高中数学必修5数列知识点总结
高中数学必修五-等差数列
等差数列知识集结知识元等差数列的性质知识讲解1.等差数列的性质【等差数列】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{a n}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴a n=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{a n}的通项公式为a n=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式a n=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).例题精讲等差数列的性质例1.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A.18B.36C.45D.60例2.记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=()A.7B.8C.9D.10例3.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12等差数列的通项公式知识讲解1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.例题精讲等差数列的通项公式例1.在等差数列{a n}中,a4,a12是方程x2+3x+1=0的两根,则a8=()A.B.C.D.不能确定例2.在等差数列{a n}中,a2+a10=0,a6+a8=-4,a100=()A.212B.188C.-212D.-188例3.在等差数列{a n}中,若a2=5,a4=3,则a6=()A.-1B.0C.1D.6当堂练习单选题练习1.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12练习2.等差数列{a n}中,已知a2+a6=4,则a4=()A.1B.2C.3D.4练习3.在等差数列{a n}中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.9练习4.《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题”),后来我国南宋数学家秦九韶在《数书九章∙大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为()A.116B.131C.146D.161练习5.已知2,b的等差中项为5,则b为()A.B.6C.8D.10练习6.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.练习7.等差数列{a n}中,S n是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为()A.2B.3C.4D.6练习8.等差数列{a n}中,a1+a8=10,a2+a9=18,则数列{a n}的公差为()A.1B.2C.3D.4练习9.在等差数列{a n}中,已知a2+a6=18,则a4=()A.9B.8C.81D.63。
高中数学必修五第二章《数列》知识点归纳(K12教育文档)
高中数学必修五第二章《数列》知识点归纳(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修五第二章《数列》知识点归纳(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修五第二章《数列》知识点归纳(word版可编辑修改)的全部内容。
数列知识点总结二、求数列通项公式的方法1、通项公式法:等差数列、等比数列2、涉及前n项和S n 求通项公式,利用a n 与S n 的基本关系式来求。
即 例1、在数列{n a }中,n S 表示其前n项和,且2n n S =,求通项n a 。
例2、在数列{n a }中,n S 表示其前n项和,且n n a 32S -=,求通项n a3、已知递推公式,求通项公式。
(1)叠加法:递推关系式形如()n f a a n 1n =-+型例3、已知数列{n a }中,1a 1=,n a a n 1n =-+,求通项n a 练习1、在数列{n a }中,3a 1=,n n 1n 2a a +=+,求通项n a(2)叠乘法:递推关系式形如 型 例4、在数列{n a }中,1a 1=, ,求通项n a 练习2、在数列{n a }中,3a 1=,n n 1n 2a a •=+,求通项n a(3)构造等比数列:递推关系式形如B Aa a n 1n +=+(A ,B 均为常数,A ≠1,B ≠0) 例5、已知数列{n a }满足4a 1=,2a 3a 1n n -=-,求通项n a 练习3、已知数列{n a }满足3a 1=,3a 2a n 1n +=+,求通项n a(4)倒数法例6、在数列{a n }中,已知1a 1=, ,求数列的通项n a 四、求数列的前n 项和的方法1、利用常用求和公式求和:等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n2、错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列。
(完整版)数学必修五数列知识总结
数列知识总结一.知识网络 :等差数列的正等差数列性质有整数列的观点通项及关前 n 项和数应集等比数列等比数列的用性质二.重点提示:1.数列的定义 :按必定序次摆列的一列数. 数列是定义在正整数集或其有限子集{1,2,3,,n }上的函数当自变量由小到大挨次取值时对应的一列函数值.2.数列的通项公式和前 n 项和:关于随意数列a n , 其通项是 a n和它的前 n 项和S n之间的关系是: a n S1,(n 1)S n (n.Sn 1 2, n N *)3.求数列通项公式的方法:①察看法:找项与项数的关系,而后猜想查验, 即得通项公式 a n ,注意利用前几项得出的通项公式不必定独一 .②利用通项 a n和它的前 n 项和S n之间的关系是:,③公式法:利用等差数列,等比数列的通项公式求解.④其余方法: 迭加,迭乘,待定系数等.4.证明一个数列是等差数列或等比数列, 常用的两种基本方法 : 一是利用定义; 二是....利用等差中项(或等比中项)来进行证明.( 注意:通项的特色与前 n 项和的特色只用于判断)5.等差数列的性质:(1) 数列 a n为等差数列,则a m= a n+(m-n)d,或d a n a m n m(2) 数列 a n为等差数列的充要条件是:其通项公式能够写成a n= an+b (a,b为实....常数).(3) 数列 a n 为等差数列的充要条件2a n an 1 a n 1,推广....2a n a n k a n k( n>k. >0)(4) 数列a n为等差数列:若 m n p q ,则a m a n a p a q.(5)数列 a n为等差数列,去掉前m项,剩下的项组成等差数列.推行:数列 a n为等差数列,则每隔k项取m项的和仍组成等差数列.(6)数列 a n是公差为d的等差数列,则奇(偶)数项组成公差为2 d的等差数列.推行①:数列a n为公差为 d 等差数列: 则在数列中每隔 k 项取一项组成的数列是公差为 (k 1)d 的等差数列.项数成等差数列的项成等差数列.推行②:数列a n是公差为 d 的等差数列 ,则项下标成等差数列的项也成等差数列.(7) 数列a n , b n 项数同样的等差数列 :则ka n , pa n qb n , panq ( p, q 为常数) 仍为等差数列.(8) 数列a n 为等差数列,其前n 项和S n能够写成S n an 2 bn, (a, b 为常数).(9)数列 a n为等差数列:则数列中挨次每连续k项之和组成的数列也是等差数列.(10)数列 a n为等差数列: S奇表示奇数项的和, S偶表示偶数项的和,若项数为2n 项时, 则有S奇-S偶 = nd , S奇 / S偶= a n / a n+ 1 ;若项数为 2n - 1 项时 , 则有奇-S偶= an, 奇/S偶= n/ (n-S S 1), S2 n 1(2n 1)a n .6.等比数列的性质:(1) 数列a n 为等比数列: a n a1q n 1, a m a n q m n , a n 2 an man m.(2) 数列a n 为等比数列: a n 2 an 1 a n 1 ,推行 a n 2 a n m a n m ( n>m >0)(3) 数列a n 为等比数列: m n p k ,则 a m a n a p a k.(4)数列 a n为等比数列,取掉前若干项,节余的项也组成等比数列.推行:数列 a n为等比数列,则每隔k项取m项的和(积)仍组成等比数列.(5) 数列 a n 为等比数列,则奇(偶)数项组成等比数列.推行① :数列 a n 为公比为 q 等比数列: 则在数列中每隔 k 项取一项组成的数列是公比为 q k 1 的等比数列.推行②:数列 a n 为等比数列 ,则项数成等差数列的项成等比数列.1 a n } , ka n , a n b n , a n k(k 为 (6) 数列 a n , b n 为项数同样的等比数列: 则 { } , {b n a n常数) 等仍为等比数列.(7) 数列 a n 为公比为 q(q ≠±1) 的等比数列:则数列中连续 k 项之和(积) 组成的数列是等比数列.(8) 数列 a n 为等比数列: ( S 奇 表示奇数项的和, S 偶 表示偶数项的和 )若项数为 2n 项时,则有 S 偶 / S 奇 = q;若项数为 2n -1 项时, 则有( S 奇 - a 1 )/ S 偶 =q.(9) 递推公式为 a n 1 pa n q( p 1) 的递推数列 { a n } , 都能够转变为an 1q p a nq 进而结构等比数列.p1 p 17.等差数列与等比数列比较:名称等差数列等比数列定义a n+ 1 ―a n =da n 为等差数an 1q ( q0 )a n 为等比数列a n列通项公 a n = a 1+( n -1) d = a m +( n -a n = a 1q n-1 = a m q n -m 式 m) d前 n 项 S nn a 1 a nna 1q 1 , 2S n a 1 1 q n a 1a n q和公式 1n n1q 1 q 1 .na 1dq2a ,A ,b 成等差数列a ,G ,b ,成等比数列中项Aa b,或 2 A=a +b .Gab ,或 G 2=ab28.等差数列与等比数列的关系:(1) 各项为正的等比数列 a n ,其对数数列{log a a n }( a 0, a 1) 为等差数列.(2) 数列 a n 为等差数列,则数列{ C a n }( C 为正常数) 为等比数列.9.数列乞降的一般方法( 联合于详细的示例解说): ①倒序乞降法:(等差数列的乞降);②错位相减法:(等比数列和差比数列);例 1:乞降: a 2a 2 3a 3 4a 4na n (n N *) .③裂项相消法:(数列中的各项能够拆成几项, 而后进行消项);例 2:乞降:1 1 55 1 (2n 1) 1.1 3 3 7(2n 1)例 3:求数列{1} 的前 n 项和.nn1④通项化归法:(化出通项, 由通项确立乞降方法 );例 4:求数列:1,1 , 1 , ,2 1 , 的前 n 项和 S n .1 2 1 2 3 1 3n⑤分组乞降法:(将一个数列分红几组,每组都能够用乞降公式来求解); 例 5:求数列 2,2 1 ,3 1 ,4 1, , n1 , 的前 n 项之和.2 4 82n 1⑥公式法:( 应用等差或等比数列的乞降公式直接来求解). ⑦.累差迭加法例 6:已知数列 6,9,14,21,30, , 此中相邻两项之差成等差数列,求它的通项.⑨∑乞降记法n用 a k = a 1a 2a 3a n 。
高中数学必修5等差数列知识点总结和题型归纳
等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示知识点2、等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列③等差中项:对于数列,若,则数列是等差数列知识点3、等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为该公式整理后是关于n的一次函数知识点4、等差数列的前n项和:⑤⑥对于公式2整理后是关于n的没有常数项的二次函数知识点5、等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有⑧对于等差数列,若,则也就是:⑨若数列是等差数列,是其前n项的和,,那么,,成等差数列如下图所示:10、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、。
等差数列{a n}的前三项依次为a-6,2a -5, -3a +2,则a 等于()A . -1B . 1C 。
—2 D. 22.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为( )A.49 B.50 C.51 D.523.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.454、已知等差数列中,的值是()()A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是()A.d>B.d<3 C。
≤d<3 D.<d≤36、。
在数列中,,且对任意大于1的正整数,点在直上,则=_____________。
(全面,基础)人教版高中数学必修五《数列》基础知识要点总结
一、数列一列数叫做数列。
2、数列的通项公式
如果数列的第n项与序号n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.
3、通项公式的作用
①求数列中任意一项;
②检验某数是否是该数列中的一项.
4、数列的分类
①根据数列项数的多少分——有穷数列、无穷数列
2、等差(比)中项
由三个数 组成的等差数列可以看成最简单的等差数列。这时 叫做 的等差中项.
3、判断等差(比)数列的方法
4、等差(比)数列的通项公式
5、性质1
6、性质2
7、性质3
8、性质4
9、等差(比)数列的单调性
10、等差(比)数列的前n项和公式
11、前n项和的性质1
12、前n项和的性质2
13、前n项和的性质3
②根据数列项的大小变化分——递增数列、递减数列、常数列、摆动数列
5、数列的递推公式
如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式。
6、数列前n项和的定义
一般地,我们称 为数列的前项和,用 表示,即
二、等差数列与等比数列
三、典型题型小结
1、三(四)个数成等差(比)的设法
2、求数列最大(小)值的方法
3、求数列通项的常用方法
4、数列求和的常用方法
等差数列
等比数列
1、定义
一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.
一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比。公比通常用字母q表示。
高中数学_数列知识点汇总
必修5 数列知识点小结【等差数列】1. 证明方法:①递推关系(定义):)(1*+∈=-N n d da a n n 为常数,②等差中项法:112+-+=n n n a a a )1(>n判断方法:③通项公式q pn d n a a n +=-+=)1(1(其中p,q 为常数) ④前n项和Bn An 2+=-+=+=d n n n a a a n S n n 2)1(2)(11(A,B 为常数)2. 等差中项:b A a ,,成等差数列,A 称为b a 与的等差中项(其中b a 与为任意实数, A 存在且唯一),2b a A b a A +=⇔的等差中项与为即3. 等差数列性质:(1) 任两项关系:nm a a mn a a d n m m n --=--=(其中n m ≠)(2) 任两项关系:d m n a a m n )(-+=(其中n m ≠)(3) 是递增数列;数列}a {,0d n >是递减数列;数列}a {,0d n <是常数列数列}a {,0d n =。
(4) 两和式项数相同,下标和相等,则两式相等,如:112+-+=n n n a a a (其中n>1, n n n a a a +=2) k n k n n a a a +-+=2(其中n-k>0, n n n a a a +=2)特别若q p n m a a a a q p n m +=++=+则,k q p s n m a a a a a a k q p s n m ++=++++=++则,(5) {}{}n n b a ,为项数相同的等差数列(或无穷数列),则:①:k m a +、k m a 2+、k m a 3+、k m a 4+…成等差数列(其中k m ,为常数) ②:{}k a n +、{}n n b q a p ∙+∙为等差数列,(其中q p k ,,为常数)(6) 前n 项和性质:①:成等差数列,,,232k k k k k S S S S S --②:⎭⎬⎫⎩⎨⎧n S n 是等差数列。
高一数学必修5:数列(知识点梳理)
第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
高中数学必修5 第二章 数列 知识整理
第二章 数列2.1 数列1.数列(1)数列的概念按照一定次序排列的一列数称为数列。
数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…,所以,数列的一般形式可以写成:123,,,,,n a a a a ……,简记为{}n a 。
其中数列{}n a 的第n 项n a 也叫做数列的通项。
注意:①数列中每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。
所以,数列的一般形式可以写成123,,,,n a a a a …,简记为{}n a 。
如:数列1,2,3,4,…,可以简记为{n}。
②数列中的数是按一定次序排列的。
因此,如果组成两个数列的数相同而排列次序不同,那么它们就不是相同的数列。
如:数列1,2,3,4,5与5,4,3,2,1是不同的数列。
③数列的定义中,并没有规定数列中的数必须不同。
因此,同一个数在数列中可以重复出现。
如:1,1,1,1,1,1,---…;2,2,2,2,2,…等。
④{}n a 与n a 是不同的概念。
{}n a 表示数列123,,,,,n a a a a ……,而n a 仅表示数列{}n a的第n 项。
⑤从映射函数的观点看,数列可以看做是一个定义域为正整数N +(或它的有限子集{1,2,3,,}n …)的数与自变量从小到大依次取值时对应的一列函数值,这里的函数是一种特殊函数:它的自变量只能取正整数,由于数列的值是函数值,序号是自变量,数列的通项公式也就是相应函数的解析式。
可以将序号为横坐标,相应的像为纵坐标,通过描点画图来表示一个数列,从数列的图像表示可以直观的看出数列的变化情况。
(2)数列的分类①按照数列的项数的多少可分为:有穷数列与无穷数列。
项数有限的数列叫有穷数列,项数无限的数列叫无穷数列。
②按照数列的每一项随序号变化的情况可分为:递增数列、递减数列、常数列、摆动数列。
数列知识点总结及例题讲解
人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。
是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。
与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。
高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐
数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。
前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。
3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。
高中数学数列、解三角形、不等式综合复习
本讲主要复习了必修(5)数列、解三角形、不等式等三部分知识要点和考点。
在利用这些知识点解决问题时注重函数的思想、数与形结合的思想、方程的数学思想、分类讨论的数学思想、等价转化的数学思想及配方法、特值法、分离参数法等数学思想方法的应用。
考点一:数列、不等式、解三角形等基础知识的考查例1、在下列命题中,把正确命题的序号填在题后的横线上。
(1)当三角形的各角的余切成等差数列时,各角所对边的平方成等差数列(2)已知不等式①②x2-6x+8<0 ③2x2-9x+m<0若同时满足①②的x值也满足③,则m9.(3)一个等差数列和一个等比数列,其首项是相等的正数,若其第(2n+1)项是相等的,则这两个数列的第(n+1)项也是相等的。
(4)方程有解时a的取值范围是在上述命题中正确命题的序号是。
分析:(1)设三个角A,B,C所对的边分别是a,b,c.由已知条件得:2cotB=cotA+cotC然后化为正、余弦。
通分再利用正、余弦定理可证:2b2=a2+c2.(2)可用特值法:先求不等式①②解集的交集。
再对m取特值验证。
也可利用二次函数的图像解决。
(3)利用等差、等比数列的通项公式表示这两个数列的第(n+1)项,然后比较大小。
或取特值验证。
(4)分离参数法:把a分离出来,用表示a,再用均值不等式求解。
解析:(1)由已知得:2cotB=cotA+cotC.利用正、余弦定理可证:2b2=a2+c2.故命题(1)是正确的。
(2)不等式①②的交集是(2,3),取m=0时,不等式化为:显然当2<x<3时,不等式成立。
故命题(2)错误另解:利用二次函数图像求解:设f(x)=2x2-9x+m,如图由已知得:(3)设数列分别是等差数列、等比数列。
首项分别是>0公差和公比分别是d、q,取n=2,q=2,由已知:即:,故==-=故,故命题(3)错误。
(4)由方程得:-(4+a)=.故此命题错误。
考点二:不等式与数列的综合应用的考查例2、已知数列{a}是首项a1>0,q>-1且q≠1的等比数列,设数列{b}的通项为b=a-ka(n∈N),数列{a}、{b}的前n项和分别为S,T.如果T>kS对一切自然数n都成立,求实数k的取值范围.分析:由探寻T和S的关系入手谋求解题思路。
高中数学必修五数列知识点总结归纳
高中数学必修五数列知识点总结归纳数列是以正整数集为定义域的函数,是一列有序的数。
数列中的每一个数都叫做这个数列的项。
下面肖博老师给大家分享高中数学必修五数列知识点总结。
一、数列的概念和简单表示法1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.二、等差数列1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.三、等比数列1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.四.数列的定义、分类与通项公式(1)数列的定义①数列:按照一定顺序排列的一列数.②数列的项:数列中的每一个数.(2)数列的分类(3)数列的通项公式如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.五.数列的递推公式如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式.1.辨明两个易误点(1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.(2)易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在正整数集N*或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.。
高一必修五数学数列全章知识点(完整版)
高一数学数列知识总结知识网络二、知识梳理①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a )三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足⎩⎨⎧≥≤+01m m a a 的项数m 使得m s 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
四.数列通项的常用方法:(1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①⎩⎨⎧≥-==-)2()111n S S n S a n n n(;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项: ①)(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:① q pa a n n +=+1;②nn n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.第一节通项公式常用方法题型1 利用公式法求通项例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式:⑴ 1322-+=n n S n ; ⑵12+=nn S .总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式;⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式.总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ⋅=+“;⑵迭加法、迭乘法公式:① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=----- ② 1122332211a a aa a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=----- . 题型3 构造等比数列求通项例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法:①令)(1λλ-=-+n n a p a ;② 在q pa a n n +=+1中令pqx x a a n n -=⇒==+11,∴)(1x a p x a n n -=-+; ③由q pa a n n +=+1得q pa a n n +=-1,∴)(11-+-=-n n n n a a p a a .例4已知数列{}n a 中,nn n a a a 32,111+==+,求数列{}n a 的通项公式.总结:递推关系形如“nn n q pa a +=+1”通过适当变形可转化为: “q pa a n n +=+1”或“nn n n f a a )(1+=+求解.例5已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.总结:递推关系形如“n n n a q a p a ⋅+⋅=++12”,通过适当变形转化为可求和的数列. 强化巩固练习1、已知n S 为数列{}n a 的前n 项和, )2,(23≥∈+=+n N n a S n n ,求数列{}n a 的通项公式.2、已知数列{}n a 中,)(0)1()2(,211++∈=+-+=N n a n a n a n n ,求数列{}n a 的通项公式. 小结:数列通项的常用方法:⑴利用观察法求数列的通项;⑵利用公式法求数列的通项;⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)构造等差、等比数列求通项:①q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.3、数列{}n a 中,)(,111n n n a a n a a -==+,则数列{}n a 的通项=n a 。
北师大版高中数学必修5第一章数列知识点及方法总结
数列知识点知识清单1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;②同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n -=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图像表示:序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图像是一群孤立点。
(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
(5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
(6 )数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥注意:此公式较重要!!!等差数列知识点1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
高中数学必修5等差数列知识点总结和题型归纳
等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示知识点2、等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列知识点3、等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数知识点4、等差数列的前n 项和:⑤2)(1n n a a n S +=⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数知识点5、等差中项:⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2ba A +=或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1nn S aS a +=奇偶.②若项数为()*21n n -∈N,则()2121n n Sn a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .523.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( )A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直03=--y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( ) (A )12 (B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=-,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( )A .7 B. 6 C. 3 D. 2 5、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( ) (A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)12 7、设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=519、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和 1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q --+++=,则其前n 项和n S = .2、等差数列 ,4,1,2-的前n 项和为 ( )A. ()4321-n nB. ()7321-n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( ) A. 0991>+a a B. 0991<+a a C. 0991=+a a D. 5050=a4、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S ,则=n 。
高一数学必修五数列知识点
高一数学必修五数列知识点数列是以正整数集(或它的有限子集)为定义域的函数,是高一学生学习的重点,有哪些知识点要学习呢?下面是店铺给大家带来的高一数学必修五数列知识点,希望对你有帮助。
高一数学必修五数列知识点1.数列的函数理解:①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。
图像法;c.解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
2.通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。
数列通项公式的特点:(1)有些数列的通项公式可以有不同形式,即不唯一。
(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。
3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列递推公式特点:(1)有些数列的递推公式可以有不同形式,即不唯一。
(2)有些数列没有递推公式。
有递推公式不一定有通项公式。
注:数列中的项必须是数,它可以是实数,也可以是复数。
高一数学必修五数列练习1、 ABC的三边a,b,c既成等比数列又成等差数列,则三角形的形状是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形2、在等比数列{an}中,a6+a5=a7-a5=48,则S10等于( )A.1023B.1024C.511D.5123、三个数成等比数列,其积为1728,其和为38,则此三数为( )A.3,12,48B.4,16,27C.8,12,18D.4,12,364、一个三角形的三内角既成等差数列,又成等比数列,则三内角的公差等于( )A.0︒B.15︒C.30︒D.60︒5、等差数列{an}中,a1,a2,a4恰好成等比数列,则a1的值是( ) a4A.1B.2C.3D.46、某种电讯产品自投放市场以来,经过三年降价,单价由原来的174元降到58元,这种电讯产品平均每次降价的百分率大约是( )A.29%B.30%C.31%D.32%7、若log4(x+2y)+log4(x-2y)=1,则∣x∣-∣y∣的最小值是。
必修5 第二章 数列 期末复习(知识点及题型全)
必修5 第二章《 数 列 》期末复习制卷:王小凤 学生姓名【知识梳理】一.等差数列与等比数列二.数列通项公式的求法1.根据n S ,利用公式11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩求通项n a 。
注.已知n S 求n a ,应分1=n 及2≥n 两步,最后验证1a 是否满足后面的n a .2.根据数列的递推关系,叠加法、累乘法求通项n a ,其要点是: (1)121321()()()n n n a a a a a a a a -=+-+-++-L ;(2)321121(2)n n n a a a a a n a a a -=⋅⋅⋅⋅≥L 3.构造新的等差、等比数列,转化法求通项n a 。
三.数列求和1.利用等差、等比数列的公式求和; 2.分组求和法;3.错位相减求和,适用于由一个等差数列和一个等比数列对应项乘积组成的数列; 4.裂项相消求和,它的基本思想是设法将数列的每一项拆成两项(裂项),并使它们在相加时除了首尾各有一项或少数几项外,其余各项都能前后相消.常见裂项公式:(1)1111()()n n k k n n k =-++ (2)11()n k n kn k n =+-++5.倒序相加法求和。
四.n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解:(1)当0,01<>d a 时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得mS 取最大值.(2)当 0,01><d a 时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得mS 取最小值。
【考点题型】考点一:通项公式、递推公式的基本应用1.下列四个数中,哪一个是数列{(1)n n +}中的一项( ) A .380 B .39 C .35 D .232.已知数列{}n a ,13a =,26a =,且21n n n a a a ++=-,则数列的第五项为( ) A .6 B .3- C .12- D .6-等差数列 等比数列定义1n n a a d --=(2n ≥)通项公式 d n a a n )1(1-+=,(),()n m a a n m d n m =+->, 中项如果,,a A b 成等差数列,那么A 叫做a 与b 的等差中项,且2a bA +=.三个数成等差数列的设法: .如果,,a G b 成等比数列,那么G 叫做a 与b 的等比中项,且 三个数成等比数列的设法:aq,a ,aq 前n 项和 1()2n n n a a S +=或1(1)2n n n S na d -=+当1q =时:n S = 当1q ≠时:n S =性质若q p n m +=+,则 m n p q a a a a +=+;若2m p q =+,则 *(,,,)p q n m N ∈若q p n m +=+,则2*2,,(,,,)m p q m p q a a a p q n m N =+=⋅∈若则有n S 、2n n S S -、32n n S S -为等差数列n S 、2n n S S -、32n n S S -为等比数列 函数思想 看数列12221()()22n n a dn a d An B d ds n a n An Bn =+-=+=+-=+111(1)11nn n n n n a a q Aq qa as q A Aq q q q===-=-≠--判定方法(1)定义法:证明)(*1N n a a n n ∈-+为一个常数; (2)等差中项:证明*11(2N n a a a n n n∈+=+-,)2≥n(3)通项公式:(,n a kn b k b =+为常数)(*N∈n )(4)2ns An Bn =+(,A B 为常数)(∈*n N )(1)定义法:证明)(*1N n a a nn ∈+为一个常数(2)中项:证明21nn a a -=*1(,2)n a n N n +⋅∈≥ (3)通项公式:(,nn a cq c q =均是不为0常数)(4)n ns Aq =A -(,A q 为常数,≠≠A 0,q 0,1)考点二:等差、等比数列的基本运算3.若等差数列{}n a 的前三项依次为1a -、1a +、23a +,则2011是这个数列的( ) A .第1006项B .第1007项C .第1008项D .第1009项4.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .235.在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A .4-B .4±C .2-D .2±6.已知,,,a b c d 是公比为2的等比数列,则dc ba ++22= ( ) A .1 B .21 C .41 D .817.在等比数列{}n a 中,485756=-=+a a a a ,则10S 等于( ) A .1023 B .1024 C .511 D .5128.等差数列{}n a 的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是( )A .90B .100C .145D .1909.在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则二数之和为( )A .2113B .1114C .2110 D .21910.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A .5B .4C .3D . 2考点三:等差、等比数列的性质的应用11.已知{}n a 是等差数列,且2381148a a a a +++=,则67a a += ( ) A .12 B .16 C .20 D .2412.已知等差数列{}n a 满足1231010a a a a ++++=L ,则有( ) A .11010a a +> B .21000a a +< C.3990a a += D .5151a = 13.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( ) A .120 B .105 C .90 D .75 14.等差数列{}n a 中,1590S =,则8a = ( )A .3B .4C .6D .1215.若一等差数列前四项的和为124,后四项的和为156,又各项的和为350,则此数列共有 ( ) A .10项 B .11项 C .12项 D .13项16.等比数列{}n a 中,0n a >,965=a a ,则313233310log log log log a a a a +++⋅⋅⋅+=( ) A .12 B .10 C .8 D .32log 5+ 17.等差数列{}n a 中,121015a a a +++=L ,11122020a a a +++=L ,则212230a a a +++=L ( )A .15B .25C .35D .4518.已知等比数列前10项的和为10,前20项的和为30,那么前30项的和为( ) A .60 B .70 C .90 D .126考点四:等差、等比数列的实际应用19.夏季高山上温度从山脚起每升高100米,降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则山的相对高度是( )A .1500B . 1600C .1700D .180020.某种细菌培养过程中,每半小时分裂一次(一次分裂为两个),经过4小时,这种细菌由1个可繁殖成( )个.A .64B .128C .256D .51221.一套共7册的书计划每2年出一册,若各册书的出版年份数之和为13979,则出齐这套书的年份是( )A .1997B . 1999C .2001D .2003考点五:等差数列前n 项和的最值22.等差数列{n a }中,39||||,a a =公差0,d <那么使前n 项和n S 最大的n 值为( ) A .5 B .6 C .5 或6 D .6或723.数列{a n }是首项为23,公差为整数的等差数列,且第六项为正,第七项为负. (1)求数列的公差d ; (2)求前n 项和S n 的最大值.考点六:数列的通项公式的求解24.已知数列{}n a 满足1n n a a n +=+,11=a ,求n a .25.已知数列{}n a 的前n 项和n n S 23+=,求n a .考点七:等差、等比数列的证明数列求和26.已知数列{a n }是首项为a 且公比不等于1的等比数列,S n 为其前n 项和,a 1,2a 7,3a 4成等差数列,求证:12S 3,S 6,S 12-S 6成等比数列.27.在数列{}n a 中,11a =,122n n n a a +=+. (Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (提示:利用等差数列定义证明) (Ⅱ)求数列{}n a 的前n 项和n S . (提示:错项相减求和)28.等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列, 11b =,且2264,b S = 33960b S =.(1)求n a 与n b ; (2)求和:12111nS S S +++L .(提示:裂项相消求和) (注:将第26—28题解题过程写在试卷背面 )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列
1. 等差数列
通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2
a b A +=
,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ✧ 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。
✧ 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。
例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362
a a d S a d a d ⨯=+==+
=+=,解得10,2a d ==,916a =
例2. {}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213
d a =-
,从而 21111(1)249()(7)2131313n a n n S na a n a -=+⨯-=--+,又10a >所以1013
a -< 故 7n =
2. 等比数列
通项公式:11(0)n n a a q q -=≠
等比中项:2G ab =
前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩
若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ⋅=⋅ 例. {}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________
解析:由0n a >,242411a a a q ==,231117S a a q a q =++=,解得
1114,,22a q ==-(舍去)。
所以5314
S =
3. 求数列的通项
✧ 利用1n n n a S S -=-,注意n=1时的情况。
✧ 形如1()(2)n n a a f n n -=+≥时,用累加法求解。
✧ 形如1
()(2)n n a f n n a -=≥时,用累乘法求解。
✧ 形如1(2)n n a a m n -=+≥时,构造等差数列求解
✧ 形如1(2)n n a xa y n -=+≥时,构造等比数列求解。
例.根据下列条件,求{}n a 的通项公式。
(1)数列{}n a 满足:132n n a a n +=++,且12a =。
(转化后利用累加法)
(2)11a =,11(2)n n n a a n n
--=≥。
(利用累乘法) (3)11a =,132n n a a +=+。
(构造等比数列)
解析:(1)因为1323(1)1n n a a n n +-=+=+-,所以131n n a a n --=-所以 112211(31)()()()2n n n n n n n a a a a a a a a ---+=-+-++-+= 当1n =时,12a =符合n a 通项公式。
(2)因为11(2)n n n a a n n --=≥,所以122121,1
2
n n n a a a a n ---==-。
11121123n a n a a n n n -=⋅⋅⋅⋅==,1a 符合通项公式。
(3)因为132n n a a +=+,所以113(1)n n a a ++=+,由11a =可知10n a +≠ 所以1131
n n a a ++=+,{}1n a +为等比数列,公比3q =, 11112,123231n n n n a a a --+=+=⋅∴=⋅-
4. 求前n 项和n S
✧ 公式法
✧ 分组求和
✧ 拆项相消
常见的拆项公式
(1)111(1)1
n n n n =-++ (2)1111()()n n k k n n k
=-++ (3)1111()(21)(21)22121
n n n n =--+-+ (4
=例.正项数列{}n a ,222(1)()0n n S n n S n n -+--+=求;
(1)通项n a
(2)令22
1(2)n n n b n a +=+,n T 为数列{}n b 的前n 项和,证明对于任意的 n *∈N ,都有564
n T < 解析:(1)由222(1)()0n n S n n S n n -+--+=,得2[()](1)0n n S n n S -++=
由于{}n a 正项数列,0n S >,2()n S n n =+,12n n n a S S n -=-=
(2)2n a n =,2222
1111[]4(2)16(2)n n b n n n n +=
=-++ 222222221111111111[1][1]16324
(2)162(1)(2)n T n n n n =-+-++-=+--+++< 2115(1)16264
+=
✧ 错位相减:适用于一个等差和一个等比数列对应项相乘构成的数列
例.数列{}n a 满足211233333n n n a a a a -+++
+= 求:(1){}n a 的通项
(2)设n n
n b a =,求数列n b 的前n 项和n S 解析:由条件知211233333n n n a a a a -+++
+=,所以 22123113333n n n a a a a ---++++=,两式相减得,1133
n n a -=(2)n ≥ 所以1(2)3n n a n =≥,n=1,得113a =符合。
13n n a = (2)3n n b n =⋅,所以
23323333n n S n =+⨯+⨯++⋅,234
13323333n n S n +=+⨯+⨯+⋅, 相减得,12323(3333)n n n S n +=⋅-+++,即13(13)2313
n n n S n +-=⋅-- 所以1(21)3344
n n n S +-=+ ✧ 倒序相加。