中考专题-四边形选择综合题

合集下载

中考数学真题解析_四边形综合题.(含答案)2

中考数学真题解析_四边形综合题.(含答案)2

全国中考真题解析120考点汇编四边形综合题一、选择题1. (2011重庆江津区,10,4分)如图,四边形ABCD 中,AC =a ,BD =b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( )①四边形A 2B 2C 2D 2是矩形;②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长是4a b +错误!未找到引用源。

④四边形A n B n C n D n 的面积是12n ab +错误!未找到引用源。

.A 、①②B 、②③C 、②③④D 、①②③④考点:三角形中位线定理;菱形的判定与性质;矩形的判定与性质。

专题:规律型。

分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD 中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A 5B 5C 5D 5 的周长;④根据四边形A n B n C n D n 的面积与四边形ABCD 的面积间的数量关系来求其面积.点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.2. (2011重庆市,9,4分)如图,在平行四边形 ABCD 中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD 、BC 于点M 、N ,交BA 、DC 的延长线于点E 、F ,下列结论:①AO=BO ;②OE=OF ; ③△EAM ∽△EBN ;④△EAO ≌△CNO ,其中正确的是A. ①②B. ②③C. ②④D.③④考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质. 分析:①根据平行四边形的对边相等的性质即可求得AO≠BO ,即可求得①错误; ②易证△AOE ≌△COF ,即可求得EO=FO ;③根据相似三角形的判定即可求得△EAM ∽△EBN ;④易证△EAO ≌△FCO ,而△FCO 和△CNO 不全等,根据全等三角形的传递性即可判定该选项错误.点评:本题考查了相似三角形的判定,考查了全等三角形对应边相等的性质,考查了平行四边形对边平行的性质,本题中求证△AOE ≌△COF 是解题的关键.3. (2010重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( ) 9题图BA .1B .2C .3D .4 考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理分析:根据翻折变换的性质和正方形的性质可证△ABG ≌△AFG ;在直角△ECG 中,根据勾股定理可证BG =GC ;通过证明∠AGB =∠AGF =∠GFC =∠GCF ,由平行线的判定可得AG ∥CF ;由于S △FGC =S △GCE ﹣S △FEC ,求得面积比较即可.点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.4. (2011山东省潍坊, 11,3分)己知直角梯形ABCD 中,AD ∥BC .∠BCD=90°,BC=CD=2AD ,E 、F 分别是BC 、CD 边的中点.连接BF 、DF 交于点P .连接CP 并延长交AB 于点Q ,连揍AF ,则下列结论不正确...的是( ). A .CP 平分∠BCDB .四边形ABED 为平行四边形C ,CQ 将直角梯形ABCD 分为面积相等的两部分D .△ABF 为等腰三角形A B C DFEG10题图【考点】直角梯形;全等三角形的判定与性质;平行四边形的判定与性质.【专题】证明题;几何综合题.【分析】本题可用排除法证明,即证明A、B、D正确,C不正确;易证△BCF≌△DCE (SAS),得∠FBC=∠EDC,∴△BPE≌△DPF,∴BP=DP;∴△BPC≌△DPC,∴∠BCP=∠DCP,∴A正确;∵AD=BE且AB∥BE,所以,四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;【点评】本题考查了等腰三角形、平行四边形和全等三角形的判定,熟记以上图形的性质,并能灵活运用其性质,是解答本题的关键,本题综合性较好.5.(2011•河池)如图,在平行四边形ABCD中,E为AB的中点,F为AD上一点,EF交AC于G,AF=2cm,DF=4cm,AG=3cm,则AC的长为()A、9cmB、14cmC、15cmD、18cm考点:平行线分线段成比例;平行四边形的性质。

中考数学四边形专题训练50题含答案

中考数学四边形专题训练50题含答案

中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.若一个多边形的内角和是720︒,则该多边形是()A.四边形B.五边形C.六边形D.八边形2.下列哪个度数可能成为某个多边形的内角和()A.240°B.600°C.1980°D.21800°3.下列说法中错误..的是()A.平行四边形的对边相等B.正方形的对角线互相垂直平分且相等C.菱形的对角线互相垂直平分D.矩形的对角线互相垂直且相等4.有两张宽为3,长为9的矩形纸片如图所示叠放在一起,使重叠的部分构成一个四边形,则四边形的最大面积是A.27B.12C.15D.185.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.AO=CO B.AD∥BC C.AD=BC D.∥DAC=∥ACD6.每一个外角都等于36︒,这样的正多边形边数是()A.9B.10C.11D.127.如图,点O是ABCD对角线的交点,EF过点O分别交AD,BC于点E,F.下列结论成立的是( )A .OE OF =B .AE BF =C .DOC OCD ∠=∠ D .CFE DEF ∠=∠8.对角线互相平分且相等的四边形一定是( )A .等腰梯形B .矩形C .菱形D .正方形 9.如图,在平行四边形ABCD 中,∥B =70°,AE 平分∥BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∥1=( )A .45°B .55°C .50°D .60° 10.下列说法正确的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线相等的平行四边形是正方形D .对角线相等的菱形是正方形 11.如图,ABC 的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为Q ,ACB ∠的平分线垂直于AD ,垂足为P ,若10BC =,则PQ 的长为( )A .32B .52C .3D .412.有一边长为2的正方形纸片ABCD ,先将正方形ABCD 对折,设折痕为EF (如图∥);再沿过点D 的折痕将角A 翻折,使得点A 落在EF 的H 上(如图∥),折痕交AE 于点G ,则EG 的长度为( )A .6 B .3 C .8﹣D .4﹣13.下列说法错误的是( )A .对角线互相垂直的平行四边形是正方形B .四条边都相等的四边形是菱形C .四个角都相等的四边形是矩形D .一组对边平行一组对角相等的四边形是平行四边形14.已知:如图,四边形ABCD 中,90,60A B C ∠=∠=︒∠=︒,2,3CD AD AB ==.在AB 边上求作点P ,则PC PD +的最小值为( )A .4B .6C .8D .10 15.如图,矩形ABCD 的两条对角线相交于点O ,602AOD AD ∠==°,,则AB 的长是( )A .2B .4C .D .16.如图,菱形ABCD 的对角线12AC =,面积为24,∥ABE 是等边三角形,若点P 在对角线AC 上移动,则PD PE +的最小值为( )A.4 B .C . D .617.如图,ABC 的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且8AB =,17BC =,15CA =,则阴影部分(即四边形AEOF )的面积是( )A .4B .6.25C .7.5D .9 18.如图,点E 在边长为5的正方形ABCD 的边CD 上,将ADE 绕点A 顺时针旋转90︒到ABF 的位置,连接EF ,过点A 作FE 的垂线,垂足为点H ,与BC 交于点.G 若2CG =,则CE 的长为( )A .54B .154C .4D .9219.如图,菱形ABCD 的对角线AC =12,面积为24,∥ABE 是等边三角形,若点P 在对角线AC 上移动,则PD +PE 的最小值为( )A .4B .C .D .6 20.如图,在矩形ABCD 中,AB =8,BC =4.将矩形沿AC 折叠,CD ′与AB 交于点F ,则AF :BF 的值为( )A.2B.53C.54D二、填空题21.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A,B两点的点O处,再分别取OA,OB的中点M,N,量得50mMN=,则池塘的宽度AB为______m.22.如图,已知矩形ABCD,P、R分别是BC和DC上的动点,E、F分别是P A、PR 的中点.如果DR=5,AD=12,则EF的长为_____.23.如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点则四边形EFGH的周长等于___cm.24.如图,已知矩形ABCD中,8AB=,5πBC=.分别以B,D为圆心,AB为半径画弧,两弧分别交对角线BD于点E,F,则图中阴影部分的面积为________(用含π的式子表示)25.如图,四边形ABCD的对角线AC BD=,E,F,G,H分别是各边的中点,则四边形是___________(平行四边形,矩形,菱形,正方形中选择一个)26.如图,在△ABC 中,4BC =,D ,E 分别是AB ,AC 的中点,G ,H 分别是AD ,AE 的中点,则GH =______.27.已知O 是平行四边形ABCD 两条对角线的交点,24AB =,36AD =,则OBC △的周长比AOB 的周长大___________.28.平行四边形ABCD 中,∥A 比∥B 小20°,那么∥C =_____.29.如图,在ABCD 中,对角线AC 、BD 相交于点O ,BC =6,AC +BD =14,那么∥BOC 的周长是_____.30.如图,矩形ABCD 的对角线AC ,BD 交于点O ,分别以点A ,C 为圆心,AO 长为半径画弧,分别交AB ,CD 于点E ,F .若BD =6,∥CAB =30°,则图中阴影部分的面积为 _____.(结果保留π)31.如图,ABCD 的顶点A ,B ,C 的坐标分别是(0,1),(2,2)--,(2,2)-,则顶点D 的坐标是_________.32.判断题,对的画“√”错的画“×”(1)对角线互相垂直的四边形是菱形( )(2)一条对角线垂直另一条对角线的四边形是菱形( )(3)对角线互相垂直且平分的四边形是菱形( )(4)对角线相等的四边形是菱形( )33.如图,在菱形ABCD 中,2A B ∠=∠,2AB =,点E 和点F 分别在边AB 和边BC 上运动,且满足AE CF =,则DF CE +的最小值为_______.34.如果一个梯形的上底长为2cm ,中位线长是5cm ,那么这个梯形下底长为__________cm .35.如图,正方形ABCD 的边长是3cm ,在AD 的延长线上有一点E ,当BE 时,DE 的长是_____cm .36.如图,在菱形ABCD 中,∥BAD =110°,AB 的垂直平分线交AC 于点N ,点M 为垂足,连接DN ,则∥CDN 的大小是______.37.如图,在▱ABCD 中,BM 是∥ABC 的平分线,交CD 于点M ,且DM =2,平行四边形ABCD 的周长是16,则AB 的长等于______.38.已知:如图,正方形ABCD 中,点E 、M 、N 分别在AB 、BC 、AD 边上,CE =MN ,∥MCE =35°,∥ANM 的度数______.39.如图,在边长为8的正方形ABCD 中,E 、F 分别是边AB 、BC 上的动点,且EF =6,M 为EF 中点,P 是边AD 上的一个动点,则CP +PM 的最小值是_____.40.如图,在ABC 中,M 是BC 边上的中点,AP 是BAC ∠的平分线,BP AP ⊥于点P ,已知16AB =,24AC =,那么PM 的长为________.三、解答题41.如图,在ABCD 中,AE CF =.求证:ABE CDF ∠=∠.42.已知,如图长方形ABCD 中,3cm AB =,9cm AD =,将此长方形折叠,使点B 与点D 重合,折痕为EF ,求EF 的长.43.如图,在平面直角坐标系内,ABC 的顶点坐标分别为(4,4)A -,(2,5)B -,(2,1)C -.(1)平移ABC ,使点C 移到点1(2,2)C ,画出平移后的111A B C △;(2)将ABC 绕点(0,0)旋转180︒,得到222A B C △,画出旋转后的222A B C △;(3)连接12A C ,21A C ,求四边形1221A C A C 的面积.44.如图,在平面直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为()6,4,E 为AB 的中点,过点()8,0D 和点E 的直线分别与BC 、y 轴交于点F ,G .(1)求直线DE 的函数关系式;(2)函数2y mx =-的图象经过点F 且与x 轴交于点H ,求出点F 的坐标和m 值; (3)在(2)的条件下,求出四边形OHFG 的面积.45.如图,AMN 是边长为2的等边三角形,以AN ,AM 所在直线为边的平行四边形ABCD 交MN 于点E 、F ,且30EAF ∠=︒.(1)当F 、M 重合时,求AD 的长;(2)当NE 、FM )NE FM EF +=; (3)在(2)的条件下,求证:四边形ABCD 是菱形. 46.如图,在ABC 中,90ACB ∠=︒,30CAB ∠=︒,线段AB 为边向外作等边ABD △,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F . (1)求证:四边形BCFD 为平行四边形;(2)若4AB =,求平行四边形BCFD 的面积.47.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点D ,交AC 于点E .已知,3,5CD BE CD BE ⊥==,求BC DE +的值. 小明发现,过点E 作//EF DC ,交BC 的延长线于点F ,构造∆BEF ,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =;(2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.48.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将A ,B 两点向右平移1个单位,再向上平移2个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标;(2)若点P 在直线BD 上运动,连接PC ,PO .∥若点P 在线段BD 上(不与B ,D 重合)时,求S △CDP +S △BOP 的取值范围;∥若点P 在直线BD 上运动,试探索∥CPO ,∥DCP ,∥BOP 的关系,并证明你的结论.49.Rt∥ABC 中,∥BAC =90°,(1)如图1,分别以AB 、AC 、BC 为边向外作正方形ABFG 、ACPE 、BCDE ,其面积分别记为S 1,S 2,S 3,∥若AB =5,AC =12,则S 3= ;∥如图2,将正方形BCDE 沿C 折,点D 、E 的对应点分别记为M 、M ,若点从M 、N 分别在直线FG 和PH 上,且点M 是GO 中点时,求S 1∥S 2∥S 3;∥如图3,无论Rt∥ABC 三边长度如何变化,点M 必定落在直线FG 上吗? 请说明理由;(2)如图4,分别以AB ,AC ,BC 为边向外作正三角形ABD ,ACF ,BCE ,再将三角形BCE沿BC翻折,点E的对应点记为P,若AB=保持不变,随着AC的长度变化,点P也随之运动,试探究AP的值是否变化,若不变,直接写出AP的值;若改变,直接写出AP的最小值.50.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)∥请直接写出图1中线段BG、线段DE的数量关系及所在直线的位置关系;∥将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度 ,得到如图2、如图3情形.请你通过观察、测量等方法判断∥中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4~6),且,试判断(1)∥中得到的结论哪个成立,哪个不成立?(写出你的判断,不必证明.)(3)在图5中,连结DG、BE,且,则.参考答案:1.C【分析】根据多边形内角和定理进行求解即可.【详解】解;设这个多边形的边数为n ,由题意得;()1802720n ︒⋅-=︒,解得6n =,∥这个多边形是六边形,故选C .【点睛】本题主要考查了多边形内角和定理,熟知对于n 边形其内角和为()1802n ︒⋅-是解题的关键.2.C【分析】本题可根据多边形的内角和为(n ﹣2)×180°来确定解决本题的方法,即判断哪个度数可能是多边形的内角和,就看它是否能被180°整除,从而根据这一方法解决问题.【详解】判断哪个度数可能是多边形的内角和,我们主要看它是否能被180°整除. ∥只有1980°能被180°整除.故选C .【点睛】本题考查了多边形的内角和的计算公式.熟练掌握多边形内角和公式是解答本题的关键.3.D【分析】根据平行四边形的性质,正方形的性质,菱形的性质,矩形的性质对每个选项进行分析,即可得出答案.【详解】解:∥平行四边形的对边相等,∥选项A 不符合题意;∥正方形的对角线互相垂直平分且相等,∥选项B 不符合题意;∥菱形的对角线互相垂直平分,∥选项C 不符合题意;∥矩形的对角线相等但不一定互相垂直,∥选项D 符合题意;故选:D.【点睛】本题考查了平行四边形的性质,正方形的性质,菱形的性质,矩形的性质,熟练掌握平行四边形的性质,正方形的性质,菱形的性质,矩形的性质是解决问题的关键.4.C【分析】根据一组邻边相等的平行四边形是菱形判断出四边形的形状;当两张纸条如图所示放置时,菱形面积最大,然后根据勾股定理求出菱形的边长,然后根据菱形的面积公式计算即可.【详解】解:重叠的四边形的两组对边分别平行,那么可得是平行四边形,再根据宽度相等,利用面积的不同求法可得一组邻边相等,那么重叠的四边形应为菱形;如图,此时菱形ABCD的面积最大.设AB=x,EB=9-x,AE=3,则由勾股定理得到:32+(9-x)2=x2,解得x=5,S最大=5×3=15.故选C.【点睛】本题考查菱形的判定和性质,解题的关键是怎样放置纸条使得到的菱形的面积最大和最小,然后根据图形列方程.5.D【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∥,故B正确;∴AD BC∴AD=BC,故C正确;故选:D.【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.6.B【分析】根据多边形外角和为360°,然后除以36°即可得到正多边形的边数.【详解】每一个外角都等于36︒,这样的正多边形边数为360°÷36°=10,故选B【点睛】本题考查有关于多边形外角和的计算,记住多边形的外角和是360°是解题关键. 7.A【分析】首先可根据平行四边形的性质推出△AEO∥∥CFO,从而进行分析即可.【详解】∥点O是ABCD对角线的交点,∥OA=OC,∥EAO=∥CFO,∥∥AOE=∥COF,∥△AEO∥∥CFO(ASA),∥OE=OF,A选项成立;∥AE=CF,但不一定得出BF=CF,则AE不一定等于BF,B选项不一定成立;∠=∠,则DO=DC,若DOC OCD由题意无法明确推出此结论,C选项不一定成立;由△AEO∥∥CFO得∥CFE=∥AEF,但不一定得出∥AEF=∥DEF,则∥CFE不一定等于∥DEF,D选项不一定成立;故选:A.【点睛】本题考查平行四边形的性质,理解基本性质,利用全等三角形的判定与性质是解题关键.8.B【详解】分析:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,判断即可.详解:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故选B.点睛:考查矩形的判定:对角线相等的平行四边形是矩形.9.B【分析】根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∥1的度数即可.【详解】:解:∥AD∥BC,∥B=70°,∥∥BAD=180°-∥B=110°.∥AE平分∥BAD∥∥DAE=12∥BAD=55°. ∥∥AEB=∥DAE=55°∥CF∥AE∥∥1=∥AEB=55°.故选B .【点睛】本题考查了平行四边形的性质,掌握平行四边形的性质是解题的关键. 10.D【分析】根据矩形、正方形、菱形的判定即可判断出正确答案.【详解】A 、对角线相等的四边形有可能是等腰梯形,故本选项错误;B 、对角线相互垂直的四边形有可能是等腰梯形或者是针形;故本选项错误;C 、对角线相等且垂直且相互平分的四边形是正方形,故本选项错误;D 、对角线相等的菱形是正方形,故本选项正确.故选D【点睛】本题考查了矩形、正方形、菱形的判定,熟记和掌握矩形、正方形、菱形的判定是解题关键.11.C【分析】首先判断BAE 、CAD 是等腰三角形,从而得出BA BE =,CA CD =,由ABC 的周长为26,及10BC =,可得6DE =,利用中位线定理可求出PQ .【详解】解:由题意得:BQ AE ⊥,BQ 平分ABE ∠,∥ABQ EBQ ∠=∠,90AQB BQE ∠=∠=︒,又∥BQ BQ =,∥()ASA ABQ EBQ ≌,∥,AB BE AQ QE ==,∥BAE 是等腰三角形,Q 为AE 的中点,同法可得:CA CD =,CAD 是等腰三角形,P 为AD 的中点,∥ABC 的周长2026AB BC AC BE BC CD BC BC DE DE =++=++=++=+=, ∥6DE =, ∥132PQ DE ==; 故选C .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,以及三角形的中位线定理.根据已知条件,证明三角形全等,是解题的关键.12.B【分析】由于正方形纸片ABCD的边长为2,所以将正方形ABCD对折后AE=DF=1,由翻折不变性的原则可知AD=DH=2,AG=GH,在Rt△DFH中利用勾股定理可求出HF的长,进而求出EH的长,再设EG=x,在Rt△EGH中,利用勾股定理即可求解.【详解】∥正方形纸片ABCD的边长为2,∥将正方形ABCD对折后AE=DF=1,∥∥GDH是△GDA沿直线DG翻折而成,∥AD=DH=2,AG=GH,在Rt△DFH中,HF==在Rt△EGH中,设EG=x,则GH=AG=1-x,∥GH2=EH2+EG2,即(1-x)2=(2+x2,解得.故选B.【点睛】考查的是图形翻折变换的性质,解答此类题目最常用的方法是设所求线段的长为x,再根据勾股定理列方程求解.13.A【分析】根据正方形、菱形、矩形及平行四边形的判定定理对各选项逐一判断即可得答案.【详解】A.对角线互相垂直的平行四边形是菱形,故该选项说法错误,符合题意,B.四条边都相等的四边形是菱形,故该选项说法正确,不符合题意,C.四个角都相等的四边形是矩形,故该选项说法正确,不符合题意,D.一组对边平行一组对角相等的四边形是平行四边形,故该选项说法正确,不符合题意,故选A.【点睛】本题考查了正方形、菱形、矩形及平行四边形的判定,注意正方形是特殊的菱形或者矩形.熟练掌握各特殊四边形的判定定理是解题关键.14.B【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD最小;再作D'E∥BC于E,则EB=D'A=AD,先根据等边对等角得出∥DCD'=∥DD'C,然后根据平行线的性质得出∥D'CE=∥DD'C,从而求得∥D'CE=∥DCD',得出∥D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD 的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E∥BC于E,则EB=D'A=AD.∥CD=2AD,∥DD'=CD,∥∥DCD'=∥DD'C.∥∥DAB=∥ABC=90°,∥四边形ABED'是矩形,∥DD'∥EC,D'E=AB=3,∥∥D'CE=∥DD'C,∥∥D'CE=∥DCD'.∥∥DCB=60°,∥∥D'CE=30°,∥D'C=2D'E=2AB=2×3=6,∥PC+PD的最小值为6.故选:B.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,30°角的直角三角形的性质等,确定出P点是解答本题的关键.15.C【分析】根据矩形的对角线相等且互相平分可得OA=OB=OD,然后判断出△AOD是等边三角形,再根据等边三角形的性质求出OD=AD,然后求出BD,再利用勾股定理列式计算即可得解.【详解】在矩形ABCD中,OA=OC,OB=OD,AC=BD,∥OA=OB=OD,∥∥AOD=60°,∥∥AOD是等边三角形,∥OD=AD=2,∥BD=2OD=4,由勾股定理得,AB=.故选:C.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,勾股定理的应用,熟记性质并判断出△AOD是等边三角形是解题的关键.16.C【分析】如图,连接BD交AC于O,连接PB.因为AC与BD互相垂直平分,推出PD=PB,推出PE+PD=PE+PB,因为PE+PB≥BE,推出当E、P、B共线时,PE+PD的值最小,最小值为BE的长,求出BE即可解决问题;【详解】解:如图,连接BD交AC于O,连接PB.∥S菱形ABCD=12•AC•BD,∥24=12×12×BD,∥BD=4,∥OA=12AC=6,OB=12BD=2,AC∥BD,∥AB=∥AC 与BD 互相垂直平分,∥PD =PB ,∥PE +PD =PE +PB ,∥PE +PB ≥BE ,∥当E 、P 、B 共线时,PE +PD 的值最小,最小值为BE 的长,∥∥ABE 是等边三角形,∥BE =AB∥PD +PE 的最小值为故选:C .【点睛】本题考查轴对称-最短问题,等边三角形的判定和性质、菱形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.17.D【分析】先根据勾股定理的逆定理判定ABC 是直角三角形,再利用正方形的判定确定四边形OFAE 是正方形,进而利用圆的切线性质可知线段的关系,进而求出阴影部分的面积.【详解】解:∥8AB =,17BC =,15CA =,∥222AB CA BC +=,∥ABC 为直角三角形,90A ∠=︒,∥O 与AB AC ,分别相切于点F 、E ,∥OF AB ⊥ ,OE AC ⊥,OF OE =,∥四边形OFAE 是正方形,设OE r =,则AE AF r ==,∥ABC 的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,∥8BD BF r ==-,15CD CE r ==-,∥81517r r -+-=, ∥8151732r +-==, ∥阴影部分的面积是:239=,故选:D .【点睛】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等,三角形的内心到顶点的连线平分这个内角;勾股定理的逆定理和切线性质等相关知识点.熟练运用知识点是解决问题的关键.18.B【分析】连接EG ,根据AG 垂直平分EF ,即可得出EG FG =,设CE x =,则5DE x BF =-=,8FG EG x ==-,再根据Rt CEG △中,222CE CG EG +=,即可得到CE 的长.【详解】解:如图所示,连接EG ,由旋转可得,ADE ∥ABF △,AE AF ∴=,DE BF =,又AG EF ⊥,H ∴为EF 的中点,AG ∴垂直平分EF ,EG FG ∴=,设CE x =,则5DE x BF =-=,8FG x =-,8EG x ∴=-,90C ∠=︒,Rt CEG ∴中,222CE CG EG +=,即2222(8)x x +=-, 解得154x =, CE ∴的长为154, 故选:B . 【点睛】本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.19.C【分析】如图,连接BD交AC于O,连接PB,由菱形的性质可得AC与BD互相垂直平分,可得PD=PB,于是PE+PD=PE+PB,因为PE+PB≥BE,故当E、P、B共线时,PE+PD的值最小,最小值为BE的长,所以求出BE即可解决问题,而根据菱形的面积、菱形的性质和勾股定理即可求出AB的长,再根据等边三角形的性质即得答案.【详解】解:如图,连接BD交AC于O,连接PB.∥S菱形ABCD=12•AC•BD,∥24=12×12×BD,∥BD=4,∥四边形ABCD是菱形,∥OA=12AC=6,OB=12BD=2,AC∥BD,∥AB=∥AC与BD互相垂直平分,∥PD=PB,∥PE+PD=PE+PB,∥PE+PB≥BE,∥当E、P、B共线时,PE+PD的值最小,最小值为BE的长,∥∥ABE是等边三角形,∥BE=AB=∥PD+PE的最小值为故选:C.【点睛】本题考查了菱形的性质、菱形的面积公式、等边三角形的性质、勾股定理以及轴对称﹣最短问题,正确添加辅助线、熟练掌握上述知识是解题的关键.20.B【分析】由折叠的性质可得∥DCA=∥ACF,由平行线的性质可得∥DCA=∥CAB=∥ACF,可得FA=FC,设BF=x,在Rt∥BCF中,根据CF2=BC2+BF2,可得方程(8﹣x)2=x2+42,可求BF=3,AF=5,即可求解.【详解】解:设BF=x,∥将矩形沿AC折叠,∥∥DCA=∥ACF,∥四边形ABCD是矩形,∥CD∥AB,∥∥DCA=∥CAB=∥ACF,∥FA=FC=8﹣x,在Rt∥BCF中,∥CF2=BC2+BF2,∥(8﹣x)2=x2+42,∥x=3,∥BF=3,∥AF=5,∥AF:BF的值为53,故选:B.【点睛】本题考查矩形的性质、翻折变换、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.100【分析】根据三角形中位线的性质定理解答即可.【详解】解:∥点M、N是OA、OB的中点,∥MN是∥ABO的中位线,∥AB=2MN.又∥MN=50m,∥AB=100m.故答案是:100.【点睛】此题考查了三角形中位线的性质定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.22.6.5【分析】根据题意,连接AR,在直角∥ADR中,DR=5,AD=12,根据勾股定理可得AR.AR=13,又因为E、F分别是PA、PR的中点,即为∥PAR的中位线,故EF=12【详解】∥∥D=90°,DR=5,AD=12,∥AR,∥E、F分别是PA、PR的中点,AR=6.5,∥EF=12故答案为6.5.【点睛】本题考查了三角形中位线长度的求取,本题的解题关键是不要因为动点问题的包装而把题目想的复杂,根据中位线的性质解题即可.23.16.【分析】连接AC、BD,根据三角形的中位线求出HG、GF、EF、EH的长,再求出四边形EFGH的周长即可.【详解】如图,连接AC、BD,∥四边形ABCD是矩形,∥AC=BD=8cm,∥E、F、G、H分别是AB、BC、CD、DA的中点,AC=4cm,∥HG=EF=12BD=4cm,EH=FG=12∥四边形EFGH的周长=HG+EF+EH+FG=4cm+4cm+4cm+4cm=16cm,故答案为:16.【点睛】本题考查了矩形的性质,三角形的中位线的应用,解题的关键是能求出四边形的各个边的长.矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.24.4π【分析】根据阴影面积=三角形面积-2个扇形的面积即可求解.【详解】∥S △ABD =5π×8÷2=20π;设ABD n ∠=︒,S 扇形BAE =64360n π⨯;S 扇形DFM =()9064360n π-⨯; ∥阴影面积=20π-()649064360n n ππ⨯+-⨯=20π-16π=4π.故答案为:4π▱ 【点睛】本题主要是利用扇形面积和三角形面积公式计算阴影部分的面积解题关键是找到所求的量的等量关系.25.菱形 【分析】根据三角形中位线定理可得1122EH BD EH BD FG BD FG BD ==∥∥,,,,进一步可得EH FG EH FG =∥,,同理可得EF HG EF HG =∥,,又根据AC BD =即可得EF HG ==EH FG =,进一步即可得证.【详解】解:∥E ,F ,G ,H 分别是各边的中点, ∥1122EH BD EH BD FG BD FG BD ==∥∥,,,, ∥EH FG EH FG =∥,,同理可证EF HG EF HG =∥,,又∥AC BD =,∥EF HG ==EH FG =,∥四边形EFGH 是菱形.故答案为:菱形.【点睛】本题考查了菱形的判定和三角形中位线定理,解决本题的关键是掌握三角形中位线定理.26.1【分析】利用三角形中位线定理求得GH =12DE ,DE =12BC .【详解】解:∥D ,E 分别是AB ,AC 的中点,∥DE 是△ABC 的中位线,∥DE= 12BC=12×4=2,∥G,H分别是AD,AE的中点,∥GH是△ADE的中位线,∥GH=12DE=12×2=1,故答案为:1.【点睛】本题考查了三角形的中位线,熟记三角形的中位线等于第三边的一半是解题的关键.27.12【分析】根据平行四边形的性质可以得到OA=OC,BC=AD,然后根据AB=24,AD=36,即可计算出∥OBC的周长与∥AOB的周长之差.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,AD=BC,∵AB=24,AD=36,∴BC=36,∴C△OBC﹣C△AOB=(OB+OC+BC)﹣(OB+OA+AB)=OB+OC+BC﹣OB﹣OA﹣AB=BC﹣AB=36﹣24=12,故答案为:12.【点睛】本题考查平行四边形的性质,解答本题的关键是明确△OBC的周长与△AOB的差就是BC与AB的差.28.80°【分析】根据平行四边形的性质分别求出∥A和∥B的度数,然后根据平行四边形对角相等的性质可得∥C=∥A,即可求解.【详解】∥四边形ABCD为平行四边形,∥18020A BB A∠∠∠∠+=︒⎧⎨-=︒⎩,解得:80100AB∠∠=︒⎧⎨=︒⎩,∥∥C=∥A=80°.故答案为80°.【点睛】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.29.13 【分析】先根据平行四边形的性质可得11,22OC AC OB BD ==,从而可得7OB OC +=,再根据三角形的周长公式即可得. 【详解】解:四边形ABCD 是平行四边形,11,22OC AC OB BD ∴==, 14AC BD +=,()172OB OC BD AC ∴+=+=, 又6BC =, BOC ∴的周长为7613OB OC BC ++=+=,故答案为:13.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题关键.30.32π 【分析】利用矩形的性质求得OA =OC =OB =OD =3,再利用扇形的面积公式求解即可.【详解】解:∥矩形ABCD 的对角线AC ,BD 交于点O ,且BD =6,∥AC=BD =6,∥OA =OC =OB =OD =3, ∥22303236032AOE S S ππ⨯⨯===阴影扇形, 故答案为:32π. 【点睛】本题考查了矩形的性质,扇形的面积等知识,解答本题的关键是明确题意,利用数形结合的思想解答.31.()41,【分析】首先根据B 、C 两点的坐标确定线段BC 的长,然后根据A 点向右平移线段BC 的长度得到D 点,即可由A 点坐标求得点D 的坐标.【详解】解:∥B ,C 的坐标分别是(−2,−2),(2,−2),∥BC=2−(−2)=2+2=4,∥四边形ABCD是平行四边形,∥AD=BC=4,∥点A的坐标为(0,1),∥点D的坐标为(4,1).故答案为:(4,1).【点睛】本题主要考查了平行四边形的性质及坐标与图形性质的知识,解题的关键是求得线段BC的长,难度不大.32.××√×【分析】根据菱形的判定定理即可解答.【详解】(1)错误,对角线相互垂直且平分的四边形是菱形.(2)错误,对角线相互垂直且平分的四边形是菱形.(3)正确,对角线相互垂直且平分的四边形是菱形.(4)错误,对角线相互垂直且平分的四边形是菱形.【点睛】本题考查菱形的判定定理,熟悉掌握是解题关键.33.4【分析】由“SAS”可证∥ABF∥∥CBE,可得AF=CE,则DF+CE=DF+AF=DF+FH,即当点F,点D,点H三点共线时,DF+CE的最小值为DH的长,由勾股定理可求解.【详解】解:连接AC,作点A关于BC的对称点H,连接AH,交BC于N,连接FH,如图所示:∥四边形ABCD为菱形,∥,∥AB=BC=CD=AD=2,AD BC∥180BAD ABC ∠+∠=︒,∥∥BAD =2∥B ,∥∥B =60°,∥∥ABC 是等边三角形,∥点A ,点H 关于BC 对称,∥AH ∥BC ,AN =NH ,∥FH =AF ,又∥∥ABC 是等边三角形,∥BN =NC =112BC =,AN ∥AH =2AN=∥AE =CF ,AB =BC ,∥BE =BF ,∥在∥ABF 和∥CBE 中AB BC B B BF BE ⎧⎪∠∠⎨⎪⎩===,∥∥ABF ∥∥CBE (SAS ),∥AF =CE ,∥DF +CE =DF +AF =DF +FH ,∥当点F ,点D ,点H 三点共线时,DF +CE 的最小值为DH 的长,∥AH ∥BC ,∥90HNC ∠=︒,∥AD BC ∥,∥90HAD HNC ∠=∠=︒,∥4DH ==, 即DF CE +的最小值为4.故答案为:4.【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,勾股定理,轴对称的性质,证明三角形全等是解题的关键.34.8。

2022年中考数学专题复习:四边形

2022年中考数学专题复习:四边形

板块八【四边形中考】2022年长沙中考板块精炼【高频考点】1.多边形的内角和与外角和的关系与计算;2.特殊四边形:平行四边形、矩形、菱形、正方形的性质与判定,以及综合应用;【真题训练】一、选择题1.(2021常德)一个多边形的内角和为1800°,则这个多边形的边数为()A.9B.10C.11D.122.(2021株洲)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°3. (2021北京)下列多边形中,内角和最大的是()A.B.C.D.4.(2021株洲)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠F AI=()A.10°B.12°C.14°D.15°5.(2021娄底)如图,点E、F在矩形ABCD的对角线BD所在的直线上,BE=DF,则四边形AECF是()A.平行四边形B.矩形C.菱形D.正方形6. (2021福建)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A.108°B.120°C.126°D.132°7.(2021湘西)如图,在菱形ABCD中,E是AC的中点,EF∥CD,交AD于点F,如果EF=5.5,那么菱形ABCD的周长是()A.11B.22C.33D.448. (2021安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为()A.3B.2+23C.3D.1+239.(2021常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是()A.BE=12AE B.PC=PD C.∠EAF+∠AFD=90°D.PE=EC10.(2021怀化)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数33yx(x>0)的图象经过线段DC的中点N,若BD=4,则ME的长为()A.ME=53B.ME=43C.ME=1D.ME=2311.(2021郴州)如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A.B.C.D.12.(2021衡阳)如图,矩形纸片ABCD,AB=4,BC=8,点M、N分别在矩形的边AD、BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①四边形CMPN是菱形;②点P与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③二、填空题13.(2021益阳)如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).14.(2021长沙)如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若OE=6,则BC的长为.15. (2021邵阳)如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=45,AD=4,则AB的长为.16.(2021衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O—A—D —O,点Q的运动路线为O—C—B—O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A—D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.17.(2021张家界)如图,在正方形ABCD外取一点E,连接DE,AE,CE,过点D作DE的垂线交AE于点P,若DE=DP=1,PC=6.下列结论:①△APD≌△CED;②AE⊥CE;③点C到直线DE的距离为6;④S正方形ABCD=5+22,其中正确结论的序号为.18.(2021北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).19.(2021湘潭)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E 是边AB 的中点.已知BC =10,则OE = .20.(2021兰州)如图,在矩形ABCD 中,AB =1,AD =3.①以点A 为圆心,以不大于AB 长为半径作弧,分别交边AD ,AB 于点E ,F ,再分别以点E ,F 为圆心,以大于12EF 长为半径作弧,两弧交于点P ,作射线AP 分别交BD ,BC 于点O ,Q ;②分别以点C ,Q 为圆心,以大于12CQ 长为半径作弧,两弧交于点M ,N ,作直线MN 交AP 于点G ,则OG 长为 .三、解答题21.(2021长沙)如图,□ABCD 的对角线AC ,BD 相交于点O ,△OAB 是等边三角形,AB =4.(1)求证:□ABCD 是矩形; (2)求AD 的长.O QP E D22.(2021怀化)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.23. (2021湘潭)如图,矩形ABCD中,E为边BC上一点,将△ABE沿AE翻折后,点B 恰好落在对角线AC的中点F上.(1)证明:△AEF≌△CEF;(2)若AB=3,求折痕AE的长度.23.(2021株洲)如图所示,在矩形ABCD中,点E在线段CD上,点F在线段AB的延长线上,连接EF交线段BC于点G,连接BD,若DE=BF=2.(1)求证:四边形BFED是平行四边形;(2)若tan∠ABD=23,求线段BG的长度.24.(2021郴州)如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF.连接BE,DF,若BE=DF.证明:四边形ABCD是平行四边形.25. (2021衡阳)如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知BH=7,BC=13,求DH的长.26.(2021邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF.(2)若AB=4,AE=2,求四边形BEDF的周长.27.(2021岳阳)如图,在四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为点E,F.(1)请你只添加一个条件(不另加辅助线),使得四边形AECF为平行四边形,你添加的条件是;(2)添加了条件后,证明四边形AECF为平行四边形.28.(2021张家界)如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,对角线AC所在的直线绕点O顺时针旋转角α(0°<α <120°),所得的直线l分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当旋转角α为多少度时,四边形AFCE为菱形?试说明理由.29.(2020长沙)在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=23,AD=4,求EC的长;(3)若AE-DE=2EC,记∠BAF=α,∠F AE=β.求tanα+tanβ的值.板块八【四边形中考】2022年长沙中考板块精炼【答案或简析】【高频考点】1.多边形的内角和与外角和的关系与计算;2.特殊四边形:平行四边形、矩形、菱形、正方形的性质与判定,以及综合应用;【真题训练】一、选择题1.(2021常德)一个多边形的内角和为1800°,则这个多边形的边数为()A.9B.10C.11D.12【答案或简析】D.2.(2021株洲)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°【答案或简析】B.3. (2021北京)下列多边形中,内角和最大的是()A.B.C.D.【答案或简析】D.4.(2021株洲)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠F AI=()A.10°B.12°C.14°D.15°【答案或简析】B.5.(2021娄底)如图,点E、F在矩形ABCD的对角线BD所在的直线上,BE=DF,则四边形AECF是()A.平行四边形B.矩形C.菱形D.正方形【答案或简析】A.6. (2021福建)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A.108°B.120°C.126°D.132°【答案或简析】C.7.(2021湘西)如图,在菱形ABCD中,E是AC的中点,EF∥CD,交AD于点F,如果EF=5.5,那么菱形ABCD的周长是()A.11B.22C.33D.44【答案或简析】D.8. (2021安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为()A.3+3B.2+23C.2+3D.1+23【答案或简析】B.9.(2021常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是()A.BE=12AE B.PC=PD C.∠EAF+∠AFD=90°D.PE=EC【答案或简析】C.10.(2021怀化)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数33yx(x>0)的图象经过线段DC的中点N,若BD=4,则ME的长为()A.ME=53B.ME=43C.ME=1D.ME=23【答案或简析】D.解:过N作y轴和x轴的垂线NG,NH,设N(b,a),∵反比例函数y=33x(x>0)的图象经过点N,∴ab 3,∵四边形ABCD是菱形,∴BD⊥AC,DO=12BD=2,∵NH⊥x轴,NG⊥y轴,∴四边形NGOH是矩形,∴NG∥x轴,NH∥y轴,∵N为CD的中点,∴DO•CO=2a•2b=4ab43∴CO23∴tan∠CDO=33 OCDO.∴∠CDO=30°,∴∠DCO=60°,∵四边形ABCD是菱形,∴∠ADC=∠ABC=2∠CDO=60°,∠ACB=∠DCO=60°,∴△ABC是等边三角形,∵AE⊥BC,BO⊥AC,∴AE=BO=2,∠BAE=30°=∠ABO,∴AM=BM,∴OM=EM,∵∠MBE=30°,∴BM=2EM=2OM,∴3EM=OB=2,∴ME=23,故选:D.11.(2021郴州)如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A.B.C.D.【答案或简析】A.12.(2021衡阳)如图,矩形纸片ABCD,AB=4,BC=8,点M、N分别在矩形的边AD、BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①四边形CMPN是菱形;②点P与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③【答案或简析】C.二、填空题13.(2021益阳)如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).【答案或简析】①.14.(2021长沙)如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若OE=6,则BC的长为.【答案或简析】12.15. (2021邵阳)如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=45,AD=4,则AB的长为.【答案或简析】3.16.(2021衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O—A—D —O,点Q的运动路线为O—C—B—O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A—D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.【答案或简析】23317.(2021张家界)如图,在正方形ABCD外取一点E,连接DE,AE,CE,过点D作DE的垂线交AE于点P,若DE=DP=1,PC=6.下列结论:①△APD≌△CED;②AE⊥CE;③点C到直线DE的距离为6;④S正方形ABCD=5+22,其中正确结论的序号为.【答案或简析】B.18.(2021北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).【答案或简析】例如AE=EC.19.(2021湘潭)如图,在▱ABCD中,对角线AC,BD相交于点O,点E是边AB的中点.已知BC=10,则OE=.【答案或简析】5.20.(2021兰州)如图,在矩形ABCD中,AB=1,AD=3.①以点A为圆心,以不大于AB长为半径作弧,分别交边AD,AB于点E,F,再分别以点E,F为圆心,以大于12EF 长为半径作弧,两弧交于点P,作射线AP分别交BD,BC于点O,Q;②分别以点C,Q为圆心,以大于12CQ长为半径作弧,两弧交于点M,N,作直线MN交AP于点G,则OG长为.【答案或简析】524三、解答题21.(2021长沙)如图,□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:□ABCD是矩形;(2)求AD的长.【答案或简析】(1)证明:∵△AOB为等边三角形,OQPE D∴∠BAO =∠AOB =60°,OA =OB , ∵四边形ABCD 是平行四边形 ∴OB =OD =12BD ,OA =OC =12AC , ∴BD =AC ,∴▱ABCD 是矩形;(2)解:∵▱ABCD 是矩形, ∴∠BAD =90°, ∵∠ABO =60°,∴∠ADB =90°﹣60°=30°, ∴AD =3AB =43.22. (2021怀化)已知:如图,四边形ABCD 为平行四边形,点E 、A 、C 、F 在同一直线上,AE =CF .求证:(1)△ADE ≌△CBF ;(2)ED ∥BF .【答案或简析】证明:(1)∵四边形ABCD 为平行四边形, ∴DA =BC ,DA ∥BC , ∴∠DAC =∠BCA ,∵∠DAC +∠EAD =180°,∠BCA +∠FCB =180°, ∴∠EAD =∠FCB , 在△ADE 和△CBF 中,,,,AE CF EAD FCB AD CB , ∴△ADE ≌△CBF (SAS );(2)由(1)知,△ADE ≌△CBF , ∴∠E =∠F , ∴ED ∥BF .23. (2021湘潭)如图,矩形ABCD 中,E 为边BC 上一点,将△ABE 沿AE 翻折后,点B恰好落在对角线AC 的中点F 上. (1)证明:△AEF ≌△CEF ;(2)若AB =3,求折痕AE 的长度. 【答案或简析】(1)证明:∵四边形ABCD 是矩形,∴∠B =90°,∵将△ABE 沿AE 翻折后,点B 恰好落在对角线AC 的中点F 上,∴∠AFE =∠B =90°,AF =CF , ∵∠AFE +∠CFE =180°,∴∠CFE =180°﹣∠AFE =90°, 在△AEF 和△CEF 中,,,,AF CF AFE CFE EF EF ∠∠, ∴△AEF ≌△CEF (SAS ).(2)解:由(1)知,△AEF ≌△CEF , ∴∠EAF =∠ECF ,由折叠性质得,∠BAE =∠EAF , ∴∠BAE =∠EAF =∠ECF , ∵∠B =90°,∴∠BAC +∠BCA =90°, ∴3∠BAE =90°, ∴∠BAE =30°,在Rt △ABE 中,AB =3,∠B =90°,∴AE =32cos3032AB .23.(2021株洲)如图所示,在矩形ABCD 中,点E 在线段CD 上,点F 在线段AB 的延长线上,连接EF 交线段BC 于点G ,连接BD ,若DE =BF =2. (1)求证:四边形BFED 是平行四边形; (2)若tan ∠ABD =23,求线段BG 的长度.【答案或简析】证明:(1)∵四边形ABCD 是矩形, ∴DC ∥AB , 又∵DE =BF ,∴四边形DEFB 是平行四边形; (2)∵四边形DEFB 是平行四边形, ∴DB ∥EF , ∴∠ABD =∠F ,∴tan ∠ABD =tan F =23, ∴23BG BF , 又∵BF =2, ∴BG =43.24.(2021郴州)如图,四边形ABCD 中,AB =DC ,将对角线AC 向两端分别延长至点E ,F ,使AE =CF .连接BE ,DF ,若BE =DF .证明:四边形ABCD 是平行四边形.【答案或简析】证明:在△BEA 和△DFC 中,,,,AB DC AE CF BE DF ∴△BEA ≌△DFC (SSS ), ∴∠EAB =∠FCD , ∴∠BAC =∠DCA , ∴AB ∥DC , ∵AB =DC ,∴四边形ABCD 是平行四边形.25. (2021衡阳)如图,点E 为正方形ABCD 外一点,∠AEB =90°,将Rt △ABE 绕A 点逆时针方向旋转90°得到△ADF ,DF 的延长线交BE 于H 点. (1)试判定四边形AFHE 的形状,并说明理由; (2)已知BH =7,BC =13,求DH 的长.【答案或简析】(1)四边形AFHE 是正方形,理由如下:由旋转得∠AEB =∠AED =90°,AE =AF ,∠DAF =∠EAB. ∴∠AFH =90°.∵四边形ABCD 是正方形, ∴∠DAB =90°,∴∠F AE =∠F AB +∠BAE =∠F AB +∠DAF =∠DAB =90°, ∴∠AEB =∠AFB =∠F AE =90°,∴四边形AFHE 是矩形. 又∵AE =AF ,∴四边形AFHE 是正方形. (2)连接BD ,由题意得,BC =CD =13, ∴在Rt △BCD 中,BD =22132CD CB .∵四边形AFHE 是正方形, ∴∠EHD =90°,∴∠DHB =90°, 在Rt △DHB 中,DH =22,BD BH又∵BH =7,∴DH =17.26.(2021邵阳)如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 是对角线AC 上的两点,且AE =CF .连接DE ,DF ,BE ,BF . (1)证明:△ADE ≌△CBF . (2)若AB =4,AE =2,求四边形BEDF 的周长.【答案或简析】(1)证明:由正方形对角线平分每一组对角可知:∠DAE =∠BCF =45°, 在△ADE 和△CBF 中,,,,AD BC DAE BCF AE CF ∠∠ ∴△ADE ≌△CBF (SAS ). (2)解:∵AB =AD =42, ∴BD =228AB AD ,由正方形对角线相等且互相垂直平分可得:AC =BD =8,DO =BO =4,OA =OC =4, 又AE =CF =2,∴OA ﹣AE =OC ﹣CF , 即OE =OF =4﹣2=2, 故四边形BEDF 为菱形. ∵∠DOE =90°, ∴DE =22224225DO EO .∴4DE =85,故四边形BEDF 的周长为85.27.(2021岳阳)如图,在四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F . (1)请你只添加一个条件(不另加辅助线),使得四边形AECF 为平行四边形,你添加的条件是 ;(2)添加了条件后,证明四边形AECF 为平行四边形.【答案或简析】解:(1)添加条件为:AE =CF , 故答案为:AE =CF ;(2)证明:∵AE ⊥BD ,CF ⊥BD , ∴AE ∥CF , ∵AE =CF ,∴四边形AECF 为平行四边形.28.(2021张家界)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,∠AOB =60°,对角线AC 所在的直线绕点O 顺时针旋转角α(0°< α <120°),所得的直线l 分别交AD ,BC 于点E ,F . (1)求证:△AOE ≌△COF ;(2)当旋转角α为多少度时,四边形AFCE 为菱形?试说明理由.【答案或简析】 证明:(1)∵四边形ABCD 是矩形, ∴AD ∥BC ,AO =CO , ∴∠AEO =∠CFO , 在△AOE 和△COF 中,,,,AEO CFO AOE COF AO CO ∠∠∠∠, ∴△AOE ≌△COF (AAS );(2)当α=90°时,四边形AFCE 为菱形, 理由:∵△AOE ≌△COF , ∴OE =OF , 又∵AO =CO ,∴四边形AFCE 为平行四边形, 又∵∠AOE =90°,∴四边形AFCE 为菱形.29.(2020长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F . (1)求证:△ABF ∽△FCE ;(2)若AB =23,AD =4,求EC 的长;(3)若AE -DE =2EC ,记∠BAF =α,∠F AE =β.求tan α+tan β的值.【答案或简析】(1)证明:∵四边形ABCD 是矩形, ∴∠B =∠C =∠D =90°, ∴∠CEF +∠EFC =90°, ∵△AEF 由△AED 翻折得到, ∴∠AFE =∠D =90°, ∴∠AFB +∠EFC =90°, ∴∠CEF =∠AFB , ∴△ABF ∽△FCE ; (2)∵四边形ABCD 是矩形, ∴AB =CD =23,AD =BC =4,设CE =x ,则DE =23-x , ∵△AEF 由△AED 翻折得到, ∴AD =AF =4,DE =EF =23-x ,在Rt △ABF 中,BF =AF 2-AB 2=42-(23)2=2, ∴CF =BC -BF =4-2=2,在Rt △CEF 中,EF 2=CE 2+CF 2,即(23-x )2=x 2+22, 解得x =233,即EC =233;(3)如解图,设EC =x ,DE =a ,则易得EF =a ,AB =a +x , ∵AE -DE =2EC ,∴AE -a =2x ,即AE =2x +a ,由勾股定理得:AF =AE 2-EF 2=(2x +a )2-a 2=4ax +4x 2, CF =EF 2-CE 2=a 2-x 2,由(1)知∠CEF =∠AFB ,∴∠BAF =∠CFE =α,∴cos ∠BAF =AB AF =a +x 4ax +4x 2,cos ∠CFE =CFEF =a 2-x 2a ,∴a +x 4ax +4x2=a 2-x 2a , a +x4x (a +x )=(a +x )(a -x )a,a (a +x )=(a +x )4x (a -x ), a =4ax -4x 2, 整理得(a -2x )2=0, ∴a =2x ,∴sin ∠CFE =CE EF =x a =x 2x =12,即∠CFE =∠BAF =α=30°,∴∠DAF =60°, ∴∠EAF =β=30°.∴tan α+tan β=tan 30°+tan 30°=233.。

2022年全国中考数学真题分类汇编专题12:四边形

2022年全国中考数学真题分类汇编专题12:四边形

2022年全国中考数学真题分类汇编专题12:四边形一.选择题(共18小题)1.如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,∠ABC =60°,BD=4 ,则OE=()A.4B.2 C.2D.2.如图,四边形ABCD的内角和等于()A.180°B.270°C.360°D.540°3.如图,正方形ABCD的面积为3,点E在边CD上,且CE=1,∠ABE的平分线交AD 于点F,点M,N分别是BE,BF的中点,则MN的长为()A. B. C.2 D.4.如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠DAC=∠BAC 5.正多边形的每个内角为108°,则它的边数是()A.4B.6C.7D.56.一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是()A.正方形B.正六边形C.正八边形D.正十边形7.如图,在边长为1的菱形ABCD中,∠ABC=60°,动点E在AB边上(与点A,B均不重合),点F在对角线AC上,CE与BF相交于点G,连接AG,DF,若AF=BE,则下列结论错误的是()A.DF=CE B.∠BGC=120°C.AF2=EG•EC D.AG的最小值为8.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.169.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE 的长度为()A. B. C. D.10.要检验一个四边形的桌面是否为矩形,可行的测量方案是()A.测量两条对角线是否相等B.度量两个角是否是90°C.测量两条对角线的交点到四个顶点的距离是否相等D.测量两组对边是否分别相等11.如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是()A.40°B.60°C.80°D.100°12.如图,四边形ABCD是菱形,∠DAB=60°,点E是DA中点,F是对角线AC上一点,且∠DEF=45°,则AF:FC的值是()A.3B. 1C.2 1D.213.如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为()A.2B.4C.6D.814.如图是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是()A.900°B.720°C.540°D.360°15.如图,在矩形ABCD中,AD>AB,点E,F分别在AD,BC边上,EF∥AB,AE=AB,AF与BE相交于点O,连接OC.若BF=2CF,则OC与EF之间的数量关系正确的是()A.2OC EF B. OC=2EF C.2OC EF D.OC=EF 16.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD,其中一张纸条在转动过程中,下列结论一定成立的是()A.四边形ABCD周长不变B.AD=CDC.四边形ABCD面积不变D.AD=BC17.如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()A.当t=4s时,四边形ABMP为矩形B.当t=5s时,四边形CDPM为平行四边形C.当CD=PM时,t=4sD.当CD=PM时,t=4s或6s18.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在E处.若∠1=56°,∠2=42°,则∠A的度数为()A.108°B.109°C.110°D.111°二.填空题(共19小题)19.如图,矩形ABCD的对角线相交于点O,过点O的直线交AD,BC于点E,F,若AB =3,BC=4,则图中阴影部分的面积为.20.如图,在▱ABCD中,AD=10,对角线AC与BD相交于点O,AC+BD=22,则△BOC 的周长为.21.如图所示,在▱ABCD中,AC,BD交于点O, R , ,则 .22.图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中∠ABC的度数是°.23.如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED 是菱形,这个条件可以是.(写出一个即可)24.如图,四边形ABCD为菱形,∠ABC=80°,延长BC到E,在∠DCE内作射钱CM,使得∠ECM=30°,过点D作DF⊥CM,垂足为F.若DF ,则BD的长为(结果保留根号).25.如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=4 ,则四边形CEDF的周长是.26.如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠FAN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是(填上所有符合要求的条件的序号).27.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且AF AC,连接EF.若AC=10,则EF=.28.如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为.29.如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,∠EAF=30°,则∠AEB=°;若△AEF的面积等于1,则AB的值是.30.在矩形ABCD中,AB=9,AD=12,点E在边CD上,且CE=4,点P是直线BC上的一个动点.若△APE是直角三角形,则BP的长为.31.正六边形的一个外角的度数为°.32.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ长度的最小值为.33.如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.若AC=10,则四边形OCED的周长是.34.如图,菱形ABCD中,对角线AC,BD相交于点O,∠BAD=60°,AD=3,AH是∠BAC的平分线,CE⊥AH于点E,点P是直线AB上的一个动点,则OP+PE的最小值是.35.如图,折叠边长为4cm的正方形纸片ABCD,折痕是DM,点C落在点E处,分别延长ME、DE交AB于点F、G,若点M是BC边的中点,则FG=cm.36.如图,在正方形ABCD中,AB=4 ,对角线AC,BD相交于点O.点E是对角线AC 上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F 为CD的中点,则△EGH′的周长是.37.四边形的外角和度数是.三.解答题(共7小题)38.如图,在平面直角坐标系中,四边形ABCD,A在y轴的正半轴上,B,C在x轴上,AD∥BC,BD平分∠ABC,交AO于点E,交AC于点F,∠CAO=∠DBC.若OB,OC 的长分别是一元二次方程x2﹣5x+6=0的两个根,且OB>OC.请解答下列问题:(1)求点B,C的坐标;(2)若反比例函数y (k≠0)图象的一支经过点D,求这个反比例函数的解析式;(3)平面内是否存在点M,N(M在N的上方),使以B,D,M,N为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N的坐标;若不存在,请说明理由.39.如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.(1)求证:∠ACB=∠DFE;(2)连接BF,CE,直接判断四边形BFEC的形状.40.【探索发现】在一次折纸活动中,小亮同学选用了常见的A4纸,如图①,矩形ABCD 为它的示意图.他查找了A4纸的相关资料,根据资料显示得出图①中AD AB.他先将A4纸沿过点A的直线折叠,使点B落在AD上,点B的对应点为点E,折痕为AF;再沿过点F的直线折叠,使点C落在EF上,点C的对应点为点H,折痕为FG;然后连结AG,沿AG所在的直线再次折叠,发现点D与点F重合,进而猜想△ADG≌△AFG.【问题解决】小亮对上面△ADG≌△AFG的猜想进行了证明,下面是部分证明过程:证明:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°.由折叠可知,∠BAF ∠BAD=45°,∠BFA=∠EFA.∴∠EFA=∠BFA=45°.∴AF AB=AD请你补全余下的证明过程.【结论应用】(1)∠DAG的度数为度, 的值为;(2)在图①的条件下,点P在线段AF上,且AP AB,点Q在线段AG上,连结FQ、PQ,如图②.设AB=a,则FQ+PQ的最小值为.(用含a的代数式表示)41.如图,在▱ABCD中,AB=4,AD=BD ,点M为边AB的中点.动点P从点A 出发,沿折线AD﹣DB以每秒 个单位长度的速度向终点B运动,连结PM.作点A 关于直线PM的对称点A',连结A'P、A'M.设点P的运动时间为t秒,(1)点D到边AB的距离为;(2)用含t的代数式表示线段DP的长;(3)连结AD,当线段A'D最短时,求△DPA'的面积;(4)当M、A'、C三点共线时,直接写出t的值.42.已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求 的值为多少;(3)AB=8 ,AG ,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.43.如图,在▱ABCD中,DF平分∠ADC,交AB于点F,BE∥DF,交AD的延长线于点E.若∠A=40°,求∠ABE的度数.44.(1)发现:如图①所示,在正方形ABCD中,E为AD边上一点,将△AEB沿BE翻折到△BEF处,延长EF交CD边于G点.求证:△BFG≌△BCG;(2)探究:如图②,在矩形ABCD中,E为AD边上一点,且AD=8,AB=6.将△AEB 沿BE翻折到△BEF处,延长EF交BC边于G点,延长BF交CD边于点H,且FH=CH,求AE的长.(3)拓展:如图③,在菱形ABCD中,AB=6,E为CD边上的三等分点,∠D=60°.将△ADE沿AE翻折得到△AFE,直线EF交BC于点P,求PC的长.。

2020年中考数学一轮复习 第五章《四边形》综合测试卷含答案

2020年中考数学一轮复习 第五章《四边形》综合测试卷含答案

第五章《四边形》综合测试卷(时间:90分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 从n边形一个顶点出发,可以作条对角线. ( )A. nB. n-1C. n-2D. n-32. 一个多边形的每一个外角都是36°,则这个多边形是( )A. 正方形B. 正六边形C. 正八方形D. 正十边形3. 在平行四边形ABCD中,∠A=38°,则∠C的度数为( )A. 142°B. 148°C. 132°D. 38°4. 边长为3 cm的菱形的周长是( )A. 15 cmB. 12 cmC. 9 cmD. 3 cm5. 如图Z5-1,在平行四边形ABCD中,下列结论一定成立的是( )图Z5-1A. AC∠BDB. AB=ADC. ∠BAD≠∠BCDD. ∠ABC+∠BAD=180°6. 下列四边形中,对角线一定相等的是( )A. 菱形B. 矩形C. 平行四边形D. 梯形7. 如图Z5-2,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于( )A. 3.5B. 4C. 7D. 14图Z5-28. 如图Z5-3,四边形ABCD是矩形,连接BD,∠ABD=60°,延长BC到点E使CE=BD,连接AE,则∠AEB的度数为( )图Z5-3A. 15°B. 20°C. 30°D. 60°9. 如图Z5-4,在矩形ABCD中,AB与BC的长度比为3∠4.若该矩形的周长为28,则BD的长为( )图Z5-4A. 5B. 6C. 8D. 1010. 如图Z5-5,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME∠BC 于点E,MF∠CD于点F,则EF的最小值为( )图Z5-5A. 42B. 22C. 2D. 1二、填空题(本大题7小题,每小题4分,共28分)11. 五边形从某一个顶点出发可以引条对角线.12. 如果正多边形的一个外角为40°,那么它是正边形.13. 在行四边形ABCD中,∠B+∠D=220°,则∠A=.14. 如图Z5-6,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是.图Z5-615. 如图Z5-7,正方形ABCD中,以CD为边向正方形内作等边三角形DEC,则∠EAB =.图Z5-716. 如图Z5-8,在平行四边形ABCD中,对角线AC,BD交于点O,点E为BC边上一点,且CE=2BE. 若四边形ABEO的面积为3,则平行四边形的ABCD的面积为.图Z5-817.如图Z5-9,在∠ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE∠DF 交DF的延长线于点E. 已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是.图Z5-9三、解答题(一)(本大题3小题,每小题6分,共18分)18. 如图Z5-10,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.求证:四边形ABCD是平行四边形.图Z5-1019. 如图Z5-11,点E,F分别是矩形ABCD的边AB,CD上的一点,且DF=BE. 求证:AF=CE.图Z5-1120. 如图Z5-12,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.图Z5-12四、解答题(二)(本大题3小题,每小题8分,共24分)21. 如图Z5-13,平行四边形ABCD中,DF平分∠ADC,交BC于点F,BE平分∠ABC,交AD于点E.(1)求证:四边形BFDE是平行四边形;(2)若∠AEB=68°,求∠C的度数.图Z5-1322. 如图Z5-14,平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.图Z5-1423. 如图Z5-15,平行四边形ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,且AE=AF.(1)求证:平行四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.图Z5-15五、解答题(三)(本大题2小题,每小题10分,共20分)24. 如图Z5-16,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC 于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说明理由.图Z5-1625. 如图Z5-17,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF-BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.图Z5-17第五章《四边形》综合测试卷(时间:90分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 从n边形一个顶点出发,可以作条对角线. ( D )A. nB. n-1C. n-2D. n-32. 一个多边形的每一个外角都是36°,则这个多边形是( D )A. 正方形B. 正六边形C. 正八方形D. 正十边形3. 在平行四边形ABCD中,∠A=38°,则∠C的度数为( D )A. 142°B. 148°C. 132°D. 38°4. 边长为3 cm的菱形的周长是( B )A. 15 cmB. 12 cmC. 9 cmD. 3 cm5. 如图Z5-1,在平行四边形ABCD中,下列结论一定成立的是( D )图Z5-1A. AC∠BDB. AB=ADC. ∠BAD≠∠BCDD. ∠ABC+∠BAD=180°6. 下列四边形中,对角线一定相等的是( B )A. 菱形B. 矩形C. 平行四边形D. 梯形7. 如图Z5-2,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于( A )A. 3.5B. 4C. 7D. 14图Z5-28. 如图Z5-3,四边形ABCD是矩形,连接BD,∠ABD=60°,延长BC到点E使CE=BD,连接AE,则∠AEB的度数为( A )图Z5-3A. 15°B. 20°C. 30°D. 60°9. 如图Z5-4,在矩形ABCD中,AB与BC的长度比为3∠4.若该矩形的周长为28,则BD的长为( D )图Z5-4A. 5B. 6C. 8D. 1010. 如图Z5-5,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME∠BC 于点E,MF∠CD于点F,则EF的最小值为( B )图Z5-5A. 42B. 22C. 2D. 1二、填空题(本大题7小题,每小题4分,共28分)11. 五边形从某一个顶点出发可以引2条对角线.12. 如果正多边形的一个外角为40°,那么它是正九边形.13. 在平行四边形ABCD中,∠B+∠D=220°,则∠A=70°.14. 如图Z5-6,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是24.图Z5-615. 如图Z5-7,正方形ABCD中,以CD为边向正方形内作等边三角形DEC,则∠EAB =15°.图Z5-716. 如图Z5-8,在平行四边形ABCD中,对角线AC,BD交于点O,点E为BC边上一点,且CE=2BE. 若四边形ABEO的面积为3,则平行四边形ABCD的面积为9.图Z5-817. 如图Z5-9,在∠ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE∠DF 交DF的延长线于点E. 已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是2 3.图Z5-9三、解答题(一)(本大题3小题,每小题6分,共18分)18. 如图Z5-10,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.求证:四边形ABCD是平行四边形.图Z5-10证明:∵O是AC的中点,∴OA=OC.∵AD∥BC,∴∠ADO=∠CBO.在△AOD和△COB中,{∠ADO=∠CBO,∠AOD=∠COB,OA=OC,∴△AOD∠△COB(AAS).∴OD=OB.∴四边形ABCD是平行四边形.19. 如图Z5-11,点E,F分别是矩形ABCD的边AB,CD上的一点,且DF=BE. 求证:AF=CE.图Z5-11证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC.在△ADF和△CBE中,{AD=CB,∠D=∠B,DF=BE,∴△ADF∠△CBE(SAS).∴AF=CE.20. 如图Z5-12,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.图Z5-12解:如答图Z5-1,过点A作AE⊥BC于点E.∵四边形ABCD是菱形,∴AB=BC=10.∵∠ABC=60°,AE⊥BC,∴∠BAE=30°.答图Z5-1∠BE =12AB =5,AE =3BE =53.∠菱形ABCD 的面积=BC×AE =50 3.四、解答题(二)(本大题3小题,每小题8分,共24分) 21. 如图Z5-13,平行四边形ABCD 中,DF 平分∠ADC ,交BC 于点F ,BE 平分∠ABC ,交AD 于点E .(1)求证:四边形BFDE 是平行四边形; (2)若∠AEB =68°,求∠C 的度数.图Z5-13(1)证明:∵在平行四边形ABCD 中,AD ∥BC , ∴∠AEB =∠CBE.又∵BE 平分∠ABC ,∴∠ABE =∠EBC.∴∠ABE =∠AEB.∴AB =AE. 同理可得CF =CD.又AB =CD ,∴CF =AE.∴BF =DE.又∵BF ∥DE ,∴四边形EBFD 是平行四边形.(2)解:∵∠AEB =68°,AD ∥BC ,∴∠EBF =∠AEB =68°. ∵BE 平分∠ABC ,∴∠ABC =2∠EBF =136°. ∴∠C =180°-∠ABC =44°.22. 如图Z5-14,平行四边形ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在CD 上,DF =BE ,连接BF ,AF .(1)求证:四边形BFDE 是矩形;(2)若AF 平分∠BAD ,且AE =3,DF =5,求矩形BFDE 的面积.图Z5-14(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD. ∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形. ∵DE ⊥AB ,∴∠DEB =90°.∴四边形BFDE 是矩形. (2)解:∵AB ∥CD ,∴∠BAF =∠DFA. ∵AF 平分∠BAD ,∴∠BAF =∠DAF. ∴∠DFA =∠DAF.∴AD =DF =5. ∵DE ⊥AB ,∴∠AED =90°.由勾股定理,得DE=AD2-AE2=4.∴矩形BFDE的面积=DF×DE=5×4=20.23. 如图Z5-15,在平行四边形ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,且AE=AF.(1)求证:ABCD是菱形;(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.图Z5-15(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°.又∵AE=AF,∴△AEB∠△AFD(AAS). ∴AB=AD.∴四边形ABCD是菱形.(2)解:连接AC,如答图Z5-2. ∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°.答图Z5-2∵四边形ABCD是菱形,∴∠ACF=60°.∴△ACD是等边三角形.在Rt△CFA中,AF=CF·tan∠ACF=23,AC=CFcos∠ACF=4=CD.∴菱形ABCD的面积=4×23=8 3.五、解答题(三)(本大题2小题,每小题10分,共20分)24. 如图Z5-16,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC 于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说明理由.图Z5-16(1)证明:在△ABC和△ADC中,{AB=AD,CB=CD,AC=AC,∴△ABC∠△ADC.∴∠BAC=∠DAC,即∠BAF=∠DAF.在△ABF和△ADF中{AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF∠△ADF(SAS).∴∠AFB=∠AFD.∵∠CFE=∠AFB,∴∠AFD=∠CFE.∴∠BAF=∠DAF,∠AFD=∠CFE.(2)证明:∵AB∥CD,∴∠BAC=∠ACD.∵∠BAC=∠DAC,∴∠DAC=∠ACD.∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)解:当BE⊥CD时,点E的位置可令∠EFD=∠BCD.理由如下.∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF.∵CF=CF,∴△BCF∠△DCF(SAS).∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°.∴∠EFD=∠BCD.25. 如图Z5-17,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF-BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.图Z5-17(1)证明:∵DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,∴∠AFB=∠AED=∠DHC=90°.∴∠ADE+∠DAE=90°.又∵∠DAE+∠BAF=90°,∴∠ADE=∠BAF.在△AED和△BFA中,{∠AED=∠BFA,∠EDA=∠FAB,AD=AB,∴△AED∠△BFA(AAS).∴AE=BF.∴AF-AE=EF,即AF-BF=EF.(2)解:四边形EFGH是正方形.证明:∵∠AFB=∠AED=∠DHC=90°,∴四边形EFGH是矩形.∵△AED∠△BFA,同理可得△AED∠∠DHC,∠∠AED∠∠BFA∠△DHC.∴DH=AE=BF,AF=DE=CH.∴DE-DH=AF-AE.∴EF=EH.∴矩形EFGH是正方形.(3)解:∵AB=2,BP=1,∴AP= 5.∵S△ABP=12×BF×AP=12×BF×5=1×2×12,∴BF=255.∵∠BAF=∠PAB,∠AFB=∠ABP=90°,∴△ABF∠△APB.∴BFAF=BPAB=12,∴AF=455,∴EF=AF-AE=455-255=255.25 52=45.∴四边形EFGH的面积为⎝⎛⎭⎫。

(专题精选)初中数学四边形难题汇编附答案

(专题精选)初中数学四边形难题汇编附答案

(专题精选)初中数学四边形难题汇编附答案一、选择题1.一个多边形的每个内角均为108º,则这个多边形是()A.七边形 B.六边形 C.五边形 D.四边形【答案】C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.2.如图,把矩形ABCD沿EF对折后使两部分重合,若150∠=o,则AEF∠=()A.110°B.115°C.120°D.130°【答案】B【解析】【分析】根据翻折的性质可得∠2=∠3,再求出∠3,然后根据两直线平行,同旁内角互补列式计算即可得解.【详解】∵矩形ABCD沿EF对折后两部分重合,150∠=o,∴∠3=∠2=180-502︒︒=65°,∵矩形对边AD∥BC,∴∠AEF=180°-∠3=180°-65°=115°.故选:B.【点睛】本题考查了矩形中翻折的性质,两直线平行的性质,平角的定义,掌握翻折的性质是解题的关键.3.如图,在平行四边形ABCD 中,2=AD AB ,CE 平分BCD ∠交AD 于点E ,且8BC =,则AB 的长为( )A .4B .3C .52D .2【答案】A【解析】【分析】 利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB 即可得出答案.【详解】∵CE 平分∠BCD 交AD 边于点E ,∴∠ECD=∠ECB ,∵在平行四边形ABCD 中,AD ∥BC ,AB=CD ,∴∠DEC=∠ECB ,∠DEC=∠DCE ,∴DE=DC ,∵AD=2AB ,∴AD=2CD ,∴AE=DE=AB .∵8AD BC ==,2=AD AB∴AB=4,故选:A .【点睛】此题考查了平行四边形的性质,得出∠DEC=∠DCE 是解题关键.4.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C .3D .31-【答案】D【解析】【分析】分三种情形讨论①若以边BC 为底.②若以边PC 为底.③若以边PB 为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD 中,∵∠ABC=60°,AB=1,∴△ABC ,△ACD 都是等边三角形,①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P 与点A 重合时,PD 值最小,最小值为1;②若以边PC 为底,∠PBC 为顶角时,以点B 为圆心,BC 长为半径作圆,与BD 相交于一点,则弧AC (除点C 外)上的所有点都满足△PBC 是等腰三角形,当点P 在BD 上时,PD 最小,最小值为31-③若以边PB 为底,∠PCB 为顶角,以点C 为圆心,BC 为半径作圆,则弧BD 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点D 重合时,PD 最小,显然不满足题意,故此种情况不存在;上所述,PD 的最小值为 31-故选D .【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.5.如图,在矩形ABCD 中, 4,6,AB BC ==点E 是AD 的中点,点F 在DC 上,且1,CF =若在此矩形上存在一点P ,使得PEF V 是等腰三角形,则点P 的个数是( )A .3B .4C .5D .6【答案】D【解析】【分析】根据等腰三角形的定义,分三种情况讨论:①当EF 为腰,E 为顶角顶点时,②当EF 为腰,F 为顶角顶点时,③当EF 为底,P 为顶角顶点时,分别确定点P 的位置,即可得到答案.【详解】∵在矩形ABCD 中,461AB BC CF ===,,,点E 是AD 的中点, 32184EF ∴==>.∴PEF V 是等腰三角形,存在三种情况:①当EF 为腰,E 为顶角顶点时,根据矩形的轴对称性,可知:在BC 上存在两个点P ,在AB 上存在一个点P ,共3个,使PEF V 是等腰三角形;②当EF 为腰,F 为顶角顶点时,186,<Q∴在BC 上存在一个点P ,使PEF V 是等腰三角形;③当EF 为底,P 为顶角顶点时,点P 一定在EF 的垂直平分线上,∴EF 的垂直平分线与矩形的交点,即为点P ,存在两个点.综上所述,满足题意的点P 的个数是6.故选D .【点睛】本题主要考查等腰三角形的定义,矩形的性质,熟练掌握等腰三角形的定义和矩形的性质,学会分类讨论思想,是解题的关键.6.如图,四边形ABCD 和四边形AEFG 均为正方形,连接CF ,DG ,则DG CF=( )A .23B .22C 3D 3【答案】B【解析】【分析】连接AC 和AF ,证明△DAG ∽△CAF 可得DG CF的值. 【详解】连接AC 和AF ,则2 AD AGAC AF==,∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴22 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.7.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C.8.如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN=3;③BP=4PK;④PM•PA=3PD2,其中正确的是()A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据菱形的性质得到AD ∥BC ,根据平行线的性质得到对应角相等,根据全等三角形的判定定理△ADP ≌△ECP ,由相似三角形的性质得到AD=CE ,作PI ∥CE 交DE 于I ,根据点P 是CD 的中点证明CE=2PI ,BE=4PI ,根据相似三角形的性质得到1=4KP PI KB BE =,得到BP=3PK ,故③错误;作OG ⊥AE 于G ,根据平行线等分线段定理得到MG=NG ,又OG ⊥MN ,证明△MON 是等腰三角形,故①正确;根据直角三角形的性质和锐角三角函数求出∠②正确;然后根据射影定理和三角函数即可得到PM•PA=3PD 2,故④正确.【详解】解:作PI ∥CE 交DE 于I ,∵四边形ABCD 为菱形,∴AD ∥BC ,∴∠DAP=∠CEP ,∠ADP=∠ECP ,在△ADP 和△ECP 中, DAP CEP ADP ECP DP CP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP ≌△ECP ,∴AD=CE , 则PI PD CE DC =,又点P 是CD 的中点, ∴1=2PI CE , ∵AD=CE , ∴1=4KP PI KB BE =, ∴BP=3PK ,故③错误;作OG ⊥AE 于G , ∵BM 丄AE 于M ,KN 丄AE 于N ,∴BM ∥OG ∥KN ,∵点O 是线段BK 的中点,∴MG=NG ,又OG ⊥MN ,∴OM=ON ,即△MON是等腰三角形,故①正确;由题意得,△BPC,△AMB,△ABP为直角三角形,设BC=2,则CP=1,由勾股定理得,BP=3,则AP=7,根据三角形面积公式,BM=2217,∵点O是线段BK的中点,∴PB=3PO,∴OG=13BM=22121,MG=23MP=27,tan∠OMN=3=OGMG,故②正确;∵∠ABP=90°,BM⊥AP,∴PB2=PM•PA,∵∠BCD=60°,∴∠ABC=120°,∴∠PBC=30°,∴∠BPC=90°,∴PB=3PC,∵PD=PC,∴PB2=3PD,∴PM•PA=3PD2,故④正确.故选B.【点睛】本题考查相似形综合题.9.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE:EC=2:1,则线段CH的长是()A .3B .4C .5D .6【答案】B【解析】 试题分析:设CH =x , 因为BE :EC =2:1,BC =9,所以,EC =3, 由折叠知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理,得:222(9)3x x -=+,解得:x =4,即CH=4考点:(1)图形的折叠;(2)勾股定理10.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )A .183π-B .183πC .32316πD .1839π-【答案】C【解析】【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD •sin60°=3832⨯=∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积 =2120(43)84332316ππ⨯⨯-=-. 故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.11.如图,ABC V 中,5AB AC ==,AE 平分BAC ∠交BC 于点E ,点D 为AB 的中点,连接DE ,则DE 的长为( )A .2B .2.5C .3D 5【答案】B【解析】【分析】 根据等腰三角形三线合一可得AE ⊥BC ,再根据直角三角形斜边上的中线是斜边的一半即可求得DE 的长度.【详解】解:∵5AB AC ==,AE 平分BAC ∠,∴AE ⊥BC ,又∵点D 为AB 的中点,∴1 2.52DE AB ==, 故选:B .【点睛】 本题考查等腰三角形三线合一和直角三角形斜边上的中线.熟练掌握相关定理,并能正确识图,得出线段之间的关系是解题关键.12.如图,菱形ABCD 中,对角线BD 与AC 交于点O , BD =8cm ,AC =6cm ,过点O 作OH⊥CB 于点H ,则OH 的长为( )A .5cmB .52cmC .125cmD .245cm 【答案】C【解析】【分析】根据菱形的对角线互相垂直平分求出OB 、OC ,再利用勾股定理列式求出BC ,然后根据△BOC 的面积列式计算即可得解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,111163,842222OC AC OB BD ==⨯===⨯= 在Rt △BOC 中,由勾股定理得,2222345BC OB OC =+=+=∵OH ⊥BC ,1122BOC S OC OB CB OH ∴=⋅=⋅V ∴1143522OH ⨯⨯=⨯ ∴125OH =故选C .【点睛】本题考查了菱形的性质,勾股定理,三角形的面积,熟记性质是解题的关键,难点在于利用两种方法表示△BOC 的面积列出方程.13.四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,∠DHO =20°,则∠CAD 的度数是().A .25°B .20°C .30°D .40°【答案】B【解析】 ∵四边形ABCD 是菱形,∴OB=OD ,AC ⊥BD ,∵DH ⊥AB ,∴OH=OB=12BD , ∵∠DHO=20°, ∴∠OHB=90°-∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠CAD=∠CAB=90°-∠ABD=20°.故选A .14.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 【答案】B【解析】【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE ,∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点,∴12 EFBD=,∴14EFCBCDDSS=VV,∴18EFCABCDSS=V四边形,∴1176824AGH EFCABCDS SS+=+=V V四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.15.已知ABCDY(AB BC>),用尺规在ABCD内作菱形,下列作法错误的是()A.如图1所示,作对角线AC的垂直平分线EF,则四边形AECF为所求B.如图2所示,在AB DC,上截取AE AD DF DA==,,则四边形AEFD为所求C.如图3所示,作ADC ABC∠∠、的平分线DE BF,,则四边形DEBF为所求D.如图4所示,作BDE BDC DBF DBA∠=∠∠=∠,,则四边形DEBF为所求【答案】C【解析】【分析】根据平行四边形的性质及判定、菱形的判定逐个判断即可.【详解】解:A、根据线段的垂直平分线的性质可知AB=AD,一组邻边相等的平行四边形是菱形;符合题意;B、根据四条边相等的四边形是菱形,符合题意;C、根据两组对边分别平行四边形是平行四边形,不符合题意;D、根据一组邻边相等的平行四边形是菱形,符合题意.故选:C.【点睛】本题考查了复杂作图,解决本题的关键是利用平行四边形的性质及判定、菱形的判定.16.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连结BF,交AC于点M,连结DE,BO.若∠BOC=60°,FO=FC,则下列结论:①AE=CF;②BF 垂直平分线段OC;③△EOB≌△CMB;④四边形是BFDE菱形.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用ASA定理证明△AOE≌△COF,从而判断①;利用线段垂直平分线的性质的逆定理可得结论②;在△EOB和△CMB中,对应直角边不相等,则两三角形不全等,从而判断③;连接BD,先证得BO=DO, OE=OF,进而证得OB⊥EF,因为BD、EF互相垂直平分,即可证得四边形EBFD是菱形,从而判断④.【详解】解:∵矩形ABCD中,O为AC中点∴∠DCA=∠BAC,OA=OC,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,故①正确∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故②正确;∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,∴BO≠BM,∴△EOB与△CMB不全等;故③错误;连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,且BO=DO由①可知△AOE≌△COF,∴OE=OF∴四边形EBFD是平行四边形由②可知,OB=CB,OF=FC又∵BF=BF∴△OBF≌△OCF∴BD⊥EF∴平行四边形EBFD是菱形,故④正确所以其中正确结论的个数为3个;故选:C.【点睛】本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识.17.如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有().A.1个B.2个C.3个D.4个【答案】D【解析】分析:如图延长EF交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG 得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;详解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.18.下列结论正确的是()A.平行四边形是轴对称图形B.平行四边形的对角线相等C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等【答案】C【解析】【分析】分别利用平行四边形的性质和判定逐项判断即可.【详解】A、平行四边形不一定是轴对称图形,故A错误;B、平行四边形的对角线不相等,故B错误;C、平行四边形的对边平行且相等,故C正确;D、平行四边形的对角相等,邻角互补,故D错误.故选:C.【点睛】此题考查平行四边形的性质,掌握特殊平行四边形与一般平行四边形的区别是解题的关键.19.如图,在□ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论中:①DE=DF;②AG=GF;③AF=DF;④BG=GC;⑤BF=EF,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,即AB∥CE,∴∠ABF=∠E,∵DE=CD,∴AB=DE,在△ABF和△DEF中,∵===ABF EAFB DFE AB DE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABF≌△DEF(AAS),∴AF=DF,BF=EF;可得③⑤正确,故选:B.【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.20.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:3605 72=,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.。

2021年中考数学专题复习:四边形 试题精选汇编(含答案解析)

2021年中考数学专题复习:四边形 试题精选汇编(含答案解析)

2021年中考数学专题复习:四边形试题精选汇编一.选择题(共30小题)1.(2020•西藏)如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠ADB=90°B.OA=OB C.OA=OC D.AB=BC 2.(2020•锦州)如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E.PF⊥AB于点F.若菱形ABCD的周长为20,面积为24,则PE+PF的值为()A.4B.C.6D.3.(2020•大庆)如图,在边长为2的正方形EFGH中,M,N分别为EF与GH的中点,一个三角形ABC沿竖直方向向上平移,在运动的过程中,点A恒在直线MN上,当点A 运动到线段MN的中点时,点E,F恰与AB,AC两边的中点重合,设点A到EF的距离为x,三角形ABC与正方形EFGH的公共部分的面积为y.则当y=时,x的值为()A.或2+B.或2﹣C.2±D.或4.(2020•河池)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED =4.则CE的长是()A.5B.6C.4D.5 5.(2020•绵阳)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条6.(2020•鄂尔多斯)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA2A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2020的值为()A.B.22018C.22018+D.1010 7.(2020•十堰)如图,菱形ABCD的顶点分别在反比例函数y=和y=的图象上,若∠BAD=120°,则||=()A.B.3C.D.8.(2020•宁夏)如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=()A.13B.10C.12D.5 9.(2020•毕节市)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是()A.2.2cm B.2.3cm C.2.4cm D.2.5cm 10.(2020•玉林)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF 是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是:()A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④11.(2020•十堰)已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC ⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A.①B.②C.③D.④12.(2020•烟台)量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC的度数为()A.60°B.70°C.80°D.85°13.(2020•宜昌)游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长14.(2020•通辽)如图,AD是△ABC的中线,四边形ADCE是平行四边形,增加下列条件,能判断▱ADCE是菱形的是()A.∠BAC=90°B.∠DAE=90°C.AB=AC D.AB=AE 15.(2020•威海)如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1∥l2∥l3∥l4且间距相等,AB=4,BC=3,则tanα的值为()A.B.C.D.16.(2020•荆门)如图,菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为()A.20B.30C.40D.50 17.(2020•牡丹江)如图,在平面直角坐标系中,O是菱形ABCD对角线BD的中点,AD ∥x轴且AD=4,∠A=60°,将菱形ABCD绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是()A.(0,2)B.(2,﹣4)C.(2,0)D.(0,2)或(0,﹣2)18.(2020•盐城)如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.B.C.3D.5 19.(2020•辽阳)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD =6,点E是CD上一点,连接OE,若OE=CE,则OE的长是()A.2B.C.3D.4 20.(2020•扬州)如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米21.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB 于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4B.8C.D.6 22.(2020•绥化)如图,在Rt△ABC中,CD为斜边AB的中线,过点D作DE⊥AC于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:①DE=BC;②四边形DBCF是平行四边形;③EF=EG;④BC=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个23.(2020•临沂)如图,P是面积为S的▱ABCD内任意一点,△P AD的面积为S1,△PBC 的面积为S2,则()A.S1+S2>B.S1+S2<C.S1+S2=D.S1+S2的大小与P点位置有关24.(2020•黑龙江)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B 重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值是a2;⑤当BE=a时,G是线段AD的中点.其中正确的结论是()A.①②③B.②④⑤C.①③④D.①④⑤25.(2020•衡阳)如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OB=OD26.(2020•达州)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF =BD;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是()A.4B.3C.2D.1 27.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB 于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72B.24C.48D.96 28.(2020•泰安)如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC =6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为()A.1cm B.cm C.(2﹣3)cm D.(2﹣)cm 29.(2020•泰安)如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A.1个B.2个C.3个D.4个30.(2020•连云港)如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处.若∠DBC=24°,则∠A'EB等于()A.66°B.60°C.57°D.48°二.填空题(共4小题)31.(2020•德阳)如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G 是AB的中点,连接GF,若AE=4,则GF=.32.(2020•鞍山)如图,在平行四边形ABCD中,点E是CD的中点,AE,BC的延长线交于点F.若△ECF的面积为1,则四边形ABCE的面积为.33.(2020•鄂尔多斯)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A 重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有(把所有正确结论的序号都填上).34.(2020•河池)如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE ∥AB,则OE的长是.三.解答题(共16小题)35.(2020•济南)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.36.(2020•阜新)如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;(2)将正方形CEFG绕点C旋转一周.①如图2,当点E在直线CD右侧时,求证:BH﹣DH=CH;②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.37.(2020•盘锦)如图,四边形ABCD是正方形,点F是射线AD上的动点,连接CF,以CF为对角线作正方形CGFE(C,G,F,E按逆时针排列),连接BE,DG.(1)当点F在线段AD上时.①求证:BE=DG;②求证:CD﹣FD=BE;(2)设正方形ABCD的面积为S1,正方形CGFE的面积为S2,以C,G,D,F为顶点的四边形的面积为S3,当时,请直接写出的值.38.(2020•鞍山)在矩形ABCD中,点E是射线BC上一动点,连接AE,过点B作BF⊥AE于点G,交直线CD于点F.(1)当矩形ABCD是正方形时,以点F为直角顶点在正方形ABCD的外部作等腰直角三角形CFH,连接EH.①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是,位置关系是;②如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E在线段BC上,以BE和BF为邻边作平行四边形BEHF,M是BH 中点,连接GM,AB=3,BC=2,求GM的最小值.39.(2020•朝阳)如图,在Rt△ABC中,∠BAC=90°,AB=AC,M是AC边上的一点,连接BM,作AP⊥BM于点P,过点C作AC的垂线交AP的延长线于点E.(1)如图1,求证:AM=CE;(2)如图2,以AM,BM为邻边作平行四边形AMBG,连接GE交BC于点N,连接AN,求的值;(3)如图3,若M是AC的中点,以AB,BM为邻边作平行四边形AGMB,连接GE交BC于点M,连接AN,经探究发现,请直接写出的值.40.(2020•赤峰)如图,矩形ABCD中,点P为对角线AC所在直线上的一个动点,连接PD,过点P作PE⊥PD,交直线AB于点E,过点P作MN⊥AB,交直线CD于点M,交直线AB于点N.AB=4,AD=4.(1)如图1,①当点P在线段AC上时,∠PDM和∠EPN的数量关系为:∠PDM∠EPN;②的值是;(2)如图2,当点P在CA延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;(3)如图3,以线段PD,PE为邻边作矩形PEFD.设PM的长为x,矩形PEFD的面积为y.请直接写出y与x之间的函数关系式及y的最小值.41.(2020•长春)【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片ABCD(AB>AD),将矩形纸片沿过点D的直线折叠,使点A落在边DC上,点A的对应点为A′,折痕为DE,点E在AB上.求证:四边形AEA′D是正方形.【规律探索】由【问题解决】可知,图①中的△A′DE为等腰三角形.现将图①中的点A′沿DC向右平移至点Q处(点Q在点C的左侧),如图②,折痕为PF,点F在DC 上,点P在AB上,那么△PQF还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC=QP时,将矩形纸片继续折叠如图③,使点C与点P 重合,折痕为QG,点G在AB上.要使四边形PGQF为菱形,则=.42.(2020•丹东)已知:菱形ABCD和菱形A′B′C′D′,∠BAD=∠B′A′D′,起始位置点A在边A′B′上,点B在A′B′所在直线上,点B在点A的右侧,点B′在点A′的右侧,连接AC和A′C′,将菱形ABCD以A为旋转中心逆时针旋转α角(0°<α<180°).(1)如图1,若点A与A′重合,且∠BAD=∠B′A′D′=90°,求证:BB′=DD′.(2)若点A与A′不重合,M是A′C′上一点,当MA′=MA时,连接BM和A′C,BM和A′C所在直线相交于点P.①如图2,当∠BAD=∠B′A′D′=90°时,请猜想线段BM和线段A′C的数量关系及∠BPC的度数.②如图3,当∠BAD=∠B′A′D′=60°时,请求出线段BM和线段A′C的数量关系及∠BPC的度数.③在②的条件下,若点A与A′B′的中点重合,A′B′=4,AB=2,在整个旋转过程中,当点P与点M重合时,请直接写出线段BM的长.43.(2020•长春)如图,在▱ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为点E、F.(1)求证:OE=OF.(2)若BE=5,OF=2,求tan∠OBE的值.44.(2020•盐城)木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于(1)中的木门,当模具换成边长为30厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴木门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草图,并求其周长.45.(2020•永州)某校开展了一次综合实践活动,参加该活动的每个学生持有两张宽为6cm,长足够的矩形纸条.探究两张纸条叠放在一起,重叠部分的形状和面积.如图1所示,一张纸条水平放置不动,另一张纸条与它成45°的角,将该纸条从右往左平移.(1)写出在平移过程中,重叠部分可能出现的形状.(2)当重叠部分的形状为如图2所示的四边形ABCD时,求证:四边形ABCD是菱形.(3)设平移的距离为xcm(0<x≤6+6),两张纸条重叠部分的面积为scm2.求s与x 的函数关系式,并求s的最大值.46.(2020•吉林)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为.47.(2020•云南)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,垂足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.48.(2020•湖北)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD 上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.49.(2020•宜昌)菱形ABCD的对角线AC,BD相交于点O,0°<∠ABO≤60°,点G是射线OD上一个动点,过点G作GE∥DC交射线OC于点E,以OE,OG为邻边作矩形EOGF.(1)如图1,当点F在线段DC上时,求证:DF=FC;(2)若延长AD与边GF交于点H,将△GDH沿直线AD翻折180°得到△MDH.①如图2,当点M在EG上时,求证:四边形EOGF为正方形;②如图3,当tan∠ABO为定值m时,设DG=k•DO,k为大于0的常数,当且仅当k>2时,点M在矩形EOGF的外部,求m的值.50.定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转,使BC与BA 重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE.①求BE的长;②若M、N分别是AB、AD边上的动点,求△MNC周长的最小值.参考答案与试题解析一.选择题(共30小题)1.(2020•西藏)如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠ADB=90°B.OA=OB C.OA=OC D.AB=BC【答案】D【解答】解:A、平行四边形ABCD中,∠ADB=90°,不能判定四边形ABCD为菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴平行四边形ABCD是矩形,不能判定四边形ABCD为菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴OA=OC,不能判定四边形ABCD为菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形;故选项D符合题意;故选:D.2.(2020•锦州)如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E.PF⊥AB于点F.若菱形ABCD的周长为20,面积为24,则PE+PF的值为()A.4B.C.6D.【答案】B【解答】解:连结BP,如图,∵四边形ABCD为菱形,菱形ABCD的周长为20,∴BA=BC=5,S△ABC=S菱形ABCD=12,∵S△ABC=S△P AB+S△PBC,∴×5×PE+×5×PF=12,∴PE+PF=,故选:B.3.(2020•大庆)如图,在边长为2的正方形EFGH中,M,N分别为EF与GH的中点,一个三角形ABC沿竖直方向向上平移,在运动的过程中,点A恒在直线MN上,当点A 运动到线段MN的中点时,点E,F恰与AB,AC两边的中点重合,设点A到EF的距离为x,三角形ABC与正方形EFGH的公共部分的面积为y.则当y=时,x的值为()A.或2+B.或2﹣C.2±D.或【答案】A【解答】解:如图1中,当过A在正方形内部时,连接EG交MN于O,连接OF,设AB交EH于Q,AC交FG于P.由题意,△ABC是等腰直角三角形,AQ=OE=OG=AP=OF,S△OEF=1,∵y=,∴S四边形AOEQ+S四边形AOFP=1.5,∴OA•2=1.5,∴OA=,∴AM=1+=.如图2中,当点A在正方形外部时,由题意,重叠部分是六边形WQRJPT,S重叠=S△ABC﹣2S△BQR﹣S△AWT,∴2.5=××﹣1﹣×2AN×AN,解得AN=,∴AM=2+,综上所述,满足条件的AM的值为或2+,故选:A.4.(2020•河池)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED =4.则CE的长是()A.5B.6C.4D.5【答案】C【解答】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE===4.故选:C.5.(2020•绵阳)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条【答案】B【解答】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.6.(2020•鄂尔多斯)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA2A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2020的值为()A.B.22018C.22018+D.1010【答案】B【解答】解:∵四边形OAA1B1是正方形,∴OA=AA1=A1B1=1,∴S1=1×1=,∵∠OAA1=90°,∴OA12=12+12=2,∴OA2=A2A3=2,∴S2=2×1=1,同理可求:S3=2×2=2,S4=4…,∴S n=2n﹣2,∴S2020=22018,故选:B.7.(2020•十堰)如图,菱形ABCD的顶点分别在反比例函数y=和y=的图象上,若∠BAD=120°,则||=()A.B.3C.D.【答案】B【解答】解:根据对称性可知,反比例函数,的图象是中心对称图形,菱形是中心对称图形,∴菱形ABCD的对角线AC与BD的交点即为原点O,OD⊥OC,如图:作CM⊥x轴于M,DN⊥x轴于N.连接OD,OC.∵DO⊥OC,∴∠COM+∠DON=90°,∠DON+∠ODN=90°,∴∠COM=∠ODN,∵∠CMO=∠DNO=90°,∴△COM∽△ODN,∴,∵菱形ABCD的对角线AC与BD的交点即为原点O,∠BAD=120°,∴∠OCD=60°,∠COD=90°,∴,∴,∴,∴.故选:B.8.(2020•宁夏)如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=()A.13B.10C.12D.5【答案】B【解答】解:连接BD,交AC于点O,如图:∵菱形ABCD的边长为13,点E、F分别是边CD、BC的中点,∴AB∥CD,AB=BC=CD=DA=13,EF∥BD,∵AC、BD是菱形的对角线,AC=24,∴AC⊥BD,AO=CO=12,OB=OD,又∵AB∥CD,EF∥BD,∴DE∥BG,BD∥EG,∴四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13,CO=12,∴OB=OD==5,∴BD=2OD=10,∴EG=BD=10;故选:B.9.(2020•毕节市)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是()A.2.2cm B.2.3cm C.2.4cm D.2.5cm【答案】D【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:AC===10(cm),∴BD=10cm,DO=5cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,∴EF=OD=2.5cm,故选:D.10.(2020•玉林)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF 是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是:()A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④【答案】A【解答】证明:延长DE到点F,使EF=DE,连接FC,DC,AF,∵点D,E分别是△ABC的边AB,AC的中点,∴AD=BD,AE=EC,∴四边形ADCF是平行四边形,∴CF AD.即CF BD,∴四边形DBCF是平行四边形,∴DF BC,∴DE∥BC,且DE=BC.∴正确的证明顺序是②→③→①→④,故选:A.11.(2020•十堰)已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC ⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A.①B.②C.③D.④【答案】B【解答】解:A.AB=BC,邻边相等的平行四边形是菱形,故A不符合题意;B.AC=BD,对角线相等的平行四边形是矩形,故B符合题意;C.AC⊥BD,对角线互相垂直的平行四边形是菱形,故C不符合题意;D.AC平分∠BAD,对角线平分其每一组对角的平行四边形是菱形,故D不符合题意.故选:B.12.(2020•烟台)量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC的度数为()A.60°B.70°C.80°D.85°【答案】C【解答】解:∵OA=OB,∠AOB=140°,∴∠A=∠B=(180°﹣140°)=20°,∵∠AOC=60°,∴∠ADC=∠A+∠AOC=20°+60°=80°,故选:C.13.(2020•宜昌)游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长【答案】A【解答】解:∵从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,∴=72°,∴每走完一段直路后沿向右偏72°方向行走.故选:A.14.(2020•通辽)如图,AD是△ABC的中线,四边形ADCE是平行四边形,增加下列条件,能判断▱ADCE是菱形的是()A.∠BAC=90°B.∠DAE=90°C.AB=AC D.AB=AE【答案】A【解答】解:添加∠BAC=90°时,∵AD是△ABC的中线,∴AD=BC=CD,∴四边形ADCE是菱形,选项A正确;添加∠DAE=90°,∵四边形ADCE是平行四边形∴四边形ADCE是矩形,选项B错误;添加AB=AC,可得到AD⊥BC,∴∠ADC=90°,∴四边形ADCE是矩形,选项C错误;添加AB=AE,∵AE=AB,AB>AD,∴AE>AD,故不能选项D不能判定四边形ADCE是菱形;故选:A.15.(2020•威海)如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1∥l2∥l3∥l4且间距相等,AB=4,BC=3,则tanα的值为()A.B.C.D.【答案】A【解答】解:作CF⊥l4于点F,交l3于点E,设CB交l3于点G,由已知可得,GE∥BF,CE=EF,∴△CEG∽△CFB,∴,∵,∴,∵BC=3,∴GB=,∵l3∥l4,∴∠α=∠GAB,∵四边形ABCD是矩形,AB=4,∴∠ABG=90°,∴tan∠BAG==,∴tanα的值为,故选:A.16.(2020•荆门)如图,菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为()A.20B.30C.40D.50【答案】C【解答】解:∵E,F分别是AD,BD的中点,∴EF是△ABD的中位线,∴EF=AB=5,∴AB=10,∵四边形ABD是菱形,∴AB=BC=CD=AD=10,∴菱形ABCD的周长=4AB=40;故选:C.17.(2020•牡丹江)如图,在平面直角坐标系中,O是菱形ABCD对角线BD的中点,AD ∥x轴且AD=4,∠A=60°,将菱形ABCD绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是()A.(0,2)B.(2,﹣4)C.(2,0)D.(0,2)或(0,﹣2)【答案】D【解答】解:根据菱形的对称性可得:当点C旋转到y轴负半轴时,A、B、C均在坐标轴上,如图,∵∠BAD=60°,AD=4,∴∠OAD=30°,∴OD=2,∴AO===OC,∴点C的坐标为(0,),同理:当点C旋转到y轴正半轴时,点C的坐标为(0,),∴点C的坐标为(0,)或(0,),故选:D.18.(2020•盐城)如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.B.C.3D.5【答案】B【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=4,OC=OA=AC=3,在Rt△BOC中,BC===5,∵H为BC中点,∴OH=BC=.故选:B.19.(2020•辽阳)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD =6,点E是CD上一点,连接OE,若OE=CE,则OE的长是()A.2B.C.3D.4【答案】B【解答】解:∵菱形ABCD的对角线AC、BD相交于点O,∴OD=BD=×6=3,OA=AC=×8=4,AC⊥BD,由勾股定理得,AD==5,∵OE=CE,∴∠DCA=∠EOC,∵四边形ABCD是菱形,∴AD=CD,∴∠DCA=∠DAC,∴∠DAC=∠EOC,∴OE∥AD,∵AO=OC,∴OE是△ADC的中位线,∴OE=AD=×5=2.5,故选:B.20.(2020•扬州)如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米【答案】B【解答】解:∵小明每次都是沿直线前进10米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A时,一共走了8×10=80(m).故选:B.21.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB 于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4B.8C.D.6【答案】A【解答】解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=BD,∵菱形ABCD的面积=×AC×BD=×12×BD=48,∴BD=8,∴OH=BD=4;故选:A.22.(2020•绥化)如图,在Rt△ABC中,CD为斜边AB的中线,过点D作DE⊥AC于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:①DE=BC;②四边形DBCF是平行四边形;③EF=EG;④BC=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】D【解答】解;∵CD为斜边AB的中线,∴AD=BD,∵∠ACB=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∴DE是△ABC的中位线,∴AE=CE,DE=BC;①正确;∵EF=DE,∴DF=BC,∴四边形DBCF是平行四边形;②正确;∴CF∥BD,CF=BD,∵∠ACB=90°,CD为斜边AB的中线,∴CD=AB=BD,∴CF=CD,∴∠CFE=∠CDE,∵∠CDE+∠EGC=180°,∠EGF+∠EGC=180°,∴∠CDE=∠EGF,∴∠CFE=∠EGF,∴EF=EG,③正确;作EH⊥FG于H,如图所示:则∠EHF=∠CHE=90°,∠HEF+∠EFH=∠HEF+∠CEH=90°,FH=GH=FG=1,∴∠EFH=∠CEH,CH=GC+GH=3+1=4,∴△EFH∽△CEH,∴=,∴EH2=CH×FH=4×1=4,∴EH=2,∴EF===,∴BC=2DE=2EF=2,④正确;故选:D.23.(2020•临沂)如图,P是面积为S的▱ABCD内任意一点,△P AD的面积为S1,△PBC 的面积为S2,则()A.S1+S2>B.S1+S2<C.S1+S2=D.S1+S2的大小与P点位置有关【答案】C【解答】解:过点P作EF⊥AD交AD于点E,交BC的延长线于点F,∵四边形ABCD是平行四边形,∴AD=BC,∴S=BC•EF,,,∵EF=PE+PF,AD=BC,∴S1+S2=,故选:C.24.(2020•黑龙江)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B 重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值是a2;⑤当BE=a时,G是线段AD的中点.其中正确的结论是()A.①②③B.②④⑤C.①③④D.①④⑤【答案】D【解答】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=BE,∵AF=BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠F AE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△F AE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AE+AH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=x,∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,∵﹣<0,∴x=a时,△AEF的面积的最大值为a2.故④正确,当BE=a时,设DG=x,则EG=x+a,在Rt△AEG中,则有(x+a)2=(a﹣x)2+(a)2,解得x=,∴AG=GD,故⑤正确,故选:D.25.(2020•衡阳)如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OB=OD【答案】C【解答】解:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,故选项A中条件可以判定四边形ABCD是平行四边形;∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,故选项B中条件可以判定四边形ABCD是平行四边形;∵AB∥DC,AD=BC,则无法判断四边形ABCD是平行四边形,故选项C中的条件,不能判断四边形ABCD是平行四边形;∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故选项D中条件可以判定四边形ABCD是平行四边形;故选:C.26.(2020•达州)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF =BD;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是()A.4B.3C.2D.1【答案】A【解答】解:①∵四边形ABCD是矩形,∴EB=ED,∵BO=DO,∴OE平分∠BOD,故①正确;②∵四边形ABCD是矩形,∴∠OAD=∠BAD=90°,∴∠ABD+∠ADB=90°,∵OB=OD,BE=DE,∴OE⊥BD,∴∠BOE+∠OBE=90°,∴∠BOE=∠BDA,∵∠BOD=45°,∠OAD=90°,∴∠ADO=45°,∴AO=AD,∴△AOF≌△ABD(ASA),∴OF=BD,故②正确;③∵△AOF≌△ABD,∴AF=AB,连接BF,如图1,∴BF=,∵BE=DE,OE⊥BD,∴DF=BF,∴DF=,故③正确;④根据题意作出图形,如图2,∵G是OF的中点,∠OAF=90°,∴AG=OG,∴∠AOG=∠OAG,∵∠AOD=45°,OE平分∠AOD,∴∠AOG=∠OAG=22.5°,∴∠F AG=67.5°,∠ADB=∠AOF=22.5°,∵四边形ABCD是矩形,∴EA=ED,∴∠EAD=∠EDA=22.5°,∴∠EAG=90°,∵∠AGE=∠AOG+∠OAG=45°,∴∠AEG=45°,∴AE=AG,∴△AEG为等腰直角三角形,故④正确;故选:A.27.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB 于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72B.24C.48D.96【答案】C【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积=.故选:C.28.(2020•泰安)如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC =6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为()A.1cm B.cm C.(2﹣3)cm D.(2﹣)cm 【答案】D【解答】解:过F作FH⊥BC于H,∵高AG=2cm,∠B=45°,∴BG=AG=2cm,∵FH⊥BC,∠BEF=30°,∴EH=,∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,∵AG⊥BC,FH⊥BC,。

中考数学一轮复习《四边形》综合复习练习题(含答案)

中考数学一轮复习《四边形》综合复习练习题(含答案)

中考数学一轮复习《四边形》综合复习练习题(含答案)一、单选题1.一个多边形的内角和为900°,则这个多边形是( )A .七边形B .八边形C .九边形D .十边形 2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是( )A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED ′等于( )A .50°B .55°C .60°D .65°4.若一个正多边形的一个外角是60°,则这个正多边形的边数是( )A .10B .9C .8D .65.如图,四边形ABCD 是平行四边形,下列结论中正确的是( )A .当ABCD 是矩形时,90BAC ∠=︒B .当ABCD 是菱形时,AB BC ⊥ C .当ABCD 是正方形时,AC BD = D .当ABCD 是菱形时,AB AC =6.如图,在正方形ABCD 中,AE 平分BAC ∠交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE AF =,则CDF ∠的度数为( )A .45︒B .60︒C .67.5︒D .775︒.7.如图,要拧开一个边长为()=6mm a a 的正六边形,扳手张开的开口b 至少为( )A .43mmB .63mmC . 42mmD . 12mm8.如图,菱形ABCD 中,∠BAD = 60°,AB = 6,点E ,F 分别在边AB ,AD 上,将△AEF 沿EF 翻折得到△GEF ,若点G 恰好为CD 边的中点,则AE 的长为( )A .34B .214C 3154D .39.以下说法不正确的是( )A .平行四边形是抽对称图形B .矩形对角线相等C .正方形对角线互相垂直平分D .菱形四条边相等10.陈师傅应客户要求加工4个长为4cm 、宽为3cm 的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A.B.C.D.11.如图,AB是半圆O的直径,以弦AC为折痕折叠AC后,恰好经过点O,则AOC∠等于()A.120°B.125°C.130°D.145°12.如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数kyx=(k≠0,x>0)的图像上,点D的坐标为(﹣3,1),则k的值为()A.53B.3-C.3D.53-二、填空题13.如果一个多边形的每一个外角都是60︒,那么这个多边形的边数是_______.14.如图,在矩形ABCD中,E是AD边上一点,且2AE DE=,BD与CE相交于点F,若DEF 的面积是3,则BCF △的面积是______.15.如果正多边形的一个外角是45︒,则这个正多边形的内角和是________︒.16.巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成.如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为 _____.17.如图,四边形ABCD 是菱形,42BD =,26AD =,点E 是CD 边上的一动点,过点E 作EF ⊥OC 于点F ,EG ⊥OD 于点G ,连接FG ,则FG 的最小值为_________.18.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE AC ⊥交AD 于点E ,若4AB =,8BC =,则DE 的长为______.19.已知ABC 中,65A ∠=︒,将B C ∠∠、按照如图所示折叠,若35ADB '∠=︒,则123∠+∠+∠=_____︒.CE ,F 20.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5为DE的中点.若CEF△的周长为18,则OF的长为______.三、解答题21.如图,一组正多边形,观察每个正多边形中a的变化情况,解答下列问题.(1)将表格补充完整.正多边形的边数 3 4 5 6α的度数(2)观察上面表格中α的变化规律,角α与边数n的关系为.(3)根据规律,当α=18°时,多边形边数n=.22.如图,在ABCD中,AC=BC,M、N分别是AB和CD的中点.(1)求证:四边形AMCN是矩形;(2)若∠B=60°,BC=8,求ABCD的面积.23.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.24.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.25.如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE26.如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:①CE与CG有怎样的位置关系?请说明理由.②CE+CG的值为.27.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【现察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则DECF的值为______.(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则CEBD的值______.【类比探究】(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE 的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE•AB=CF•AD.28.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN⊥DM,且MN=32DM,连接DN.(1)如图1,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM.(2)如图2,当AM=4BM时,求证:A,C,N三点在同一条直线上.参考答案1.A2.A3.A4.D5.C6.C7.B8.B9.A10.C11.A12.B13.614.2715.108016.381718.319.265︒20.7221.(1)正多边形每个内角的度数为180(2)n n -. 1803,603n α===; 904,452n α===; 正五边形的内角180(52)1085-=,1801085,362n α-===; 正五边形的内角180(62)1206-=,1801206,302n α-===.(2)观察(1)中结论,1803,603n == 1804,454n == 1805,365n == 1806,306n == 总结规律,则有180n α=. (3)借助(2)中公式,有180n α=,即18018n= 解得10n =.22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD ,∵M 、N 分别是AB 和CD 的中点, ∴AM =BM ,AM ∥CN ,AM =CN , ∴四边形AMCN 是平行四边形,又∵AC =BC ,AM =BM ,∴CM ⊥AB ,∴∠CMA =90°,∴四边形AMCN 是矩形;(2)解:∵∠B =60°,BC =8,∠BMC =90°, ∴∠BCM =30°,∴Rt △BCM 中,BM =12BC =4,CM∵AC =BC ,CM ⊥AB ,∴AB =2BM =8,∴ABCD 的面积为AB ×CM23.(1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,OB =OD ,OA =OC , ∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴BE =12OB ,DF =12OD ,∴BE =DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CDF (SAS ) .(2)当AB =12AC 时,四边形EGCF 是矩形;理由如下: 当AB =12AC 时,∵AC =2OA ,AC =2AB ,∴AB =OA ,∵E 是OB 的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.24.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)解:∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10,∴AF =8,∴DF =2,设EF =x ,则CE =x ,DE =6-x ,∵∠FDE =90°,∴22+(6-x )2=x 2,解得,x =103, ∴CE =103, ∴四边形CEFG 的面积是:CE •DF =103×2=203. 25.解:四边形ABCD 是矩形,AB DC ∴=,90BAD CDA ∠=∠=︒,AE DE =,EAD EDA ∴∠=∠,EAB BAD EAD CDA EDA EDC ∴∠=∠+∠=∠+=∠, 在ABE ∆和DCE ∆中,AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩()ABE DCE SAS ∴∆∆≌.26.(1)如图,作EM ⊥BC 于M ,EN ⊥CD 于N ,又∠BCD =90°,∴∠MEN =90°,∵点E 是正方形ABCD 对角线上的点,∴EM =EN ,∵∠DEF =90°,∴∠DEN =∠MEF =90°﹣∠FEN ,∵∠DNE =∠FME =90°,在△DEN 和△FEM 中,DNE FME EN EMDEN FEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DEN ≌△FEM (ASA ),∴EF =DE ,∵四边形DEFG 是矩形,∴矩形DEFG 是正方形;(2)①CE ⊥CG ,理由如下:∵正方形DEFG 和正方形ABCD ,∴DE =DG ,AD =DC ,∵∠CDG +∠CDE =∠ADE +∠CDE =90°,∴∠CDG =∠ADE ,在△ADE 和△CDG 中,AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDG (SAS ),∴∠DAE =∠DCG ,∵∠ACD +∠CAD +∠ADC =180°,∠ADC =90°,∴∠ACG =∠ACD +∠DCG =∠ACD +∠CAD =90°, ∴CE ⊥CG ;②由①知,△ADE ≌△CDG ,∴AE =CG ,∴CE +CG =CE +AE =ACAB=2,故答案为:2.27.(1)解:设DE与CF的交点为G,∵四边形ABCD是正方形,∴∠A=∠FDC=90°,AD=CD,∵DE⊥CF,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,在△AED与△DFC中,A FDCCFD AEDAD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AED≌△DFC(AAS),∴DE=CF,∴DECF=1,故答案为:1;(2)解:如图,设DB与CE交于点G,∵四边形ABCD是矩形,∴∠A=∠EDC=90°,∵CE⊥BD,∴∠DGC=90°,∴∠CDG +∠ECD =90°,∠ADB +∠CDG =90°,∴∠ECD =∠ADB ,∵∠CDE =∠A ,∴△DEC ∽△ABD , ∴47CE DC BD AD ==, 故答案为:47; (3)证明:如图,过点C 作CH ⊥AF 交AF 的延长线于点H ,∵CG ⊥EG ,∴∠G =∠H =∠A =∠B =90°,∴四边形ABCH 为矩形,∴AB =CH ,∠FCH +∠CFH =∠DFG +∠FDG =90°,∴∠FCH =∠FDG =∠ADE ,∠A =∠H =90°,∴△AED ∽△HFC ,∴DE AD CF CH =, ∴DE AD CF AB=, ∴DE •AB =CF •AD .28.(1)①证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠A =∠DMN =90°∵AB =6,AD =4,MN =32DM ∴23AD DM AB MN == ∴△ABD ∽△MND .②证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠ABC =∠DMN =90°∴∠ABD +∠CBD =90°由①得△ABD ∽△MND∴∠ABD =∠DNM又∵∠MEB =∠DEN∴△MBE ∽△DNE ∴ME BE DE NE = ∴ME DE BE NE= 又∠MED =∠BEN∴△DME ∽△NBE∴∠NBE =∠DME =90°∴∠CBN +∠CBD =90°又∠ABD +∠CBD =90°,∠ABD =∠DNM ∴∠CBN =∠DNM .(2) 如图②,过点N 作NF ⊥AB 于点F ,连接AC ,AN ∴∠NF A =90°∵四边形ABCD 是矩形,AD =4,AB =6 ∴∠A =∠ABC =90°,BC =AD =4∴23BC AB =,∠ADM +∠AMD =90° ∵AM =4BM ,AB =6∴42455AM AB ==又DM ⊥MN∴∠AMD +∠FMN =90° ∴∠ADM =∠FMN∴△ADM ∽△FMN ∴AD AM DM MF FN MN== 又MN =32DM ∴24425=3DM MF FN MN == ∴MF =6,FN =365∴AF =AM +MF =2454655+= ∴23NF AF = ∴NF BC AF AB = ∵∠ABC =∠AFN =90° ∴△ABC ∽△AFN∴∠BAC =∠F AN∴A ,C ,N 三点在同一条直线.。

中考数学四边形专题训练50题含参考答案

中考数学四边形专题训练50题含参考答案

中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知1234290∠+∠+∠+∠=︒,那么5∠的大小是( )A .60︒B .70︒C .80︒D .90︒ 2.在▱ABCD 中,∠A ,∠B 的度数之比为4∠5,则∠C 的度数为( )A .60°B .80°C .100°D .120° 3.如图,在菱形ABCD 中,60A ∠=︒,4AB =,O 为对角线BD 的中点,过O 作OE AB ⊥,垂足为E ,则BE 的长为( )A .1B .2C .3D .4 4.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若1AB =,2AC =,则矩形AEFC 的面积为( )A .2 BC .D .32 5.已知∠ABCD 相邻两个内角的比为2:3,则其中较大的内角是( ) A .60° B .72° C .120°D .108°6.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE △)的面积为( )A .6B .7.5C .10D .207.如图,在矩形ABCD 中,6cm,8cm AB BC ==,点E 是BC 的中点,点F 是边CD 上一动点,当AEF △的周长最小时,则DF 的长为( )A .1B .2C .3D .48.如图,在四边形ABCD 中,110C ∠=︒,与BAD ∠,ABC ∠相邻的外角都是120°,则α∠的值为( )A .50°B .55°C .60°D .65° 9.如图,点E 为正方形ABCD 外一点,且ED CD =,连接AE ,交BD 于点F .若38CDE ∠=︒,则BFC ∠的度数为( )A .71︒B .72︒C .81︒D .82︒ 10.在平行四边形ABCD 中,点E 在DC 边上,连接AE ,交BD 于点F ,若DE ∠EC =3:2,则∠DEF 的面积与∠BAF 的面积之比为( )A.3:5B.9:4C.9:25D.3:211.如图,四边形ABCD是正方形,直线a、b、c分别经过A、D、C三点,且a b c∥∥.若a与b之间的距离是2,b与c之间的距离是3,则正方形ABCD的面积是()A.12B.13C.14D.1512.如图,在∠ABC中,点D在边BC上,过点D作DE∠AC,DF∠AB,分别交AB,AC于E,F两点.则下列说法不正确的是()A.四边形AEDF是平行四边形B.若∠B+∠C=90°,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若BD=AD=DC,则四边形AEDF是矩形13.小明在计算某多边形的内角和时,由于马虎漏掉了一个角,结果得到970°,则原多边形是一个()A.七边形B.八边形C.九边形D.十边形14.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,点E是AD边的中点,连接OE,则OE的长为()A.10B.52C.5D.415.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()∠平行四边形;∠菱形;∠任意四边形;∠对角线互相垂直的四边形A.∠∠B.∠∠C.∠∠D.∠∠16.如图,已知点O为∠ABC的AC边上的中点,连接BO并延长到D,使得OD=OB,要使四边形ABCD为矩形,∠ABC中需添加的条件是()A.AB=BC B.∠ABC=90°C.∠BAC=45°D.∠BCA=45°17.如图,在矩形ABCD中,AB=10,BC=12,点M,N分别在AD,BC上,且=,3AM BN=,E为BC边上一动点,连接DE,将DCEAD AM∆沿DE所在直线折叠得到∠DC E',当C'点恰好落在线段MN上时,NE的长为()A.B.5C.3D.18.如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个19.如图,正方形ABCD边长为4,E,F分别为线段AD,BC上一点,且1AE=,CF=,AC与DF相交于H,I为线段AH上一点(不与端点重合),J为线段DH上1+的最小值为()一点(不与端点重合),则EI IJA B C D二、填空题20.如图,已知点A的坐标是(-2),点B的坐标是(1-,,菱形ABCD的对角线交于坐标原点O,则点D的坐标是______.21.如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA∠CA交DB的延长线于点E,若AB=3,BC=4,则OAAE的值为__________.22.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,若∠E=20°,则∠ADB=______.23.如图,□ABCD的对角线交于点O,且AB=4,∠OCD的周长为13,则□ABCD的两条对角线长度之和为________.24.一个多边形的内角和等于它外角和的7倍,则这个多边形的边数为_________. 25.如图,在矩形ABCD 中,5AB =,7BC =,点E 为BC 上一动点,把ABE 沿AE 折叠,当点B 的对应点B '落在ADC ∠或DAB ∠的角平分线上时,则点B '到BC 的距离为______________.26.如图,在平行四边形ABDC 中,点M 是CD 的中点,AM 与BC 相交于点N ,那么:ACN S △S 四边形BDMN 等于_______.27.如图,在周长为16,面积为6的矩形纸片ABCD 中,E 是AD 的中点.F 是AB 上一动点,将AEF ∆沿直线EF 折叠,点A 落在点'A 处.在EF 上任取一点G ,连接'GA ,GC ,则'A G GC +的最小值为___________.28.如图,∠ABC 中∠ACB =90°,BC =2,AC =4,若正方形DEFG 的顶点D 在AB 上,顶点F 、G 都在AC 上,射线AE 交BC 边于点H ,则CH 长为___.29.如图,在矩形ABCD 中,AB =6,AD =10,H 是CD 边上一点,现将BCH ∆沿BH 折叠,点C 的对应点C '正好落在AD 边上,点E 、F 分别是AD 、BH 边上的动点,再将四边形ABHD 沿EF 折叠,若点A 的对应点A '正好落在线段BH 上,且4BA HA ''=,则线段AE 的长为______.30.如图,在矩形ABCD 中,6cm AB =,BC =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 移动,若出发t 秒后,2PA PC =,则t =_________秒.31.如图,已知菱形ABCD 的对角线AC=2,∠BAD=60°,BD 边上有2013个不同的点122013,,,p p p ⋯,过(1,2,,2013)i p i =⋯作i i PE AB ⊥于i E ,i i PFAD ⊥于i F ,111122222013201320132013PE PF P E P F P E P F ++++⋯++的值为_______________32.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图∠是由边长10cm 的正方形薄板分成7块制作成的“七巧板”图∠是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______cm (结果保留根号).33.在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为_________________. 34.在菱形ABCD 的纸板中画O ,随意向其投掷一枚飞镖.若4AB =,60A ∠=,则飞镖落在O 中的概率的最大值为______.35.如图,在ABC ∆中,D 为BC 边中点,P 为AC 边中点,E 为BC 上一点且27BE CE =,连接AE ,取中点Q 并连接QD ,取QD 中点G ,延长PG 与BC 边交于点H ,若9BC =,则HE =_________.36.如图所示,AE 是▱ABCD 的∠DAB 的平分线,且交BC 于点E ,EF ∠AB 交AD 于点F ,则四边形ABEF 一定是____________.37.如图,在矩形ABCD 中,点M 在AB 边上,把∠BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF ∠EC ,垂足为F ,若2CD =,4CF =,则线段AE 的长为______.38.如图,在矩形ABCD 中,3AB =,BC a =,点E 在边BC 上,且3.5BE a =连接AE ,将ABE 沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则a 的值为______ .39.如图,Rt∠ABC ,AB =3,AC =4,点D 在以C 为圆心3为半径的圆上,F 是BD 的中点,则线段AF 的最大值是_____.三、解答题40.如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在线段OA ,OC 上,且OB OD =,12∠=∠,AE=CF .(1)证明;BEO DFO ≌;(2)证明:四边形ABCD 是平行四边形.41. 如图.在Rt ∠ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点A 出发沿AC 方向以4cm ∕秒的速度向点C 匀速运动,同时点E 从点B 出发沿BA 方向以2cm ∕秒的速度向点A 匀速运动,设点D 、E 运动的时间是t 秒(0<t <15),过点D 作DF ∠BC 于点F ,连接DE 、EF .(1)求证:四边形AEFD 是平行四边形;(2)当t 为何值时,动点D 恰好在AF 的垂直平分线上;(3)点D 、F 在运动过程中是否存在t 的值,使∠DEF 是直角三角形,若存在求出t 的值,若不存在,说明理由.42.如图,在Rt ABC 中,90ACB ∠=︒,D ,E 分别是AB ,AC 的中点,连接CD ,过点E 作EF ∥CD ,交BC 的延长线于点F .(1)求证:四边形DCFE 是平行四边形;(2)若四边形DCFE 的周长是18,AC 的长为6,求线段AB 、 BC 的长.43.知:如图,n 边形12345n A A A A A A .(1)求证:n 边形12345n A A A A A A 的内角和等于()2180n -⋅︒;(2)在一个各内角都相等的多边形中,每一个内角都比相邻的外角的3倍还大20°,求这个多边形的内角和;(3)粗心的小明在计算一个多边形的内角和时,误把一个外角也加进去了,得其和为1180°,这个多加的外角度数为 ,多边形的边数为 .44.如图,在ABCD 中,对角线AC ,BD 交于点O ,E 是AD 上任意一点,连接EO 并延长,交BC 于点F ,连接AF ,CE .(1)求证:四边形AFCE 是平行四边形;(2)若60DAC ︒∠=,15ADB ∠=°,4AC =.∠直接写出ABCD 的边BC 上的高h 的值;∠当点E 从点D 向点A 运动的过程中,下面关于四边形AFCE 的形状的变化的说法中,正确的是A .平行四边形→矩形→平行四边形→菱形→平行四边形B .平行四边形→矩形→平行四边形→正方形→平行四边形C .平行四边形→菱形→平行四边形→菱形→平行四边形D .平行四边形→菱形→平行四边形→矩形→平行四边形45.如图,在∠ABC 中,AB =AC ,D 为BC 中点.四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形46.已知正方形OABC 在直角坐标系中(如图),A (1,﹣3),求点B 、C 的坐标.47.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .(正方形四条边都相等,四个角都是直角)1.我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)猜想图1中线段BG 和线段DE 的长度和位置关系:______________.(2)将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度a ,得到如图2.如图3情形.请你通过观察、测量等方法判断上述猜想是否仍然成立:_______(成立、不成立)若成立,请你选取图2或图3中的一种情况说明你的判断.48.在矩形ABCD 中,点P 是射线BC 上一动点,点B 关于直线AP 的对称点为E ,直线PE 与直线CD 交于点F .(1)如图1,当A ,C ,E 共线时,若30ACB ∠=︒,判断∠ACF 的形状,并证明;(2)若当点P 在线段BC 上的某个位置时(不与B ,C 重合),有45PAF ∠=︒,求证:当点P 在BC 延长线上任意位置时,都有45PAF ∠=︒.49.【教材呈现】下图是华师版数学教材的部分内容探索如图24.2.1,画Rt ABC ,并画出斜边AB 上的中线CD ,量一量,看看CD 与AB 有什么关系.相信你与你的伙伴一定会发现:CD 恰好是AB 的一半,下面让我们演绎推理证明这一猜想.已知:如图24.2.2,在Rt ABC ,90ACB ∠=,CD 是斜边AB 上的中线.求证:12CD AB =.【证明】请根据教材图24.2.2的提示,完成直角三角形的性质“直角三角形斜边中线等于斜边一半”的证明【延伸】如图∠,在四边形ABCD 中,90ADC ∠=︒,AB AC =,点E 、F 分别为AC ,BC 的中点,连结EF 、DE ,则线段DE 与EF 的数量关系是___________.【应用】(1)如图∠,在【延伸】的条件下,当AC 平分BAD ∠,90DEF ∠=时,则BAD ∠的大小为______.(2)如图∠,在【延伸】的条件下,当2AB =,四边形CDEF 是菱形时,直接写出四边形ABCD 的面积.参考答案:1.B【分析】根据多边形外角和为360︒度进行求解即可.【详解】解:∠1234290∠+∠+∠+∠=︒,12345360∠+∠+∠+∠+∠=︒,∠()5360123470=︒-∠+∠+∠+∠=︒∠,故选B .【点睛】本题主要考查了多边形外角和,熟知多边形外角和为360︒是解题的关键. 2.B【分析】根据平行四边形邻角互补,即可将角A 和角B 的度数求出,再利用对角相等即可求出角C.【详解】∠四边形ABCD 为平行四边形,∠∠A+∠B=180°,∠∠A ,∠B 的度数之比为4∠5 ∠∠A=180°49⨯=80°, 即∠C=80°,故选B.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键. 3.A【分析】先求出OB 的长和∠BOE 的度数,再根据30°角所对的直角边等于斜边的一半,即可求出BE 的值.【详解】解:在菱形ABCD 中,AB =AD ,60A ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,O 为BD 的中点,122OB BD ∴==, 60OE AB ABD ⊥∠=︒,,30BOE ∴∠=︒,112BE OB ∴==. 故选A .【点睛】本题考查了等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半,熟练掌握等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半是解题的关键.4.B【分析】根据勾股定理可求出BC 的长度,再求解∠ACB 的度数,进而求出CF 的长度,最后用矩形面积公式求解即可.【详解】∠四边形ABCD 和四边形AEFC 是两个矩形,∠∠ABC =90°,在Rt ∠ABC 中,由勾股定理可得:BC连接BD 交AC 于点O ,∠四边形AEFC 是矩形,∠BD =AC =2,∠CO =DO =12BD =1, ∠CD =1,∠∠CDO 为等边三角形,∠∠ACD =60°,∠∠ACB =30°,∠四边形AEFC 是矩形,∠AC EF ∥,∠∠CBF =∠ACB =30°,∠CF =12BC∠矩形AEFC 的面积=AC ×CF故选:B 【点睛】本题主要考查了矩形的性质,含有30°角的直角三角形,等边三角形的判定与性质,以及勾股定理,熟练地掌握相关内容是解题的关键.5.D【分析】根据平行四边形邻角互补的性质及题意,可得出较大内角的度数.【详解】解:∠平行四边形ABCD∠相邻内角和为108o∠相邻内角的比为2:3∠较大内角度数是:3180=1085o o ⨯ 故答案是:D.【点睛】本题主要考查平行四边形邻角互补,准确应用平行四边形的性质是解题的关键. 6.C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE △的面积. 【详解】解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯=故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.7.D【分析】作点E 关于直线CD 的对称点E',连接AE'交CD 于点F ,再根据CE F BE A ∽即可求出CF 的长,进而得出DF 的长.【详解】解:如图所示:作点E 关于直线CD 的对称点E',连接AE'交CD 于点F ,此时,∠AEF 的周长最小, ∠在矩形ABCD 中,AB =6,BC = 8,点E 是BC 中点,∠'4BE CE CE ,∠CF AB ∥,∠CE F BE A ''∽, ∠CE CF BE AB ='' ,即4846CF , 解得:2CF =, ∠624DF CD CF ;故选:D .【点睛】本题考查的是轴对称最短路线问题及相似三角形的判定与性质,根据题意作出E 点关于直线CD 的对称点E',再根据轴对称的性质求出CE'的长,利用相似三角形的对应边成比例即可得出结论,熟练应用轴对称和相似的判定与性质相关知识解决问题是解题的关键.8.A【分析】先求出∠ABC =∠BAD =60°,再根据四边形的内角和等于360°,可得∠ADC =130°,即可求解.【详解】解:∠与BAD ∠,ABC ∠相邻的外角都是120°, ∠∠ABC =∠BAD =60°,∠∠ADC =360°-∠ABC -∠BAD -∠BCD =130°,∠18050ADC ∠=︒-∠=︒α.故选:A.【点睛】本题主要考查了四边形的内角和定理、邻补角,熟练掌握四边形的内角和等于360°是解题的关键.9.A【分析】根据正方形的性质,得AD CD =,90ADC ∠=︒,得45ADB CDB ∠=∠=︒;根据ED CD =,得AD DE =;根据等边对等角,38CDE ∠=︒,可求出DAE ∠;根据三角形的内角和,得AFD ∠;根据ADF △和CDF 全等,得AFD CFD ∠=∠,即可求出BFC ∠的角度.【详解】∠四边形ABCD 正方形∠AD CD =,90ADC ∠=︒∠45ADB CDB ∠=∠=︒∠ED CD =∠AD DE =∠DAE DEA ∠=∠∠38CDE ∠=︒∠9038128ADE ∠=︒+︒=︒∠26DAE DEA ∠=∠=︒∠在ADF △中,180DAF AFD ADF ∠+∠+∠=︒∠2645180AFD ︒+∠+︒=︒∠109AFD ∠=︒∠在ADF △和CDF 中AD CD ADF CDF DF DF =⎧⎪∠=∠⎨⎪=⎩∠ADF CDF ≅∠109AFD CFD ∠=∠=︒∠180180109BFC AFD ∠=︒-∠=︒-︒故选:A.【点睛】本题考查正方形和三角形的知识,解题的关键是掌握正方形的性质,全等三角形的性质和判定,等边对等角.10.C【分析】先判断∠DEF∠∠BAF,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:∠四边形ABCD是平行四边形,∠DC∠AB,DC=AB,∠∠DEF∠∠BAF,∠2DEFBAFS DES AB⎛⎫= ⎪⎝⎭.又∠DE:EC=3:2,∠3==5 DE DE DEAB DC DE EC=+,∠2239==525 DEFBAFS DES AB⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭△△.故选C.【点睛】本题考查平行四边形的性质、相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.11.B【分析】先作辅助线AE∠直线b于点E,CF∠直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.【详解】解:作AE∠直线b于点E,作CF∠直线b于点F,则AE=2,CF=3,∠四边形ABCD是正方形,∠AD =DC ,∠ADC =90°,∠∠ADE +∠CDF =90°,∠AE ∠直线b ,CF ∠直线b ,∠∠AED =∠DFC =90°,∠∠ADE +∠DAE =90°,∠∠DAE =∠CDF ,在△AED 和△DFC 中,AED DFC DAE CDF AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠AED ∠∠DFC (AAS ),∠AE =DF ,∠AE =2,CF =3,∠CFD =90°,∠DF =2,∠CD∠正方形ABCD13,故选:B .【点睛】本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.12.C【分析】根据平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【详解】解:∠DE ∠AC ,DF ∠AB ,∠四边形AEDF 是平行四边形,故A 选项正确;∠四边形AEDF 是平行四边形,∠B +∠C =90°,∠∠BAC =90°,∠四边形AEDF 是矩形,故B 选项正确;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形,故C 选项错误;∠BD =AD =DC ,∠∠DBA =∠DAB ,∠DAC =∠DCA ,∠∠DAB +∠DAC =90°,即∠BAC =90°,∠四边形AEDF 是矩形,故选C .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形及菱形的判定方法,难度不大.13.B【分析】根据n 边形的内角和是(n -2)•180°,少计算了一个内角,结果得970度.则内角和(n -2)•180°与970°的差大于0度,且(n -2)•180°小于970°+180°.因而可以解不等式()9702180970180n <-⨯<+,多边形的边数n 一定是最小的整数值即可.【详解】解:设多边形的边数是n ,依题意有:()9702180970180n <-⨯<+ 解得:77781818n <<, ∠则多边形的边数n =8;故选B .【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键. 14.B【分析】根据菱形的性质得到OA =12AC =3,OD =12BD =4,AC ∠BD ,利用勾股定理求出AD ,再根据直角三角形斜边中线的性质求出OE 即可.【详解】∠四边形ABCD 为菱形,∠OA =12AC =3,OD =12BD =4,AC ∠BD ,∠AD 5,∠点E 是边AD 的中点,∠OE =12AD =52, 故选:B .【点睛】此题考查了菱形的性质,勾股定理,直角三角形斜边中线的性质,熟记菱形的性质是解题的关键.15.D【分析】根据中点四边形为平行四边形,当四边形的对角线互相垂直时则平行四边形为矩形,即可得到答案.【详解】解:顺次连接一个四边形的各边中点,得到的四边形是平行四边形,若四边形的对角线互相垂直,则所得平行四边形为矩形,则满足条件的是∠∠, 故选:D .【点睛】此题考查中点四边形的判定,矩形的判定,熟记判定定理是解题的关键. 16.B【分析】由题意可证四边形ABCD 是平行四边形,由矩形的判定可求解.【详解】解:∠点O 为∠ABC 的AC 边上的中点,∠AO =CO ,且OD =OB ,∠四边形ABCD 是平行四边形,∠有一个角为直角的平行四边形是矩形,对角线相等的平行四边形是矩形,∠添加条件为∠ABC =90°,故选B .【点睛】本题考查了矩形的判定,平行四边形的判定,熟练掌握矩形的判定是本题的关键.17.A【分析】设CE =x ,则C ′E =x ,证明四边形MNCD 是矩形,由矩形的性质得出∠DMN =∠MNC =90°,MN =CD =10,由折叠的性质得出C ′D =CD =10,求出6MC '=,则4NC '=,在Rt NEC '中,由勾股定理得出222(8)4x x --=,解方程可得出答案.【详解】解:设CE =x ,则C ′E =x ,∠矩形ABCD 中,AB =10,∠CD =AB =10,AD =BC =12,AD∥BC ,∠点M ,N 分别在AD ,BC 上,且3AM =AD ,BN =AM ,∠DM =CN =8,∠四边形CDMN 为平行四边形,∠∠NCD =90°,∠四边形MNCD 是矩形,∠∠DMN =∠MNC =90°,MN =CD =10,由折叠知,C ′D =CD ,10,∠6MC '==,∠1064CN '=-=,∠EN =CN -CE =8-x ,∠C ′E 2-NE 2=C ′N 2,∠222(8)4x x --=,解得,5x =,即853NE CN CE =-=-=.故选:C .【点睛】本题主要考查了矩形的性质与判定,勾股定理,一元一次方程的应用,折叠的性质,熟练掌握折叠的性质是解题的关键.18.C【分析】连结CE ,根据菱形的性质和全等三角形的判定可得∠ABE ∠∠CBE ,根据全等三角形的性质可得AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,可得∠ECF =∠EFC ,根据等角对等边可得CE =EF ,从而得到AE =EF ,在Rt∠ABO 中,根据含30°的直角三角形的性质得到AO =2,可得2≤AE ≤4,从而得到EF 的长的整数值可能是2,3,4.【详解】解:如图,连结CE,∠在菱形ABCD 中,AB =BC ,∠ABE =∠CBE =30°,BE =BE ,∠∠ABE ∠∠CBE ,∠AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,∠∠DEF =120°﹣(90°﹣a )=30°+a ,∠∠EFC =∠CDE +∠DEF =30°+30°+a =60°+a ,∠∠ECF=∠DCO+∠OCE=60°+a,∠∠ECF=∠EFC,∠CE=EF,∠AE=EF,∠AB=4,∠ABE=30°,∠在Rt∠ABO中,AO=2,∠OA≤AE≤AB,∠2≤AE≤4,∠AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选C.【点睛】考查了菱形的性质,全等三角形的判定与性质,等角对等边,根据含30°的直角三角形的性质,解题的关键是添加辅助线,证明∠ABE∠∠CBE.19.C有最小值,如下【分析】作点E关于AC的对称点K,EI+IJ=KI+KJ,当EJ∠DF时EI IJ图所示,延长KJ交DC于N点,过N作NM∠AD,得到∠KMN∠∠FCD,再由∠DJ0N∠∠DCF求出J0N,最后KN减去J0N即为所求.【详解】解:如图,作点E关于AC的对称点K,当EJ∠DF时EI+IJ有最小值为KJ0,此时设KN与DF、CD的交点分别为J0和N点,过N点作MN∠AD交AB于点M.∠∠KND+∠FDC=90°,∠DFC+∠FDC=90°∠∠KND=∠DFC又∠AB∠CD∠∠MKN=∠KND=∠DFC在∠MKN 和∠CFD 中90∠=∠⎧⎪∠=∠=⎨⎪=⎩MKN CFD KMN FCD MN DC ,∠∠MKN∠∠CFD(AAS)∠1,112=====+=KM CF KN DF DN AM ,又∠DJ 0N∠∠DCF ∠0=J N DN CF DF,代入数据:01J N,得0J∠00=-==KJ KN J N 故答案为:C.【点睛】本题考查了正方形的性质、相似三角形的性质和判定、线段最值问题等,两条折线段的最值问题一般通过平移、对称等转移到一条线段上去,然后再根据两点之间线段最短或点到直线的距离垂线段最短求解即可.20.(1【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称, 因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∠四边形ABCD 是菱形,对角线相交于坐标原点O∠根据平行四边形对角线互相平分的性质,A 和C ; B 和D 均关于原点O 对称 根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B的坐标是(-1, ,则点D的坐标是( .故答案为:(.【点睛】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.21.724 【分析】过点A 作AH BD ⊥于点H ,分别利用勾股定理和等面积法求出AH 和OH 的长度,从而可结合正切函数求出tan AOE ∠,进而结合题意可得出AE AO,即可得出结论.【详解】解:在Rt ABC 中,∠3,4AB BC ==,∠5AC =, ∠115222AO AC BD ===, 如解图,过点A 作AH BD ⊥于点H , ∠1122ABD S BD AH AB AD =⋅=⋅, ∠534AH =⨯, ∠125AH =,∠在Rt AOH 中,710OH ==, ∠tan 247AH OH AOE ==∠, 又∠EA CA ⊥,∠在Rt EAO △中,tan 247AE AO AOE ==∠, ∠724AO AE =, 故答案为:724.【点睛】本题考查矩形的性质,正切函数的定义等,理解矩形的基本性质,掌握正切函数的定义是解题关键.22.40°【分析】连接AC ,由矩形性质可得∠E =∠DAE 、BD =AC =CE ,知∠E =∠CAE ,而∠E =20°,可得∠ADB 度数.【详解】解:连接AC ,∠四边形ABCD是矩形,∠AD∠BE,AC=BD,且∠E=20°,∠∠E=∠DAE,又∠BD=CE,∠CE=CA,∠∠E=∠CAE,∠∠ADB=∠CAD=∠CAE+∠DAE=2∠E=40°,故答案为:40°.【点睛】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.23.18【详解】由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线看作一个整体.解:∠四边形ABCD是平行四边形,∠AB=CD=4,∠∠OCD的周长是13,∠OD+OC=13-4=9,∠BD=2DO,AC=2OC,∠平行四边形的两条对角线的和=BD+AC=2(DO+OC)=18故选A.“点睛”本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:∠平行四边形两组对边分别平行;∠平行四边形两组对边分别相等;∠平行四边形的两种对角分别相等;∠平行四边形的对角线互相平分.24.16【详解】设多边形的边数为n,依题意,得:(n−2)⋅180°=7×360°,解得n=16,故答案为16.25.2或1或52- 【分析】过点B '作B M AD '⊥于M ,延长MB '交BC 于点H ,则MH BC ⊥于点H ,则MH BC ⊥,5MH AB ==,分点B 的对应点B '落在ADC ∠的角平分线上和点B 的对应点B '落在DAB ∠的角平分线两种情况,利用勾股定理列方程,即可求得答案. 【详解】解:四边形ABCD 是矩形,5,7,90,AB CD AD BC ADC AD BC ∥,过点B '作B M AD '⊥于M ,延长MB '交BC 于点H ,则MH BC ⊥于点H ,则MH BC ⊥,5MH AB ==,∠当点B 的对应点B '落在ADC ∠的角平分线上时,连接B D ',45,ADB MB D,DM B M∠设DM B M x '==,则7AM x =-,又由折叠的性质知5AB AB '==,∠在直角AMB '△中,由勾股定理得到:222AM AB B M ,即()22275x x -=-, 解得:1234,x x ==,则点B '到BC 的距离为532MH B M '-=-=或541MH B M '-=-=.∠当点B 的对应点B '落在DAB ∠的角平分线上时,45,B AMMB A ,AM B M∠设AM m B M '==,又由折叠的性质知5AB AB '==,∠在直角AMB '△中,由勾股定理得到:222AB AM B M ,即2225m m =+,解得:12m m ==(不合题意,舍去),则点B '到BC 的距离为5MH B M '-=-故答案为:2或1或5- 【点睛】本题考查的是翻折变换的性质、勾股定理、矩形的性质、解一元二次方程等知识点,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.26.2:5【详解】试题分析:根据平行四边形的性质可得∠ABN∠∠MCN ,再结合点M 是CD 的中点,根据相似三角形的性质及三角形的面积公式求解即可.∠平行四边形ABDC∠∠ABN∠∠MCN∠点M 是CD 的中点∠AN=2MN∠∠CAN 的面积是∠MCN 的面积的2倍,∠BCD 的面积是∠MCN 的面积的6倍 ∠四边形BDMN 是∠MCN 的面积的5倍∠:ACN BDMN S S ∆四边形=2:5.考点:平行四边形的性质,相似三角形的判定和性质,三角形的面积公式点评:平行四边形的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.27.【分析】连接AC 交EF 于H ,连接A ′H ,当点G 与点H 重合时,此时A 'G +GC 的值最小,由勾股定理求出AC 的长,则可得出答案.【详解】解:连接AC 交EF 于H ,连接A ′H ,当点G 与点H 重合时,此时A 'G +GC 的值最小,设AB =x ,BC =y ,∠矩形ABCD 的周长为16,面积为6,∠2()166x y xy +=⎧⎨=⎩, ∠22x y +52=,∠AC ==∠A 'G +GC 的最小值为故答案为:【点睛】本题考查翻折变换,矩形的性质,轴对称最短问题等知识,解题的关键是学会用转化的思想思考问题.28.43【分析】根据题意可知1tan =2BC DG BAC AC AG ==∠,tan =EF CH HAC AF AC=∠再利用正方形的性质求解即可.【详解】解:∠四边形DEFG 是正方形,∠DG=G F =EF ,∠DGF =∠EF A =90°,∠∠DGA =90°, ∠tan =DG BAC AG ∠,tan =EF HAC AF ∠ ∠∠ACB =90°,BC =2,AC =4, ∠1tan ==2BC BAC AC ∠,tan =CH HAC AC ∠ ∠1tan =2BC DG BAC AC AG==∠, ∠2AG DG =,∠3=3AF DG EF = ∠1tan =3EF CH HAC AF AC ==∠, ∠433AC CH ==, 故答案为:43【点睛】本题主要考查了正方形的性质和解直角三角形,解题的关键在于能够熟练掌握解直角三角形的相关知识.29.16936【分析】过点A 作MN ∠BC ,分别交BC 于M ,交AD 于N ,则四边形ABMN 是矩形,AM =AN ,MN =AB =6,然后证明A MB HCB '△∽△,得到485AN BM BC ===,45A M HC '=,再由折叠的性质可得10BC BC '==,AE A E '=,CH C H '=,则可由勾股定理得到8AC '=,则2C D AD AC ''=-=,从而可以求得103CH =,得到8=3A M ',则10=3A N MN A M ''=-,设=AE A E y '=,则8EN y =-,由222A E A N EN ''=+,得到()2221083y y ⎛⎫=+- ⎪⎝⎭,解方程即可. 【详解】解:如图所示,过点A 作MN ∠BC ,分别交BC 于M ,交AD 于N ,∠四边形ABCD 是矩形,∠=90A ABM BMN C ∠=∠=∠=︒∠ ,CD ∠BC ,∠四边形ABMN 是矩形,∠AM =AN ,∠A M BC '⊥,CD BC ⊥,∠A M CH '∥,∠A MB HCB '△∽△, ∠BA BM A M BH BC HC''==, ∠4BA HA ''=,∠5BH HA '=, ∠4=5BA BM A M BH BC HC ''==,∠485AN BM BC ===,45A M HC '=, 由折叠的性质可得10BC BC '==,AE A E '=,CH C H '=,∠8AC '=,∠2C D AD AC ''=-=,设C H CH x '==,则6DH x =-,∠222C H DH C D ''=+,∠()2264x x =-+, 解得103x =, ∠103CH =, ∠8=3A M ', ∠10=3A N MN A M ''=-, 设=AE A E y '=,则8EN y =-,∠222A E A N EN ''=+, ∠()2221083y y ⎛⎫=+- ⎪⎝⎭, 解得16936y =, ∠16936AE =, 故答案为:16936.【点睛】本题主要考查了矩形的性质与判定,折叠的性质,勾股定理,解题的关键在于能够熟练掌握矩形的性质与判定.30.【分析】根据矩形的性质和勾股定理,用含t 的代数式表示出P A ,PC ,再列出方程,即可求解.【详解】解:∠在矩形ABCD 中,6cm AB =,BC =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 移动,∠P A =2t ,PC ∠2PA PC =,∠2t =t 1t 2, 故答案是:【点睛】本题主要考查矩形的性质,勾股定理,二次根式,一元二次方程,用用含t 的代数式表示出P A ,PC ,是解题的关键.31.2013【详解】试题分析:在菱形ABCD 中,BD∠AC ,BD 与AC 互相平分,因为∠BAD=60°,所以∠BAC=30°,又因为AC=2,设BD 的一半为x ,则AB=2x ,根据勾股定理,得1AP ,因为i i PE AB ⊥于i E ,i i PF AD ⊥于i F ,利用等面积法,得12·AD·1P F +12·AB·1P E =12·BD·12AC 1P F +1P E )1P F +1P E =1,同理可得,111122222013201320132013PE PF P E P F P E P F ++++⋯++=2013×1=2013.考点:菱形的相关性质和等面积法的应用点评:该题主要考查学生对菱形性质的理解和掌握程度,同时要求学生提高对题目的观察能力,找出其中的规律.32.2【分析】由题目中第一个图可到小正方形的边长与小等腰三角形的直角边相等,与平行四边形的短边相等,所以大正方形的对角线长度为4倍小正方形边长,设出小正方形边长,利用大正方形面积列出方程,解出方程即可【详解】设小正方形边长为a ,由题目中第一个图可到小正方形的边长与小等腰三角形的直角边相等,与平行四边形的短边相等, 所以大正方形对角线长4a ,S 大正方形=442a a ⨯。

中考数学总复习《四边形的综合题》练习题附带答案

中考数学总复习《四边形的综合题》练习题附带答案

中考数学总复习《四边形的综合题》练习题附带答案一、单选题1.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b (a>b),则(a−b)等于()A.3B.4C.5D.6 2.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ABD=60°,则∠BOC的大小为()A.30°B.60°C.90°D.120°3.若一个多边形的内角和是外角和的2.5倍,则该多边形为()A.五边形B.六边形C.七边形D.八边形4.如图,矩形ABCD对角线相交于点O,∠AOB=60°,AB=4,则矩形的对角线AC 为()A.4 B.8 C.4√3D.10 5.一个长方形的周长为28厘米,长的2倍比宽的3倍多3厘米,则这个长方形的面积是()A.45平方厘米B.35平方厘米C.25平方厘米D.20平方厘米6.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=√3cm,则OD=()A.1cm B.1.5cm C.2cm D.3cm 7.如图,矩形纸片ABCD中,AB=4,AD=8 ,将纸片沿EF折叠使点B与点D 重合,折痕EF与BD相交于点O,则DF的长为()A.3B.4C.5D.6 8.如图,⊙O的半径为4,点P是⊙O外的一点PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时PA的长度为()A.10B.212C.11D.434 9.已知平行四边形一边长为8,一条对角线长为6,则另一条对角线α满足()A.10<α<22B.4<α<20C.4<α<28D.2<α<1410.如图,两张等宽的纸条交又重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.a2B.5cm C.2√7cm D.6cm 11.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将∠BCE绕着正方形的中心O按逆时针方向旋转到∠CDF的位置,则旋转角是( )A .45°B .60°C .90°D .120°12.Rt∠ABC 两直角边的长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cmB .3cmC .4cmD .5cm二、填空题13.如图,点E 在边长为2的正方形ABCD 内,满足∠AEB =90°,若∠DAE =30°,则图中阴影部分的面积为 .14.把一把直尺和一块三角板如图放置,若∠1=42°,则∠2的度数为 °.15.已知 ▱ABCD 中一条对角线分 ∠A 为35°和45°,则 ∠B = 度. 16.如图,在一块长AB =26m ,宽BC =18m 的长方形草地上,修建三条宽均为3m 的长方形小路,则这块草地的绿地面积(图中空白部分)为 m 217.如图,在∠ABC 中,∠ABC =90°,E 为AC 的中点,AD∠BE 交BC 于D ,若AD=152,BE =5,则BD = .18.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的最大值是.三、综合题19.如果抛物线C1:y=ax2+bx+c与抛物线C2:y=−ax2+dx+e的开口方向相反,顶点相同,我们称抛物线C2是C1的“对顶”抛物线.(1)求抛物线y=x2−4x+7的“对顶”抛物线的表达式;(2)将抛物线y=x2−4x+7的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线y=x2−4x+7形成两个交点M、N,记平移前后两抛物线的顶点分别为A、B,当四边形AMBN是正方形时求正方形AMBN的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C1与C2的顶点位于x轴上,那么系数b与d,c与e之间的关系是确定的,请写出它们之间的关系.20.解答题(1)如图1,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE=CF .求证:DE=BF ;(2)如图2,AB 是∠O 的直径,点C 在AB 的延长线上,CD 与∠O 相切于点D ,若∠C=20°,求∠CDA 的度数.21.如图,▱ABCD 放置在平面直角坐标系申,已知点A (-2,0)、B (-6,0)、D(0,3).点C 在反比例函数y=k x的图象上。

2021年中考数学专题复习:《四边形》 专项练习题精选(含答案)

2021年中考数学专题复习:《四边形》 专项练习题精选(含答案)

2021年中考数学专题复习:《四边形》专项练习题精选一.选择题1.(2020•河池)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A.5B.6C.4D.5 2.(2020•玉林)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是:()A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④3.(2019•梧州)正九边形的一个内角的度数是()A.108°B.120°C.135°D.140°4.(2019•柳州)如图,在▱ABCD中,全等三角形的对数共有()A .2对B .3对C .4对D .5对5.(2019•河池)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE =CF ,则图中与∠AEB 相等的角的个数是( )A .1B .2C .3D .46.(2019•贵港)如图,E 是正方形ABCD 的边AB 的中点,点H 与B 关于CE 对称,EH 的延长线与AD 交于点F ,与CD 的延长线交于点N ,点P 在AD 的延长线上,作正方形DPMN ,连接CP ,记正方形ABCD ,DPMN 的面积分别为S 1,S 2,则下列结论错误的是( )A .S 1+S 2=CP 2B .AF =2FDC .CD =4PD D .cos ∠HCD =7.(2019•河池)如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF8.(2018•河池)如图,要判定▱ABCD 是菱形,需要添加的条件是( )。

2020-2021学年九年级中考专题复习:正方形及四边形综合问题(含答案)

2020-2021学年九年级中考专题复习:正方形及四边形综合问题(含答案)

2020-2021中考专题复习:正方形及四边形综合问题一、选择题1. 小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次2. 如图,在四边形ABCD中,AB=CD,AC,BD是对角线,E,F,G,H分别是AD,BD,BC,AC的中点,连接EF,FG,GH,HE,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形3. 如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为()A. 2B. 2 2C. 2+1D. 22+14. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是()A. 3B. 4C. 5D. 65. 如图正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于点O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°6. (2020·湖北孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°,到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G,若BG=3,CG=2,则CE的长为( )A. B. C.4 D.7. (2020·东营)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N,下列结论:①△APE≌△AME;②PM+PN=AC;③222PE PF PO;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A. ①②③④B. ①②③⑤C. ①②③④⑤D. ③④⑤BCDEFMNO8. 已知在平面直角坐标系中放置了5个如图X3-1-10所示的正方形(用阴影表示),点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.3+318 B.3+118C.3+36 D.3+16二、填空题9. 正方形有条对称轴.10. 如图,已知正方形ABCD 的面积为256,点F 在CD 上,点E 在CB 的延长线上,且 20AE AF AF ⊥=,,则BE 的长为FE D CBA11. 如图,E ,F是正方形ABCD 的对角线AC 上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 .12. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,请添加一个条件:________,使得▱ABCD 为正方形.13. 若正方形ABCD 的边长为4,E 为BC 边上一点,3BE =,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF AE =,则BM 的长为 .14. 将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为A 5A 4A 3A 2A 115. 如图,正方形ABCD 的边长为2cm ,以B 为圆心,BC 长为半径画弧交对角线BD 于点E ,连接CE ,P 是CE 上任意一点,PM BC ⊥于M ,PN BD ⊥于N ,则PM PN +的值为PNME DC BA16. 如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm .三、解答题17. 如图,P 为正方形ABCD 对角线上一点,PE BC ⊥于E ,PF CD ⊥于F .求证:AP EF =.F EPDCB A18. 如图,AB 是☉O 的直径,DO ⊥AB于点O ,连接DA 交☉O 于点C ,过点C 作☉O 的切线交DO 于点E ,连接BC 交DO 于点F . (1)求证:CE=EF .(2)连接AF 并延长,交☉O 于点G.填空:①当∠D 的度数为 时,四边形ECFG 为菱形; ②当∠D 的度数为 时,四边形ECOG 为正方形.19. 如图,点M N ,分别在正方形ABCD 的边BC CD ,上,已知MCN ∆的周长等于正方形ABCD 周长的一半,求MAN ∠的度数NMD CBA20. 如图,已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图①,点E在CD上,点G在BC的延长线上,判断DM,EM的数量关系与位置关系,请直接写出结论.(2)如图②,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论.21. 如图1,在正方形ABCD中,E、F、G、H分别为边AB、BC、CD、DA上的点,HA EB FC GD===,连接EG、FH,交点为O.⑴如图2,连接EF FG GH HE,,,,试判断四边形EFGH的形状,并证明你的结论;⑵将正方形ABCD沿线段EG、HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,1cmHA EB FC GD====,则图3中阴影部分的面积为_________2cm.图3图1图2HD G CFE BAOHGFED CBA22. 已知正方形ABCD 中,点E 在BC 上,连接AE ,过点B 作BF ⊥AE 于点G ,交CD 于点F .(1)如图①,连接AF ,若AB =4,BE =1,求证:△BCF ≌△ABE ;(2)如图②,连接BD ,交AE 于点N ,连接AC ,分别交BD 、BF 于点O 、M ,连接GO ,求证:GO 平分∠AGF ;(3)如图③,在第(2)问的条件下,连接CG ,若CG ⊥GO ,AG =nCG ,求n 的值.2020-2021中考专题复习:正方形及四边形综合问题-答案一、选择题 1. 【答案】B2. 【答案】C[解析]∵点E ,F ,G ,H 分别是四边形ABCD 中AD ,BD ,BC ,CA 的中点,∴EF=GH=AB ,EH=FG=CD ,∵AB=CD ,∴EF=FG=GH=EH ,∴四边形EFGH 是菱形,故选C .3. 【答案】B【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF =(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2.4. 【答案】B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.5. 【答案】A [解析]连接BF ,∵E 为AB 中点,FE ⊥AB ,∴EF 垂直平分AB ,∴AF=BF .∵AF=2AE , ∴AF=AB ,∴AF=BF=AB ,∴△ABF 为等边三角形,∴∠FBA=60°,BF=BC ,∴∠FCB=∠BFC=15°,∵四边形ABCD 为正方形,∴∠DBC=45°,根据三角形的外角等于与它不相邻的两个内角的和得∠DOC=15°+45°=60°.6. 【答案】B【解析】由旋转的性质得△ABF ≌△ADE ,∴BF=DE ,AF=AE ,又∵AH ⊥EF ,∴FH=EH ,∵四边形ABCD 是正方形,∴∠C=90°,∠EFC=∠EFC ,∴△FHG ∽△FCE ,∴FG FHFE FC=, ∵BG=3,CG=2,∴BC=5,设EC=x ,则BF=DE=5-x ,FG=BG+BF=3+5-x =8-x ,CF=BC+BF=5+5-x =10-x ,EF=22EC CF +=,22(10)x x +-2222(10)210(10)x x x x x +-=-+-,解得:x =154.故选B.7. 【答案】B【解析】本题考查了垂线、平行线和正方形的性质,全等三角形的判定与性质、等腰直角三角形的判断和性质、相似三角形的判定和性质,是常见问题的综合,灵活的运用所学知识是解答本题的关键.综合应用垂线、平行线和正方形的性质,全等三角形的判定与性质、等腰直角三角形的判断和性质、相似三角形的判定和性质等知识,逐个判断5个结论的正确性,得出结论. ①∵正方形ABCD ,∴∠APE =∠AME =45°,∵PM ⊥AE ,∴∠AEP =∠AEM =90°,∵AE =AE ,∴△APE ≌△AME (ASA ); ②过点N 作NQ ⊥AC 于点Q ,则四边形PNQE 是矩形,∴PN =EQ ,∵正方形ABCD ,∴∠P AE =∠MAE =45°,∵PM ⊥AE ,∴∠PEA =45°,∴∠P AE =∠APE ,PE =NQ ,∴△APE 等腰直角三角形,∴AE =PE ,同理得:△NQC 等腰直角三角形,∴NQ =CQ ,∵△APE ≌△AME ,∴PE =ME ,∴PE =ME = NQ =CQ ,∴PM =AE +CQ ,∴PM +PN =AE +CQ +EQ =AC ,即PM +PN =AC 成立; ③∵正方形ABCD ,∴AC ⊥BD ,∴∠EOF 是直角,∵过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,∴∠PEO 和∠PFO 是直角,∴四边形PFOE 是矩形,∴PF =OE ,在R t △PEO 中,有PE 2+OE 2=PO 2,∴PE 2+PF 2=PO 2,即PE 2+PF 2=PO 2成立;④△BNF 是等腰直角三角形,点P 不在AB 的中点时,△POF 不是等腰直角三角形,所以△POF 与△BNF 不一定相似,即△POF ∽△BNF 不一定成立; ⑤∵△AMP 是等腰直角三角形,△PMN ∽△AMP ,∴△PMN 是等腰直角三角形,∵∠MPN =90°,∴PM =PN ,∵AP 2PM ,BP 2PN ,∴AP =BP ,∴点P 是AB 的中点,又∵O 为正方形的对称中点,∴点O 在M 、N 两点的连线上.综上,①②③⑤成立,即正确的结论有4个,答案选B .8. 【答案】⎝ ⎛⎭⎪⎫72,0D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ于点F .∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°, ∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12, ∴cos30°=B2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13. 则D 3C 3=13. 根据题意得出:∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°, ∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36. 则点A 3到x 轴的距离FQ =D 3Q +FD 3=16+36=3+16. 二、填空题 9. 【答案】4 10. 【答案】1211. 【答案】8[解析]如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD=OB=OA=OC ,∵AE=CF=2,∴OA -AE=OC -CF ,即OE=OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF , ∴四边形BEDF 为菱形,∴DE=DF=BE=BF , ∵AC=BD=8,OE=OF==2,∴由勾股定理得:DE===2,∴四边形BEDF 的周长=4DE=4×2=8,故答案为:8.12. 【答案】∠BAD =90°(答案不唯一)【解析】∵▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,∴▱ABCD 是菱形,当∠BAD =90°时,菱形ABCD 为正方形.故可添加条件:∠BAD =90°.13. 【答案】125(如图1)或52(如图2). 图2图1ABMECFDE FMDCBA14. 【答案】22cm 4n15. 2【解析】作CQ BD ⊥于Q ,则PM PN CQ +=,又CQ BD BC CD ⋅=⋅216. 【答案】233或33 【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎨⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AFcos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm .解图三、解答题17. 【答案】连接PC.∵ABCD为正方形∴A、C关于BD对称∴PA PC=∵PE BC⊥,PF CD⊥,BC CD⊥∴PECF为矩形∴PC EF=∴PA EF=.FEPDCBA18. 【答案】解:(1)证明:连接OC.∵CE是☉O的切线,∴OC⊥CE.∴∠FCO+∠ECF=90°.∵DO⊥AB,∴∠B+∠BFO=90°.∵∠CFE=∠BFO,∴∠B+∠CFE=90°.∵OC=OB,∴∠FCO=∠B.∴∠ECF=∠CFE.∴CE=EF .(2)∵AB 是☉O 的直径,∴∠ACB=90°.∴∠DCF=90°.∴∠DCE +∠ECF=90°,∠D +∠EFC=90°.由(1)得∠ECF=∠CFE ,∴∠D=∠DCE.∴ED=EC.∴ED=EC=EF .即点E 为线段DF 的中点.①四边形ECFG 为菱形时,CF=CE.∵CE=EF ,∴CE=CF=EF .∴△CEF 为等边三角形.∴∠CFE=60°.∴∠D=30°.故填30°.②四边形ECOG 为正方形时,△ECO 为等腰直角三角形. ∴∠CEF=45°.∵∠CEF=∠D +∠DCE ,∴∠D=∠DCE=22.5°.故填22.5°.19. 【答案】MN BM DN =+,延长CD 至'M ,使'M D BM =,证明''ADM ABM AM N AMN ∆∆∆∆≌,≌,测得1''452MAN M AN M AM ∠=∠=∠=︒20. 【答案】解:(1)结论:DM ⊥EM ,DM=EM.[解析]延长EM 交AD 于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.(2)结论不变.DM⊥EM,DM=EM.证明:延长EM交DA的延长线于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.21. 【答案】(1)四边形EFGH是正方形.证明:四边形ABCD是正方形∴90===∠=∠=∠=∠=︒,AB BC CD DAA B C D∵HA EB FC GD === ∴AE BF CG DH === ∴AEH BFE CGF DHG ∆∆∆∆≌≌≌∴EF FG GH HE ===∴四边形EFGH 是菱形.由DHG AEH ∆∆≌知DHG AEH ∠=∠∵90AEH AHE ∠+∠=︒∴90DHG AHE ∠+∠=︒∴90GHE ∠=︒∴四边形EFGH 是正方形.(2)122. 【答案】(1)证明:∵四边形ABCD 是正方形,∴BC =CD =AD =AB =4,∠ABE =∠C =∠D =90°, ∴∠ABG +∠CBF =90°,∵BF ⊥AE ,∴∠ABG +∠BAE =90°,∴∠BAE =∠CBF ,在△BCF 和△ABE 中,⎩⎨⎧∠C =∠ABEBC =AB∠CBF =∠BAE, ∴△BCF ≌△ABE (ASA);(2)证明:∵AC ⊥BD ,BF ⊥AE ,∴∠AOB =∠AGB =∠AGF =90°,∴A 、B 、G 、O 四点共圆,∴∠AGO =∠ABO =45°,∴∠FGO =90°-45°=45°=∠AGO ,∴GO 平分∠AGF ;(3)解:如解图,连接EF ,解图∵CG ⊥GO ,∴∠OGC =90°,∵∠EGF =∠BCD =90°,∴∠EGF +∠BCD =180°,∴C 、E 、G 、F 四点共圆,∴∠EFC =∠EGC =180°-90°-45°=45°,∴△CEF是等腰直角三角形,∴CE=CF,同(1)得△BCF ≌△ABE,∴CF=BE,∴CE=BE=12BC,∴OA=12AC=22BC=2CE,由(2)得A、B、G、O四点共圆,∴∠BOG=∠BAE,∵∠GEC=90°+∠BAE,∠GOA=90°+∠BOG,∴∠GOA=∠GEC,又∵∠EGC=∠AGO=45°,∴△AOG∽△CEG,∴AGCG=OACE=2,∴AG= 2 CG,∴n= 2 .。

2022年中考数学《四边形》专题训练及答案

2022年中考数学《四边形》专题训练及答案

2022年中考数学《四边形》专题训练及答案一.选择题(共17小题)1.如图是一个由5张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE 相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是()A.S1=S2B.S1=S3C.AB=AD D.EH=GH2.数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形3.如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD方向移动,移动到点D停止.在△ABP 形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形4.如图,在矩形ABCD 中,AB =6,BC =10,E 是BC 边上一动点(不含端点B ,C ),连接EA ,F 是CD 边上一点,设DF =a ,若存在唯一的点E ,使∠FEA =90°,则a 的值是( )A .256B .116C .103D .35.如图,E ,F 是正方形ABCD 的边BC 上两个动点,BE =CF .连接AE ,BD 交于点G ,连接CG ,DF 交于点M .若正方形的边长为1,则线段BM 的最小值是( )A .12B .√3−12C .√2−12D .√5−126.如图,在矩形ABCD 中,以对角线AC 为斜边作Rt △AEC ,过点E 作EF ⊥DC 于点F ,连结AF ,若AD =DF ,S △AEF =3,S △ACF =5,则矩形ABCD 的面积为( )A .18B .19C .20D .217.如图,在▱ABCD 中,BD =6,AC =10,BD ⊥AB ,则AD 的长为( )A .8B .√42C .2√5D .2√138.如图,在Rt △ABC 中(AC >BC ),∠ACB =90°,过C 作CD ⊥AB 于点D ,分别以AD ,AC ,BC 为边向上作正方形ADQP,正方形ACEF,正方形CBGH,其中CE与PQ相交于点O,连接PF,QH,EH.若点F,P,Q,H在同一直线上,且△OCQ的面积为1,则六边形ABGHEF的面积为()A.5+3√5B.15+7√5C.20+10√5D.30+14√59.已知四边形ABCD为平行四边形,要使四边形ABCD为矩形,则可增加条件为()A.AB=BC B.AC=BD C.AC⊥BD D.AC平分∠BAD10.如图,矩形ABCD中,AB:AD=2:1,点E为AB的中点,点F为EC上一个动点,点P为DF的中点,连接PB,当PB的最小值为3√2时,则AD的值为()A.2B.3C.4D.611.如图,在矩形ABCD中,点F为边AD上一点,过F作EF∥AB交边BC于点E,P为边AB上一点,PH⊥DE 交线段DE于H,交线段EF于Q,连接DQ.当AF=AB时,要求阴影部分的面积,只需知道下列某条线段的长,该线段是()A.EF B.DE C.PH D.PE12.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,里面放置两个大小相同的正方形CDEF与正方形GHIJ,点F在边BC上,点D,H在边AC上,点G在边DE上,点I,J在斜边AB上,则正方形CDEF的边长为()A .3613B .3013C .2413D .181313.已知,矩形ABCD 中,E 为AB 上一定点,F 为BC 上一动点,以EF 为一边作平行四边形EFGH ,点G ,H 分别在CD 和AD 上,若平行四边形EFGH 的面积不会随点F 的位置改变而改变,则应满足( )A .AD =4AEB .AD =2ABC .AB =2AED .AB =3AE14.如图,矩形ABCD 由两直角边之比皆为1:2的三对直角三角形纸片甲、乙、丙拼接而成它们之间互不重叠也无缝隙,则AD AB的值为( )A .23B .34C .45D .2√5515.如图,已知大矩形ABCD 由①②③④四个小矩形组成,其中AE =CG ,则只需要知道其中一个小矩形的面积就可以求出图中阴影部分的面积,这个小矩形是( )A .①B .②C .③D .④16.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中△ABE ,△BCF ,△CDG ,△DAH 全等,△AEH ,△BEF ,△CFG ,△DGH 也全等,中间小正方形EFGH 的面积与△ABE 面积相等,且△ABE 是以AB 为底的等腰三角形,则△AEH 的面积为( )A .2B .169C .32D .√217.一张矩形纸板和圆形纸板按如图方式分别剪得同样大定理特例图(AC =3,BC =4,AB =5,分别以三边为边长向外作正方形),图1中边HI 、LM 和点K 、J 都恰好在矩形纸板的边上,图2中的圆心O 在AB 中点处,点H 、I 都在圆上,则矩形和圆形纸板的面积比是( )A .400:127πB .484:145πC .440:137πD .88:25π二.填空题(共7小题)18.如图,在矩形ABCD 中,点E 在边AB 上,△BEC 与△FEC 关于直线EC 对称,点B 的对称点F 在边AD 上,G 为CD 中点,连结BG 分别与CE ,CF 交于M ,N 两点.若BM =BE ,MG =1,则BN 的长为 ,sin ∠AFE 的值为 .19.图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图2),则图1中所标注的d 的值为 ;记图1中小正方形的中心为点A ,B ,C ,图2中的对应点为点A ′,B ′,C ′.以大正方形的中心O 为圆心作圆,则当点A ′,B ′,C ′在圆内或圆上时,圆的最小面积为 .20.如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2√3,则AH的长为.21.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC=10,BD=24,则OE的长为.22.如图,在▱ABCD中,P为AB上的一点,E、F分别是DP、CP的中点,G、H为CD上的点,连接EG、FH,若▱ABCD的面积为24cm2,GH=12AB,则图中阴影部分的面积为.23.如图1,某学校楼梯墙面上悬挂了四幅全等的正方形画框,画框下边缘与水平地面平行.如图2,画框的左上角顶点B,E,F,G都在直线AB上,且BE=EF=FG,楼梯装饰线条所在直线CD∥AB,延长画框的边BH,MN得到▱ABCD.若直线PQ恰好经过点D,AB=275cm,CH=100cm,∠A=60°,则正方形画框的边长为cm.24.如图,F是矩形ABCD内一点,AF=BF.连接DF并延长交BC于点G,且点C与AB的中点E恰好关于直线DG 对称.若AD =9,则AB 的长为 .三.解答题(共13小题) 25.【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G . (1)求证:△BCE ≌△CDG . 【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若HD HF=45,CE =9,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,H 两点,若AB BC=k ,HD HF=45,求DE EC的值(用含k 的代数式表示).26.【证明体验】(1)如图1,AD 为△ABC 的角平分线,∠ADC =60°,点E 在AB 上,AE =AC .求证:DE 平分∠ADB . 【思考探究】(2)如图2,在(1)的条件下,F 为AB 上一点,连结FC 交AD 于点G .若FB =FC ,DG =2,CD =3,求BD 的长. 【拓展延伸】(3)如图3,在四边形ABCD 中,对角线AC 平分∠BAD ,∠BCA =2∠DCA ,点E 在AC 上,∠EDC =∠ABC .若BC =5,CD =2√5,AD =2AE ,求AC 的长.27.小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.28.如图,在菱形ABCD中,∠ABC是锐角,E是BC边上的动点,将射线AE绕点A按逆时针方向旋转,交直线CD于点F.(1)当AE⊥BC,∠EAF=∠ABC时,①求证:AE=AF;②连结BD,EF,若EFBD =25,求S△AEFS菱形ABCD的值;(2)当∠EAF=12∠BAD时,延长BC交射线AF于点M,延长DC交射线AE于点N,连结AC,MN,若AB=4,AC=2,则当CE为何值时,△AMN是等腰三角形.29.如图,在四边形ABCD中,AB∥CD,AD∥BC,过B作BE⊥BD与DA的延长线交于点E.(1)若点A为DE中点,求证:四边形ABCD为菱形.(2)若BA=BE,tan∠EDB=√22,求△ABE与四边形ABCD面积的比值.30.如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.(1)求证:AM=AE;(2)连接CM,DF=2.①求菱形ABCD的周长;②若∠ADC=2∠MCF,求ME的长.31.如图1,在正方形ABCD中,BD为对角线,点E为边AB上的点,连结DE,过点A作AG⊥DE交BC于点G,交BD于点H,垂足为F,连结EH.(1)AE与BG相等吗,请说明理由;(2)若BE:AE=n,求证:DH:BH=n+1;(3)在(2)的基础上,如图2时,当EH∥AD时,求n的值.32.如图,在矩形ABCD中,点E在射线CB上,连结AE,∠DAE的平分线AG与CD交于点G,与BC的延长线交于F点.设CEEB =λ(λ>0),ABBC=k(k>0且k≠2).(1)若AB=8,λ=1,k=43,求线段CF的长.(2)连结EG,若EG⊥AF,①求证:点G为CD边的中点;②求λ的值(用k表示).33.在正方形ABCD中,点E为边AB上的点,连结DE,过点A作AG⊥DE交BC于G.(1)如图1,AE与BG相等吗?请说明理由;(2)如图2,连接BD,交AG于H,ED于F,连接EH,若BE:AE=n,求DH:BH;(3)在(2)的基础上,如图3,当EH∥AD时,求n的值.34.如图,在△ABC中,AC=BC=2√5,tan∠CAB=12,P为AC上一点,PD⊥AB交AB于点E,AD⊥AC交PD于点D,连结BD,CD,CD交AB于点Q.(1)若CD⊥BC,求证:△AED∽△QCB;(2)若AB平分∠CBD,求BQ的长;(3)连结PQ并延长交BD于点M.①当点P是AC的中点时,求tan∠BQM的值;②当PM平行于四边形ADBC中的某一边时,求BMDM的值.35.在三角形中,一个角两夹边的平方和减去它对边的平方所得的差,叫做这个角的勾股差.(1)概念理解:在直角三角形中,直角的勾股差为 ;在底边长为2的等腰三角形中,底角的勾股差为 ;(2)性质探究:如图1,CD 是△ABC 的中线,AC =b ,BC =a ,AB =2c ,CD =d ,记△ACD 中∠ADC 的勾股差为m ,△BCD 中∠BDC 的勾股差为n ;①求m ,n 的值(用含a ,b ,c ,d 的代数式表示); ②试说明m 与n 互为相反数;(3)性质应用:如图2,在四边形ABCD 中,点E 与F 分别是AB 与BC 的中点,连接BD ,DE ,DF ,若DF AB=34,且CD ⊥BD ,CD =AD ,求DE DF的值.36.【发现问题】小聪发现图1所示矩形甲与图2所示矩形乙的周长与面积满足关系:C 乙C 甲=S 乙S 甲=12.【提出问题】对于任意一个矩形A ,是否一定存在矩形B ,使得C B C A=S B S A=12成立?【解决问题】(1)对于图2所示的矩形乙,是否存在矩形丙(可设两条邻边长分别为x 和7﹣x ),使得C 丙C 乙=S 丙S 乙=12成立.若存在,求出矩形丙的两条邻边长;若不存在,请说明理由; (2)矩形A 两条邻边长分别为m 和1,若一定存在矩形B ,使得C B C A=S B S A=12成立,求m 的取值范围;(3)请你回答小聪提出来的问题.若一定存在,请说明理由;若不一定存在,请直接写出矩形A 两条邻边长a ,b 满足什么条件时一定存在矩形B .37.如图,矩形ABCD 中,AB =7,AD =3,点E 是AD 边上的一点,DE =2AE ,连接EB ,F 是EB 的中点,连接CF ,点M 为DC 边上的一点,当动点P 从点C 匀速运动到点F 时,动点Q 恰好从点M 匀速运动到点C .(1)求tan∠DCF的值;(2)若点P运动到CF的中点时,Q,P,B三点恰好共线,求此时DM的长;(3)连接EM,BM,当∠EMB=90°且DM<CM时,记MQ=x,CP=y.①求y关于x的函数关系式;②当PQ平行于△BEM的某一边时,求所有满足条件的x的值.参考答案与试题解析一.选择题(共17小题)1.【解答】解:如图,连接DG,AH,过点O作OJ⊥DE于J.∵四边形EFGH是矩形,∴OH=OF,EF=GH,∠HEF=90°,∵OJ⊥DE,∴∠OJH=∠HEF=90°,∴OJ∥EF,∵HO=OF,∴HJ=JE,∴EF=GH=2OJ,∵S△DHO=12•DH•OJ,S△DHG=12•DH•GH,∴S△DGH=2S△DHO,同法可证S△AEH=2S△AEO,∵S△DHO=S△AEO,∴S△DGH=S△AEH,∵S△DGC=12•CG•DH,S△ADH=12•DH•AE,CG=AE,∴S△DGC=S△ADH,∴S△DHC=S△ADE,∴S1=S2,故A选项符合题意;S3=HE•EF≠S1,故B选项不符合题意;AB=AD,EH=GH均不成立,故C选项,D选项不符合题意,故选:A.2.【解答】解:如图所示,用2个相同的菱形放置,最多能得到3个菱形;用3个相同的菱形放置,最多能得到8个菱形,用4个相同的菱形放置,最多能得到16个菱形,用5个相同的菱形放置,最多能得到29个菱形,用6个相同的菱形放置,最多能得到47个菱形.故选:B.3.【解答】解:∵∠B=60°,故菱形由两个等边三角形组合而成,当AP⊥BC时,此时△ABP为直角三角形;当点P到达点C处时,此时△ABP为等边三角形;当P为CD中点时,△ABP为直角三角形;当点P 与点D 重合时,此时△ABP 为等腰三角形, 故选:C .4.【解答】解:∵∠FEA =90°, ∴∠AEB +∠FEC =90°, ∵∠B =90°,∴∠AEB +∠EAB =90°, ∴∠EAB =∠FEC , ∵∠B =∠C =90°, ∴△ABE ∽△ECF , ∴AB EC=BE CF,设BE =x ,则EC =BC ﹣BE =10﹣x , ∵DF =a ,∴FC =DC ﹣DF =6﹣a , ∴x (10﹣x )=6(6﹣a ), ∴x 2﹣10x +36﹣6a =0, 由题意判别式b 2﹣4ac =0, ∴24a ﹣44=0, ∴a =116, 故选:B .5.【解答】解:如图,在正方形ABCD 中,AB =AD =CB ,∠EBA =∠FCD ,∠ABG =∠CBG ,在△ABE 和△DCF 中, {AB =CD∠EBA =∠FCD BE =CF, ∴△ABE ≌△DCF (SAS ), ∴∠BAE =∠CDF , 在△ABG 和△CBG 中,{AB =BC∠ABG =∠CBG BG =BG, ∴△ABG ≌△CBG (SAS ), ∴∠BAG =∠BCG , ∴∠CDF =∠BCG ,∵∠DCM +∠BCG =∠FCD =90°, ∴∠CDF +∠DCM =90°, ∴∠DMC =180°﹣90°=90°, 取CD 的中点O ,连接OB 、OF , 则OF =CO =12CD =12,在Rt △BOC 中,OB =√CB 2+OC 2=√12+(12)2=√52,根据三角形的三边关系,OM +BM >OB , ∴当O 、M 、B 三点共线时,BM 的长度最小, ∴BM 的最小值=OB ﹣OF =√52−12=√5−12. 故选:D .6.【解答】解:过点E 作EG 垂直AD 延长线于点G , ∵EF ⊥DC ,∴S △AEF =12EF •DF =3,S △ACF =12CF •AD =5, ∵DF =AD , ∴EF :CF =3:5,设EF =3b ,CF =5b ,AD =DF =a ,∵∠G =90°,∠EFD =90°,∠GDF =90°, ∴四边形EFDG 是矩形, ∴GE =DF =a ,GD =EF =3b , 在Rt △GEA 中,GE 2+AG 2=AE 2, 在Rt △EFC 中,EF 2+FC 2=EC 2, 在Rt △CEA 中,AE 2+CE 2=AC 2,∴AC 2=GE 2+AG 2+EF 2+FC 2=a 2+(a +3b )2+(3b )2+(5b )2=2a 2+43b 2+6ab , 在Rt △DAC 中,AC 2=AD 2+CD 2=a 2+(a +5b )2=2a 2+25b 2+10ab , ∴2a 2+43b 2+6ab =2a 2+25b 2+10ab , ∴18b 2=4ab ,∵b>0,∴a=92b,∴S△AEF=12EF•DF=12×3b×a=12×3b×92b=3,∴b=2 3,∴a=92×23=3,∴S矩形ABCD=AD•CD=a(a+5b)=3×(3+5×23)=19.故选:B.7.【解答】解:AC与BD相交于点O,∵四边形ABCD是平行四边形,∴2AO=AC,2OB=BD,∵BD=6,AC=10,∴OA=5,OB=3,∵DB⊥AB,在Rt△AOB中,由勾股定理得,AB=√OA2−OB2=√52−32=4,在Rt△ADB中,由勾股定理得,AD=√DB2+AB2=√62+42=2√13,故选:D.8.【解答】解:设CQ=x,∵∠CQO=90°,S△OCQ=1,∴12•CQ•OQ=1,∴OQ=2 x,∵∠CDB=∠CQH=∠BCH=90°,∴∠DCB +∠HCQ =90°,∠HCQ +∠CHQ =90°, ∴∠DCB =∠CHQ , 在Rt △CDB 和△HQC 中, {∠CDB =∠HQC∠DCB =∠CHQ CB =HC, ∴△CDB ≌△HQC (AAS ), ∴BD =CQ =x , ∵QO ∥BD , ∴△QCO ∽△DCB , ∴OQ BD=CQCD, ∴CD =x×x2x=12x 3,∵∠CAD +∠ACD =90°,∠DCB +∠ACD =90°, ∴∠CAD =∠DCB , ∵∠ADC =∠CDB =90°, ∴△ACD ∽△CBD , ∴AD CD=CD BD,∴CD 2=AD •DB , ∴(12x 3)2=(x +12x 3)•x ,解得x 2=1+√5或1−√5(舍弃), ∴CD =1+√52x ,AD =√5+32x , ∴AB =AD +BD =5+√52x , ∴AB 2=(5+√52)2×(1+√5)=20+10√5, ∴S 正方形ACEF +S 正方形BCHG =AB 2=20+10√5, ∵S △ACB =12•AB •CD =12×1+√52x ×5+√52x =5+2√5, ∴S 六边形ABGHEF =S 正方形ACEF +S 正方形CBGH +2S △ABC =20+10√5+2(5+2√5)=30+14√5, 故选:D .9.【解答】解:A 、∵四边形ABCD 是平行四边形,AB =BC , ∴四边形ABCD 是菱形,故A 不符合题意; B 、∵四边形ABCD 是平行四边形,AC =BD , ∴四边形ABCD 是矩形,故B 符合题意;C、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,故C不符合题意;D、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=AC,∴四边形ABCD是菱形,故D不符合题意;故选:B.10.【解答】解:如图,当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=12CE..且当点F在EC上除点C、E的位置处时,有DP=FP.由中位线定理可知:P1P∥CE且P1P=12CF,∴点P的运动轨迹是线段P1P2,.∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB:AD=2:1,设AB=2t,则AD=t,∵E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=t,∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角△BCP1中,CP1=BC=t,∴BP 1=√2t =3√2, ∴t =3. 故选:B .11.【解答】解:过点P 作PM ⊥EF 于点M ,如图:∵四边形ABCD 为矩形,∴AB ∥DC ,AD ∥BC ,∠C =90°, ∵EF ∥AB , ∴EF ∥DC , ∴∠EDC =∠DEF , ∵PH ⊥DE ,PM ⊥EF , ∴∠PMQ =∠EHQ =90°, 又∵∠PQM =∠EQH , ∴∠QPM =∠DEF =∠EDC , 在△PMQ 和△DCE 中, {∠MPQ =∠EDCPM =CD∠PMQ =∠C,∴△PMQ ≌△DCE (ASA ), ∴PQ =DE ,∴阴影部分的面积=S △PDE ﹣S △QED =12×DE ×PH −12DE ×QH =12DE 2, ∴故选:B .12.【解答】解:在Rt △ABC 中, ∵∠ACB =90°,BC =6,AC =8, ∴AB =√AC 2+BC 2=10.∴sin ∠A =BCAB =35,cos ∠A =ACAB =45. ∵四边形GHIJ 为正方形, ∴GH ∥AB . ∴∠GHD =∠A .∴cos ∠GHD =cos ∠A =45.设正方形CDEF 与正方形GHIJ 的边长为x ,则HI =CD =x .在Rt △AHI 中,∵sin ∠A =HI AH , ∴x AH =35.∴AH =53x .在Rt △GHD 中,∵cos ∠GHD =DH GH , ∴DH x =45. ∴DH =45x .∵AC =CD +DH +AH =8,∴x +45x +53x =8.解得:x =3013. 故选:B .13.【解答】解:设AB =a ,BC =b ,BE =c ,BF =x ,∴S 平行四边形EFGH =S 矩形ABCD ﹣2(S △BEF +S △AEH )=ab ﹣2[12cx +12(a ﹣c )(b ﹣x )] =ab ﹣(cx +ab ﹣ax ﹣bc +cx )=ab ﹣cx ﹣ab +ax +bc ﹣cx=(a ﹣2c )x +bc ,∵F 为BC 上一动点,∴x 是变量,(a ﹣2c )是x 的系数,∵平行四边形EFGH 的面积不会随点F 的位置改变而改变,为固定值,∴x 的系数为0,bc 为固定值,∴a ﹣2c =0,∴a =2c ,∴E 是AB 的中点,∴AB =2AE ,故选:C .14.【解答】解:如图所示设丙的短直角边为x,乙的短直角边为y,则HG=2x,DG=2x+y,CG=12DG=2x+y2,∵BF=DH=y,FG=EH=x,∴CF=2BF=2y,CF=CG+FG=2x+y2+x,∴2y=2x+y2+x,∴x=34y,∵AB=DC=√CG2+DG2=√(2x+y2)2+(2x+y)2=√(54y)2+(52y)2=5√54y,AD=√DH2+AH2=√y2+(2y)2=√5y,∴ADAB=√5y5√54y=45.故选:C.15.【解答】解:如图所示:∵四边形ABCD和四边形③是矩形,∴AB=CD,FP=CG,∵AE=CG,∴BE=DG,∴阴影部分的面积=△BFD的面积﹣△BFP的面积=12BF×CD−12BF×FP=12BF×(CD﹣CG)=12BF×DG=12BF×BE=12矩形②面积,故选:B.16.【解答】解:连接EG,向两端延长分别交AB、CD于点M、N,如图,∵△ABE,△BCF,△CDG,△DAH全等,△ABE是以AB为底的等腰三角形,∴AE=BE=CG=DG,∴EG是AB、CD的垂直平分线,∴MN⊥AB,∴EM=GN(全等三角形的对应高相等),∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∴四边形AMND是矩形,∴MN=AD=4,设ME=x,则EG=4﹣2x,∵中间小正方形EFGH的面积与△ABE面积相等,∴12(4−2x)2=12×4x,解得,x=1或x=4(舍),∵△ABE,△BCF,△CDG,△DAH全等,△AEH,△BEF,△CFG,△DGH也全等,∴△AEH的面积=S正方形ABCD−5S△ABE4=42−5×12×4×14=32,故选:C.17.【解答】解:在图1中延长CA与GF交于点N,延长CB与EF交于点P,在图2中,连接OH,过O作OQ⊥AC于点Q,则,在图1中,∵四边形ABJK是正方形,∴AB=BJ,∠ABJ=90°,∴∠ABC +∠PBJ =90°=∠ABC +∠BAC ,∴∠BAC =∠JBP ,∵∠ACB =∠BPJ =90°,∴△ABC ≌△BJK (AAS ),∴AC =BP =3,∵AC =MC =3,BC =4,∴DE =MP =3+4+3=10,同理得,DG =HN =4+3+4=11,∴矩形DEFG 的面积为11×10=110,在图2中,OQ =12CB =2,CQ =12AC =1.5,∴HQ =4+1.5=5.5,∴OH =√22+5.52=√1372,∴⊙O 的面积为:π×(√1372)2=137π4, ∴矩形和圆形纸板的面积比是:110:137π4=440:137π,故选:C .二.填空题(共7小题)18.【解答】解:∵BM =BE ,∴∠BEM =∠BME ,∵AB ∥CD ,∴∠BEM =∠GCM ,又∵∠BME =∠GMC ,∴∠GCM =∠GMC ,∴MG =GC =1,∵G 为CD 中点,∴CD =AB =2.连接BF ,FM ,由翻折可得∠FEM=∠BEM,BE=EF,∴BM=EF,∵∠BEM=∠BME,∴∠FEM=∠BME,∴EF∥BM,∴四边形BEFM为平行四边形,∵BM=BE,∴四边形BEFM为菱形,∵∠EBC=∠EFC=90°,EF∥BG,∴∠BNF=90°,∵BF平分∠ABN,∴F A=FN,∴Rt△ABF≌Rt△NBF(HL),∴BN=AB=2.∵FE=FM,F A=FN,∠A=∠BNF=90°,∴Rt△AEF≌Rt△NMF(HL),∴AE=NM,设AE=NM=x,则BE=FM=2﹣x,NG=MG﹣NM=1﹣x,∵FM∥GC,∴△FMN∽△CGN,∴CGFM=GNNM,即12−x=1−xx,解得x=2+√2(舍)或x=2−√2,∴EF=BE=2﹣x=√2,∴sin∠AFE=AEEF=√2√2=√2−1.故答案为:2;√2−1.19.【解答】解:如图,连接FW,由题意可知点A′,O,C′在线段FW上,连接OB′,B′C′,过点O作OH ⊥B′C′于H.∵大正方形的面积=12,∴FG=GW=2√3,∵EF=WK=2,∴在Rt△EFG中,tan∠EGF=EFFG=2√3=√33,∴∠EGF=30°,∵JK∥FG,∴∠KJG=∠EGF=30°,∴d=JK=√3GK=√3(2√3−2)=6﹣2√3,∵OF=OW=12FW=√6,C′W=√2,∴OC′=√6−√2,∵B′C′∥QW,B′C′=2,∴∠OC′H=∠FWQ=45°,∴OH=HC′=√3−1,∴HB′=2﹣(√3−1)=3−√3,∴OB′2=OH2+B′H2=(√3−1)2+(3−√3)2=16﹣8√3,∵OA′=OC′<OB′,∴当点A′,B′,C′在圆内或圆上时,圆的最小面积为(16﹣8√3)π.故答案为:6﹣2√3,(16﹣8√3)π.20.【解答】解:如图,∵AB⊥AC,AB=2,BC=2√3,∴AC=√(2√3)2−22=2√2,在▱ABCD中,OA=OC,OB=OD,∴OA=OC=√2,在Rt△OAB中,OB=√22+(√2)2=√6,又AH⊥BD,∴12OB •AH =12OA •AB ,即12×√6⋅AH =12×2×√2, 解得AH =2√33. 故答案为:2√33. 21.【解答】解:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12AC =5,OB =OD =12BD =12, ∴∠DOC =90°,CD =√OC 2+OD 2=√52+122=13, ∴平行四边形OCED 为矩形,∴OE =CD =13,故答案为:13.22.【解答】解:如图,设EG ,FH 交于点O ,∵四边形ABCD 为平行四边形,且▱ABCD 的面积为24cm 2, ∴S △PCD =12S ▱ABCD =12cm 2,AB =CD ,AB ∥CD , ∵E 、F 分别是DP 、CP 的中点,∴EF 为△PCD 的中位线,∴CD =2EF ,EF ∥CD ∥AB ,∴S △PEF :S △PCD =1:4,∴S △PEF =3,∵GH =12AB ,∴EF =GH ,EF ∥GH ,∴S △OEF =S △OGH =12S △PEF =1.5cm 2,∴S 阴影=3+2×1.5=6cm 2,故答案为6cm 2.23.【解答】解:延长EP ,与CD 交于点K ,如图, ∵AB ∥CD ,BC ∥EK ,∴四边形BCKE 是平行四边形,∴PK=CH=100cm,∵∠A=60°,四边形ABCD是平行四边形,∴∠C=∠A=60°,AB=CD=275cm,∵BC∥EK,∴∠PKD=∠C=60°,∴DK=PKcos60°=200cm,∴BE=CK=CD﹣DK=75cm,∵BE=EF=FG,∴AG=AB﹣3BE=275﹣75×3=50cm,∴GM=AG•sin∠A=50×√32=25√3cm.正方形画框的边长为25√3cm.故答案为:25√3.24.【解答】解:连接EF、EG、EC,如图所示:∵四边形ABCD是矩形,∴BC=AD=9,AD∥BC,∠BAD=∠ABC=90°,∴AB⊥AD,∵AF=BF,点E是AB的中点,∴EF⊥AB,∴EF∥AD∥BC,∴EF是梯形ABGD的中位线,∠EFG=∠CGF,∴EF=12(AD+BG),设BG=x,则CG=9﹣x,EF=12(9+x),∵点C与AB的中点E关于直线DG对称,∴EG=CG,∠CGF=∠EGF,∴EF=CG,∴12(9+x)=9﹣x,解得:x=3,∴BG=3,EG=CG=6,∴BE=√EG2−BG2=√62−32=3√3,∴AB=2BE=6√3;故答案为:6√3.三.解答题(共13小题)25.【解答】(1)证明:如图1中,∵△BFE是由△BCE折叠得到,∴BE⊥CF,∴∠ECF+∠BEC=90°,∵四边形ABCD是正方形,∴∠D=∠BCE=90°,∴∠ECF+∠CGD=90°,∴∠BEC=∠CGD,∵BC=CD,∴△BCE≌△CDG(AAS).(2)如图2中,连接EH.∵△BCE≌△CDG,∴CE=DG=9,由折叠可知BC=BF,CE=FE=9,∴∠BCF=∠BFC,∵四边形ABCD是正方形,∴AD∥BC,∴∠BCG=∠HGF,∵∠BFC=∠HFG,∴∠HFG=∠HGF,∴HF=HG,∵HDHF=45,DG=9,∴HD=4,HF=HG=5,∵∠D=∠HFE=90°,∴HF2+FE2=DH2+DE2,∴52+92=42+DE2,∴DE=3√10或﹣3√10(舍弃),∴DE=3√10.(3)如图3中,连接HE.由题意HD HF =45,可以假设DH =4m ,HG =5m ,设DE EC =x .①当点H 在点D 的左侧时,∵HF =HG ,∴DG =9m ,由折叠可知BE ⊥CF ,∴∠ECF +∠BEC =90°,∵∠D =90°,∴∠ECF +∠CGD =90°,∴∠BEC =∠CGD ,∵∠BCE =∠D =90°,∴△CDG ∽△BCE ,∴DG CE =CD BC , ∵CD BC =AB BC =k , ∴9m CE =k 1,∴CE =9m k=FE , ∴DE =9mx k , ∵∠D =∠HFE =90°∴HF 2+FE 2=DH 2+DE 2,∴(5m )2+(9m k )2=(4m )2+(9mx k )2, ∴x =√k 2+93或−√k 2+93(舍弃), ∴DE EC =√k 2+93.②当点H 在点D 的右侧时,如图4中,同理HG =HF ,△BCE ∽△CDG ,∴DG =m ,CE =m k =FE ,∴DE =mx k, ∵HF 2+FE 2=DH 2+DE 2,∴(5m )2+(m k )2=(4m )2+(mx k )2,∴x =√9k 2+1或−√9k 2+1(舍弃),∴DE EC =√9k 2+1.综上所述,DE EC =√k 2+93或√9k 2+1.26.【解答】(1)证明:如图1,∵AD 平分∠BAC ,∴∠EAD =∠CAD ,∵AE =AC ,AD =AD ,∴△EAD ≌△CAD (SAS ),∴∠ADE =∠ADC =60°,∵∠BDE =180°﹣∠ADE ﹣∠ADC =180°﹣60°﹣60°=60°, ∴∠BDE =∠ADE ,∴DE 平分∠ADB .(2)如图2,∵FB =FC ,∴∠EBD =∠GCD ;∵∠BDE =∠CDG =60°,∴△BDE ∽△CDG ,∴BD CD =DE DG ;∵△EAD ≌△CAD ,∴DE =CD =3,∵DG =2,∴BD =CD 2DG =322=92. (3)如图3,在AB 上取一点F ,使AF =AD ,连结CF . ∵AC 平分∠BAD ,∴∠F AC =∠DAC ,∵AC =AC ,∴△AFC ≌△ADC (SAS ),∴CF =CD ,∠FCA =∠DCA ,∠AFC =∠ADC ,∵∠FCA +∠BCF =∠BCA =2∠DCA ,∴∠DCA=∠BCF,即∠DCE=∠BCF,∵∠EDC=∠ABC,即∠EDC=∠FBC,∴△DCE∽△BCF,∴CDBC=CECF,∠DEC=∠BFC,∵BC=5,CF=CD=2√5,∴CE=CD2BC=(2√5)25=4;∵∠AED+∠DEC=180°,∠AFC+∠BFC=180°,∴∠AED=∠AFC=∠ADC,∵∠EAD=∠DAC(公共角),∴△EAD∽△DAC,∴AEAD=ADAC=12,∴AC=2AD,AD=2AE,∴AC=4AE=43CE=43×4=163.27.【解答】解:[探究1]如图1,设BC=x,∵矩形ABCD绕点A顺时针旋转90°得到矩形AB′C′D′,∴点A,B,D'在一条线上,∴AD'=AD=BC=x,D'C'=AB'=AB=1,∴D'B=AD'﹣AB=x﹣1,∵∠BAD=∠D'=90°,∴D'C'∥DA,又∵点C'在DB的延长线上,∴△D'C'B∽△ADB,∴D′C′AD=D′BAB,∴1x=x−11,解得x1=1+√52,x2=1−√52(不合题意,舍去),∴BC=1+√5 2.[探究2]D'M=DM.证明:如图2,连接DD',∵D'M∥AC',∴∠AD'M=∠D'AC',∵AD'=AD,∠AD'C'=∠DAB=90°,D'C'=AB,∴△AC'D'≌△DBA(SAS),∴∠D'AC'=∠ADB,∴∠ADB=∠AD'M,∵AD'=AD,∴∠ADD'=∠AD'D,∴∠MDD'=∠MD'D,∴D'M=DM;[探究3]关系式为MN2=PN•DN.证明:如图3,连接AM,∵D'M=DM,AD'=AD,AM=AM,∴△AD'M≌△ADM(SSS),∴∠MAD'=∠MAD,∵∠AMN=∠MAD+∠NDA,∠NAM=∠MAD'+∠NAP,∴∠AMN=∠NAM,∴MN=AN,在△NAP和△NDA中,∠ANP=∠DNA,∠NAP=∠NDA,∴△NP A∽△NAD,∴PNAN=ANDN,∴AN2=PN•DN,∴MN2=PN•DN.28.【解答】(1)①证明:∵四边形ABCD是菱形,∴AB=AD,∠ABC=∠ADC,AD∥BC,∵AE⊥BC,∴AE⊥AD,∴∠ABE+∠BAE=∠EAF+∠DAF=90°,∵∠EAF=∠ABC,∴∠BAE=∠DAF,∴△ABE≌△ADF(ASA),∴AE=AF;②解:连接AC,如图1所示:∵四边形ABCD是菱形,∴AB=BC=DC,AC⊥BD,由①知,△ABE≌△ADF,∴BE=DF,∴CE=CF,∵AE=AF,∴AC⊥EF,∴EF∥BD,∴△CEF∽△CBD,∴ECBC=EFBD=25,设EC=2a,则AB=BC=5a,BE=3a,∴AE=√AB2−BE2=√(5a)2−(3a)2=4a,∵AEAB=AFBC,∠EAF=∠ABC,∴△AEF∽△BAC,∴S△AEFS△BAC=(AEAB)2=(4a5a)2=1625,∴S△AEFS菱形ABCD=S△AEF2S△BAC=12×1625=825;(2)解:∵四边形ABCD是菱形,∴∠BAC=12∠BAD,∵∠EAF=12∠BAD,∴∠BAC=∠EAF,∴∠BAE=∠CAM,∵AB∥CD,∴∠BAE=∠ANC,∴∠ANC=∠CAM,同理:∠AMC=∠NAC,∴△MAC∽△ANC,∴ACCN=AMNA,△AMN是等腰三角形有三种情况:①当AM=AN时,如图2所示:∵∠ANC =∠CAM ,AM =AN ,∠AMC =∠NAC , ∴△ANC ≌△MAC (ASA ),∴CN =AC =2,∵AB ∥CN ,∴△CEN ∽△BEA ,∴CE BE =CN AB =24=12, ∵BC =AB =4,∴CE =13BC =43;②当NA =NM 时,如图3所示:则∠NMA =∠NAM ,∵AB =BC ,∴∠BAC =∠BCA ,∵∠BAC =∠EAF ,∴∠NMA =∠NAM =∠BAC =∠BCA ,∴△ANM ∽△ABC ,∴AM AN =AC AB =12, ∴AC CN =AM NA =12, ∴CN =2AC =4=AB ,∴△CEN ≌△BEA (AAS ),∴CE =BE =12BC =2;③当MA =MN 时,如图4所示:则∠MNA =∠MAN =∠BAC =∠BCA ,∴△AMN ∽△ABC ,∴AM AN =AB AC =42=2, ∴CN =12AC =1,∵△CEN ∽△BEA ,∴CE BE =CN AB =14, ∴CE =15BC =45;综上所述,当CE 为43或2或45时,△AMN 是等腰三角形.29.【解答】(1)证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵BE⊥BD,∴∠EBD=90°,∵A为DE的中点,∴AB=AD=12DE,∴四边形ABCD是菱形;(2)解:过B作BF⊥DE于F,tan ∠EDB =√22=BE BD, 设BE =√2x ,BD =2x ,由勾股定理得:DE =√BE 2+BD 2=√(√2x)2+(2x)2=√6x , ∵S △BDE =12×BE ×BD =12×DE ×BF , ∴12×√2x ×2x =12×√6x ×BF , 解得:BF =2√33x , ∴△ABE 与四边形ABCD 面积的比值是(12×√2x ×2x ):(√62x •2√33x )=√2x 2:√2x 2=1:1. 30.【解答】(1)证明:如图,连接BD , ∵四边形ABCD 是菱形,∴AC ⊥DB ,AD =AB ,∵EM ⊥AC ,∴ME ∥BD ,∵点E 是AB 的中点,∴点M 是AD 的中点,AE =12AB ,∴AM =12AD ,∴AM =AE .(2)解:①由(1)得,点M 是AD 的中点, ∴AM =MD ,∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠F =∠AEM ,∠EAM =∠FDM ,∴△MDF ≌△MAE (AAS ),∴AE =DF ,∵AB =2AE ,DF =2,∴AB =4,∴菱形ABCD 的周长为4AB =4×4=16.②如图,连接CM ,记EF 与AC 交点为点G ,∵AM=AE,△MAE≌△MDF,∴DF=DM,MF=ME,∴∠DMF=∠DFM,∴∠ADC=2∠DFM,∵∠ADC=2∠MCD,∴∠MCD=∠DFM,∴MF=MC=ME,∠EMC=2∠FDM=∠MDC,∵ME⊥AC,AM=AE,∴∠MGC=90°,ME=2MG,∴MC=2MG,∴∠GMC=60°,∴∠ADC=60°,∴∠MCD=30°,∴∠DMC=90°,∴△DMC为直角三角形,∵DF=2,∴DM=2,CD=4,∴CM=√DM2+CM2=√22+42=2√3,∴ME=2√3.31.【解答】(1)解:相等,理由如下:∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABC=90°,∴∠DAG+∠BAG=90°,∵AG⊥DE,∴∠DAG+∠ADF=90°,∴∠BAG=∠ADF,∵AD=AB,∠DAB=∠ABG,∴△ADE≌△BAG(ASA),∴AE =BG .(2)解:∵△ADE ≌△BAG ,∴BG =AE ,∵四边形ABCD 是正方形,∴AD ∥BC ,∴△ADH ∽△GBH ,∴DH BH =AD BG ,∵BE :AE =n ,BG =AE ,AD =AB ,∴DH BH =AD AG =AB AE =AE+BE AE =AE+nAE AE =n +1.(3)解:设BG =AE =k ,则BE =nk ,∵EH ∥AD ,∴∠BEH =∠BAD =90°,∠EHB =∠ADB =45°,∵∠ABD =45°,∴∠EHB =∠ABD ,∴BE =EH =nk ,∵EH ∥AD ,∴△AEH ∽△ABG ,∴AE AB =EH BG , ∴k k+nk =nk k, ∵n >0,∴n =√5−12.32.【解答】解:(1)∵AB BC =k ,k =43, ∴BC =6,∵CE EB =λ,λ=1,∴CE =EB ,∴点E 为BC 的中点,∵在矩形ABCD 中,AD ∥BC ,∴∠DAG =∠F ,又∵AG 平分∠DAE ,∴∠DAG =∠EAG ,∴∠EAG =∠F ,∴EA =EF ,∵AB =8,∠B =90°,点E 为BC 的中点,∴BE =EC =3,∴AE =√AB 2+BE 2=√73,∴EF =√73,∴CF =EF ﹣EC =√73−3;(2)①证明:∵EA =EF ,EG ⊥AF ,∴AG =FG ,在△ADG 和△FCG 中,{∠D =∠GCF ∠AGD =∠FGC AG =FG,∴△ADG ≌△FCG (AAS ),∴DG =CG ,即点G 为CD 的中点;②设CD =2a ,则CG =a ,∵AB BC =k (k >0且k ≠2).AB =CD ,AD =BC ,∴CF =AD =BC =2a k ,∵EG ⊥AF ,∠GCF =90°,∴∠EGC +∠CGF =90°,∠F +∠CGF =90°,∠ECG =∠GCF =90°,∴∠EGC =∠F ,∴△EGC ∽△GFC ,∴EC GC =GC FC ,∵GC =a ,FC =2a k , ∴GC FC =k 2, ∴EC GC =k 2,∴EC =k 2•a =ka 2,BE =BC ﹣EC =2a k −ka 2=4−k 22k a ,∴λ=CEEB=k24−k2.33.【解答】解:(1)AE=BG,理由如下:∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABC=90°,∴∠DAG+∠BAG=90°,∵AG⊥DE,∴∠DAG+∠ADF=90°,∴∠BAG=∠ADF,∵AD=AB,∠DAB=∠ABG,∴△ADE≌△BAG(ASA),∴AE=BG;(2)∵△ADE≌△BAG,∴BG=AE,∵四边形ABCD是正方形∴AD∥BC∴△ADH∽△GBH∴DHBH=ADBG,∵BE:AE=n,BG=AE,AD=AB,∴DHBH=ADAE=ABAE=AE+BEAE,∵BE:AE=n,∴DHBH=AE+nAEAE=n+1;(3)设BG=AE=k,则BE=nk,∵EH∥AD,∴∠BEH=∠BAD=90°,∠EHB=∠ADB=45°,∵∠ABD=45°,∴∠EHB=∠ABD,∴BE=EH=nk,∵EH∥AD,AD∥BC,∴EH∥BC,∴△AEH∽△ABG,∴AEAB=EHBG,∴kk+nk=nkk,∵n>0,∴n=√5−1 2.34.【解答】(1)证明:∵AD⊥AC,CD⊥BC,PD⊥AB,∴∠DAP=∠DEA=∠BCQ=90°,∵∠P AE+∠DAE=90°,∠ADE+∠DAE=90°,∴∠P AE=∠ADE,∵CA=CB,∴∠CAB=∠CBA,∴∠ADE=∠QBC,∴△AED∽△QCB;(2)解:过点C作CH⊥AB于H,∵tan∠CAB=CHAH=12,∴设CH=a,则AH=2a,∴AC=√AH2+CH2=√5a=2√5,∴a=2,∴CH=2,AH=4,∵CA=CB,CH⊥AB,∴AH=BH=4,∠CAB=∠CBA,∴AB=8,∵AB平分∠CBD,∴∠CBA=∠DBA,∴∠CAB=∠DBA,∴AC∥BD,∵AD⊥AC,∴AD⊥BD,∴tan∠ABD=ADBD=tan∠CAB=12,∴AB=√5AD=8,∴AD=8√55,BD=2AD=16√55,∵△AQC∽△BQD,∴AQBQ=ACBD=√516√55=58,∴BQAB=813,∴BQ=813AB=6413;(3)解:①作QG⊥AD于G,∵点P是AC的中点,∴AP=12AC=√5,∵∠CAB=∠CBA=∠ADP,tan∠CAB=1 2,∴AD=2AP=2√5,∴AC=AD,∠ACD=∠ADC=45°,设AG=x,则QG=2x,DG=QG=2x,∴x+2x=2√5,解得:x=2√5 3,∴AQ=√5x=10 3,在Rt△APE中,AP=√5,PE=1,AE=2,∴EQ=AQ﹣AE=103−2=43,∴tan∠BQM=PEEQ=143=34;②作CH⊥AB于H,则CH ∥PD ,∴△CHQ ∽△DEQ ,∴CQ DQ =CH DE =QH EQ ,由(2)知,CH =2,AH =4,若PM ∥BC ,∴BM DM =CQ DQ ,∵CH ∥PD ,∴QH EQ =CH DE =CQ DQ ,∠PQA =∠CBA =∠CAB ,设PE =x ,∵tan ∠CAB =12,∴AE =QE =2x ,DE =4x ,∴QH =4﹣4x ,又∵QH EQ =CH DE , ∴24x =4−4x 2x , ∴x =34,∴BM DM =CQ DQ =CH DE =12x =23; 若PM ∥AD ,如图,∴BMMD=BQAQ,PCAP=CQDQ,∵CH∥PD,∴△CHQ∽△EDQ,∴CHDE=CQDQ=HQEQ,∴PCAP=CHDE,∵∠CAB=∠ADE,∴tan∠CAB=tan∠ADE=1 2,∵CH=2,AH=4,设PE=x,则AE=2x,DE=4x,由勾股定理得:AP=√5x,∴PC=2√5−√5x=√5(2﹣x),∵PCAP=CHDE,∴√5(2−x)√5x=24x,∴x=3 2,∵PM∥AD,AD⊥AC,∴PM⊥AC,∴∠EPQ=∠CAB,∴EQ=12PE=34,∴AQ=AE+EQ=3+34=154,BQ=8−154=174,∴BMMD=BQAQ=1715,综上所述,若PM∥BC,BMDM =23,若PM∥AD,BMDM =17 15.35.【解答】解:(1)∵一个角两夹边的平方和减去它对边的平方所得的差,叫做这个角的勾股差,∴直角的勾股差为两直角边的平方和与斜边的平方的差.∴等腰三角形的底角的勾股差为腰的平方+底边的平方+另一腰的平方.∵等腰三角形的两个腰相等,∴等腰三角形的底角的勾股差为底边的平方=22=4.故答案为:两直角边的平方和与斜边的平方的差;4;(2)①∵CD是△ABC的中线,AB=2c,∴AD=BD=c.依据勾股差的定义可得:m=c2+d2﹣b2,n=c2+d2﹣a2;②过点C作CM⊥AB于点M,如图,在Rt△ACM中,由勾股定理得:b2=CM2+AM2,同理可得:a2=CM2+BM2,CM2=d2﹣MD2.∴a2+b2=2CM2+AM2+BM2.∵AD=BD=c,∴AM=AD﹣MD=c﹣MD,BM=BD+MD=c+MD.∴a2+b2=2(d2﹣MD2)+(c﹣MD)2+(c+MD)2=2d2﹣2MD2+c2﹣2cMD+MD2+c2+2cMD+MD2=2d2+2c2.由(1)知:m=c2+d2﹣b2,n=c2+d2﹣a2,∴m+n=c2+d2﹣b2+c2+d2﹣a2=2c2+2d2﹣(a2+b2)=0.∴m与n互为相反数.(3)∵DF AB =34, ∴设DF =3m ,AB =4m .∵F 是BC 的中点,CD ⊥BD ,∴DF =12BC .∴BC =2DF =6m .∵点E 与F 分别是AB 与BC 的中点,∴CF =DF =BF =3m ,BE =AE =2m .∵点E 与F 分别是AB 与BC 的中点,∴利用(2)中的结论可得:BF 2+DF 2﹣BD 2+CF 2+DF 2﹣CD 2=0,BE 2+DE 2﹣BD 2+AE 2+DE 2﹣AD 2=0.∴4DF 2=BD 2+CD 2,2AE 2+2DE 2=BD 2+AD 2.∵CD =AD ,∴BD 2+CD 2=BD 2+AD 2.∴4DF 2=2AE 2+2DE 2.∴2×(3m )2=(2m )2+DE 2.解得:DE =√14m .∴DE DF =√14m 3m √143. 36.【解答】解:(1)不存在矩形丙,使得C 丙C 乙=S 丙S 乙=12成立.理由: 假定存在矩形丙,∵C 丙C 乙=S 丙S 乙=12, ∴矩形丙的两个邻边之和为7,它的面积为24.设两条邻边长分别为x 和7﹣x ,由题意得:x (7﹣x )=24.∴x 2﹣7x +24=0.∵Δ=(﹣7)2﹣4×1×24=﹣47<0,∴此方程没有实数根,∴不存在矩形丙,使得C 丙C 乙=S 丙S 乙=12成立. (2)∵矩形A 两条邻边长分别为m 和1,∴若存在矩形B ,使得C BC A =S B S A =12成立,则矩形B 的邻边之和为m+12. 设矩形B 的一边为x ,则另一边为m+12−x ,由题意得: x (m+12−x )=m×12. 化简得:2x 2﹣(m +1)x +m =0.由题意方程2x 2﹣(m +1)x +m =0一定有实数根.∴Δ=[﹣(m +1)]2﹣4×2m ≥0.解得:m ≥3+2√2或m ≤3﹣2√2.∵m 为矩形A 的边长,∴m >0.∴m 的取值范围为:0<m ≤3﹣2√2或m ≥3+2√2.(3)由(2)可知:对于任意一个矩形A ,不一定存在矩形B ,使得C BC A =S B S A =12成立. 当矩形A 两条邻边长a ,b 满足0<b a ≤3﹣2√2或b a≥3+2√2时,一定存在矩形B . 37.【解答】解:(1)如图1,∵AD =3,DE =2AE ,∴AE =1,DE =2,取AB 的中点G ,连接GF ,并延长交CD 于H ,∵F 是BE 的中点,∴FG =12AE =12,FG ∥AD ,在矩形ABCD 中,AB ∥CD ,∠A =90°,∴四边形AGHD 是平行四边形,∴▱AGHD 是矩形,。

中考数学四边形专题训练50题(含答案)

中考数学四边形专题训练50题(含答案)

中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.若正多边形的一个外角是24°,则这个正多边形( )A .正十二边形B .正十五边形C .正十八边形D .正二十边形 2.若平行四边形中两个相邻内角的度数比为1:2,则其中较小的内角是( ) A .120︒ B .90︒ C .60︒ D .45︒ 3.如图,四边形ABCD ∽四边形EFGH ,80E ∠=︒,90G ∠=︒,120D ∠=︒,则B ∠等于( )A .50︒B .60︒C .70︒D .80︒ 4.已知三角形的3条中位线分别为3cm 、4cm 、6cm ,则这个三角形的周长是( )A .13cmB .26cmC .24cmD .65cm 5.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于G ,若34AE ED =,DF CF =,则AG GF 的值是( )A .59B .611C .713D .1115 6.在平行四边形ABCD 中,∠B =60°,那么下列各式中,不能成立的是( ) A .∠D =60° B .∠A =120° C .∠C +∠D =180° D .∠C +∠A =180°7.下列说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形8.对角线互相平分且相等的四边形是()A.菱形B.矩形C.正方形D.等腰梯形9.如图,过O外一点P作O的两条切线PD、PB,切点分别为D、B,作直径∠的度数为()AB,连接AD、BD,若80P∠=︒,则AA.50°B.60°C.70°D.80°10.如图,在∠ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE∠AB于E,PF∠AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5∠=︒,11.如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B'处,若148∠=︒,则B232∠的度数为().A.124°B.114°C.104°D.56°12.下列说法正确的是()A.矩形的对角线相互垂直B.菱形的对角线相等C.平行四边形是轴对称图形D.等腰梯形的对角线相等13.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:∠△EAG=45°:∠CE=3DE;∠AG∠CF;∠S△FGC=725,其中正确结论的个数是()A.1个B.2个C.3个D.4个14.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8B.10C.12D.1415.如图,在四边形ABCD中,∠A=90°,AB=AD=3,M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),E、F分别为D M,MN的中点,则EF长度的最大值为() .A.4B.3C.D.16.下列说法错误的是()A.菱形的面积等于两条对角线乘积的一半B.矩形的对角线相等C.对角线互相垂直的平行四边形是矩形D.对角线相等的菱形是正方形17.如图所示,将正六边形与正五边形按此方式摆放,正六边形与正五边形的公共顶点为O,且正六边形的边AB与正五边形的边DE共线,则∠COF的度数是()A.86°B.84°C.76°D.74°18.如图,在矩形ABCD中,点E、F分别在边AD、DC上,ABE DEF,AB=,26DF=,则BE的长是()DE=,3D.A.12B.15C.19.如图,在一张矩形纸片ABCD中4BC=,点E,F分别在AD,BC上,AB=,8将纸片ABCD沿直线EF折叠,点C落在AD上的点H处,点D落在点G处,连接CE,CH.有以下四个结论:∠四边形CFHE是菱形;∠CE平分∠DCH;∠线段BF的EF=.以上结论中,其中正确结取值范围为34BF≤≤;∠当点H与点A重合时,5论的个数有()A.1个B.2个C.3个D.4个二、填空题=,连接AE交CD于F,那么20.四边形ABCD是正方形,延长BC至E,使CE AC∠的度数为________.AFC21.M为矩形ABCD中AD的中点,P为BC上一点,PE∠MC,PF∠MB,当AB、BC 满足_________时,四边形PEMF为矩形.22.如图,在矩形ABCD中,E,F分别是边AB,BC上的点.将∠A,∠B,∠C按如图所示的方式向内翻折,EQ ,EF ,DF 为折痕.若A ,B ,C 恰好都落在同一点P 上,AE =1,则ED =___.23.如图,△ABC 内接于∠O ,∠BAC =120°,AB =AC ,BD 为∠O 的直径,CD =8,OA 交 BC 于点 E ,则 AE 的长度是________.24.如图,在正五边形ABCDE 中,AC 为对角线,以点A 为圆心,AE 为半径画圆弧交AC 于点F ,连结EF ,则∠1的度数为__.25.如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形∠的边GD 在边AD 上,若图1正方形中MN=1,则CD=____.26.如图,在正方形ABCD 中,点E ,F 分别是BC ,CD 上的点,连接AE ,EF ,AF ,若DF BE EF +=,则EAF ∠=______︒.27.如图,已知抛物线24=-+的顶点为D,与y轴交于点C,过点C作x轴的y x x c平行线AC交抛物线于点A,过点A作y轴的平行线AB交射线OD于点B,若OA OB=,则c的值为_____________.28.如图,点E、F、G、H分别是矩形ABCD边AB、BC、CD、DA上的点,且HG 与EF交于点I,连接HE、FG,若AB=7,BC=6,EF//AD,HG//AB,则HE+FG的最小值是______.29.在□ABCD中,∠A:∠B=2:3,则∠B=____,∠C=_____,∠D=____.30.如图,菱形ABCD中,∠BCD=50°,BC的垂直平分线交对角线AC于点F,垂足为E,连接BF、DF,则∠DFC的度数是_____.'沿对角线AC折叠,得到如图所示的图形.若∠BAO=34°,则31.把长方形AB CD∠BAC的大小为_______.32.如图,M 是▭ABCD 的AB 的中点,CM 交BD 于E ,则图中阴影部分的面积与▱ABCD 的面积之比为_____.33.如图,矩形ABCD 中,AD=6,P 为边AD 上一点,且AP=2,在对角线BD 上寻找一点M ,使AM+PM 最小,则AM+PM 的最小值为_____.34.如图,在▱ABCD 中,BE 、CE 分别平分∠ABC 、∠BCD ,E 在AD 上,BE=12cm ,CE=5cm .则▱ABCD 的周长为_____,面积为_____.35.在平面直角坐标系中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,Q y x ⎛⎫ ⎪⎝⎭称为点P 的“逆倒数点”.如图,在矩形OABC 中,点B 的坐标为(48),,反比例函数()0k y x x =>的图象经过矩形对角线交点M .点D 是该反比例函数图象上的点,点E 是对角线上的一点,且点E 是点D 的“逆倒数点”,点E 的坐标为______.36.如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON ∠OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为 _____.37.如图,点E 为正方形ABCD 外一点,且ED CD =,连接AE ,交BD 于点F .若40CDE ∠=,则∠DCF 的度数为_______.38.如图,在矩形ABCD 中,5,3AB BC ==,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 _____ .39.如图,点E 、F 分别为正方形ABCD 的边AB 、BC 上的点,满足∠EDF =45°.连接DE 、DF 分别交正方形对角线AC 于点H 、G ,再连接EG ,有如下结论:∠AE CF EF +>;∠ED 始终平分∠AEF ;∠∠AEH ∠∠DGH ;∠DE ;∠14DGH DEF S S =△△.在上述结论中,正确的有______.(请填正确的序号)三、解答题40.如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和线段的端点均在小正方形的顶点上.(利用格点和没有刻度的直尺作图,保留作图痕迹)(1)在方格纸1中画出ADC △,使ADC △与ABC 关于直线AC 对称;(2)在方格纸2中画出以EF 线段为一边的平行四边形(点G ,点H 均在小正方形的顶点上),且平行四边形面积为4;(3)在方格纸3中,连接FM ,在FM 上确定一点P ,使得点P 为FM 中点. 41.如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,连接BE 并延长交AD 延长线于点F ,若AB =AF .(1)求证:点D 是AF 的中点;(2)若∠F =60︒,CD =6,求∠ABF 的面积.42.如图1,在等腰ABO 中,AB AO =,分别延长AO 、BO 至点C 、点D ,使得CO AO =、DO BO =,连接AD 、BC .()1如图1,求证:AD BC =;()2如图2,分别取边AD 、CO 、BO 的中点E 、F 、H ,猜想EFH 的形状,并说明理由.43.如图,在矩形ABCD 中,M ,N 分别是AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点,若AB=8,AD=12,则四边形ENFM 的周长是多少?44.如图∠,在矩形OACB 中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,点C 在第一象限,8OA =,6OB =.(1)直接写出点C 的坐标:________;(2)如图∠,点G 在BC 边上,连接AG ,将ACG 沿AG 折叠,点C 恰好与线段AB 上一点C '重合,求线段CG 的长度;(3)如图∠,P 是直线26y x =-上一点,PD PB ⊥交线段AC 于D .若P 在第一象限,且PB PD =,试求符合条件的所有点P 的坐标.45.直线443y x =-+与x 轴交于点A ,与y 轴交于点B ,菱形ABCD 如图放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线y =x +m 经过点C ,交x 轴于点E .(1)请直接写出点C ,点D 的坐标,并求出m 的值;(2)点P (0,t )是线段OB 上的一个动点(点P 不与O 、B 重合),经过点P 且平行于x 轴的直线交AB 于M ,交CE 于N .当四边形NEDM 是平行四边形时,求点P 的坐标;(3)点P (0,t )是y 轴正半轴上的一个动点,Q 是平面内任意一点,t 为何值时,以点C 、D 、P 、Q 为顶点的四边形是菱形?46.如图,在Rt ∠ABC 中,∠C =90°,AC =8,BC =6.动点P 从点A 出发,沿AB 以每秒5个单位长度的速度向终点B 运动.当点P 不与点A 重合时,过点P 作PD ∠AC 于点D ,以AP ,AD 为边作▱APED .设点P 的运动时间为t 秒.(1)线段AD的长为(用含t的代数式表示).(2)当点E落在BC边上时,求t的值.(3)连结BE,当tan∠CBE=13时,求t的值.(4)若线段PE的中点为Q,当点Q落在∠ABC一边垂直平分线上时,直接写出t的值.47.如图,BC为∠O的直径,BD平分∠ABC交∠O于点D,DA∠AB于点A.(1)求证:AD是∠O的切线;(2)∠O交AB于点E,若AD=2AE,求sin ABC∠的值.48.如图1,已知在四边形ABCD中,AB//CD,90ABC∠=︒,8BC=,6CD=,1tan2A=.动点P从点D DA方向运动,到A点结束;点Q同时从点A出发,以3个单位的速度沿射线AB运动,点P停止运动后,点Q 也随之停止.以AP,AQ为边作平行四边形AQGP.设运动时间为t.(1)求AB的长;(2)连接GC 、GB ,当CGB △为等腰三角形时,求t 的值;(3)如图2,以PQ 为直径作圆与AD 、PG 分别交于点M 、N ,连接MQ 交PG 于点F ,连接NQ 、DG ,∠当点N 为弧MQ 的中点时,求PMQPNQ S S △△的值;∠当PQM CDG ∠=∠时,求PQ =______(请直接写出答案).49.思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD∠AB 交AP 的延长线于点D ,此时测得CD =100米,那么A ,B 间的距离是_____米.思维探索:(2)在∠ABC 和∠ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将∠ADE 绕点A 逆时针方向旋转,把点E 在AC 边上时∠ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点M 是线段BD 的中点,连接MC ,ME .∠如图2,当∠ADE 在起始位置时,猜想:MC 与ME 的数量关系和位置关系分别是______;∠如图3,当α=90°时,点D 落在AB 边上,请判断MC 与ME 的数量关系和位置关系,并证明你的结论;参考答案:1.B【详解】分析:利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.详解:∠多边形的每个外角相等,且其和为360°,∠这个正多边形的边形为3602415o o ÷=,∠这个正多边形是正十五边形.故选B.点睛:考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,用360除以一个外角的度数,结果即为正多边形的边形.2.C【分析】根据平行四边形的性质来解答即可.【详解】解:∠平行四边形,∠两个相邻内角互补,又∠两个相邻内角的度数比为1:2,∠两个相邻的内角为60°、120°,∠较小的内角为60°.故选:C .【点睛】本题考查平行四边形的性质,熟练掌握平行四边形的相关性质是解题的关键. 3.C【分析】根据相似多边形的对应角相等以及四边形的内角和为360︒解答即可.【详解】解:∠四边形ABCD ∽四边形EFGH∠120H D ∠=∠=︒∠360()70B F E G H ∠=∠=︒-∠+∠+∠=︒故选:C .【点睛】本题考查了相似多边形的性质、多边形的内角和;理解相似多边形的对应角相等是解题的关键.4.B【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出三角形的三边,再求解即可.【详解】解:∠三角形的三条中位线分别为3cm、4cm、6cm,∠三角形的三边分别为6cm,8cm,12cm,∠这个三角形的周长=6+8+12=26cm.故选:B.【点睛】本题考查了三角形中位线的性质,解题的关键是熟记三角形中位线的性质定理.5.B【分析】延长AF交BC的延长线于点H,证明∠ADF∠∠HCF,得到CH=AD,设AE=3x,则DE=4x,AD=7x,证得∠AEG∠∠HBG,得到AE AGBH HG==314,即可求出AGGF【详解】解:延长AF交BC的延长线于点H,∠四边形ABCD是正方形,∠∠D=∠DCH=90°,AD∥BC,∠∠DAF=∠H,∠DF CF=,∠∠ADF∠∠HCF(AAS),∠CH=AD,设AE=3x,则DE=4x,AD=7x,∠CH=AD=BC=7x,∠AD∥BC,∠∠AEG∠∠HBG,∠AE AGBH HG==314,∠AGGF =6 11,故选:B.【点睛】此题考查了正方形的性质,相似三角形的性质,全等三角形的判定及性质,熟记各定理是解题的关键.6.D【详解】解:∠四边形ABCD是平行四边形,∠∠D=∠B=60°.故A成立;∠AD△BC,∠∠A+∠B=180°,∠∠A=180°-∠B=120°,故B成立;∠AD△BC,∠∠C+∠D=180°,故C成立;∠四边形ABCD是平行四边形,∠∠C=∠A=120°,故D不成立,故选D.7.B【分析】根据各四边形的性质对各个选项进行分析从而得出最后答案.【详解】解:A、对角线互相平分的四边形是平行四边形,正确;B、错误,对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形;C、对角线互相垂直的矩形是正方形,正确;D、对角线互相垂直的平行四边形是菱形,正确.故选:B.【点睛】本题主要考查了正方形、平行四边形、菱形的判定方法.解决此题的关键是熟练掌握运用这些判定.8.B【分析】根据平行四边形的判定与矩形的判定定理,即可求得答案.【详解】∠对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,∠对角线相等且互相平分的四边形一定是矩形.故选B.【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.9.A【分析】如图,连接OD ,可得90ODP OBP ∠=∠=︒,再利用四边形的内角和定理求解BOD ∠,从而可得答案.【详解】解:如图,连接OD ,∠过O 外一点P 作O 的两条切线PD 、PB ,∠90ODP OBP ∠=∠=︒,∠80P ∠=︒,∠360909080100DOB ∠=︒-︒-︒-︒=︒, ∠1502A DOB ∠=∠=︒, 故选A .【点睛】本题考查的是切线的性质,四边形的内角和定理的应用,圆周角定理的应用,作出过切点的半径是解本题的关键.10.C【分析】首先证明四边形AEPF 为矩形,可得AM =12AP ,最后利用垂线段最短确定AP 的位置,利用面积相等求出AP 的长,即可得AM .【详解】在△ABC 中,因为AB 2+AC 2=BC 2,所以△ABC 为直角三角形,∠A =90°,又因为PE ∠AB ,PF ∠AC ,故四边形AEPF 为矩形,因为M 为 EF 中点,所以M 也是 AP 中点,即AM =12AP ,故当AP ∠BC 时,AP 有最小值,此时AM 最小, 由1122ABC S AB AC BC AP ∆=⨯⨯=⨯⨯,可得AP =125,AM =12AP =6 1.25= 故本题正确答案为C.【点睛】本题考查了矩形的判定和性质,确定出AP ∠BC 时AM 最小是解题关键.11.A【分析】根据折叠、平行四边形的性质,三角形的内角和定理,即可求出答案.【详解】解:由折叠得,45∠=∠,∠四边形ABCD 是平行四边形,∠AB CD ,∠53∠=∠,∠3=4∠∠,又∠13448∠=∠+∠=︒, ∠154348242∠=∠=∠=⨯︒=︒, 在ABC 中,180521802432124B ∠=︒-∠-∠=︒-︒-︒=︒,故选:A .【点睛】本题考查折叠的性质、平行四边形的性质,三角形的内角和定理等知识,由图形直观得出各个角之间的关系是正确解答的关键.12.D【分析】根据矩形、菱形、平行四边形、等腰梯形的性质进行逐一分析解答即可.【详解】A 、错误,矩形的对角线相等;B 、错误,菱形的对角线相互垂直;C 、错误,平行四边形是中心对称图形;D 、正确,等腰梯形的对角线相等.故选D . 【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉其性质定理.13.C【分析】∠由正方形的性质和翻折的性质可证明Rt△ABG∠Rt△AFG(HL),推出∠BAG=∠F AG,根据∠DAE=∠F AE,可得∠EAG=12∠BAD=45°;∠由题意得EF=DE,GB=CG=GF=6,设DE=EF=x,则CE=12-x,在Rt△ECG中,(12-x)2+36=(x+6)2,求出x,则可得到CE=2DE;∠由CG=BG,BG=GF,可得CG=GF,则∠GFC=∠GCF,因为∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,可推出∠AGB=∠GCF,则AG∠CF;∠由S△GCE=12×GC×CE,又因为△GFC和△FCE等高,可得S△GFC:S△FEC=3:2,S△GFC=3 5×24=725.【详解】解:∠∠正方形ABCD,∠AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质可得,AF=AD,∠AFE=∠D=90°,∠∠AFG=90°=∠B,AB=AF,又∠AG=AG,∠Rt△ABG∠Rt△AFG(HL),∠∠BAG=∠F AG,∠∠DAE=∠F AE,∠∠EAG=12∠BAD=45°,故∠正确;∠由题意得EF=DE,GB=CG=GF=6,设DE=EF=x,则CE=12-x,在Rt∠ECG中,(12-x)2+62=(x+6)2,∠x=4,∠DE=4,CE=8,∠CE=2DE,故∠错误;∠∠CG=BG,BG=GF,∠CG=GF,∠∠GFC=∠GCF,∠Rt∠ABG∠Rt∠AFG,∠∠AGB=∠AGF,∠∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,∠∠AGB=∠GCF,∠AG∠CF,故∠正确;∠∠S△GCE=12×GC×CE=12×6×8=24,又∠GF=6,EF=4,∠GFC和∠FCE等高,∠S△GFC:S△FEC=3:2,∠S△GFC=35×24=725,故∠正确;综上,正确的是∠∠∠,共3个.故选:C.【点睛】本题考查翻折变换的性质、正方形的性质,本题综合性很强,熟练掌握全等三角形的判定和性质,勾股定理,三角形面积的计算方法是解题的关键.14.B【详解】试题分析:根据平行四边形的性质可知AB=CD,AD∠BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.15.B【分析】根据三角形的中位线定理得出EF=12DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.【详解】解:∠ED=EM,MF=FN,∠EF=12DN,∠DN最大时,EF最大,∠N与B重合时DN最大,此时DN=DB=6,∠EF的最大值为3.故选:B.【点睛】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.16.C【分析】根据有关的定理和定义找到错误的命题即可得到答案;【详解】A、菱形的面积等于对角线乘积的一半,故正确,不符合题意;B、矩形的对角线相等,正确,不符合题意;C、对角线平分且相等的平行四边形是矩形,错误,符合题意;D、对角线相等的菱形是正方形,正确,不符合题意;故选C.【点睛】考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.17.B【分析】利用正多边形的性质求出∠EOF,∠BOC,∠BOE即可解决问题.【详解】解:由题意:∠EOF=108°,∠BOC=120°,∠OEB=72°,∠OBE=60°,∠∠BOE=180°﹣72°﹣60°=48°,∠∠COF=360°﹣108°﹣48°﹣120°=84°,故选:B.【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于常考题型.18.C【分析】利用相似三角形的性质求出AE的长,再利用勾股定理求解即可.【详解】解:∠ABE DEF,∠AB AE DE DF,∠623AE =,∠9AE=,∠矩形ABCD中,90A∠=︒,∠BE故选:C.【点睛】本题考查了矩形的性质、相似三角形的性质、勾股定理,解题关键是求出AE的长后利用勾股定理求解.19.B【分析】先根据翻折的性质可得CF=FH,∠HFE=∠CFE,可证∠FEH是等腰三角形,可得HE=HF=FC,判断出四边形CFHE是平行四边形,然后根据邻边相等的平行四边形是菱形证明,判断出∠正确;根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时CE平分∠DCH,判断出∠错误;过点F作FM∠AD于M,点H与点A 重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=FM=MD=CD,求出BF=4,然后写出BF的取值范围,判断出∠正确;求出ME,再利用勾股定理列式求解得到EF,判断出∠正确.【详解】解:∠将纸片ABCD沿直线EF折叠,∠FC=FH,∠HFE=∠CFE,∠AD△BC,∠∠HEF=∠EFC=∠HFE,HE△FC,∠∠HFE为等腰三角形,∠HE=HF=FC,∠EH与CF都是矩形ABCD的对边AD、BC的一部分,∠EH△CF,且HE=FC,∠四边形CFHE是平行四边形,∠FC=FH,∠四边形CFHE是菱形,故∠正确;∠HC为菱形的对角线,∠∠BCH=∠ECH,∠BCD=90°,∠只有∠DCE=30°时CE平分∠DCH,故∠错误;过点F作FM∠AD于M,点H与点A重合时,BF最小,设BF=x,则AF=FC=8﹣x,在Rt∠ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得:x=3,点G与点D重合时,点H与点M重合,BF最大,CF=FM=DM=CD=4,∠BF=4,∠线段BF的取值范围为3≤BF≤4,故∠正确;当点H与点A重合时,由∠中BF=3,∠AF=AE=CF=EC=8-3=5,则ME=5﹣3=2,由勾股定理得,EF=∠错误;综上所述,结论正确的有∠∠共2个,故B正确.故选:B.【点睛】本题考查矩形折叠性质,等腰三角形的判定,菱形的判定与性质,勾股定理,掌握矩形折叠性质,菱形的判定与性质,勾股定理是解题关键.20.112.5【分析】根据正方形的性质有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=22.5°,在△AFC中由三角形的内角和就可以得出∠AFC的度数.【详解】解:∠四边形ABCD是正方形,∠∠ACD=∠ACB=45°.∠∠ACB═∠CAE+∠AEC,∠∠CAE+∠AEC=45°.∠CE=AC,∠∠CAE=∠AEC,∠∠CAE=22.5°.∠∠CAE+∠ACD+∠AFC=180°,∠∠AFC=180°-22.5°-45°=112.5°.故答案为112.5°.【点睛】本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.21.12AB BC =##2BC AB =【详解】∠在矩形ABCD 中,M 为AD 边的中点,AB=12BC ,∠AB =DC =AM =MD ,∠A =∠D =90°,∠∠ABM =∠MCD =45°,∠∠BMC =90°,又∠PE ∠MC ,PF ∠MB ,∠∠PFM =△PEM =90°,∠四边形PEMF 是矩形.故答案为:AB =12BC .22.3【分析】连接,EP DP ,根据折叠的性质得出三角形全等,根据三角形全等的性质得出对应边相等,由ED EP PD =+,利用等量代换分别求出,EP PD .【详解】解:连接,EP DP 如下图所示:根据A ,B ,C 恰好都落在同一点P 上及折叠的性质,有,,AQE PQE EBF EPF FPD FCD ≌≌≌,1,1,AE PE EB EP CD PD ∴=====,2AB AE EB =+=,根据正方形的性质得:2AB DC ==,2PD ∴=,ED EP PD =+,123ED ∴=+=,故答案是:3.【点睛】本题考查了翻折的性质,三角形全等的性质,解题的关键是添加辅助线,通过等量代换的思想进行解答.23.4【分析】证明△OAB 是等边三角形,OA ∠BC 即可推出OE =AE ,再利用三角形中位线定理即可解决问题.【详解】解:∠AB =AC ,∠AB AC =,∠OA ∠BC ,BE =EC ,AB =AC∠∠ABC 是等腰三角形∠∠BAE =∠CAE =12∠BAC =60°,∠OA =OB ,∠∠OAB 是等边三角形,∠BE ∠OA ,∠OE =AE ,∠OB =OD ,BE =EC ,∠ OE是△BCD的中位线∠OE=AE=12CD=4.故答案为:4.【点睛】本题考查三角形的外接圆与外心,圆周角定理,垂径定理,三角形的中位线定理,等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.54°【分析】根据五边形的内角和公式求出∠ABC,根据等腰三角形的性质,三角形内角和的定理计算∠BAC,再求∠EAF,利用圆的性质得AE=AF,最后求出∠1即可.【详解】解:∠五边形ABCDE是正五边形,∠∠EAB=∠ABC=()5-21805⨯︒=108°,∠BA=BC,∠∠BAC=∠BCA=180-1082︒︒=36°,∠∠EAF=108°﹣36°=72°,∠以点A为圆心,AE为半径画圆弧交AC于点F,∠AE=AF,∠∠1=180-722︒︒=54°.故答案为:54°.【点睛】本题考查了正多边形的内角与圆,熟练掌握正多边形的内角的计算公式、和圆的性质,等腰三角形的性质是解题的关键.25122【分析】根据七巧板中图形分别是等腰直角三角形和正方形计算PH的长,即FF'的长,作高线GG',根据直角三角形斜边中线的性质可得GG'的长,即AE的长,可得结论.【详解】解:如图:∠四边形MNQK是正方形,且MN=1,∠∠MNK=45°,在Rt△MNO中,OM=ON∠NL=PL=OL∠PN=12,∠PQ=12,∠∠PQH是等腰直角三角形,∠PH=FF'BE,过G作GG'∠EF',∠GG'=AE=12MN=12,∠CD=AB=AE+BE=12122.故答案为122.【点睛】本题主要考查了正方形的性质、七巧板、等腰直角三角形的性质及勾股定理等知识.熟悉七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边.26.45【分析】延长CB到G,使BG=DF,根据正方形的性质得到AD=AB,∠D=∠ABE=90°,求得∠ABG=∠D=90°,根据全等三角形的性质得到AG=AF,∠GAB=∠DAF,求得GE=EF,推出∠AGE∠∠AFE(SSS),根据全等三角形的性质得到∠GAE=∠EAF,根据全等三角形的性质即可得到结论.【详解】解:延长CB到G,使BG=DF,∠四边形ABCD是正方形,∠AD=AB,∠D=∠ABE=90°,∠∠ABG =∠D =90°,在∠ADF 与∠ABG 中,AB AD ABG D BG DF =⎧⎪∠=∠⎨⎪=⎩,∠∠ADF ∠∠ABG (SAS ),∠AG =AF ,∠GAB =∠DAF ,∠DF +BE =EF ,EG =BG +BE =DF +BE ,∠GE =EF ,在∠AGE 与∠AFE 中,AG AF AE AE GE EF =⎧⎪=⎨⎪=⎩,∠∠AGE ∠∠AFE (SSS ),∠∠GAE =∠EAF ,∠∠GAE =∠GAB +∠BAE =∠DAF +∠BAE =∠EAF ,∠∠BAD =90°,∠∠EAF =45°,故答案为:45.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.27.83【分析】根据抛物线的解析式求得4DH c =-,BF AF OC c ===,然后根据三角形中位线定理得到142c c -=,解得即可. 【详解】解:作抛物线的对称轴,交OA 于E ,交x 轴于H ,∠224()42y x x c x c =-+=-+-,∠顶点为(2)4c -,,∠4DH c =-,∠AC x ∥轴,∠AF OC c AB x ==⊥,轴,∠OA OB =,∠AF BF c ==,∠OH FH =, ∠12DH BF =, ∠142c c -= ∠83c =, 故答案为:83. 【点睛】本题考查了二次函数与几何的综合运用,熟练掌握三角形的中位线定理是解决本题的关键.28【分析】由EF ∠AD ,HG ∠AB ,结合矩形的性质可得四边形AHIE 和四边形IFCG 为矩形,然后根据矩形的性质可的HE +FG 的长度即为AI +CI 的长度,最后利用两点之间,线段最短,求出AC 的长即可.【详解】解:如图所示,连接AI ,CI ,AC ,在矩形ABCD 中,∠BAD =∠BCD =∠B =90°,AB ∠CD ,AD ∠BC ,又∠EF ∠AD ,HG ∠AB ,∠四边形AHIE和四边形IFCG为矩形,∠HE=AI,FG=CI,∠HE+FG的长度即为AI+CI的长度,又∠AI+CI≥AC,∠当A,I,C三点共线时,AI+CI最小值等于AC的长度,在Rt∠ABC中,AC∠HE+FG【点睛】本题考查矩形的判定和性质以及两点之间,线段最短的运用,正确判定四边形AHIE和四边形IFCG为矩形,运用矩形的对角线相等是解题的关键.29.108º,72º,108º【详解】解:∠平行四边形ABCD中,∠A+∠B=180°,又∠∠A:∠B=2:3,∠∠A=72°,∠B=108°,∠∠D=∠B=108°,∠C=∠A=72°.故答案为108º,72º,108º.30.130°【分析】首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题.【详解】∠四边形ABCD是菱形,∠BCD=25°,∠∠ACD=∠ACB=12∠EF垂直平分线段BC,∠FB=FC,∠∠FBC=∠FCB=25°,∠∠CFB=180°﹣25°﹣25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故答案为130°.【点睛】本题考查菱形的性质、线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.62°【分析】先利用AAS 证明∠AOB∠∠COD ,得出∠BAO=∠DCO=34°,∠B′CO=68°,结合折叠的性质得出∠B′CA=∠BCA=34°,则∠BAC=∠B′AC=56°.【详解】由题意,得∠B′CA∠∠BCA ,∠AB′=AB ,∠B′CA=∠BCA ,∠B′AC=∠BAC .∠长方形AB′CD 中,AB′=CD ,∠AB=CD .在∠AOB 与∠COD 中,90B D AOB COD AB CD ∠∠︒⎧⎪∠∠⎨⎪⎩==== , ∠∠AOB∠∠COD (AAS ),∠∠BAO=∠DCO=34°,∠∠B′CO=90°-∠DCO=56°,∠∠B′CA=∠BCA=28°,∠∠B′AC=90°-∠B′CA=62°,∠∠BAC=∠B′AC=62°.【点睛】考查了折叠的性质、矩形的性质和全等三角形的判定与性质,解题关键是证明∠AOB∠∠COD ,得出∠BAO=∠DCO=34°是解题的关键.32.1:3【详解】试题解析:设平行四边形的面积为1,∠四边形ABCD 是平行四边形, ∠12DAB ABCD S S =,又∠M 是ABCD 的AB 的中点, 则1124DAM DAB ABCD S S S ==,1,2BE MB DE CD == ∠EMB △上的高线与DAB 上的高线比为1.3BE BD ==∠1113212 EMB DABS S=⨯=,∠143 DEC MEBS S,==S阴影面积1111141233 =---=,则阴影部分的面积与▱ABCD的面积比为13.故填空答案:13.33.【详解】分析:作DH平分∠BDC交BC于H.连接AH交BD于M.首先证明P、H关于BD对称,连接AH交BD于M,则AM+PM的值最小,最小值=AH.详解:作DH平分∠BDC交BC于H.连接AH交BD于M.∠四边形ABCD是矩形,∠∠C=∠BAD=∠ADC=90°,∠tan∠ADB=ABAD∠∠ADB=30°,∠∠BDC=60°,∠∠CDH=30°,∠CD∠CH2,△DH=2CH=4,∠DP=DH,∠∠MDP=∠MDH,∠P、H关于BD对称,连接AH交BD于M,则AM+PM的值最小,最小值=AH=点睛:本题考查了矩形的性质,解直角三角形,勾股定理,含30º角的直角三角形的性质,轴对称的性质,作DH平分∠BDC交BC于H.连接AH交BD于M.说明P和H关于BD成轴对称是解答本题的关键.34.39cm60cm2【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=12AD=12CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【详解】∠BE、CE分别平分∠ABC、∠BCD,∠∠1=∠3=12∠ABC,∠DCE=∠BCE=12∠BCD,在▱ABCD中,AB=CD,AD=BC,AD∠BC,AB∠CD,∠AD∠BC,AB∠CD,∠∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∠∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∠AB=AE,CD=DE,∠BEC=90°,在Rt△BCE中,根据勾股定理得:BC=13cm,∠平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;作EF∠BC于F,根据直角三角形的面积公式得:EF=·6013BE CEBC=cm,∠平行四边形ABCD的面积=BC·EF=601313⨯=60cm2,故答案为39cm,60cm2.【点睛】本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理等,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.。

2023年中考数学(人教版)总复习训练:四边形综合问题

2023年中考数学(人教版)总复习训练:四边形综合问题

2023年中考数学(人教版)总复习训练:四边形综合问题一、选择题(本大题共10道小题)1. [2021·无锡]下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直2. (2020•丹东)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.正方形B.矩形C.菱形D.梯形3. (2021·无锡中考)如图,D,E,F分别是△ABC各边中点,则以下说法错误的是( )A.△BDE和△DCF的面积相等B.四边形AEDF是平行四边形C.若AB=BC,则四边形AEDF是菱形D.若∠A=90°,则四边形AEDF是矩形4. (2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②5. (2022·湖北襄阳)如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形6. (2021•安徽模拟)如图,Rt△ABC≌Rt△DCB,其中∠ABC=90°,AB=3,BC=4,M为BC中点,EF 过点M交AC、BD于点E、F,连接BE、CF,则下列结论错误的是()A.四边形BECF为平行四边形B.当BF=3.5时,四边形BECF为矩形C.当BF=2.5时,四边形BECF为菱形D.四边形BECF不可能为正方形7. (2020秋•魏县月考)如图,在任意四边形ABCD中,AC,BD是对角线,E,F,G,H分别是线段AB,BC,CD,AD上的点,对于四边形EFGH的形状,某班的学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各条线段的中点时,四边形EFGH为平行四边形B.当E,F,G,H不是各条线段的中点时,四边形EFGH可以为平行四边形C.当E,F,G,H是各条线段的中点时,且AC=BD,四边形EFGH为菱形D.当E,F,G,H不是各条线段的中点时,四边形EFGH不可能为菱形8. (2020•盐田区二模)如图,在正方形ABCD中,点M是AB上一动点,点E是CM的中点,AE 绕点E顺时针旋转90o得到EF,连接DE,DF.给出结论:①DE=EF;②∠CDF=45o;③=;④若正方形的边长为2,则点M在射线AB上运动时,CF有最小值2.其中结论正确的是( )A.①②③B.①②④C.①③④D.②③④9. (2020•庆云县一模)如图,Rt△ABE中,∠B=90o,AB=BE,将△ABE绕点A逆时针旋转45o,得到△AHD,过D作DC⊥BE交BE的延长线于点C,连接BH并延长交DC于点F,连接DE交BF 于点O.下列结论:①DE平分∠HDC;②DO=OE;③H是BF的中点;④BC-CF=2CE;⑤CD=HF,其中正确的有( )A.5个B.4个C.3个D.2个10. (2020·四川眉山中考)如图,正方形ABCD中,点F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG.以下四个结论:①∠EAB=∠GAD;②△AFC∽△AGD;③2AE2=AH•AC;④DG⊥AC其中正确的个数为( )A.1个B.2个C.3个D.4个二、填空题(本大题共8道小题)11. (2021•济南)如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE=.12. (2020•道里区二模)在平行四边形ABCD中,∠A=30o,AD=2,BD=,则平行四边形ABCD的面积为___.13. (2022春•西城区校级期中)如图,已知四边形ABCD满足AB=CD=1,AB⊥CD,E、F分别为AD和BC的中点,则EF=.14. (2020·四川中考真题)如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=_____.15. (2020•温州模拟)如图,四边形ABCD,CEFG均为菱形,A F∠=∠,连结BE,EG,EG//BC,EB⊥BC,若sin∠EGD=,菱形ABCD的周长为12,则菱形CEFG的周长为__________.16. (2020•顺德区三模)如图,分别以△ABC的边AB、AC为一边向外做正方形ABDE和正方形ACFG,连结CE、BG交于点P,连结AP和EG.在不添加任何辅助线和字母的前提下,写出四个不同类型的结论__________.17. (2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A 的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.18. (2020·江苏连云港·中考真题)如图,正六边形A1A2A3A4A5A6内部有一个正五形B1B2B3B4B5,且A3A4//B3B4,直线l经过B2、B3,则直线l与A1A2的夹角a=________ .三、解答题(本大题共6道小题)19. (2020秋•肇源县期末)如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH.求证:四边形EFGH是平行四边形.20. (2020春•秦淮区期末)如图,四边形ABCD是菱形,E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE.求证:四边形EFGH是矩形.21. (2022·贵州铜仁)如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED.(1)求证:BD=CD.(2)若∠A=150°,∠BDC=2∠1,求∠DBC的度数.22. (2020春•阳西县期末)如图,在矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H 分别在矩形ABCD的边AB,CD,DA上,AH=2,DG=2.求证:四边形EFGH为正方形.23. (2020春•海陵区)如图,O为∠BAC内一点,E、F、G、H分别为AB,AC,OC,OB的中点.(1)求证:四边形EFGH为平行四边形;(2)当AB=AC,AO平分∠BAC时,求证:四边形EFGH为矩形.24. (2020年湖北省中考数学模拟题)如图1,AD∥BC,AB ⊥BC于B,∠DCB=75°,以CD为边的等边△DCE的另一顶点E在线段AB上.(1)填空:∠ADE=____;(2)求证:AB=BC;的值.(3)如图2所示,若F为线段CD上一点,∠FBC=30°,求AEEC。

部编版2020年中考数学真题汇编 四边形(填空+选择40题)

部编版2020年中考数学真题汇编 四边形(填空+选择40题)

四边形(填空+选择40题)一、选择题1.已知正多边形的一个外角等于40°,那么这个正多边形的边数为( ) A.6 B.7 C.8 D.9 【答案】D2.下列命题正确的是( )A. 平行四边形的对角线互相垂直平分B. 矩形的对角线互相垂直平分C. 菱形的对角线互相平分且相等 D. 正方形的对角线互相垂直平分 【答案】D 3.如图,将矩形 沿对角线折叠,点 落在 处,交于点 ,已知,则的度为( )A. B.C.D.【答案】D4.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,点E 为边CD 的中点,若菱形ABCD 的周长为16,∠BAD =60°,则△OCE 的面积是( )。

A. B . 2 C.D. 4【答案】A5.如图,在中,,的半径为3,则图中阴影部分的面积是()A. B.C.D.【答案】C6.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A.B.C.D.【答案】C7.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC 等于()A. 112°B. 110°C. 108°D. 106°【答案】D8.下列命题,其中是真命题的为()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形 D. 一组邻边相等的矩形是正方形【答案】D9.如图,点是正方形的边上一点,把绕点顺时针旋转到的位置,若四边形的面积为25,,则的长为()A. 5B.C. 7D.【答案】D10.□ABCD中,E,F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B11.在中,若与的角平分线交于点,则的形状是()A. 锐角三角形B. 直角三角形 C. 钝角三角形 D. 不能确定【答案】B12.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°【答案】B13.如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()。

2023年中考数学专题复习——专项训练(五)四边形

2023年中考数学专题复习——专项训练(五)四边形

2023年中考数学专题复习——专项训练(五)四边形一、选择题(本大题共10小题,每小题3分,共30分)1. 从七边形的一个顶点作对角线,把这个七边形分成三角形的个数是()A. 7B. 6C. 5D. 42. “花影遮墙,峰峦叠窗.”苏州园林空透的窗棂中蕴含着许多的数学元素.图①中的窗棂是冰裂纹窗,图②是这种窗棂中的部分图案.若∠1=∠2=75º,∠3=∠4=65º,则∠5的度数是()A. 80ºB. 75ºC. 65ºD. 60º①②第2题图第3题图第4题图第5题图3. 如图,已知四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DGF的度数是()A.70°B.60°C.80°D.45°4. 如图,已知四边形ABCD是平行四边形,下列结论中正确的是()A. 当AB=BC时,四边形ABCD是矩形B. 当AC=BD时,四边形ABCD是菱形C. 当∠ABC=90º时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形5. 如图,四边形ABCD为菱形,若CE为边AB的垂直平分线,则∠ADB的度数为()A. 20°B. 25°C. 30°D. 40°6. 用图①所示两种图形可以无缝隙拼接成图②所示的正方形ABCD.已知图①所示图形,∠F=45°,∠H=15°,MN=2,则图②中正方形的对角线AC的长为()A. B. C.1 D.2①②第6题图第8题图第9题图第10题图7. 已知E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,对角线AC,BD相交于点O.根据下列条件,不能证明四边形EFGH是矩形的是()A. AC⊥BDB. AB=BC,OB=ODC. AB=BC,OA=OCD. AB=BC,CD=AD8. 如图,菱形ABCD的边长为2,∠ABC=60º,CE∥BD,则△BDE的面积为()A. 1B. 2C. 3D.9. 如图,在平面直角坐标系中,四边形ABCD是正方形,点A的坐标为(0,2),∠ABO=30º,E为CD的中点,则点E的坐标为()21 B.)2 C. D.2A. )10. 如图,菱形ABCD的边长为12,∠ABC=60°,直线EF⊥AC,垂足为H,分别与AD,AB及CB的延长线交于点E,M,F.若AE∶BF=1∶2,则CH的长为()A. 12B. 10C. 8D. 6二、填空题(本大题共6小题,每小题4分,共24分)11. 六边形的内角和比它的外角和多__________度.12. 如图,在△ABC中,∠ACB=120º,分别以AC,BC为边,向△ABC外作正方形ACDE和正五边形BCFGH,则∠DCF的度数是.第12题图第13题图第14题图13. 如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上.若A(2,0),D(4,0),以点O为圆心,OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是.14. 如图,小明同学将边长为6的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移得到△A'B'C'.当两个三角形重叠部分为菱形时,A'D的长为.15. 把一张宽为2 cm的矩形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为4 cm的等腰直角三角形,则纸片的长AD为cm.第15题图第16题图16. 如图13,在□ABCD中,AE⊥BC于点E,N是EC的中点,M是AB的中点.已知S△ABD=6,BC=4,则MN的长为.三、解答题(本大题共4小题,共46分)17. (10分)如图,在□ABCD中,AE⊥BC于点E,延长BC至点F,使CF=BE,连接AF,DE,DF.求证:四边形AEFD是矩形.第17题图第18题图第19题图第20题图18. (10分)如图,在□ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等;(不写作法,保留作图痕迹)(2)若BC=8,CD=5,求CE的长.19. (12分)如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C 作CE⊥AB,交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=6,BD=8,求CE的长.20.(14分)如图,在正方形ABCD中,E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N.若正方形ABCD的边长为10,P是MN上一点,求△PDC周长的最小值.参考答案专项训练(五)答案详解9. A 解析:先分别求出点C,D的坐标,再利用中点坐标求解.10. B 解析:因为四边形ABCD是菱形,所以AD∥BC,AB=BC=12,∠MAH=∠EAH.因为EF⊥AC,所以∠AHM=∠AHE=∠CHE= 90°.因为AH=AH,所以△AHM≌△AHE.所以AM=AE.因为AD∥BC,所以△AME∽△BMF.所以AM AEBM BF==12.所以AM=AE=4,BM=8.所以BF=8.所以CF=20.因为∠ABC=60°,所以△ABC是等边三角形.所以∠ACB=60°.所以CH=CF•cos 60°=10.16.52【解析】连接AC交BD于点O,连接ON,OM,取BE的中点M′,连接MM′,如图所示.易得四边形OMM′N 是矩形,则∠MON=90º.因为S□ABCD=2S△ABD=12,BC=4,所以BC•AE=12.所以AE=3.利用三角形中位线定理,得OM=2,ON=32.由勾股定理,得MN=52.第16题图三、17.证明:因为CF=BE,所以CF+EC=BE+EC,即EF=BC.因为四边形ABCD是平行四边形,所以AD∥BC,AD=BC.所以AD∥EF,AD=EF.所以四边形AEFD是平行四边形. 因为AE⊥BC,所以∠AEF=90°.所以□AEFD是矩形.18. 解:(1)如图所示,点E即为所求.第18题图(2)因为四边形ABCD是平行四边形,所以AB=CD=5,AD∥BC.所以∠DAE=∠BEA.因为AE是∠BAD的平分线,所以∠DAE=∠BAE.所以∠BAE=∠BEA.所以BE=AB=5.所以CE=BC﹣BE=3.19.(1)证明:因为AB∥CD,所以∠OAB=∠DCA.因为AC 平分DAB ∠,所以∠OAB=∠DAC.所以∠DAC=∠DCA.所以CD=AD.因为AB=AD ,所以CD=AB. 因为AB ∥CD ,所以四边形ABCD 是平行四边形.因为AD=AB ,所以□ABCD 是菱形. (2)解:因为四边形ABCD 是菱形,BD=8,所以OA=OC ,BD ⊥AC ,OB=OD=12BD=4.所以∠AOB=90°.所以所以AC=2OA=所以菱形ABCD 的面积为12AC•BD=12×8=.因为CE ⊥AB ,所以菱形ABCD 的面积为AB •CE=,解得. 20. 解:(1)结论:CF=2DG.证明:因为四边形ABCD 是正方形,所以AD=BC=CD=AB ,∠ADC=∠C=90º. 因为E 是AD 的中点,所以DE=AE.所以AD=CD=2DE.因为EG ⊥DF ,所以∠DHG=90º.所以∠CDF+∠DGE=90º,∠DGE+∠DEG=90º. 所以∠CDF=∠DEG.所以△DEG ∽△CDF.所以12DG DE CF CD ==.所以CF=2DG. (2)作点C 关于直线NM 的对称点K ,连接DK 交MN 于点P ,连接PC ,此时△PDC 的周长值最小,最小值为CD+PD+PC=CD+PD+PK=CD+DK.由(1),知CD=AD=10,ED=AE=5,DG=52,所以.因为12DE •DG=12EG •DH ,所以DH=DE DGEG⋅所以EH=2DH=同法可得2DH EHHM DE⋅==,所以DM=CN=NK==1.在Rt △DCK 中,所以△PCD 的周长的最小值为10+第20题图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图,正方形 ABCD 中,以 AD 为底边作等腰△ADE,将△ADE 沿 DE 折叠,点 A 落到点 F 处,连接 EF 刚好经过点 C,再连接 AF,分别交 DE 于 G,交 CD 于 H.在 下列结论中:①△ABM≌△DCN;②∠DAF=30°;③△AEF 是等腰直角三角形;④ EC=CF;⑤S△HCF=S△ADH,其中正确的结论有( )确结论的Βιβλιοθήκη 数为( C )A.2 C.4
B.3 D.5
【分析】①②、证明△ABH≌△ADF,得AF=AH, 再得AC平分∠FAH,则AM既是中线,又是高线, 得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH; 所以①②都正确; ③可以直接求出FC的长,计算S△ACF≠1,错误; ④根据正方形边长为2,分别计算CE和AF的长 得结论正确;还可以利用图2证明△ADF≌△CDN 得:CN=AF,由CE= CN= AF; ⑤利用相似先得出EG2=FG•CG,再根据同角的 三角函数列式计算CG的长为1,则DG=CG,所 以⑤也正确.故选:C.
△APB+S△BPD =2+ ,由此即可判定.
如图,已知正方形 ABCD 的边长为 2,E 是边 BC 上的动点,BF⊥AE 交 CD 于点 F, 垂足为 G,连结 CG.下列说法:①AG>GE;②AE=BF;③点 G 运动的路径长为π; ④CG 的最小值为 ﹣1.其中正确的说法是
【分析】根据正方形对角线的性质可得出当 E 移动到与 C 重合时,F 点和 D 点重 合,此时 G 点为 AC 中点,故①错误;求得∠BAE=∠CBF,根据正方形的性质可 得 AB=BC,∠ABC=∠C=90°,然后利用“角角边”证明△ABE 和△BCF 全等,根据全 等三角形对应角相等可得 AE=BF,判断出②正确;根据题意,G 点的轨迹是以 AB 中点 O 为圆心,AO 为半径的圆弧,然后求出弧的长度,判断出③错误;由于 OC 和 OG 的长度是一定的,因此当 O、G、C 在同一条直线上时,CG 取最小值,根 据勾股定理求出最小 CG 长度.
不正确.故选:D.
如图,在边长为 1 的正方形 ABCD 中,动点 F,E 分别以相同的速度从 D,C 两点 同时出发向 C 和 B 运动(任何一个点到达即停止),过点 P 作 PM∥CD 交 BC 于 M 点,PN∥BC 交 CD 于 N 点,连接 MN,在运动过程中,则下列结论: ①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段 MN 的最小值为
其中正确命题的序号( D)
A.(1)(2)(3) B.(2)(3)(4) C.(2)(4) D.(1)(3)
【分析】(1)根据矩形的性质得到 AD=BC= AB= CD,由 DE 平分∠ADC,得 到△ADH 是等腰直角三角形,△DEC 是等腰直角三角形,得到 DE= CD,得到 等腰三角形求出∠AED=67.5°,∠AEB=67.5°,得到(1)正确; (2)设 DH=1,则 AH=DH=1,AD=DE= ,求出 HE= ﹣1,得到 2 HE≠1,所 以(2)不正确; (3)通过角的度数求出△AOH 和△OEH 是等腰三角形,从而得到(3)正确; (4)由△AFH≌△CHE,到 AF=EH,由△ABE≌△AHE,得到 BE=EH,于是得到 BC﹣BF=(BE+CE)﹣(AB﹣AF)=(CD+EH)﹣(CD﹣EH)=2EH,从而得到(4)
【分析】通过条件可以得出△ABE≌△ADF,从而 得出∠BAE=∠DAF,BE=DF,得到CE=CF;由正 方形的性质就可以得出∠AEB=75°;设EC=x,由 勾股定理得到EF,表示出BE,利用三角形的面 积公式分别表示出S△CEF和2S△ABE,再通过比较大 小就可以得出结论.
综上所述,①正确;②正确;③错误;④错 误;⑤正确,正确的有3个, 故选:B.
四边形选择综合题2
1.如图,在菱形ABCD中,AB=BD,点E、F分别 是AB、AD上任意的点(不与端点重合),且 AE=DF,连接BF与DE相交于点G,连接CG与BD相 交于点H.给出如下几个结论:①△AED≌△DFB; ②S四边形BCDG= CG2;
③若AF=2DF,则BG=6GF;④CG与BD一定不垂 直;⑤∠BGE的大小为 定值.其中正确的结论
故①正确;②正确;③正确;④错误.故选: B.
5.如图,在矩形ABCD中,BC= AB,∠ADC的 平分线交边BC于点E,AH⊥DE于点H,连接CH 并延长交边AB于点F,连接AE交CF于点O,给出 下列命题: (1)∠AEB=∠AEH ,(2)DH= 2 2 EH,(3)OH = AE (4)BC﹣BF= EH
3.如图,边长为2的正方形ABCD中,AE平分 ∠DAC,AE交CD于点F,CE⊥AE,垂足为点E, EG⊥CD,垂足为点G,点H在边BC上,BH=DF, 连接AH、FH,FH与AC交于点M,以下结论: ①FH=2BH;②AC⊥FH;③S△ACF=1;④CE= AF; ⑤EG2=FG•DG,其中正
4.如图,在正方形ABCD中,E、F分别为BC、 CD的中点,连接AE,BF交于点G,将△BCF沿BF 对折,得到△BPF,延长FP交BA延长线于点Q,
下列结论正确的个数是( B )
①AE=BF;②AE⊥BF;③sin∠BQP=
ECFG=2S△BGE.
;④S四边形
A.4 B.3 C.2 D.1
【分析】首先证明△ABE≌△BCF,再利用角的 关系求得∠BGE=90°,即可得到①AE=BF;② AE⊥BF;△BCF沿BF对折,得到△BPF,利用角 的关系求出QF=QB,解出BP,QB,根据正弦 的定义即可求解;根据AA可证△BGE与△BCF相 似,进一步得到相似比,再根据相似三角形 的性质即可求解.
【分析】首先证明∠HCF=∠FHC=67.5°,由此可 以判定③正确,②错误,再证明AC∥DF,推出 S△DFA=S△FDC,由此判断⑤正确,根据ASA可以判断 ①正确,在△EAF中,由∠CAE=∠CAF, ∠AEC=90°,作CK⊥AF于K,推出CE=CK<CF,由 此判断④错误.
如图,在矩形 ABCD 中,E 是 AD 边的中点,BE⊥AC 于点 F,连接 DF,分析下列 四个结论:①△AEF∽△CAB; ②CF=2AF; ③DF=DC; ④S 四边形 CDEF= S△AEF, 其中正确的结论有( )个
.其中正确的结论有( )
【分析】由正方形的性质及条件可判断出① △ABE≌△BCF,即可判断出②AE=BF, ∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得 ∠CBF+∠BEA=90°,可得出∠APB=90°,即可判 断③,由△BPE∽△BCF,利用相似三角形的性质, 结合CF=BE可判断④;然后根据点P在运动中保 持∠APB=90°,可得点P的路径是一段以AB为直 径的弧,设AB的中点为G,连接CG交弧于点P, 此时CP的长度最小,最后在Rt△BCG中,根据勾 股定理,求出CG的长度,再求出PG的长度,即 可求出线段CP的最小值,可判断⑤.
【分析】①四边形 ABCD 是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB, 于是△AEF∽△CAB,故①正确; ②由 AE= AD= BC,又 AD∥BC,所以 = = ,故②正确; ③过 D 作 DM∥BE 交 AC于 N,得到四边形 BMDE 是平行四边形,求出 BM=DE= BC, 得到 CN=NF,根据线段的垂直平分线的性质可得结论,故③正确; ④根据△AEF∽△CBF 得到 = = ,求出 S△AEF= S△ABF,S△ABF= S S 矩形 ABCD 四边形
CDEF =S△ACD﹣S△AEF= S 矩形 ABCD﹣ S 矩形 ABCD= S 矩形 ABCD,即可得到 S 四边形 CDEF =5S△AEF=, 故④错误.
如图,正方形 ABCD 的边 CD 与正方形 CGFE 的边 CE 重合,O 是 EG 的中点,∠EGC 的平分线 GH 过点 D,交 BE 于 H,连接 OH、FH、EG 与 FH 交于 M,对于下面四 个结论:①GH⊥BE;②HO BG;③点 H 不在正方形 CGFE 的外接圆上;④△
综上所述,正确的结论有①③⑤,共3个,
故选:B.
2.如图,正方形ABCD中,点E,F分别在 BC,CD上,△AEF是等边三角形,连接AC 交EF于点G,下列结论:①CE=CF,② ∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤ S△CEF=2S△ABE,其中结论正确的个数为( )
B
A.2个 B.3个 C.4个 D.5个
如图,在正方形 ABCD 外取一点 E,连接 AE、BE、DE.过点 A 作 AE 的垂线交 DE 于点 P.若 AE=AP=1,PB= .下列结论:①△APD≌△AEB;②EB⊥ED;③点 B 到直线 AE 的距离为 ;④S△APD+S△APB=1+ ;⑤S 正方形 ABCD=4+ .其中正确结论 的序号是
【分析】①首先利用已知条件根据边角边可以证明△APD≌△AEB; ②由①可得∠BEP=90°,故 BE 不垂直于 AE 过点 B 作 BM⊥AE 延长线于 M,由① 得∠AEB=135°所以∠EMB=45°,可以得出∠PEB=90°就可以得出②正确, ③所以△EMB 是等腰 Rt△,故 B 到直线 AE 距离为 BF= ,故③是错误的; ④由△APD≌△AEB,可知 S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可 判定; ⑤连接 BD,根据三角形的面积公式得到 S△BPD= PD×BE= ,所以 S△ABD=S△APD+S
个数为(B)
A.4 B .3 C.2 D.1
【分析】①先证明△ABD为等边三角形,根据“SAS”证 明△AED≌△DFB; ②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点 共圆,因此∠BGC=∠DGC=60°,过点C作CM⊥GB于M, CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边 形CMGN,易求后者的面积; ③过点F作FP∥AE于P点,根据题意有FP:AE=DF: DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF; ④因为点E、F分别是AB、AD上任意的点(不与端点重 合),且AE=DF,当点E,F分别是AB,AD中点时, CG⊥BD; ⑤∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°.
相关文档
最新文档