应用多元统计分析习题解答_因子分析

合集下载

应用多元统计分析试题及答案(1)

应用多元统计分析试题及答案(1)

应用多元统计分析试题及答案(1)多元统计分析是现代统计学中不可或缺的一部分,它是用于对不同数据进行相关分析的高级统计方法。

对于需要进行多因素分析的问题,多元统计分析是必须掌握的技能。

以下是一些应用多元统计分析的试题及答案。

试题1:假设你要进行一项研究,以评估学生在学期末考试成绩与他们的就业情况之间是否存在关联。

你将分析什么类型的多元统计分析?答案:此问题需要进行一种二元多元回归分析。

此方法可以用于探索学期末考试成绩和就业情况之间的相关性。

通过回归分析,我们可以计算出两个变量之间的相关系数以及建立一个数学模型来预测就业成功与否的可能性。

试题2:你是一家旅游公司的行销经理,你想了解你们的财务状况、品牌信誉和市场定位之间的关系。

采用哪种多元统计分析来解决这个问题?答案:这个问题需要进行一种因子分析。

因子分析是一种常用的多元统计技术,可用于探索大量变量之间的共性或相似性。

因此,行销经理可以使用因子分析来探究这三个因素之间的关系,以帮助公司更好地了解市场需求、推广策略和产品定位。

试题3:你是一名医学研究员,你需要研究新型药物的效果以及它是否与特定人群的特征相关。

哪种多元统计分析可用于研究?答案:这个问题需要使用一种路径分析方法。

路径分析是一种分层回归分析技术,可用于探索变量间的直接和间接影响关系。

因此,研究人员可以使用路径分析来研究新型药物的效果以及与特定人群特征的相关性,以便更好地理解治疗效果的影响因素。

试题4:你是一名市场分析师,你需要研究不同年龄、性别和教育水平的人群之间的消费习惯。

采用哪种多元统计分析来解决这个问题?答案:这个问题需要使用一种聚类分析方法。

聚类分析是一种将成为节点的相似对象分组的过程。

因此,市场分析师可以使用聚类分析来将相似的人群以及他们的共同消费习惯分成几个类别,以便更好地了解不同年龄、性别和教育水平背景下的人群之间的消费习惯和偏好。

结论:多元统计分析是一种有用的技术,可以用于探索大量不同变量之间的关系,对于需要分析多个变量之间关系的问题,多元统计分析是必须学习的基本技能。

应用多元统计分析答案详解汇总_高惠璇[1]

应用多元统计分析答案详解汇总_高惠璇[1]
1 2 ( 2 x1 22 x1 65 ) 2
e
1 2 ( x2 2 x1 x2 14 x2 ) 2
dx2
1 e 2
1 2 ( 2 x1 22 x1 65 ) 2

e
1 2 ( x2 2 x2 ( x1 7 ) ( x1 7 ) 2 ) 2
比较上下式相应的系数,可得:
1 2 1 12 2 2 2 12 1 1 2 1 2 2 2 22 1 2 1 2 2 2 2 2 1 2 1 2 1 14 2 2 2 2 2 1 2 1 2 1 2 1 2
x1 y2 (2)第二次配方.由于 x2 y1 y2
14
第二章
2 1 2 2 2 1 2 1 2 2
多元正态分布及参数的估计
2 x x 2 x1 x2 22 x1 14 x2 65 y y 22 y2 14( y1 y2 ) 65 y 14 y1 49 y 8 y2 16 ( y1 7) ( y2 4)
由定理2.3.1可知X1 +X2 和X1 - X2相互独立.
4
第二章
(2) 因
多元正态分布及参数的估计
1 2 2 2(1 ) 0 X1 X 2 ~ N2 , Y 2(1 ) 0 X1 X 2 1 2
O 2(1 2 ) O 2(1 2 )
由定理2.3.1可知X(1) +X(2)和X(1) -X(2) 相 互独立.
7
第二章
(2) 因
(1) (2)

应用多元统计分析课后题答案

应用多元统计分析课后题答案


c) c)2
2( x1

a)( x2

c)]
其中 a x1 b , c x2 d 。求 (1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差; (2)随机变量 X1 和 X 2 的协方差和相关系数; (3)判断 X1 和 X 2 是否相互独立。
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
12

2 2

1/
2
exp

1 2
(x

μ)

12 21
12

2 2
1
(x

μ)


2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )

2[(d

c)( x1

a)
(b a)(x2 (b a)2 (d

μ)

1 n 1
n i 1
E(Xi
-
μ)(
X i
-
μ)

nE(X

μ)(X

μ)


Σ

故 S 为 Σ 的无偏估计。 n 1
2.9.设 X(1) , X(2) , ..., X(n) 是从多元正态分布 X ~ N p (μ, Σ) 抽出的一个简单随机样本,试求 S
c) 2(x1 a)(x2 a)2(d c)2

c)]
dx2
2(d c)(x1 a)x2 d dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2

《应用多元统计分析》课后习题第七章答案

《应用多元统计分析》课后习题第七章答案

《应用多元统计分析》第七章课后习题答案
P128_7.7
解:由spss软件得“方差贡献率表”如下:(此处只提取了两个公因子)
由上表可见:提取两个公因子的方差累积贡献率已达75.26%,并且题目中要求分析学生适合学文科还是理科,所以提取两个公因子是比较好的选择。

旋转后的因子载荷矩阵如下:
成份
1 2
x1 -.245 .795
x2 -.152 .698
x3 -.099 .815
x4 .867 -.335
x5 .904 -.209
x6 .953 -.072
从上述因子载荷矩阵可以看出,因子1与X4(语文),X5(历史),X6(英语)的相关性强,所以命名为“文科因子”;因子2与X1(数学),X2(物理),X3(化学)的相关性强,所以命名为“理科因子”。

P129_7.8
解:由spss软件得“方差贡献率表”如下:(由于前两个因子的累积方差贡献率已达
x8 .776 .477
x9 -.629 -.638
从上述因子载荷矩阵可以看出,因子1与X1(价格),X2(发动机),X3(功率),X8(燃料容量),X9(燃料效率)的相关性强,所以命名为“汽车价格及性能因子”;因子2与X4(轴距),X5(宽),X6(长),X7(轴距)的相关性强,所以命名为“汽车外观因子”。

从而,将题中的指标体系简化成了两个指标,即:“汽车价格及性能”和“汽车外观”。

指导应用多元统计分析资料报告习题解答_因子分析资料报告

指导应用多元统计分析资料报告习题解答_因子分析资料报告

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX 对公共因子jF 的相对重要性。

应用多元统计分析习题解答 第七章讲解学习

应用多元统计分析习题解答 第七章讲解学习

应用多元统计分析习题解答第七章第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a aa a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mik k j i j k a F F F ε=+∑=ij a若对iX作标准化处理,=ija,因此ija一方面表示iX对jF的依赖程度;另一方面也反映了变量i X对公共因子jF的相对重要性。

应用多元统计分析习题解答_因子分析

应用多元统计分析习题解答_因子分析

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX对公共因子jF的相对重要性。

应用多元统计分析习题解答_因子分析

应用多元统计分析习题解答_因子分析

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX 对公共因子jF 的相对重要性。

应用多元统计分析课后习题答案详解北大高惠璇第八章习题解答

应用多元统计分析课后习题答案详解北大高惠璇第八章习题解答
p i 1 p
所以
Q(m)
i 1 j 1 2 ij
p
p
j m1
(
2 j i 1
p
2 2 i
)
j m 1
,
2 j
16
p
第八章 因子分析
8-5 试比较主成分分析和因子分析的 (1) 主成分分析不能作为一个模型来描述,它只 是通常的变量变换,而因子分析需要构造因子模型; (2) 主成分分析中主成分的个数和变量个数p相 同,它是将一组具有相关关系的变量变换为一组互 不相关的变量(注意应用主成分分析解决实际问题 时,一般只选取前m(m<p)个主成分),而因子分析的 目的是要用尽可能少的公共因子,以便构造一个结 构简单的因子模型;
(2) ( AA D) 1 D 1 D 1 A( I AD 1 A) 1 A1 D 1 ; (3) A( AA D) 1 ( I m AD 1 A) 1 AD 1. 解:利用分块矩阵求逆公式求以下分块矩阵的逆:
记B221 I m AD A,
17
第八章 因子分析
(3) 主成分分析是将主成分表示为原变量的线 性组合,而因子分析是将原始变量表示为公因子 和特殊因子的线性组合,用假设的公因子来“解 释”相关阵的内部依赖关系. 这两种分析方法又有一定的联系.当估计方法 采用主成分法,因子载荷阵A与主成分的系数相 差一个倍数;因子得分与主成分得分也仅相差一 个常数.这种情况下可把因子分析看成主成分分 析的推广和发展. 这两种方法都是降维的统计方法,它们都可用 来对样品或变量进行分类.
18
2 11 2 21 2 3 2 31
a 1
2 31 2 3
a11a21 0.63 a11a31 0.45 a31a21 0.35

应用多元统计分析习题解答_因子分析

应用多元统计分析习题解答_因子分析

第七章因子分析7.1试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、 简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇, 将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标 变换到变异程度大的方向上为止,突出数据变异的方向, 归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因 子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子 分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对 空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判 断各自的影响和变化规律。

7.3 简述因子模型、一 m 卜中载荷矩阵A 的统计意义。

答:对于因子模型X i PF W2F 2• O j Fj •… WmF m;ii =1,2,…,pX i 与F j 的协方差为:mCov(X i , F j ) =Cov(' a ik F k 「F j )kTm= Cov(' a ik F k ,F j ) Cov( ;i ,F j )k d=a ij若对X i 作标准化处理,=a 0 ,因此a jj —方面表示X i 对F j 的依赖程度;另一方面也反映了 变量X i 对公共因子F j 的相对重要性。

应用多元统计课后答案解析

应用多元统计课后答案解析

2(d c)(x 1 a)x 2 (b a)2(d c)2 2[(b a )(X 2 c) 2(X 1 a )(X 2 c)] (b a)2(d c)2dx 22(d c)(x.| a)x 222~(b a) (d c) c2[(b a)t 2(X 1 a)t]2 2 (b a) (d c)dt 2(d c)(x-i a)x 22 2(b a) (d c)所以d c2 2(b a) (d c) o2 2[(b a)t 2(X 1 a)t ] 第二章2.1.试叙述多元联合分布和边际分布之间的关系。

解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,X (X !,X 2^|X p )的联合分布密度函数是-个p 维的函数,而边际分布讨论是 X (X i ,X 2」||X p)的子向量的概率分布,其概率密度函数的维数小于p 。

2.2设二维随机向量(X 1 X 2)服从二元正态分布,写出其联合分布。

其中 a X 1 b , c X 2 d 。

求(1 )随机变量X 1和X 2的边缘密度函数、均值和方差;(2) 随机变量X 1和X 2的协方差和相关系数; (3) 判断X 1和X 2是否相互独立。

(1)解:随机变量 X 1和X 2的边缘密度函数、均值和方差;2[(d c)(x-i a) (b a)(x 2 c) 2(x 1 a)(x 2c)]2 2(b a) (d c)id解:设(X 1 X 2)的均值向量为口 ,协方差矩阵为21;,则其联合分布密度函数为21/21f(X).2-2.3已知随机向量(X 1f(X 1,X 2)型21122 2exp口)2112 2 2(X口)。

X 2) c)(X 的联合密度函数为a) (b a)(X 2c) 2 2(b a) (d c)2(X 1 a)(x 2 c)] dx(C d)(b a)36COV(N,X2)X i X2(3)解:判断X i和X2是否相互独立。

X i 和X2 由于f(X!,X2) f x,X i) f x,(X2),所以不独立。

应用多元统计分析章节后习题答案详解北大高惠璇习题解答市公开课金奖市赛课一等奖课件

应用多元统计分析章节后习题答案详解北大高惠璇习题解答市公开课金奖市赛课一等奖课件

第10页 10
第八章 因子分析
8-3 验证下列矩阵关系式(A为p×m阵)
(1) (I AD1A)1 AD1A I (I AD1A)1;
(2) ( AA D)1 D1 D1A(I AD1A)1 A1D1;
(3) A( AA D)1 (Im AD1A)1 AD1.
解:利用分块矩阵求逆公式求下列分块矩阵逆:
(3) 主成份分析是将主成份表示为原变量线性 组合,而因子分析是将原始变量表示为公因子和 特殊因子线性组合,用假设公因子来“解释”相 关阵内部依赖关系.
这两种分析办法又有一定联系.当预计办法采 用主成份法,因子载荷阵A与主成份系数相差一 个倍数;因子得分与主成份得分也仅相差一个常 数.这种情况下可把因子分析当作主成份分析推 广和发展.
并计算误差平方和Q(2).
解 : m 2的因子模型的主成分解为:
0.8757 0.1802
A(
1l1,
2
l2
)
0.8312
0.4048,
0.7111 0.6950
第7页
7
第八章 因子分析
D
0.2007 0 0
0 0.1452
0
0.0100131
则m 2的正交因子模型为
X1 0.8757F1 0.1802F2 1 X 2 0.8312F1 0.4048F2 2 X 3 0.7111F1 0.6950F2 3
p
m
p
S ilili ilili ilili
i 1
i 1
i m 1
其中1 2 p 0 为S特性值,li为相应原则
特性向量。
第14页 14
第八章 因子分析
设A,D是因子模型主成份预计,即

应用多元统计分析课后习题答案详解北大高惠璇部分习题解答省名师优质课赛课获奖课件市赛课一等奖课件

应用多元统计分析课后习题答案详解北大高惠璇部分习题解答省名师优质课赛课获奖课件市赛课一等奖课件

4.7067
取a 1 A1( (1) (2) )
d
1 65 1381
3323 ,
则aAa
1,
且a满足 : Ba Aa ( d 2 ).
12
第五章 鉴别分析
判别效率(a) aBa 4.7067.
aAa
Fisher线性判别函数为u( X ) aX
1 89765
(32
X1
33X
2 判别准则为 判X G1 , 当W ( X ) 0,
判X G2 , 当W ( X ) 0, 试求错判概率P(2 |1)和P(1| 2).
解 : 记a 1 ( (1) (2) ),W ( X ) ( X )a是X的
线性函数,当X
G1时,W
(
X
)
~
N1
(1,
2 1
), 且
20
第五章 鉴别分析
20 20
时,
u
(
X
(1)
)
1 89765
(32,33)
20 20
4.3390
因u( X (1) ) 4.3390 u* , 判X (1) G2.
当X (1)
15 20
时,
u
(
X
(2)
)
1 89765
(32,33)1250
3.8050
因u( X (2) ) 3.8050 u* 判X (2) G1.
其中W ( X ) a( X *)
( X * )1( (1) (2) ) ,
* 1 ( (1) (2) ).
2 10
第五章 鉴别分析
5-4 设有两个正态总体G1和G2,已知(m=2)
(1)
1105, (2)

应用多元统计分析试题及答案

应用多元统计分析试题及答案

一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。

通常聚类分析分为 Q型聚类和R型聚类。

4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。

5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。

6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。

二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。

在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。

选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。

被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。

2、简述相应分析的基本思想。

相应分析,是指对两个定性变量的多种水平进行分析。

设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。

对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。

要寻求列联表列因素A和行因素B 的基本分析特征和最优列联表示。

相应分析即是通过列联表的转换,使得因素A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。

把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。

3、简述费希尔判别法的基本思想。

从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。

将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。

(完整版)多元统计分析课后练习答案

(完整版)多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

其中最典型的就是0-1标准化和Z 标准化。

2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。

在二维和三维空间中的欧氏距离的就是两点之间的距离。

缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。

每个坐标对欧氏距离的贡献是同等的。

当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。

当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。

没有考虑到总体变异对距离远近的影响。

马氏距离表示数据的协方差距离。

为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。

由标准化数据和中心化数据计算出的二点之间的马氏距离相同。

马氏距离还可以排除变量之间的相关性的干扰。

缺点:夸大了变化微小的变量的作用。

受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。

3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。

如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。

应用多元统计分析习题解答第七章

应用多元统计分析习题解答第七章

第七章因子分析7.1试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、 简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇, 将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标 变换到变异程度大的方向上为止,突出数据变异的方向, 归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因 子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子 分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对 空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判 断各自的影响和变化规律。

7.3简述因子模型、一 m 卜中载荷矩阵A 的统计意义。

答:对于因子模型X i =a i 1F 1 - mF ?a j F j I" a m F m•;ii =1,2,Hl , pX i 与F j 的协方差为:mCov(X i , F j ) =Cov(' a ik F k °F j )k=im= Cov(' a ik F k ,F j ) Cov(「F j )k d= a ij若对X i 作标准化处理,=a j ,因此a ij 一方面表示X i 对F j 的依赖程度;另一方面也反映了 变量X i 对公共因子F j的相对重要性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++L L 1,2,,i p =L因子载荷阵为11121212221212(,,,)m m mp p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦L L L L L L L LAi X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX对公共因子jF的相对重要性。

变量共同度2211,2,,mi ijjh a i p===∑L2221122()()()()()i i i im m iD X a D F a D F a D F Dε=++++L22i ihσ=+说明变量iX的方差由两部分组成:第一部分为共同度2ih,它描述了全部公共因子对变量iX的总方差所作的贡献,反映了公共因子对变量iX的影响程度。

第二部分为特殊因子iε对变量iX的方差的贡献,通常称为个性方差。

而公共因子jF对X的贡献2211,2,,pj ijig a j m===∑L表示同一公共因子jF对各变量所提供的方差贡献之总和,它是衡量每一个公共因子相对重要性的一个尺度。

7.4 在进行因子分析时,为什么要进行因子旋转?最大方差因子旋转的基本思路是什么?答:因子分析的目标之一就是要对所提取的抽象因子的实际含义进行合理解释。

但有时直接根据特征根、特征向量求得的因子载荷阵难以看出公共因子的含义。

这种因子模型反而是不利于突出主要矛盾和矛盾的主要方面的,也很难对因子的实际背景进行合理的解释。

这时需要通过因子旋转的方法,使每个变量仅在一个公共因子上有较大的载荷,而在其余的公共因子上的载荷比较小。

最大方差旋转法是一种正交旋转的方法,其基本思路为:①A其中令***(),/ij p m ij ij ia d a h⨯===A AΓ211pj ijid dp==∑*A的第j列元素平方的相对方差可定义为2211()pj ij jiV d dp==-∑②12mV V V V=+++L最大方差旋转法就是选择正交矩阵Γ,使得矩阵*A所有m个列元素平方的相对方差之和达到最大。

7.5 试分析因子分析模型与线性回归模型的区别与联系。

答:因子分析模型是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法的模型。

而线性回归模型回归分析的目的是设法找出变量间的依存(数量)关系, 用函数关系式表达出来。

因子分析模型中每一个变量都可以表示成公共因子的线性函数与特殊因子之和。

即1122i i i im m iX a F a F a Fε=++++L,(1,2,,i p=L)该模型可用矩阵表示为:=+X AFε而回归分析模型中多元线性回归方程模型为:其中是常数项,是偏回归系数,是残差。

因子模型满足:(1)m p≤;(2)(,)0Cov=Fε,即公共因子与特殊因子是不相关的;(3)101()01F mD⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦D F IO,即各个公共因子不相关且方差为1;(4)21222()pDεσσσ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦DεO,即各个特殊因子不相关,方差不要求相等。

而回归分析模型满足(1)正态性:随机误差(即残差)e服从均值为0,方差为σ2的正态分布;(2)等方差:对于所有的自变量x,残差e的条件方差为σ2,且σ为常数;(3)独立性:在给定自变量x的条件下,残差e的条件期望值为0(本假设又称零均值假设);(4)无自相关性:各随机误差项e互不相关。

两种模型的联系在于都是线性的。

因子分析的过程就是一种线性变换。

7.6 设某客观现象可用X=()’来描述,在因子分析时,从约相关阵出发计算出特征值为由于,所以找前两个特征值所对应的公共因子即可,又知对应的正则化特征向量分别为(0.707,-0.316,0.632)’及(0,0.899,0.4470)’,要求:(1)计算因子载荷矩阵A,并建立因子模型。

(2)计算共同度。

(3)计算第一公因子对X的“贡献”。

解:(1)根据题意,A==建立因子模型为(2)(3)因为是从约相关阵计算的特征值,所以公共因子对X的“贡献”为。

7.7 利用因子分析方法分析下列30个学生成绩的因子构成,并分析各个学生较适合学文科序号数学物理化学语文历史英语1 65 61 72 84 81 792 77 77 76 64 70 553 67 63 49 65 67 574 80 69 75 74 74 635 74 70 80 84 81 746 78 84 75 62 71 647 66 71 67 52 65 578 77 71 57 72 86 719 83 100 79 41 67 5010 86 94 97 51 63 5511 74 80 88 64 73 6612 67 84 53 58 66 5613 81 62 69 56 66 5214 71 64 94 52 61 5215 78 96 81 80 89 7616 69 56 67 75 94 8017 77 90 80 68 66 6018 84 67 75 60 70 6319 62 67 83 71 85 7720 74 65 75 72 90 7321 91 74 97 62 71 6622 72 87 72 79 83 7623 82 70 83 68 77 8524 63 70 60 91 85 8225 74 79 95 59 74 5926 66 61 77 62 73 6427 90 82 98 47 71 6028 77 90 85 68 73 7629 91 82 84 54 62 6030 78 84 100 51 60 6012345X1,用spss 分析学生成绩的因子构成的步骤如下:1. 在SPSS窗口中选择Analyze→Data Reduction→Factor,调出因子分析主界面,并将六个变量移入Variables框中。

图7.1 因子分析主界面2. 点击Descriptives按钮,展开相应对话框,见图7.2。

选择Initial solution复选项。

这个选项给出各因子的特征值、各因子特征值占总方差的百分比以及累计百分比。

单击Continue按钮,返回主界面。

图7.2 Descriptives子对话框3. 点击Extraction按钮,设置因子提取的选项,见图7.3。

在Method下拉列表中选择因子提取的方法,SPSS提供了七种提取方法可供选择,一般选择默认选项,即“主成分法”。

在Analyze栏中指定用于提取因子的分析矩阵,分别为相关矩阵和协方差矩阵。

在Display 栏中指定与因子提取有关的输出项,如未旋转的因子载荷阵和因子的碎石图。

在Extract栏中指定因子提取的数目,有两种设置方法:一种是在Eigenvalues over后的框中设置提取的因子对应的特征值的范围,系统默认值为1,即要求提取那些特征值大于1的因子;第二种设置方法是直接在Number of factors后的矩形框中输入要求提取的公因子的数目。

这里我们均选择系统默认选项,单击Continue按钮,返回主界面。

图7.3 Extraction子对话框4.点击Rotation按钮,设置因子旋转的方法。

这里选择Varimax(方差最大旋转),并选择Display栏中的Rotated solution复选框,在输出窗口中显示旋转后的因子载荷阵。

单击Continue按钮,返回主界面。

图7.4 Rotation子对话框5.点击Scores按钮,设置因子得分的选项。

选中Save as variables复选框,将因子得分作为新变量保存在数据文件中。

选中Display factor score coefficient matrix复选框,这样在结果输出窗口中会给出因子得分系数矩阵。

单击Continue按钮返回主界面。

图7.5 Scores子对话框6. 单击OK按钮,运行因子分析过程。

结果分析:表7.1 旋转前因子载荷阵表7.2 旋转后因子载荷阵成份矩阵a成份1 2x1 -.662 .503x2 -.530 .478x3 -.555 .605从表7.1中可以看出,每个因子在不同原始变量上的载荷没有明显的差别,为了便于对因子进行命名,需要对因子载荷阵进行旋转,得表7.2。

经过旋转后的载荷系数已经明显地两极分化了。

第一个公共因子在后三个指标上有较大载荷,说明这三个指标有较强的相关性,可以归为一类,属于文科学习能力的指标;第二个公共因子在前三个指标上有较大载荷,同样可以归为一类,这三个指标同属于理科学习能力的指标。

根据表7.3易得:6432.05378.04332.03137.02085.01064.01XXXXXXF+++++=6169.05073.04014.03484.02400.01439.02XXXXXXF+++++=表7.3 因子得分系数矩阵将每个学生的六门成绩分别代入F1、F2,比较两者的大小,F1大的适合学文,F2大的适合学理。

相关文档
最新文档