第1节圆的有关性质

合集下载

24.1.1 圆的有关性质教案

24.1.1 圆的有关性质教案

24.1.1 圆的有关性质教案一、【教材分析】教学目标知识技能1、了解圆的画法及其圆的定义;2、理解确定圆的条件及其与圆相关的概念.过程方法1、通过观察、动手操作培养学生通过动手实践发现问题、解决问题的能力;2、渗透“观察→分析→归纳→概括”的数学思想方法.情感态度加强学生的爱国主义教育,体验中华古文明的辉煌,培养学生的民族自豪感及爱国热情.教学重点准确把握圆及与圆相关的概念.教学难点以点的集合定义圆所具备的两个条件.二、【教学流程】教学环节问题设计师生活动二次备课情景创设观察课本上的图片,体验圆的和谐与美丽.请大家说说生活中还有哪些圆形?创设问题情境,开展学习活动,引起学生学习的兴趣情境导入,有利于学生从视觉感观认识上升到理性认识.自主探究问题一1、画一个圆,观察画圆的过程,你能由此说出圆的形成过程吗?2、观察下列图形后思考:图形中的各端点与O点的距离有什么关系?让学生画圆、描述、交流,得出圆的定义(用运动的观点):让学生观察、思考、交流,从旧知识中发现新问题,并在老师的指导下,归纳得出圆的特征:(1)圆上各点到定点(圆用运动的观点理解圆的定义.想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?问题二画图、思考,并回答提出的问题:1.以任意一点O为圆心,2cm为半径画圆,并在圆中分别作出一条非直径的弦AB和一条直径AC;2.写出⊙O中的所有弧,指出它们有什么不同?并将其进行分类;3.以点O1为圆心,2cm为半径画圆,这个圆和第1题中的圆是什么关系?在⊙O中找出等弧,在⊙O和⊙O1中找出等弧.定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”.(用集合的观点)定义:圆是到定点距离等于定长的点的集合.(1)要确定出一个圆,必须有两个条件:一个是圆心,一个是半径,其中圆心确定圆的位置,半径确定圆的大小,二者缺一不可;(2)直径是弦,但弦不一定是直径,直径是圆中最长的弦;(3)半圆是弧,但弧不一定是半圆;(4)正确理解等圆和等弧的含义,等弧是指能够互相重合的弧,它只存在于同圆或等圆中. 心O)的距离都等于定长(半径的长r);(2)到定点距离等于定长的点都在圆上.教师展示古人的成就:战国时的《墨经》就有“圆,一中同长也” .教师提出问题,学生画图、看课本,思考并回答提出的问题.教师参与小组活动,指导帮助学生搞清.用集合的观点认识圆学生通过动手、动脑、动口,体验获得知识的全过程,更有利于对知识点的理解与掌握.培养学生的民族自豪感及爱国热情.三、【板书设计】24.1.1 圆的有关性质DFOABP EC四、【教后反思】学生对于二次函数知识是比较抽象的,因此,在授课中我时刻注意把二次函数问题转化为已经熟悉的的知识来解决,打破函数的神秘性,把数和形统一起来,数中有形,形中有数,数相结合,在某种程度上降低了学习的难度,学生易于接受.课本,课标和考试之间有差距,现在的教材设计很不切合实际,简单的课本内容和高难度难理解的考试之间存在着相当的差距,一些知识在学习的时候该补的还是要补的,实在接受不了,起码要渗透这种思想.函数的授课要低起点高要求,尽可能的使用几何画板,拉近知识的贴切度.本节课设计的几个几何画板文件,使用起来,效果还是不错的.。

人教版初中数学课标版九年级上册第二十四章22.1圆的有关性质说课稿

人教版初中数学课标版九年级上册第二十四章22.1圆的有关性质说课稿

人教版九年级上册第24章第1节《弧、弦、圆心角》说课稿各位老师:我今天说课的课题是人教版九年级上册第24章第1节《弧、弦、圆心角》。

接下来,我将从教材,学情,教法,学法,教学过程五个方面来说课。

教材分析1.地位与作用本节课是在学习了旋转,圆的有关知识和垂径定理的基础上进行的。

整节课是以圆的旋转不变性为主线。

通过感性认识到理性认识的转化,展开对弧、弦、圆心角之间关系的研究的。

是对圆的性质的进一步学习。

它将为证明线段相等、角相等提供重要依据,将为今后学习圆的有关内容打下基础,在本章中起着承上启下的重要作用。

2.教学目标知识与技能:1.理解圆的旋转不变性和圆心角的概念.2.掌握弧、弦、圆心角关系定理及推论并能解决有关问题.过程与方法:1.培养学生观察、分析、归纳的能力.2.向学生渗透旋转变换思想及由特殊到一般的认识规律.情感与态度:通过引导学生对图形的观察,激发学生探究,发现数学问题的兴趣和欲望.3.教学重难点重点: 掌握弧、弦、圆心角关系定理及推论并能解决相关问题.难点: 利用圆的旋转不变性推导弧、弦、圆心角关系定理及推论.弧、弦、圆心角的关系定理的灵活运用.学情分析九年级学生已初步具备数学分析、解决问题的能力,但学生对圆的旋转不变性不甚了解,所以在探讨弧、弦、圆心角之间的相等关系时可能感到困难。

学生尽管逻辑思维能力很强,但对于圆的认识还很浅肤,对圆的相关概念很少接触,故而在掌握知识的深度和灵活性方面还有欠缺。

本节课引导学生积极参与探究活动,充分理解圆的旋转不变性,同时通过变式训练,让学生能够灵活应用定理来解决问题。

教法分析本节课采取观察,猜想,证明,归纳的教学模式。

采用引导发现,探究证明的教学方法。

学法分析本节课采取动手操作,猜想验证,归纳总结,反思拓展的学习方法。

接下来,重点说一说本节课的教学过程。

教学过程一.创设情境导入新课导语:古希腊数学家这样描述圆:在一切平面图形中,圆是最美的!我们知道圆是轴对称图形,并由圆的轴对称性得到了垂径定理及推论。

人教版九年级数学上册第24章第1节《圆》课件

人教版九年级数学上册第24章第1节《圆》课件

A
A
C
B
B C
O C
O
B A
O
D
D
A
A
C
B
B C
O
O
B A
O
C
D
D
【发现】直径是最长的弦
探究新知
24.1 圆的有关性质/
弧:
圆上任意两点间的部分叫做圆弧,简弧.以A、B为 端点的弧记作 AB,读作“圆弧AB”或“弧AB”.
➢半圆
B ·O
A
C
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
A ·O1 C
探究新知
24.1 圆的有关性质/
【想一想】长度相等的弧是等弧吗? 如图,如果A︵B和C︵D的拉直长度都是10cm,平移并调整
小圆的位置,是否能使这两条弧完全重合?
可见这两条弧不可能完全重合
D
B
A
C
实际上这两条弧弯曲程度不同
A
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知 素养考点 1 圆的定义的应用
24.1 圆的有关性质/
例1 矩形ABCD的对角线AC、BD相交于O. 求证:A、B、C、D在以O为圆心的同一圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
∴OA=OB=OC=OD.
∴A、B、C、D在以O为圆心,以OA为半径的圆上.
B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的 墨线是运用了“直线外一点与直线上各点连接的所有线段中, 垂线段最短”的原理
C.将自行车的车架设计为三角形形状是运用了“三角形的稳 定性”的原理

人教版中考数学考点系统复习 第六章 圆 第一节 圆的基本性质

人教版中考数学考点系统复习 第六章 圆 第一节 圆的基本性质

论有
( C)
A. 1个
B. 2个
C. 3个
D. 4个
10.(2021·随州第12题3分)如图,⊙O是△ABC的外接圆,连接AO并延 长交⊙O于点D,若∠C=50°,则∠BAD的度数为440 0°°.
11.(2022·随州第12题3分)如图,点A,B,C在⊙O上,若∠ABC=60 °,则∠AOC的度数为121020°°.
另解:计算∠AEB=135°也可以得证.
(2)若AB=10,BE=2 10,求BC的长. 解:如图,连接 OC,CD,OD,OD 交 BC 于点 F. ∵∠DBC=∠CAD=∠BAD=∠BCD,∴BD=DC. ∵OB=OC,∴OD 垂直平分 BC. ∵△BDE 是等腰直角三角形,BE=2 10, ∴BD=2 5. ∵AB=10,∴OB=OD=5. 设 OF=t,则 DF=5-t. 在 Rt△BOF 和 Rt△BDF 中, 52-t2=(2 5)2-(5-t)2. 解得 t=3.∴BF=4.∴BC=8.
长是
( A)
A.10
B.8
C.6
D.4
7.★(2019·十堰第8题3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB 的延长线于点E,若BA平分∠DBE,AD=5,CE= 13,则AE的长为( D ) A.3 B.3 2 C.4 3 D.2 3
8.(2022·宜昌第7题3分)如图,四边形ABCD内接于⊙O,连接OB, OD,
(4)若∠CAB=30°,则∠CDB=3300°°,∠COB=6600°°,∠OCB=6600°°;若
B 为︵CD的中点,则∠BCD=3300°°; (5)当 CD⊥AB 时,若 AB=10,CD=8,则 BE=22,AE=88,BC=22 5 , AC=44 5 ;

2022年九年级数学上册第二十四章圆24.1圆的有关性质第1课时教案新版新人教版

2022年九年级数学上册第二十四章圆24.1圆的有关性质第1课时教案新版新人教版

24.1圆的有关性质第1课时教学内容1.圆的有关概念.2.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其它们的应用. 教学目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题. 从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解. 重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题. 教学过程 一、复习引入(学生活动)请同学口答下面两个问题(提问一、两个同学) 1.举出生活中的圆三、四个.2.你能讲出形成圆的方法有多少种? 老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆. 二、探索新知从以上圆的形成过程,我们可以得出: 在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆.固定的端点O 叫做圆心,线段OA 叫做半径. 以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”. 学生四人一组讨论下面的两个问题:问题1:图上各点到定点(圆心O )的距离有什么规律? 问题2:到定点的距离等于定长的点又有什么特点? 老师提问几名学生并点评总结.(1)图上各点到定点(圆心O )的距离都等于定长(半径r ); (2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新定义:圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点组成的图形. 同时,我们又把①连接圆上任意两点的线段叫做弦,如图线段AC ,AB ; ②经过圆心的弦叫做直径,如图24-1线段AB ;③圆上任意两点间的部分叫做圆弧,简称弧,“以A 、C 为端点的弧记作”,读作“圆弧”或“弧AC ”.大于半圆的弧(如图所示叫做优弧,小于半圆的弧(如图所示)或叫做劣弧.AC AC ABC AC BC④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. (学生活动)请同学们回答下面两个问题.1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴? 2.你是用什么方法解决上述问题的?与同伴进行交流.(老师点评)1.圆是轴对称图形,它的对称轴是直径,我能找到无数多条直径. 3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的. 因此,我们可以得到:(学生活动)请同学按下面要求完成下题:如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M .(1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD .(2)AM=BM ,,,即直径CD 平分弦AB ,并且平分及. 这样,我们就得到下面的定理:下面我们用逻辑思维给它证明一下: 已知:直径CD 、弦AB 且CD ⊥AB 垂足为M 求证:AM=BM ,,.分析:要证AM=BM ,只要证AM 、BM 构成的两个三角形全等.因此,只要连结OA 、OB 或AC 、BC 即可.证明:如图,连结OA 、OB ,则OA=OB在Rt △OAM 和Rt △OBM 中 ∴Rt △OAM ≌Rt △OBM∴AM=BMAC BC =AD BD =AB ADB AC BC =AD BD =OA OBOM OM =⎧⎨=⎩B∴点A 和点B 关于CD 对称 ∵⊙O 关于直径CD 对称∴当圆沿着直线CD 对折时,点A 与点B 重合,与重合,与重合. ∴,进一步,我们还可以得到结论:(本题的证明作为课后练习)例1.如图,一条公路的转弯处是一段圆弦(即图中,点O 是的圆心,其中CD=600m ,E 为上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握. 解:如图,连接OC设弯路的半径为R ,则OF=(R-90)m∵OE ⊥CD ∴CF=CD=×600=300(m ) 根据勾股定理,得:OC 2=CF 2+OF 2即R 2=3002+(R-90)2解得R=545 ∴这段弯路的半径为545m . 三、巩固练习 教材练习 四、应用拓展例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=60m ,水面到拱顶距离CD=18m ,当洪水泛滥时,水面宽MN=32m 时是否需要采取紧急措施?请说明理由. 分析:要求当洪水到来时,水面宽MN=32m 是否需要采取紧急措施,只要求出DE 的长,因此只要求半径R ,然后运用几何代数解求R . 解:不需要采取紧急措施设OA=R ,在Rt △AOC 中,AC=30,CD=18R 2=302+(R-18)2 R 2=900+R 2-36R+324解得R=34(m )连接OM ,设DE=x ,在Rt △MOE 中,ME=16342=162+(34-x )2162+342-68x+x 2=342 x 2-68x+256=0 解得x 1=4,x 2=64(不合设) ∴DE=4∴不需采取紧急措施.五、归纳小结(学生归纳,老师点评) 本节课应掌握:1.圆的有关概念;AC BC AD BD AC BC =AD BD =CD CD CD 12122.圆是轴对称图形,任何一条直径所在直线都是它的对称轴. 3.垂径定理及其推论以及它们的应用. 六、布置作业1.教材复习巩固1、2、3. 2.车轮为什么是圆的呢? 3.垂径定理推论的证明. 4.选用课时作业设计.第一课时作业设计一、选择题.1.如图1,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,错误的是().A .CE=DEB .C .∠BAC=∠BAD D .AC>AD(1) (2) (3)2.如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是()A .4B .6C .7D .83.如图3,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是()A .AB ⊥CD B .∠AOB=4∠ACDC .D .PO=PD 二、填空题1.如图4,AB 为⊙O 直径,E 是中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.(4) (5)2.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;最长弦长为_______.3.如图5,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,如果OE=OF ,那么_______(只需写一个正确的结论) 三、综合提高题1.如图24-11,AB 为⊙O 的直径,CD 为弦,过C 、D 分别作CN ⊥CD 、DM ⊥CD ,分别交AB 于N 、M ,请问图中的AN 与BM 是否相等,说明理由.BC BD =CAD BD =BC BA2.如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.3.(开放题)AB 是⊙O 的直径,AC 、AD 是⊙O 的两弦,已知AB=16,AC=8,AD=8,求∠DAC 的度数.答案:一、1.D 2.D 3.D二、1.8 2.8 10 3.AB=CD三、1.AN=BM 理由:过点O 作OE ⊥CD 于点E ,则CE=DE ,且CN ∥OE ∥DM . ∴ON=OM ,∴OA-ON=OB-OM ,∴AN=BM .2.过O 作OF ⊥CD 于F ,如右图所示 ∵AE=2,EB=6,∴OE=2,∴,OF=1,连结OD ,在Rt △ODF 中,42=12+DF 2,.3.(1)AC 、AD 在AB 的同旁,如右图所示:∵AB=16,AC=8,∴AC=(AB ),∴∠CAB=60°, 同理可得∠DAB=30°, ∴∠DAC=30°.(2)AC 、AD 在AB 的异旁,同理可得:∠DAC=60°+30°=90°.121212。

园的有关性质

园的有关性质
在绘画中:圆是一种基本的形状元素,可以用于创造各种不同的纹理和效果。例如, 梵高的《星夜》中就运用了许多圆形来描绘星星和月亮的形态
在雕塑中:圆也是一种常见的形状元素,可以用于创造各种不同的纹理和效果。例如 ,古希腊雕塑家普拉克西特列斯的《赫尔墨斯像》中就运用了许多圆形来描绘赫尔墨 斯的头饰和身姿
在建筑中:圆形也是一种常见的形状元素,可以用于创造各种不同的建筑风格和 效果。例如,罗马斗兽场的建筑风格就运用了许多圆形来描绘观众席和表演场地
在日常生活中:圆形物品的制造和设计也十分常见,如餐具(碗、盘子)、家电(电 灯泡、风扇)、工艺品等。此外,圆形在自然界中也很常见,如星球、花朵、昆虫的 复眼等
在物理学中:许多自然现象可以用圆形来描述,例如行星运动轨迹、电磁波传播方向 等。同时,许多物理实验也涉及到圆形的设置和测量,例如测量重力加速度、磁场强 度等
园的有关性质
圆的特性
目录
圆的应用
圆的特性
1
1.1 圆的位置特性
圆是平面内与一个定点(通常为原点) 距离等于定长的所有点的集合:定长称 为半径
圆的位置由圆心决定:圆心是圆上任意 两点的中垂线的交点
圆心到圆上任意一点的距离都相等
1.2 圆的特性
圆是一个连续曲线:没有断裂,因此它 没有拐点
圆是一个封闭图形:没有开口或断裂的 地方
在地理学中:地球的形状是一个类球体,采用椭圆形来描述其形态。此外,河流和海 洋的形态也是采用圆形或类圆形来描述的
THANKS
圆的应用
2
2.1 几何学中的应用
圆是几何学中最基本和最重要的图形之 一
圆的位置和形状可以通过从不同角度截 取线段和图形得到
在解析几何中:圆可以用方程来表示, 从而可以方便地研究它的性质和与其它 图形的交点

中考数学 精讲篇 考点系统复习 第六章 圆 第一节 圆的基本性质

中考数学 精讲篇 考点系统复习 第六章 圆 第一节 圆的基本性质

圆与边 BC 相切于点 D,与 AC,AB 分别交于点 E 和点 G,点 F 是优弧G︵E上
一点,∠CDE=18°,则∠GFE 的度数是
( B)
A.50° B.48° C.45° D.36°
1.垂径定理的应用类型: (1)如图,下列五个结论:①︵AC=C︵B;②︵AD=D︵B;③AM=BM; ④AB⊥CD;⑤CD 是直径.只要满足其中的两个,另外三个结论 一定成立(简称为“知二推三”); (2)如图,在 Rt△AOM 中,满足 r2=d2+a2,利用勾股定理可以对半径、 弦、弦心距“知二求一”.
又∵AD=BC,∴EC=BC.∴OM=ON, ∴CO 平分∠BCE.
命题点 2:垂径定理及其推论(近 6 年考查 2 次)
4.(2020·安徽第 9 题 4 分)已知点 A,B,C 在⊙O 上,则下列命题为真
命题的是
(B)
A.若半径 OB 平分弦 AC,则四边形 OABC 是平行四边形
B.若四边形 OABC 是平行四边形,则∠ABC=120°
第六章 圆 第一节 圆的基本性质
1.如图,AB,CD 是⊙O 的直径,连接 AC,BC,AD,BD,若∠ABC=40°, 则∠AOC=8 80°0°,∠ADC=4040°°,∠ACB=9 90°0°,∠BAC= 5 500°°.
2.(RJ 九上 P90 练习 T9 改编)如图,在以点 O 为圆心的两个同心圆中, 大圆的弦 AB 交小圆于 C,D 两点,若大圆的半径 R=10,小圆的半径 r= 8,且圆心 O 到线段 AB 的距离为 6,则 AC 的长为__88--22 7 __.
解:(1)∵OP⊥PQ,PQ∥AB,∴OP⊥AB, 在 Rt△OPB 中, OP=OB·tan∠ABC=3·tan 30°= 3.

2023年中考数学复习第一部分考点梳理第六章圆第1节圆的基本概念与性质

2023年中考数学复习第一部分考点梳理第六章圆第1节圆的基本概念与性质
∴△BDE是等腰直角三角形.
基础过关
能力提升
能力提升
-29-
6.1 圆的基本概念与性质
(2)连接OC,CD,OD,OD交BC于点F.
∵∠CBD=∠CAD=∠BAD=∠BCD,
∴BD=DC.
又∵OB=OC,∴OD垂直平分BC.
∵BE=2 ,∴BD=2 .
∵AB=10,∴OB=OD=5.
设OF=t,则DF=5-t.


基础过关
能力提升
能力提升
-27-
6.1 圆的基本概念与性质
14.(2022·武汉)如图,以AB为直径的☉O经过△ABC的顶点
C,AE,BE分别平分∠BAC和∠ABC,AE的延长线交☉O于点D,
连接BD.
(1)判断△BDE的形状,并证明你的结论;
(2)若AB=10,BE=2 ,求BC的长.
6.1
圆的基本概念与性质
6.1 圆的基本概念与性质
1.(2022·辽宁营口)如图,点A,B,C,D在☉O上,AC⊥BC,
AC=4,∠ADC=30°,则BC的长为( A )
A.4
B.8
C.4
D.4
基础过关
基础过关
能力提升
-2-
6.1 圆的基本概念与性质
2.(2021·合肥庐江期末)如图,AB是☉O的直径,PA切☉O于点
6.1 圆的基本概念与性质
8.(2022·芜湖二模)如图,C,D为☉O的直径AB同侧的两个点,连
接AD,BC交于点F,E为直径AB上一点,连接DE交BC于点G,且
∠DGF=∠CAB.
(1)求证:DE⊥AB;
(2)若AD平分∠CAB,求证:BC=2DE.
基础过关
基础过关

安徽中考数学复习知识系统课件:第六章圆

安徽中考数学复习知识系统课件:第六章圆
(1)当已知直线与圆有公共点时,连半径,证 垂直 . (2)当不知道直线与圆是否有公共点时,过圆心作直线的垂线,证圆心到直线的距离等 于 半径 .
5.切线长定理.
PA=PB , ∠APO=∠BPO .
______p_r_____
图1
2.直角三角形的内切圆(如图2)
设AB=c,BC=a,AC=b,∠C=90°,内切圆半径为r,则r=
题图
【分析】仔细分析题意,寻找问题的解决方案. 极据题意,可知点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两 条公路夹角的平分线上,所以点C应是它们的交点.即到城镇A、B距离相等的 点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的 角平分线上,因此分别作出垂直平分线与角平分线,它们的交点即为所求作的 点C.由于两条公路所夹角的角平分线有两条,因此点C有2个.
.
【解】(1)4π
(2)15
(3)6π
扇形面积
(2013·朝阳)如图,AC是汽车挡风玻璃前的刮雨刷,如果AO=65 cm,CO=
15 cm,当AC绕点O旋转90°时,则刮雨刷AC扫过的面积为
cm2.
【分析】根据旋转的性质可以判断△ACO≌△A'C'O,∴S阴影= S扇形AA'O-S扇形CC'O=×(652-152)=1 000π cm2.
或S扇形=
.
知识点2:圆锥的侧面积和全面积
1.圆柱的侧面展开图是 矩形 ,这个矩形的长等于圆柱的_底__面__周__长___ C,宽是圆柱的 高 l,如果圆柱的底面半径是r,则S圆柱侧=Cl=2πrl. (如图1)
2.圆锥的侧面展开图是 扇形 ,这个扇形的 弧长 等于圆锥的底面周长C, 扇形半径 等于圆锥的母线长l.若圆锥的底面半径为r,这个扇形的圆心角为α,

人教版九年级上24.1.1圆(教案)

人教版九年级上24.1.1圆(教案)
首先,对于圆的方程部分,我可能需要更多地结合实际例子来讲解,让学生明白方程背后的几何意义。例如,可以拿一个圆形的物体,如硬币或圆盘,通过测量半径和直径,引导学生推导出圆的方程。这样,学生们能够更直观地理解方程与实际物体之间的关系。
其次,在讲解切线和割线时,我发现学生们对这两个概念容易混淆。为了帮助学生区分,我计划在下节课中增加一些图示和实物操作,比如用绳子模拟切线和割线,让学生亲自感受两者的不同。通过这样的实践活动,我相信学生们能够更清晰地理解这些几何关系。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对圆的概念和性质掌握得还不错,但在圆的方程和切线割线的理解上存在一些困难。这让我意识到,需要从以下几个方面进行反思和调整。
我还注意到,在小组讨论环节,有些学生参与度不高,可能是由于主题不够吸引他们或者他们对自己的观点不够自信。为了提高学生的参与度,我打算在下次讨论前,先给学生提供一些背景资料和思考问题,激发他们的兴趣,并在讨论过程中给予更多的鼓励和支持。
另外,实践活动虽然能够帮助学生加深对圆的理解,但我也发现有些学生在操作过程中关注了操作本身,却忽略了背后的数学原理。因此,我计划在下次实践活动中,增加一些引导性的问题和任务,让学生在动手操作的同时,思考这些操作与圆的性质和公式之间的联系。
-圆的面积与周长计算:掌握面积和周长的公式,是实际应用中必不可少的技能。
举例:圆以及如何根据实际问题的条件建立圆的方程。
2.教学难点
-圆的方程理解:学生需要理解方程背后的几何意义,以及如何将实际问题转化为方程求解。

高中-圆的有关概念和性质

高中-圆的有关概念和性质

高中数学-圆第一节圆的有关概念和性质一【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.④三角形的内心和外心ⓐ:确定圆的条件:同一直线上的三个点确定一个圆.ⓑ:三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.ⓒ:三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。

圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。

圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.(4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角.3.正多边形和圆(1)通过等分圆画正多边形。

(等分圆心角;懂得正三、六;正四、八边形的特殊画法)(2)外接于圆的正多边形的有关概念:正多边形的中心、半径、中心角、边心距;(3)如图,正n边形的有关计算要抓住2n个Rt△OPB,∠B等于正n边形内角的一半,∠BOP=nn1802360 ,BP等于正多边形的边长的一半。

初中数学重点梳理:圆的基本性质

初中数学重点梳理:圆的基本性质

圆的基本性质知识定位圆在初中几何或者竞赛中占据非常大的地位,它的有关知识如圆与正多边形的关系,圆心角、三角形外接圆、弧、弦、弦心距间的关系,垂径定理是今后我们学习综合题目的重要基础。

圆的基本性质以及应用,必须熟练掌握。

本节我们通过一些实例的求解,旨在介绍数学竞赛中圆相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。

知识梳理1、圆的定义:(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.⊙”,(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O读作“圆O”。

(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:同圆或等圆的半径相等.2、弦和弧:(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作AB,读作(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B弧AB.(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3、垂径定理:(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.4、圆心角和圆周角:(1)圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.(3)圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(4)圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.5、正多边形:各边相等,各角也相等的多边形是正多边形。

初中数学总复习——《圆》教案

初中数学总复习——《圆》教案

②若DE=2CE,求证:AD是⊙O的切线。 ③当DE,DC的长是方程x2-ax+2=0的两根时, 求sin∠DAB的值。
第3节 与圆有关的角 【知识回顾】 与圆有关的角:⑴圆心角定义(等对等定理) ⑵圆周角定义(圆周角定理,与圆心角的关系) ⑶弦切角定义(弦切角定理)
【考点分析】
圆心角定理,圆周角定理,弦切角定理,圆内接四边形定理以及相关概 念,能熟练地运用这些知识进行有关证明与计算。 【典型例题】 例1、⑴已知:A、B、C、D、E、F、G、H顺次是⊙O的八等分点,则 ∠HDF=_______. ⑵如图1,AC是⊙O的直径,BD是⊙O的弦,EC∥AB交⊙O于E,则图 中与∠BOC的一半相等的角共有( ) A.2个 B.3个 C.4个 D.5个
例2⑴圆弧形桥拱的跨度AB=40cm,拱高CD=8cm,则桥拱的半径是 __________。 ⑵已知:如图3,⊙O的半径为5,AB所对的圆心角为120°,则弦AB的 长是( ) A. B. C.5 D.8 例3 已知:⊙O的半径OA=1,弦AB、AC的长分别是 、 , 求∠BAC的度数。 例4已知:F是以O为圆心、BC为直径的半圆上的一点,A是BF的中点,
教育精品资料
初中数学总复习——《圆》
【知识结构】
第1节 圆和圆的基本性质 【知识回顾】 1.圆的定义(两种) 2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、 同圆、同心圆。 3.“三点定圆”定理 4.垂径定理及其推论 5.“等对等”定理及其推论 【考点分析】 1、 确定条件: 圆心确定位置;半径确定大小。 2、 圆的对称性: 圆是轴对称图形也是中心对称图形。 对称轴是直径,对称中心是圆心。 3、 垂径定理: 4、 点与圆的位置关系 设圆的半径为 ,一点到圆心的距离为 , 点在圆外 ;点在圆上

人教版九年级数学上册《圆的有关性质(第1课时)》示范教学设计

人教版九年级数学上册《圆的有关性质(第1课时)》示范教学设计

圆的有关性质(第1课时)教学目标1.通过观察、操作、归纳等数学活动理解圆的定义,感受圆和实际生活的联系,体会数学知识在生活中的普遍性.2.理解弦、直径、弧、优弧、半圆、劣弧、等圆、等弧的概念,能够在图形中识别弦和弧.3.理解概念之间的区别和联系,能灵活运用圆的有关概念解决问题.教学重点圆的定义的形成过程;理解与圆有关的概念.教学难点圆的集合性定义.教学准备准备直尺和圆规.教学过程新课导入希腊数学家毕达哥拉斯认为:“一切立体图形中最美的是球,一切平面图形中最美的是圆.”圆是常见的图形,生活中的许多物体都给我们以圆的形象.你能发现下面图片中的圆形吗?【师生活动】教师展示图片,学生指出图片中的圆形.【设计意图】结合生活实际,列举生活中的圆,让学生体会圆在日常生活和生产实践中有着广泛的应用,激发学生的学习兴趣,引出本节课要学习的“圆的有关性质”.新知探究一、探究学习【问题】我们在小学已经对圆有了初步认识.请仿照图中方法,在纸上画一个半径为3 cm的圆.观察画圆的过程,你能说出圆是如何画出来的吗?【师生活动】学生先自己画图,教师演示画圆的动态过程;然后学生小组讨论圆的形成过程,教师进行总结.【新知】在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一端点A所形成的图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作⊙O,读作“圆O”.【设计意图】学生动手操作中发现圆的形成过程,得出圆的描述性定义.【问题】量一量,圆上各点到定点(圆心O)的距离有什么特点?反过来,到定点的距离等于定长的点又有什么特点?【师生活动】学生独立操作,思考答案,教师进行演示,师生一起总结.【新知】(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.【设计意图】学生动手操作中得出圆的集合性定义.让学生认识到,把一个图形看成满足某种条件的点的集合,必须符合:(1)图形上的每一点都满足某个条件;(2)满足这个条件的每一个点,都在这个图形上.这两个条件缺一不可.【思考】(1)以2 cm为半径能画几个圆?(2)在同一个平面内,以点O为圆心能画几个圆?(3)在同一个平面内,以点O为圆心、以2 cm为半径,能画几个圆?(4)确定一个圆需要哪几个要素?【师生活动】学生先自己画图,然后小组讨论交流,教师进行演示,师生一起总结.【归纳】确定圆的两个要素:圆心和半径;圆心确定圆的位置,半径确定圆的大小.【设计意图】让学生在交流讨论中,体会到只有圆心和半径都确定,才能确定一个圆.【新知】连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.如图,AB,AC是弦,AB是直径.圆上任意两点间的部分叫做圆弧,简称弧.以A,B为端点的弧记作AB,读作“圆弧AB”或“弧AB”.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.【思考】直径与弦有什么关系?半圆与弧有什么关系?【师生活动】学生小组讨论得出:直径一定是弦,但弦不一定是直径;弦包括直径,直径是特殊的弦.半圆一定是弧,但弧不一定是半圆.【设计意图】引导学生分析弦与直径、弧与半圆之间的区别与联系.【新知】大于半圆的弧(用三个点表示,如图中的ABC)叫做优弧;小于半圆的弧(如图中的AC)叫做劣弧.【思考】图中还有其他的优弧或劣弧吗?【师生活动】学生独立思考后回答:优弧BAC,劣弧BC.【设计意图】巩固新学习的优弧和劣弧的概念.【问题】仔细观察下面的动图,想一想什么情况下两个圆能够完全重合?【师生活动】学生小组讨论,教师进行延伸、总结.【新知】能够重合的两个圆叫做等圆.容易看出:半径相等的两个圆是等圆;反过来,同圆或等圆的半径相等.在同圆或等圆中,能够互相重合的弧叫做等弧.如图,AB,CD,EF是等弧.【设计意图】借助动图和动画,形象地展示等圆和等弧的特点,让学生对等圆和等弧的理解更深一层.二、典例精讲【例1】矩形ABCD的对角线AC,BD相交于点O.求证:A,B,C,D四个点在以点O为圆心的同一个圆上.【师生活动】学生独立完成,并小组讨论,尝试进行解答,教师给予帮助.【答案】证明:∵四边形ABCD是矩形,∴AO=OC=12AC,OB=OD=12BD.又∵AC=BD,∴OA=OB=OC=OD.∴A,B,C,D四个点在以点O为圆心的同一个圆上(如图).【归纳】巧用圆的特性,判断多点共圆.判断多点是否在同一个圆上的问题,实质上是寻找一个定点,判断这些点到定点的距离是否相等,若存在这样的定点,则这些点在同一个圆上;若不存在这样的定点,则这些点就不在同一个圆上.【设计意图】巩固学生对圆的定义的理解和掌握.【例2】写出图中⊙O的直径、弦、优弧、劣弧.【师生活动】学生独立完成,教师出示答案.【答案】解:直径AC;弦AB,BC,AC;优弧BCA,BAC;劣弧AB,BC.【设计意图】锻炼学生在图形中识别弦和弧的能力.【例3】有以下结论:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③一条弦把圆分成两条弧,这两条弧不可能是等弧.其中正确的有().A.1个B.2个C.3个D.0个【师生活动】学生独立完成,教师出示答案.【答案】A【解析】直径相等即半径相等,所以①正确;等弧是指在同圆或等圆中能够互相重合的弧,长度相等的弧不一定是等弧,所以②错误;直径把圆分成的两个半圆就是等弧,所以③错误.【提醒】(1)直径是圆中最长的弦,而弦不一定是直径.(2)半圆是弧,但弧不一定是半圆.(3)弧包括优弧、劣弧和半圆.(4)等圆只和半径的大小有关,和圆心的位置无关.(5)等弧的长度一定相等,但长度相等的弧不一定是等弧.【设计意图】帮助学生理解圆的相关概念之间的区别和联系.课堂小结板书设计一、圆的描述性定义二、圆的集合性定义三、圆的相关概念课后任务完成教材第81页练习第1~3题.。

中考数学一轮复习6.1圆的有关概念及性质课件随堂演练全面版

中考数学一轮复习6.1圆的有关概念及性质课件随堂演练全面版
有一组量相等,那么它们所对应的其余各组量都分别_____. 相等
3.垂径定理及其推论
(1)垂径定理:垂直于弦的直径_平__分__弦及弦所对的两条弧.
(2)推论:①平分弦(不是直径)的直径_____于弦,并且_____
垂直
平分
弦所对的弧;
②弦的垂直平分线经过_____,并且平分弦所对的两条弧;
③平分弦所对的一条弧的圆直心径垂直平分弦,并且_____
性质
知识点一 圆的有关概念
1.圆:平面上到定点的距离等于定长的所有点组成的图形
叫做圆.其中,定点称为_____,定长称为_____.
圆心
半径
2.与圆有关的概念
(1)弧:圆上任意_两__点__间__的部分叫做圆弧,简称弧. (2)弦:连接圆上任意两点的_____叫做弦.
线段 (3)直径:经过_____的弦叫做直径. (4)等圆:能够重圆合心的圆叫做等圆.在同圆或等圆中,能够
(2)性质:圆内接四边形的对角_____;圆内接四边形的外角
等于它的_______.
互补
内对角
知识点三 确定圆的条件
1.不在同一条直线上的三个点确定一个圆.
2.三角形的三个顶点确定一个圆,这个圆叫做三角形的外
接圆.外接圆的圆心是三角形三边___________的交点,叫
做三角形的外心.
垂直平分线
考点一 圆心角、弧、弦之间的关系 (5年1考) 例1 (2017·潍坊)点A,C为半径是3的圆周上两点,点B为
8.如图,四边形ABCD内接于⊙O,E为DC延长线上一点, ∠A=50°,则∠BCE的度数为( B )
A.40°
B.50°
C.60°
D.130°
9.(2017·凉山州)如图,已知四边形ABCD内接于半径为4

包头市2015中考复习第6章 第1节 圆的有关概念和性质

包头市2015中考复习第6章 第1节 圆的有关概念和性质
A.2∠CB.4∠B
C.4∠AD.∠B+∠C
,第3题图) ,第4题图)
4.(2014·北京)如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为(C)
A.2B.4C.4D.8
5.(2014·陕西)如图,⊙O的半径是2,直线l与⊙O相交于A,B两点,M,N是⊙O上两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是__4__.
17.(2014·黄石)如图,A,B是圆O上的两点,∠AOB=120°,C是AB弧的中点.
(1)求证:AB平分∠OAC;
(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.
解:(1)∵∠AOB=120°,C是AB弧的中点,∴∠AOC=∠BOC=60°,又OA=OC=OB,∴△AOC,△BOC都是等边三角形,∴OA=OB=AC=BC,∴四边形AOBC是菱形,∴AB平分∠OAC(2)由(1)知,△OAC是等边三角形,∵OA=AC,∴AP=AC,∴∠APC=30°,∴△OPC是直角三角形,∴PC=OC=
20.(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB,AC于点E,D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为(B)
A.4B.3C.6D.2
21.(2014·遵义)如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为(D)
11.(2013·兰州)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是__144__度.

2022秋九年级数学上册 第24章 圆24.1 圆的有关性质 3弧、弦、圆心角说课稿新人教版

2022秋九年级数学上册 第24章 圆24.1 圆的有关性质 3弧、弦、圆心角说课稿新人教版

24.1.3 《弧、弦、圆心角》说课稿教材分析:本课是人教版九年级上册第二十四章第一节圆的有关性质,它是在学习了垂径定理后进而要学习的圆的又一个重要性质。

主要研究弧,弦,圆心角的关系。

教材中充分利用圆的对称性,通过观察,实验探究出性质,再进行证明,体现图形的认识,图形的变换,图形的证明的有机结合。

在证明圆的许多重要性质时都运用了圆的旋转不变性。

同时弧,弦,圆心角的关系定理在后继证明线段相等,角相等,弧相等提供了又一种方法。

教学目标分析:1、让学生在实际操作中发现圆的旋转不变性.2、结合图形让学生了解圆心角的概念,学会辨别圆心角.3、引导学生发现圆心角、弦、弧之间的相等关系,并初步学会运用这些关系解决有关问题.4、培养学生观察、分析、归纳的能力,渗透旋转变换的思想及由特殊到一般的认识规律.教法分析:1.学情:由于圆的知识是轴对称及旋转知识的后续学习,学生有一定圆的相关概念,计算的知识储备,因此学习本节难度不是太大。

由于学生对圆的旋转不变性不甚了解,所以在探讨圆心角、弧、弦之间的相等关系时可能感到困难,另外对等对等的理解可能不透彻,我会做直观的示范;初始阶段在证明角相等,线段相等等有关问题时受思维定势的影响,学生往往会走利用“三角形全等”的老路,这时我会有意识引导,针对性训练,构建学生头脑中新的知识网络。

2.教学活动是教与学双边互动过程,必须充分发挥学生的主体和教师的主导作用,因此教学目标的达成,需优选教学法,根据学生的学情,本节课在探究圆心角,弦,弧之间的相等关系我采用发现模式,基本程序是:观察实践——概括归纳——重点研讨——推理反思。

这种教学模式注重知识的形成过程,有利于体现学生的主体地位和分析问题的方法,例题教学时采用讲授模式,一方面通过新知识的讲解练习,及时反馈,查缺补漏,使学生树立信心,培养学习能力,另一方面对大面积提高教学质量也是有意的。

在最后小结时运用自学模式。

3.教学手段:学生动手,现场板演,多媒体辅助教学.教学过程分析:一、创设情景,引入新课1.看一看、思考(1)多媒体动态演示:平行四边形绕对角线交点旋转180度后,你发现了什么?(2)多媒体动态演示:圆绕圆心O旋转180度后,你发现了什么?这两个问题设置是让学生感性认识,发现平行四边形和圆旋转180度后都能与自生重合,是中心对称图形。

人教版九年级数学上册教案:24.1 圆的有关性质

人教版九年级数学上册教案:24.1 圆的有关性质

数学教学设计人教版九年级数学第二十四章《圆》——24.1圆的有关性质(一)课题:圆圆一、教学设计思想本节课是九年义务制教育九年级上册第二十四章第一节的内容,选用的是人民教育出版社教材。

圆是初中几何中重要的内容之一。

本节通过第一课时建立圆的概念,认识圆的轴对称性与中心对称性。

讲解时将观察与思考、操作与实践等活动贯穿于教学全过程,使学生积累一定的数学活动经验。

《新课程标准》提出“使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展。

”本节课在遵循这一基本理念下,尽量实现几何课程的教育价值。

数学源于生活,又服务于生活,最终要解决生活中的问题。

利用现代多媒体帮助学生理解和学习数学,探索与分析,讨论与归纳等数学活动是学习的主要方式。

形成应用数学意识和创新思维,进而使学生获得对数学知识理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

二、教学背景分析(一)教学内容分析圆是继三角形、四边形等基本图形后的又一个重要内容。

圆的知识在科学技术和日常生活中有广泛应用。

圆是平面几何中最基本的图形之一,它在几何中有重要的地位。

圆的有关概念是圆这一章的起始课,在本节课之前学生小学已经学习了圆的初步知识,联系学生实际,整合课外资源来充实课堂教学内容。

圆的有关概念是中学阶段应用圆知识解决实际问题的开端,也是为今后学习圆的知识奠定基础.通过对实际问题的探索让学生初步感受从实际问题中抽象出数学问题的过程,培养学生的数学价值观,增强学数学、用数学的意识。

(二)学生情况分析初三年级的学生是初中阶段的高年级的学生,课堂中的学习行为趋于理性化,思维的成熟度,内心深处探求真理的欲望比初二年级高,因此要引导轻松和谐的课堂气氛,充分激活学生的创造欲望,让学生在教师创设的情境中充满好奇心的学,留给学生充分的自主活动和相互交往的空间,在观察中不断地发现数学问题,在实践中日益领悟数学思想,在评价中逐步形成数学价值观。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档