个简单合取式组成的析取式A∨A2∨⋯∨A r, 其中A1,A2,⋯,A r是简单合取式1合取范式:由有限个简单析取式组成的合取式A∧A2∧⋯∧A r , 其中A1,A2,⋯,A r是简单析取式1范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p∧⌝q∧r, ⌝p∨q∨⌝r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的→, ↔(若存在)(2) 否定联结词⌝的内移或消去(3) 使用分配律∧对∨分配(析取范式)∨对∧分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p→⌝q)∨⌝r解 (p→⌝q)∨⌝r⇔ (⌝p∨⌝q)∨⌝r(消去→)⇔⌝p∨⌝q∨⌝r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p→⌝q)→r解 (p→⌝q)→r⇔ (⌝p∨⌝q)→r(消去第一个→)⇔⌝(⌝p∨⌝q)∨r(消去第二个→)⇔ (p∧q)∨r(否定号内移——德⋅摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p∧q)∨r⇔ (p∨r)∧(q∨r) (∨对∧分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1≤i≤n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: ⌝m i ⇔M i , ⌝M i ⇔m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(⌝p∧⌝q∧r)∨(⌝p∧q∧r) ⇔m1∨m3是主析取范式(p∨q∨⌝r)∧(⌝p∨q∨⌝r) ⇔M1∧M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p→⌝q)→r的主析取范式与主合取范式.(1) 求主析取范式(p→⌝q)→r⇔ (p∧q)∨r , (析取范式)①(p∧q)⇔ (p∧q)∧(⌝r∨r)⇔ (p∧q∧⌝r)∨(p∧q∧r)⇔m6∨m7 ,r⇔(⌝p∨p)∧(⌝q∨q)∧r⇔(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)⇔m1∨m3∨m5∨m7 ③②, ③代入①并排序,得(p→⌝q)→r⇔m1∨m3∨m5∨m6∨m7(主析取范式)(2) 求A的主合取范式(p→⌝q)→r⇔ (p∨r)∧(q∨r) , (合取范式)①p∨r⇔p∨(q∧⌝q)∨r⇔ (p∨q∨r)∧(p∨⌝q∨r)⇔M0∧M2,②q∨r⇔ (p∧⌝p)∨q∨r⇔ (p∨q∨r)∧(⌝p∨q∨r)⇔M0∧M4 ③②, ③代入①并排序,得(p→⌝q)→r⇔M0∧M2∧M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p→⌝q)→r⇔m1∨m3∨m5∨m6∨m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式⇔A的主析取范式含2n个极小项⇔A的主合取范式为1.A为矛盾式⇔A的主析取范式为0⇔A的主合取范式含2n个极大项A为非重言式的可满足式⇔A的主析取范式中至少含一个且不含全部极小项⇔A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p→q)(2) (s∨u)(3) ((q∧⌝r)∨(⌝q∧r))(4) ((r∧s)∨(⌝r∧⌝s))(5) (u→(p∧q))③ (1) ~ (5)构成的合取式为A=(p→q)∧(s∨u)∧((q∧⌝r)∨(⌝q∧r))∧((r∧s)∨(⌝r∧⌝s))∧(u→(p∧q))④ A ⇔ (⌝p∧⌝q∧r∧s∧⌝u)∨(p∧q∧⌝r∧⌝s∧u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A⇔ (⌝p∨q)∧((q∧⌝r)∨(⌝q∧r))∧(s∨u)∧(⌝u∨(p∧q))∧((r∧s)∨(⌝r∧⌝s)) (交换律) B= (⌝p∨q)∧((q∧⌝r)∨(⌝q∧r))1⇔ ((⌝p∧q∧⌝r)∨(⌝p∧⌝q∧r)∨(q∧⌝r)) (分配律)B= (s∨u)∧(⌝u∨(p∧q))2⇔ ((s∧⌝u)∨(p∧q∧s)∨(p∧q∧u)) (分配律)B∧B2 ⇔ (⌝p∧q∧⌝r∧s∧⌝u)∨(⌝p∧⌝q∧r∧s∧⌝u)1∨(q∧⌝r∧s∧⌝u)∨(p∧q∧⌝r∧s)∨(p∧q∧⌝r∧u) 再令B3 = ((r∧s)∨(⌝r∧⌝s))得A⇔B1∧B2∧B3⇔ (⌝p∧⌝q∧r∧s∧⌝u)∨(p∧q∧⌝r∧⌝s∧u) 注意:在以上演算中多次用矛盾律要求:自己演算一遍1.6 推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p→r, r→⌝s结论:s→q证明① s附加前提引入②p→r前提引入③r→⌝s前提引入④p→⌝s②③假言三段论⑤⌝p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
《离散数学》课件-第1章命题逻辑基本概念
6
二、命题的分类
定义1.4 设p、q为任意命题,复合命题“如 果p,则q”称作p与q的蕴涵式,记作p→q,并称p 是蕴涵式的前件(hypothesis or premise),q为 蕴涵式的后件(conclusion or consequence)。 →称为蕴涵联结词。
规定:p→q为假当且仅当p为真q为假。即当 p为真q为假时,p→q为假;其它情况都为真。
(4)如果2是素数,则3也是素数。
简单命题:2是素数。3是素数。联结词:如果,则
(5)2是素数当且仅当3也是素数。
简单命题:2是素数。3是素数。联结词:当且仅当
17
解:简单命题的符号化为:
p:3是偶数。 q:2是偶数。 r:2是素数。 s:4是素数。
为了得到复合命题的符号化 形式,我们还必须对五个联 结词进行符号化!
(6)a能被4整除仅当a能被2整除。 p→q
(7)除非a能被2整除,a才能被4整除。 p→q
(8)除非a能被2整除,否则a不能被4整除。 p→q
(9)只有a能被2整除,a才能被4整除。 p→q
(1)3不是偶数。 Î 非3是偶数。
简单命题:3是偶数。
联结词:非
(2)2是偶素数。
Î 2是偶数并且2是素数。
简单命题:2是偶数。2是素数。 联结词:并且
(3)2或4是素数。
Î 2是素数或4是素数。
简单命题:2是素数。4是素数。 联结词:或
离散数学问题详解命题逻辑
第二章 命题逻辑习题2.11.解 ⑴不是述句,所以不是命题。
⑵x 取值不确定,所以不是命题。
⑶问句,不是述句,所以不是命题。
⑷惊叹句,不是述句,所以不是命题。
⑸是命题,真值由具体情况确定。
⑹是命题,真值由具体情况确定。
⑺是真命题。
⑻是悖论,所以不是命题。
⑼是假命题。
2.解 ⑴是复合命题。
设p :他们明天去百货公司;q :他们后天去百货公司。
命题符号化为q p ∨。
⑵是疑问句,所以不是命题。
⑶是悖论,所以不是命题。
⑷是原子命题。
⑸是复合命题。
设p :王海在学习;q :春在学习。
命题符号化为p q 。
⑹是复合命题。
设p :你努力学习;q :你一定能取得优异成绩。
p q 。
⑺不是命题。
⑻不是命题⑼。
是复合命题。
设p :王海是女孩子。
命题符号化为:p 。
3.解 ⑴如果春迟到了,那么他错过考试。
⑵要么春迟到了,要么春错过了考试,要么春通过了考试。
⑶春错过考试当且仅当他迟到了。
⑷如果春迟到了并且错过了考试,那么他没有通过考试。
4.解 ⑴p (q r )。
⑵p q 。
⑶q p 。
⑷q p 。
习题2.21.解 ⑴是1层公式。
⑵不是公式。
⑶一层: pq ,p二层:pq所以,)()(q p q p ↔⌝→∨是3层公式。
⑷不是公式。
⑸(pq )(q ( q r ))是5层公式,这是因为一层:p q ,q ,r 二层:q r 三层:q( qr )四层:(q ( q r ))2.解 ⑴A =(p q )q 是2层公式。
真值表如表2-1所示:pqq p ∨A0 0 0 0 0 1 1 1 1 0 1 0 1111⑵p q p q A →→∧=)(是3层公式。
真值表如表2-2所示:⑶)()(q p r q p A ∨→∧∧=是3层公式。
真值表如表2-3所示:⑷)()()(r q r p q p A ∨∧∨⌝∧∨=是4层公式。
真值表如表2-4所示:3.解 ⑴p q p A ∨⌝∧⌝=)(真值表如表2-5所示:所以其成真赋值为:00,10,11;其成假赋值为01。
离散数学第一章命题逻辑知识点总结
数理逻辑部分第1章命题逻辑1.1 命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“Ø”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作Øp. 符号Ø称作否定联结词,并规定Øp为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧Øq.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧Øu) ∨(Øt∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧Øw)∨(Øv∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“®”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p®q,并称p是蕴涵式的前件,q为蕴涵式的后件. ®称作蕴涵联结词,并规定,p®q为假当且仅当p 为真q 为假.p®q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p®q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“«”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p«q. «称作等价联结词.并规定p«q为真当且仅当p与q同时为真或同时为假.说明:(1) p«q 的逻辑关系:p与q互为充分必要条件(2) p«q为真当且仅当p与q同真或同假联结词优先级:( ),Ø, Ù, Ú, ®, «同级按从左到右的顺序进行以上给出了5个联结词:Ø, Ù, Ú, ®, «,组成一个联结词集合{Ø, Ù, Ú, ®, «},联结词的优先顺序为:Ø, Ù, Ú, ®, «; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.⏹命题常项⏹命题变项1.2 命题公式及分类▪命题变项与合式公式▪命题常项:简单命题▪命题变项:真值不确定的陈述句▪定义合式公式 (命题公式, 公式) 递归定义如下:▪(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1▪是合式公式▪(2) 若A是合式公式,则 (ØA)也是合式公式▪(3) 若A, B是合式公式,则(AÙB), (AÚB), (A®B), (A«B)也是合式公式▪(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式▪说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=ØB, B是n层公式;(b) A=BÙC, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=BÚC, 其中B,C的层次及n同(b);(d) A=B®C, 其中B,C的层次及n同(b);(e) A=B«C, 其中B,C的层次及n同(b).例如公式p 0层Øp 1层Øp®q 2层Ø(p®q)«r 3层((ØpÙq) ®r)«(ØrÚs) 4层▪公式的赋值▪定义给公式A中的命题变项p1, p2, … , p n指定▪一组真值称为对A的一个赋值或解释▪成真赋值: 使公式为真的赋值▪成假赋值: 使公式为假的赋值▪说明:▪赋值a=a1a2…a n之间不加标点符号,a i=0或1.▪A中仅出现p1, p2, …, p n,给A赋值a1a2…a n是▪指p1=a1, p2=a2, …, p n=a n▪A中仅出现p,q, r, …, 给A赋值a1a2a3…是指▪p=a1,q=a2 , r=a3 …▪含n个变项的公式有2n个赋值.▪真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q®p) Ùq®p的真值表例 B = Ø (ØpÚq) Ùq的真值表例C= (pÚq) ®Ør的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q®p)Ùq®p,B =Ø(ØpÚq)Ùq,C= (pÚq)®Ør1.3 等值演算⏹等值式定义若等价式A«B是重言式,则称A与B等值,记作AÛB,并称AÛB是等值式说明:定义中,A,B,Û均为元语言符号, A或B中可能有哑元出现.例如,在 (p®q) Û ((ØpÚq)Ú (ØrÙr))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p®(q®r) Û (pÙq) ®rp®(q®r) (p®q) ®r⏹基本等值式双重否定律 : ØØAÛA等幂律:AÚAÛA, AÙAÛA交换律: AÚBÛBÚA, AÙBÛBÙA结合律: (AÚB)ÚCÛAÚ(BÚC)(AÙB)ÙCÛAÙ(BÙC)分配律: AÚ(BÙC)Û(AÚB)Ù(AÚC)AÙ(BÚC)Û (AÙB)Ú(AÙC)德·摩根律: Ø(AÚB)ÛØAÙØBØ(AÙB)ÛØAÚØB吸收律: AÚ(AÙB)ÛA, AÙ(AÚB)ÛA零律: AÚ1Û1, AÙ0Û0同一律: AÚ0ÛA, AÙ1ÛA排中律: AÚØAÛ1矛盾律: AÙØAÛ0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若AÛB, 则F(B)ÛF(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p®(q®r) Û (pÙq)®r证p®(q®r)ÛØpÚ(ØqÚr) (蕴涵等值式,置换规则)Û(ØpÚØq)Úr(结合律,置换规则)ÛØ(pÙq)Úr(德×摩根律,置换规则)Û(pÙq) ®r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p®(q®r) (p®q) ®r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) qÙØ(p®q)解qÙØ(p®q)Û qÙØ(ØpÚq) (蕴涵等值式)Û qÙ(pÙØq) (德×摩根律)Û pÙ(qÙØq) (交换律,结合律)Û pÙ0 (矛盾律)Û 0 (零律)由最后一步可知,该式为矛盾式.(2) (p®q)«(Øq®Øp)解 (p®q)«(Øq®Øp)Û (ØpÚq)«(qÚØp) (蕴涵等值式)Û (ØpÚq)«(ØpÚq) (交换律)Û 1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((pÙq)Ú(pÙØq))Ùr)解 ((pÙq)Ú(pÙØq))Ùr)Û (pÙ(qÚØq))Ùr(分配律)Û pÙ1Ùr(排中律)Û pÙr(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当AÛ0A为重言式当且仅当AÛ1说明:演算步骤不惟一,应尽量使演算短些1.5 对偶与范式对偶式与对偶原理定义在仅含有联结词Ø, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) ØA(p1,p2,…,p n) ÛA* (Øp1, Øp2,…, Øp n)(2) A(Øp1, Øp2,…, Øp n) ÛØA* (p1,p2,…,p n)定理(对偶原理)设A,B为两个命题公式,若A Û B,则A*Û B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, Øq, pÚØq, pÚqÚr, …简单合取式:有限个文字构成的合取式如p, Øq, pÙØq, pÙqÙr, …析取范式:由有限个简单合取式组成的析取式AÚA2Ú¼ÚA r, 其中A1,A2,¼,A r是简单合取式1合取范式:由有限个简单析取式组成的合取式AÙA2Ù¼ÙA r , 其中A1,A2,¼,A r是简单析取式1范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式pÙØqÙr, ØpÚqÚØr既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的®, «(若存在)(2) 否定联结词Ø的内移或消去(3) 使用分配律Ù对Ú分配(析取范式)Ú对Ù分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p®Øq)ÚØr解 (p®Øq)ÚØrÛ (ØpÚØq)ÚØr(消去®)Û ØpÚØqÚØr(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p®Øq)®r解 (p®Øq)®rÛ (ØpÚØq)®r(消去第一个®)Û Ø(ØpÚØq)Úr(消去第二个®)Û (pÙq)Úr(否定号内移——德×摩根律)这一步已为析取范式(两个简单合取式构成)继续: (pÙq)ÚrÛ (pÚr)Ù(qÚr) (Ú对Ù分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1£i£n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为i极小项(极大项)的名称.m与M i的关系: Øm i Û M i , ØM i Û m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(ØpÙØqÙr)Ú(ØpÙqÙr) Û m1Úm3是主析取范式(pÚqÚØr)Ù(ØpÚqÚØr) Û M1ÙM5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p®Øq)®r的主析取范式与主合取范式.(1) 求主析取范式(p®Øq)®rÛ (pÙq)Úr , (析取范式)①(pÙq)Û (pÙq)Ù(ØrÚr)Û (pÙqÙØr)Ú(pÙqÙr)Û m6Úm7 ,rÛ(ØpÚp)Ù(ØqÚq)ÙrÛ(ØpÙØqÙr)Ú(ØpÙqÙr)Ú(pÙØqÙr)Ú(pÙqÙr)Û m1Úm3Úm5Úm7 ③②, ③代入①并排序,得(p®Øq)®rÛ m1Úm3Úm5Ú m6Úm7(主析取范式)(2) 求A的主合取范式(p®Øq)®rÛ (pÚr)Ù(qÚr) , (合取范式)①pÚrÛ pÚ(qÙØq)ÚrÛ (pÚqÚr)Ù(pÚØqÚr)Û M0ÙM2,②qÚrÛ (pÙØp)ÚqÚrÛ (pÚqÚr)Ù(ØpÚqÚr)Û M0ÙM4 ③②, ③代入①并排序,得(p®Øq)®rÛ M0ÙM2ÙM4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p®Øq)®rÛ m1Úm3Úm5Ú m6Úm7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式ÛA的主析取范式含2n个极小项ÛA的主合取范式为1.A为矛盾式Û A的主析取范式为0Û A的主合取范式含2n个极大项A为非重言式的可满足式ÛA的主析取范式中至少含一个且不含全部极小项ÛA的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p®q)(2) (sÚu)(3) ((qÙØr)Ú(ØqÙr))(4) ((rÙs)Ú(ØrÙØs))(5) (u®(pÙq))③ (1) ~ (5)构成的合取式为A=(p®q)Ù(sÚu)Ù((qÙØr)Ú(ØqÙr))Ù((rÙs)Ú(ØrÙØs))Ù(u®(pÙq))④ A Û (ØpÙØqÙrÙsÙØu)Ú(pÙqÙØrÙØsÙu)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:AÛ (ØpÚq)Ù((qÙØr)Ú(ØqÙr))Ù(sÚu)Ù(ØuÚ(pÙq))Ù((rÙs)Ú(ØrÙØs)) (交换律) B= (ØpÚq)Ù((qÙØr)Ú(ØqÙr))1Û ((ØpÙqÙØr)Ú(ØpÙØqÙr)Ú(qÙØr)) (分配律)B= (sÚu)Ù(ØuÚ(pÙq))2Û ((sÙØu)Ú(pÙqÙs)Ú(pÙqÙu)) (分配律)BÙB2 Û (ØpÙqÙØrÙsÙØu)Ú(ØpÙØqÙrÙsÙØu)1Ú(qÙØrÙsÙØu)Ú(pÙqÙØrÙs)Ú(pÙqÙØrÙu)再令B3 = ((rÙs)Ú(ØrÙØs))得AÛ B1ÙB2ÙB3Û (ØpÙØqÙrÙsÙØu)Ú(pÙqÙØrÙØsÙu)注意:在以上演算中多次用矛盾律要求:自己演算一遍1.6 推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p®r, r®Øs结论:s®q证明① s附加前提引入②p®r前提引入③r®Øs前提引入④p®Øs②③假言三段论⑤Øp①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
离散数学课件 第一章 命题逻辑_1
第一章内容提要
1 命题及其表示法
2
3
命题联结词
命题公式与翻译
4
5 6 7 8
真值表与等价公式
重言式与蕴含式 其他联结词 对偶与范式 推理理论
1-1 命题及其表示法
1、命题
具有确切真值的陈述句称为命题,该命题可以 取一个“值”,称为真值。 真值只有“真”和“假”两种,分别用 “T”(或“1”)和“F”(或“0”)表示。
等价公式
观察表中公式┐(PQ)和公式(┐P┐Q),它们的 真值完全相同(这两个公式对任何解释都必同为真 假),称┐(PQ)和(┐P┐Q)是相等(等价、等 值)的。 定义1-4.2 设G、H是公式,如果在任意解释I下, G与H的真值相同,则称公式G、H是等价的,记作 G = H (或 G H)。
显然(1), (4)两种情况父亲都没失信。 情况(2)正好对应定义中“当前件P为真, 后件Q为假 时, (3)的情况与这位父亲原来的话没有抵触, 当然也不算失信。 命题P Q取值为假”的规定。
只有情况(2), 答应的事却没有做到, 应该算失信了。
5、双条件联结词
设P、Q是任意两个命题,复合命题“P当且仅当Q” 称为P与Q的双条件命题,记作PQ ,“”称为 当且仅当联结词。 PQ为真当且仅当P、Q同为真假。 若 则 P:2+2=4;Q:雪是白的。 PQ:2+2=4当且仅当雪是白的。
(P∧┐Q∧R)∨(┐P∧┐Q∧R) 3. 如果明天上午七点下雨或下雪,则我将不去学校
命题联结词的应用
联结词“∧”、“∨”、“┐”与构成计算机 的与门、或门和非门电路是相对应的,从而命题逻 辑是计算机硬件电路的表示、分析和设计的重要工 具。
命题联结词的应用
离散数学 命题逻辑重言式
5
…,Pn分别指定一个真值,称为对公式A的一组真值指派。
命题公式与其命题变元之间的真值关系,可以用真值表的方法表示出来。
离散数学 第一章 命题逻辑
1
定义1-8:
(1)命题公式A(P1...Pn),n个命题变元的真值有2n种组合,每一种组合称为一种 指派。
(2)如果对于命题公式A所包含的命题变元的任何一组真值指派,A的真值恒为真, 则称公式A为重言式(或永真公式),常用“1”表示。
(3)相反地,若对于A所包含的命题变元的任何一组真值指派,A的真值恒为假, 则称公式A为矛盾式(或永假公式),常用“0”表示。 (4)不是永真式,也不是永假式的命题公式称为偶然式。 (5)如果至少有一组真值指派使公式A的真值为真,则称A为可满足公式 。
离散数学
第一章 命题逻辑
2
图示:
偶然
永真
非永真
离散数学第一章命题逻辑一重言式命题公式代表一个命题但只有当公式中的每一个命题变元都用一个确定的命题代入时命题公式才有确定的真值成为命题
1.2
一、重言式
重言式
命题公式代表一个命题,但只有当公式中的每一个命题变元都用一个确 定的命题代入时,命题公式才有确定的真值,成为命题。
定义1—7
设A为含有命题变元P1,P2,…,Pn的命题公式,对P1,P2,
F2=(Q→P)∧(¬ P∧Q)
F1和F2的真值表如下: ¬ P ¬ P↔Q P ↔Q ¬ (P→Q)
F1
Q→P
¬ P∧Q
F2 0 0
00 01
1 1
0 1
1 0
0 1
1 1
1 0
0 1
10
11
0
离散数学之1—命题逻辑
28
蕴涵联结词的实例
我将去旅游,仅当我有时间。 p: 我去旅游 q: 我有时间 p→q p: 不下雨 q: 我骑自行车上班 只要不下雨,我就骑自行车上班 p→q 只有不下雨,我才骑自行车上班。 q→p
说谎者悖论 亚里士多德,古希腊人,是世界
古典形式逻辑
如果这个人说的是假话,既 在中世纪,形式逻辑作为一门独 “我没有说谎”,既他说的是 立的科学得到了发展。 真话,矛盾。
第一篇 数理逻辑
6
数理逻辑创始人
德国哲学家和数学家莱布 尼茨是德国最重要的自然 科学家、数学家、物理学 家和哲学家,一个举世罕 见的科学天才,和牛顿同 为微积分的创建人。 莱布尼茨是现在公认的数 理逻辑创始人,他的目的 是建立一种“表意的符号 语言”,其中把一切思维 推理都化归为计算。实际 上这正是数理逻辑的总纲 领。
29
蕴涵联结词的实例
除非你努力,否则你不能成功。 表示p q的常用词: 除非你努力,你才能成功。 p是q的充分条件 p: 你努力 q: 你成功 q是p的必要条件 p → q 或 q → p 如果(若)p,则q p 0 0 1 1 q 0 1 0 1 p 1 1 0 0
只要p,就q q qp pq 只有q 才p 1因为p所以 1 q 1 0p仅当q0 0 才p 1除非q, 1 1 p 0除非q,否则非 1 1
数理逻辑
“事实上,它们(程 序设计)或者就是 数理逻辑,或者是 用计算机语言书写 的数理逻辑,或者 是数理逻辑在计算 机上的应用。”
离散数学命题逻辑 第一章(1)
我现在年纪大了,搞了这么多年软件,错误 不知犯了多少,现在觉悟了。我想,假如我早在 数理逻辑上好好下点功夫的话,我就不会犯这么 多错误。不少东西逻辑学家早就说过了,可是我 不知道。要是我能年轻20岁的话,我就会回去学 逻辑。
E.W.Dijkstra
先看著名物理学家爱因斯坦出过的一道题: 一个土耳其商人想找一个十分聪明的助手协助他经商,有两人 前来应聘,这个商人为了试试哪个更聪明些,就把两个人带进一间 漆黑的屋子里,他打开灯后说:“这张桌子上有五顶帽子,两顶是 红色的,三顶是黑色的,现在,我把灯关掉,而且把帽子摆的位置 弄乱,然后我们三个人每人摸一顶帽子戴在自己头上,在我开灯后, 请你们尽快说出自己头上戴的帽子是什么颜色的。”说完后,商人 将电灯关掉,然后三人都摸了一顶帽子戴在头上,同时商人将余下 的两顶帽子藏了起来,接着把灯打开。这时,那两个应试者看到商 人头上戴的是一顶红帽子,其中一个人便喊道:“我戴的是黑帽 子。” 请问这个人说得对吗?他是怎么推导出来的呢?
Page 13
2、命题满足的条件
命题的语句形式:陈述句 非命题语句:疑问句、命令句、感叹句、非命题陈述句 (悖论语句) 命题所表述的内容可决定是真还是假,不能不真又不假, 也不能又真又假。
Page 14
3、举例
• • • • • • • • • 北京是中国的首都。 土星上有生物。 3+2≥9。 1+101=110 请关门! 你要出去吗? 如果天气好,那么我去散步。 x= 2。 我正在撒谎。
Page 9
第一章 命题逻辑
研究以命题为基本单位构成的前提和结论之间的 可推导关系。
Page 10
第一章 命题逻辑
1
命题及其表示方法 联结词
离散数学 第一章 命题逻辑
解:设P:张明正在睡觉。Q:张明正在游泳。本
例的“或”是“不可兼或”,而析取联结词是“ 可兼或”,因此不能直接对两命题析取。构造表 1-2如下:
1.2.2 命题的翻译
P Q 原命题 P→← Q
TT F
T
TF T
F
FT T
F
FF F
T
┐(P→← Q) F T T F
1.1.2 联结词
④ 关于→和⇆ 有的数学书或逻辑学的书籍中有其 他的说法,如称→为蕴含,称⇆ 为等价等,本书 中将避免使用这种称呼,因为在后面的章节我们 将另外定义“蕴含”和“等价”这两个概念。
1.2 命题公式与翻译
命题公式 命题的翻译
1.2.1 命题公式
联结词、原子命题变元、圆括号“(”、“)”, 可进行有限次地连接,得到许多字符串,那些有 意义的字符串,称为命题逻辑中的合式公式, 简 称命题公式或公式。
(A→B)和(A ⇆B)都是合式公式。
④ 经过有限次地使用①、②、③所得到的包含原 子命题公式、联结词和圆括号的字符串都是合式 公式。
1.2.1 命题公式
例1.1 (┐P)∨Q,(P→(Q∧R))都是合式公式,而 (P→Q)→(∧Q),(P,( P→Q)⇆(∧R))都不是合式公
式。 为方便计,对于圆括号的使用和联结词的优先级
1.1.2 联结词
关于这五个联结词的定义,可以通过如表1-1的 真值表给出,关于真值表的定义,我们将在1.3节
详细说明。 表1-1 五个联结词的真值表
P Q ┐P P∧Q P∨Q P→Q P→Q←
TT F T T T
T
TF F F T F
F
FT T F T T
F
离散数学_命题逻辑_1.1
1.1命题与联结词
例1.1 判断下列语句是否是命题 不是命题 (7) x+8>0。 (8)你出去么? 不是命题 (9)5或6是素数。 不是命题 (10)如果行列式的两行对应成比 真命题 例,则行列式的值为0。 (11)角A与角B相等当且仅当A与角 假命题 B是对顶角。
1.1命题与联结词
2.命题的特点 命题一定是陈述句,但陈述句不一定是命 题。 命题的真值有时明确给出,有时还要依 靠环境、条件、实际情况等因素才能确 定其真值。
什么是离散?离散就是不连续。
线与点。 人的说话声,鸟叫声等;计算机里储存声音。 生活中,人眼见到的图像(非计算机里的);计 算机里用灰度值(从0到255)表示的图像。 计算机不能处理连续信息的,这是由计算机的 本质:0和1,决定的。因此,如果要用计算机 来处理连续信息,必须经过离散化。
离散数学的地位
离散数学的特点
提高抽象思维、严格推理以及综合归纳 分析能力 以研究离散量的结构和相互关系为主要 目标
显著特征是符号化和形式化
离散数学的用途
又称“计算机数学”,因为离散数学的 主要应用领域是计算机。
数理逻辑——数字逻辑电路、密码学 图论(包括树)——数据结构、操作系统 、编译 原理、计算机网络 集合论和关系代数——软件工程和数据库原理
其他分支
代数系统
图论
形式语言与 自动机
数理逻辑
集合论
离散数学 的构成
数理逻辑 命题逻辑
离散数学
集合论 集合及其运算 二元关系
谓词逻辑
函数
代数系统
图论 图的基本概念
群、环、域
Euler图与Hamilton图
离散数学1命题逻辑
第1章
例7
例7、将下列命题符号化,并讨论他们的真值。 (1)如果3+3=6,则雪是黑色的; (2)只有a(正整数)能被2整除,a才能被4整除; (1)设:p:3+3=6,q:雪是黑色的 原语句符号化为:p→q 真值为0 (2)设p:a(正整数)能被2整除,q:a能被4整除 原语句符号化为:q →p 真值为1
离散数学 第一篇数理逻辑
蔡广军
第1章
数理逻辑简介(1)
数理逻辑(Mathematical Logic) 用数学方法(主要是建立符号体系的方法)来 研究推理形式结构和推理规律的数学学科 。 通过引入一套符号体系来研究推理规律的 学科,故又称之为符号逻辑(Symbolic Logic)
第1章
例题5
例5、p:2+2=4 q:3是奇数 (1) 2+2=4当且仅当3是奇数。p↔q (2) 2+2=4当且仅当3不是奇数。p↔┐q (3) 2+2≠4当且仅当3是奇数。┐p↔q (4) 2+2≠4当且仅当3不是奇数。┐p↔┐q
第1章
数理逻辑联结词与自然语言联结词
6、逻辑联结词与自然语言中联结词的关系 否定——不是、没有、非、不 合取——并且、同时、和、既…又…,不但… 而且…,虽然…但是… 析取——或者、或许、可能 蕴含——若…则…,假如…那么…,既然…那就 倘若…就… 等价——当且仅当、充分必要、相同、一样
要回答这样的问题,实际上就是看由一些 诸如“商人戴的是红帽子”这样的前提能否推 出“猜出答案的应试者戴的是黑帽子”这样的 结论来。这又需要经历如下过程: (1) 什么是前提?有哪些前提? (2) 结论是什么? (3) 根据什么进行推理? (4)怎么进行推理?
第1章
第一章命题逻辑
离散数学第一章命题逻辑
chapter1
6
1.1 命题及其表示法
【例3 】求公式 (P→R)∨(Q→R)的真值表。 解:∵公式含有3个命题变元P、Q、R, ∴真值表有23=8行。其真值表如下表 所示:
3/22/2019
chapter1
7
1.2 联结词
命题和原子命题常可通过一些联结词构成新命题 , 这
种新命题叫复合命题(Compositional Proposition )。例
(2)刘昕这次考试可能是全班第一也可能是全班第二。
这两例表示的均是排斥或,即两种情况不能同时出现, 这时便不能仅用析取词∨表示。
3/22/2019 chapter1 13
1.2 联结词
4、条件 → P→Q, 读做 “如果P, 那么Q”或“P则Q” 。 运算对象P叫做前提 , 假设或前件, 而Q叫做结论或后件。
(b) 小王边走边唱。
解:设p:小王走路,q:小王唱歌。 则原命题符号化为: p∧q (c) 除非a能被2整除,否则a不能被4整除。 解:设p:a能被2整除,q:a能被4整除。
则原命题符号化为: ┐ p → ┐q
3/22/2019 chapter1
或
q→p
21
1.3 命题公式
(d) 此时,小刚要么在学习,要么在玩游戏。 解:设p:小刚在学习,q:小刚在玩游戏。
(否,感叹句) (否, 悖论) (h) 我正在说谎。 (i) 如果天气好,那么我去散步。 (是,复合命题) (g) 天气多好啊! (j) x>3
3/22/2019
(否,不能确定真值)
chapter1 3
1.1 命题及其表示法
2、命题的表示 命题变元——常用P、Q、R、S等大写字母或加下标的大 写字母P1, Q2, R10, ……表示来表示一个命题,称为命题 变元。 如: P:巴黎在法国。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
① 雪是白的。
✔ 两个要素: ✔ ✘ ✔
1、陈述句;
② 雪是黑的。
③ 好大的雪啊! ④ 8大于12。
2、可以判断 真假。
⑤ 1+101=110。
✔
9/60
例:下列句子都是命题吗?
① 21世纪末,人类将住在月球。
之和。
③ X<0 。
英国Alan M. Turing (1912-1954)在1936年提出一 种抽象计算模型(数学逻辑机),引入图灵机—— 一种理想的计算机
5/60
数理逻辑的学习
“我现在年纪大了,搞了这么多年的 软件,错误不知犯了多少,现在觉悟 了。我想,假如我早年在数理逻辑上 好好下点工夫的话,我就不会犯这么 多的错误。不少东西逻辑学家早就说 过了,可是我不知道。要是我能年轻 二十岁的话,我就去学逻辑。” —— Edsger. W. Dijkstra 1972年Turing奖获得者 (1930-2002) 带权图的最
36/60
解 (1)如果天不下雨并且不刮风,我就去书店。 设p:今天天下雨,q:今天天刮风,r:我去书 店。则原命题符号化为:
p q r
(2)小王边走边唱。 设p:小王走路,q:小王唱歌。 则原命题符号化为: p∧q (3)除非a能被2整除,否则a不能被4整除。 设p:a能被2整除,q:a能被4整除。 则原命题符号化为:
20
令 r : 张辉是三好学生,s :王丽是三好学生 (4) r∧s. (5) 令 t : 张辉与王丽是同学,t 是简单命题 .
例 (续)
说明: (1)~(4)说明描述合取式的灵活性与多样性. (5) 中“与”联结的是句子的主语成分,因而(5) 中句子是简单命题.
21
析取词 P∨Q
读作“P析取Q” ,是指命题: “P或者Q”。
否 定 并 且
• 今晚我不玩网络游戏。
• 今晚我不看书, 我玩网络游戏。
• 今晚我看书,或者我玩网络游戏。
或者
12/60
(二) 命题的分类
原子命题——不可剖开或分解为更 简单命题的命题, 也称为简单命题。 约定 用 大写 字母 表示
复合命题——由原子命题利用联结 词构成的命题
13/60
复合命题例子
(1)雪不是白的(并非雪是白的)
(2)今晚我看书或者去看电影。 (3)如果天气好,那么我去接你。 (4)偶数a是质数,当且仅当a=2(a是常数)。 (5) 2是偶数且3也是偶数。
(6)你去了学校,我去了工厂。
14/60
(三) 命题变元
当P表示任意命题时,称P为命题变元。
字母P
命题——具体的、特定的命题, 有确定的真值 命题变元——任意命题, 没有确定的真值
短通路算法
6/60
数理逻辑
第一章 命题演算基础 第二章 命题演算的推理理论 第三章 谓词演算基础 第四章* 谓词演算的推理理论 第五章* 递归函数论
7/60
1.1.1 命题
(一) 命题定义
凡是可以判断真假的陈述句称为命题。
真, 用T(或1)表示 命题的值
假, 用F(或0)表示
8/60
例:下列句子都是命题吗?
④ 如果x大于3,则x2大于9。
✔
✘
⑤ 我正在说谎 。
悖论
10/60
命题的真假问题
在数理逻辑的学习中, 不能去纠缠各种具体命题的真假问题, 而是将命题当成数学概念来处理, 看成一个抽象的形式化的概念, 把命题定义成非真必假的陈述句.
11/60
带联结词的命题
• 今晚我看书。 • 今晚我玩网络游戏。 • 今晚我不看书。
P∨Q T T T F (P∧﹁ Q)∨(﹁P∧Q) F T T F
23/60
蕴含词 P→Q
读作“P蕴含Q” ,是指命题: “如果P,则Q”
P Q T T F F T F T F P Q T F T T
例 P:1+1=3。
Q:雪是黑的。
P→Q: 只要1+1=3,雪就是黑的。
24/60
注1. 前件为假时,蕴含式命题为真
p q
或
q p
(4)此时,小纲要么在学习,要么在玩游戏。 设p:小刚在学习,q:小刚在玩游戏。 则原命题符号化为:
( p q) (p q) 或 ( p q) ( p q)
(5)如果天不下雨,我们去打篮球,除非班上有会。 设p:今天天下雨,q:我们去打篮球,r:今 天班上有会。 则原命题符号化为:
15/60
1.1.2 联结词
否定词
合取词 析取词 蕴含词 等价词
﹁
∧ ∨
16/60
否定词 ﹁P
读作“非P” , 是指命题: “P的否定”。
P 例 P:雪是黑色的。 ﹁P:并非雪是黑色的。 T F
P F T
真值表
17/60
否定联结词使用的原则
将真命题变成假命题,将假命题变成真命题。 但这并不是简单的随意加个不字就能完成的。
例 P: 这些都是学生。 ﹃P:这些不都是学生 ≠ 这些都不是学生
18/60
合取词 P∧Q
读作“ P合取Q”,是指命题: “P并且Q”。
例1 P: 今天刮风。 Q: 今天下雨。 P∧Q:今天刮风,下雨。 例2 P: 1+1=2。 Q: 雪是白色的。 P Q T T F F T F T F 真值表
19/60
P Q T F F F
P∧Q: 1+1=2 且雪是白色的。
例 将下列命题符号化.
(1) 王晓既用功又聪明. (2) 王晓不仅聪明,而且用功. (3) 王晓虽然聪明,但不用功. (4) 张辉与王丽都是三好生. (5) 张辉与王丽是同学. 解 令 p:王晓用功,q:王晓聪明,则 (1) p∧q (2) p∧q (3) p∧q.
r (p q)
命题符号化
例2. 将下列命题符号化: (1)李明是计算机系的学生,他住在312室 或313室。 (2)张三和李四是朋友。 (3)虽然交通堵塞,但是老王还是准时到达 了车站。 (4)只有一个角是直角的三角形才是直角三 角形。 (5)老王或小李中有一个去上海出差。
命题符号化
离散数学
——研究离散数量关系和离散结构数学模型的 数学分支的统称
Discrete
古代数学——整数、整数的比 近代数学——连续的数量概念(实数),处理 连续数量关系的数学(微积分)
1/60
离散问题举例 世界地图问题
船夫问题
幻方问题 韩信点兵 邮差送信 一笔画问题
2
主要内容
数理逻辑 (1-5) 图 论 (9-10) 代 数 (11-12)
4、复合命题PQ表示的逻辑关系是:Q是P的必要条件 ,P是Q的充分条件。在数学中,“如P,则Q”往往要求前 件为真,后者为真的推理关系。但在数理逻辑中规定当前件 为假,不论后件为真为假,均有P→Q为真。
pq 的逻辑关系:q 为 p 的必要条件 “如果 p,则 q ” 的不同表述法很多: 若 p,就 q 只要 p,就 q 联结词与复合命题 (续) p 仅当 q 只有 q 才 p 除非 q, 才 p 或 除非 q, 否则非 p, 当 p 为假时,pq 为真 常出现的错误:不分充分与必要条件
例 P: 他会英语。 Q:他会法语。 P∨Q :他会英语或者法语。
P Q
T T F F T F T F
P Q
T T T F
22/60
可兼的“或”——不可兼的“或”
P T T F F Q T F T F P∨Q T T T F P Q T T F F T F T F
他会英语或法语。
今晚我去看电影, 或去看球赛。
26/60
灵活叙述蕴含词的例子
设 R:天下雨, H:我回家, 试表示下列命题: 只要天下雨,我就回家。 R→H H→R H→R
只有天下雨,我才回家。
除非天下雨,否则我不回家。 仅当天下雨,我才回家。
H→R
或﹃R→﹃H
27/60
pq 的逻辑关系:q 为 p 的必要条件 “如果 p,则 q ” 的不同表述法很多: 若 p,就 q 只要 p,就 q 联结词与复合命题 ( 续) p 仅当 q 只有 q 才 p 除非 q, 才 p 或 除非 q, 否则非 p, 当 p 为假时,pq 为真 常出现的错误:不分充分与必要条件
35/60
命题符号化
分析出简单命题,符号化 用联结词联结简单命题
例 将下列自然语言符号化: (1)如果天不下雨并且不刮风,我就去书店。 (2)小王边走边唱。 (3)除非a能被2整除,否则a不能被4整除。 (4)此时,小纲要么在学习,要么在玩游戏。 (5)如果天不下雨,我们去打篮球,除非班上有 会。
33/60
n 元公式
——有n个不同的命题变元的公式。
例
一元公式
P(PP)
二元公式 三元公式
(PQ) (PQ) ((PQ)R)(PQ)
34/60
优先级约定
联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则 按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算
(3)虽然交通堵塞,但是老王还是准时到达 了车站。 P:交通堵塞。 Q:老王准时到达了车站。 该命题符号化为:PQ (4)只有一个角是直角的三角形才是直角三 角形。 P:三角形的一个角是直角。 Q:三角形是直角三角形。 该命题符号化为:P Q 或 Q P
命题符号化
(5)老王或小李中有一个去上海出差。 首先用字母表示简单命题。 P:老王去上海出差。 Q:小李去上海出差。 该命题符号化为:(PQ)(PQ)或 者(P Q) (PQ)
(1)李明是计算机系的学生,他住在312室 或313室。 解:(1)首先用字母表示简单命题。 P:李明是计算机系的学生。 Q:李明住在312室。 R:李明住在313室。 该命题符号化为:P((¬Q ∧ R) ∨ (Q ∧¬R)) (2)张三和李四是朋友。是一个简单句 该命题符号化为:P