电阻点焊的原理及控制方法.
电阻点焊的工作原理
电阻点焊的工作原理
电阻点焊是一种常用的金属连接方法,它利用电流通过金属工件的接触点产生热量,将接触点瞬间加热至熔化,然后通过一定的压力使两个金属工件迅速连接在一起。
电阻点焊主要包括三个基本要素:电流源、电极和工件。
电流源提供电流供应,电极是电流的传递和压力施加的部分,而工件是待连接的金属材料。
工作时,首先将待连接的工件放置在电极之间,电流通过电极的接触点进入工件。
由于金属具有电阻,电流通过接触点时会产生热量。
这种热量使接触点迅速升温,瞬间达到熔化温度,形成熔融池。
接下来,通过一定的压力施加在工件上,确保两个金属工件的接触面密封紧密,使熔融池均匀地分布在接触面上。
在一定的时间内,电流和压力会保持不变,以使熔融池形成稳定的连接。
当焊点达到所需时间后,断开电流和压力,让焊点自然冷却。
在冷却过程中,熔融金属会重新凝固,从而形成坚固耐用的焊点。
整个点焊过程通常只需要数毫秒的时间。
电阻点焊具有简单、快速、经济的特点,适用于连接厚度不超过3mm的金属材料,广泛应用于汽车、家电、建筑等领域的
生产制造中。
它不仅可以实现多个焊点的同时焊接,还能有效提高焊接强度和效率,是一种非常常用的金属连接技术。
简述电阻点焊的工作原理
简述电阻点焊的工作原理
电阻点焊是一种常见的金属连接方式,它的工作原理是利用电流通过金属接头时产生的热量,使得接头处的金属瞬间熔化,从而实现金属的连接。
电阻点焊主要应用于金属板材的连接,例如汽车制造、家电制造、航空航天等领域。
电阻点焊设备主要由电源、焊机、夹具和控制系统等组成。
其中电源提供电流,焊机将电流传输到夹具上,夹具将电流传输到金属接头上,控制系统则控制整个焊接过程。
在焊接过程中,夹具会将两个金属接头夹在一起,并施加一定的压力,以确保接头之间的紧密接触。
然后,电流通过接头时会产生热量,使得接头处的金属瞬间熔化。
当电流停止时,金属又会迅速冷却并凝固,从而实现金属的连接。
电阻点焊具有以下优点:首先,焊接速度快,一般只需要几秒钟就能完成一个焊点;其次,焊接效果好,焊接点处强度高、气密性好;此外,焊接过程中不需要额外的填充材料,因此可以节省成本。
然而,电阻点焊也存在一些缺点。
首先,焊接点处会受到较大的热影响区域,容易导致变形和变质;其次,焊接点处可能会产生氧化物或其他杂质,影响焊接强度和质量;此外,电阻点焊只适用于金属板材的连接,对于其他形状的金属件则不太适用。
总之,电阻点焊是一种常见且实用的金属连接方式。
虽然它存在一些缺点,但是在适用范围内仍然具有广泛的应用价值。
电阻焊原理和焊接工艺完整版
电阻焊原理和焊接工艺完整版电阻焊是指利用电流通过两个接触电极,通过电流在焊接接头上产生的热量,将两个焊接材料加热至熔化状态,然后冷却固化,实现连接的一种焊接方法。
电阻焊可以分为电阻点焊、电阻缝焊和电阻插焊等。
电阻焊的原理是利用焊接接点的电阻加热而焊接材料加热到熔化温度。
焊接接头形成一个电阻,通过焊机施加的电流通过接头,形成焊接接点的电阻加热。
当焊接接头内部电流通过产生的热量超过材料的熔点时,焊接材料开始熔化。
然后通过施加的压力使熔化的焊接材料接触,形成一体化连接。
焊接完成后,断开电流,焊接接头冷却固化,形成强固的连接。
电阻焊的焊接工艺可以从焊材选择、接触电阻、焊接时间、施加压力等多个方面进行控制。
首先,选择合适的焊材能够确保焊接接头的质量。
焊接材料应具备良好的导电性和可焊性。
其次,接触电阻是决定焊接热量的重要因素之一、焊接电极与工件的接触电阻越小,焊接热量就越大。
因此,要采取措施确保接触电阻的稳定和减小接触电阻。
然后,焊接时间是控制焊接热量的另一重要参数。
焊接时间应根据焊接材料的熔点来确定。
焊接时间过短会导致焊接不充分,焊接强度不够;焊接时间过长则容易热损伤焊接接头。
最后,施加的压力也是控制焊接质量的关键。
合适的压力能够保证熔化的焊接材料进一步接触,使焊接接头的凝固过程更加完善。
针对不同焊接材料及材料厚度,电阻焊还可以采用不同的焊接工艺。
例如,电阻点焊广泛应用于金属板材的连接,可以快速、高效地实现金属板材的焊接。
电阻点焊的工艺流程一般包括调整焊机参数、清洁焊接接头、固定焊接接头、施加电流和压力、焊接完成后的冷却和检测等步骤。
电阻点焊的优点是焊接速度快、接头强度高。
此外,电阻焊还有电阻缝焊和电阻插焊等。
总之,电阻焊是利用通过焊接接头的电流加热焊接材料,实现焊接的一种方法。
通过控制焊接材料的选择、接触电阻、焊接时间和施加压力等参数,可以实现高质量的焊接连接。
电阻焊涉及到的焊接工艺可以根据具体的焊接需求进行选择和设计。
电阻焊的原理
第三类:导电较差,但强度(主要是高温强度)最佳,具有更高 旳力学性能,耐磨性好,如铬锌青铜、MЦ4合金、Mo、WCu、W。
合用于焊接强度及硬度较高旳不锈钢、高温合金等。
2)用预热脉冲提升金属旳塑性,使工件易于紧密贴合、预防飞 溅;
3)加大锻压力以压实熔核,预防产生裂纹或缩孔。
4)用回火或缓冷脉冲消除合金钢旳淬火组织,提升焊接点旳力 学性能,或在不加大锻压力旳条件下,预防裂纹和缩孔。
三. 实现焊接旳基本条件
1). 工件接触间一定旳接触电阻 : R 2). 接触电阻R上经过一定旳电流 : I 3) 接触电阻R上经过电流具有一定旳时间 : t 4). 工件上具有一定旳压力: P 5). 电极上具有一定旳冷却温度: T
4.电极压力 电极压力对两电极间总电阻R有明显旳影响,伴随电极压力旳增大,
R明显减小,而焊接电流增大旳幅度却不大,不能影响因R减小引起旳产 热降低。所以,焊点强度总伴随焊接压力增大而减小。处理旳方法是在 增大焊接压力旳同步,增大焊接电流,以弥补电阻减小旳影响,保持焊 接强度不变。电极压力过小,将引起飞溅,也会 使焊点强度降低。
反馈线圈
充电电路
半导晶体管组 电容组
电流分路器
电容储能焊接机
焊接电源
整流电路
脉冲变压器
焊接电极
充电电路
电容组
焊接电源
计数器
可控硅
焊接变压器
焊接头
六. 电阻热产生及其影响原因
电阻热 Q=IIRT 其中Q — 电阻点焊能量 I — 焊接电流 R — 电焊过程中旳动态电阻 T — 焊接时间
电阻点焊实验报告
电阻点焊实验报告一、实验目的本实验旨在通过实践掌握电阻点焊的基本原理和操作技能,了解常见焊缝缺陷及其原因,并对焊接过程中的安全注意事项有所了解。
二、实验原理电阻点焊是利用电流通过两个电极产生的热量,使两个工件在一定的压力下瞬间熔合成为一个整体的焊接方法。
其原理是将电能转化为热能,使接触点处的温度升高,达到熔化的温度,使两个工件熔合在一起。
电阻点焊的优点是焊接速度快,焊接强度高,同时不会污染环境,对环境的影响也很小。
但是在实际操作中,需要注意电流、压力和时间等参数的选择,以及焊接过程中的安全问题。
三、实验装置本实验所需装置主要包括电源、控制面板、手持焊接枪、夹具等。
四、实验步骤1. 准备工作:将待焊接的工件放置在夹具上,并确保夹具的位置准确无误。
2. 调整参数:根据工件的材料和厚度等特点,选择合适的电流和焊接时间,同时调整焊接枪的压力,保证焊接效果最佳。
3. 焊接操作:将电极头放在工件上,按下焊接按钮,使电流通过两个电极头,产生热量,使工件瞬间熔化,并在一定时间内加压,使其熔合成为一个整体。
待焊接完成后,松开焊接枪,将工件从夹具上取下。
4. 检查焊缝:检查焊接处是否存在裂纹、气孔等缺陷,如有,需要重新进行焊接操作。
五、实验结果与分析通过实验,我们成功地完成了电阻点焊的操作,并得到了良好的焊接效果。
同时,我们也注意到操作过程中的一些问题。
首先是参数的调整。
在实际操作中,我们需要根据工件的材质和厚度等特点,选择合适的电流和焊接时间,以及调整焊接枪的压力,才能保证焊接效果最佳。
其次是焊接过程中的安全问题。
在操作过程中,我们需要注意电源和焊接枪的安全使用,避免触电或烫伤等情况的发生。
最后是焊缝的检查。
在焊接完成后,我们需要对焊接处进行检查,确保焊接缺陷的最小化。
六、实验总结本次实验使我们更加深入地了解了电阻点焊的原理和操作技能,同时也提高了我们的安全意识。
通过实践,我们不仅掌握了电阻点焊的基本操作方法,还了解了焊接缺陷的产生及其原因,为今后的实际应用打下了坚实的基础。
电阻点焊名词解释
电阻点焊名词解释一、引言电阻点焊是一种以电阻热为能源,通过电流在焊接区域产生热量,将两个金属板焊接在一起的方法。
该方法具有高效、低成本、高质量等特点,因此在汽车制造、建筑、电器、包装等领域得到广泛应用。
本文将对电阻点焊的基本原理、应用、发展趋势等方面进行详细的解释和阐述。
二、电阻点焊的基本原理电阻点焊的基本原理是利用电流通过两个金属板之间产生的电阻热能,使金属板局部熔化,再通过施加压力将两个金属板连接在一起。
具体来说,当电流通过金属板之间时,由于电阻的作用,金属板之间产生热量,使得接触点处的金属熔化,形成熔核。
随着焊接时间的延长,熔核逐渐扩大并连接两个金属板,形成焊接接头。
在这个过程中,电流的大小、焊接时间的长短、焊接压力的大小等因素都会影响焊接质量。
三、电阻点焊的应用1.汽车制造:汽车制造是电阻点焊的主要应用领域之一。
在汽车制造过程中,许多零部件都是通过电阻点焊焊接在一起的,如车门、发动机罩、车顶等。
2.建筑:在建筑领域,钢筋的连接常常采用电阻点焊的方法。
通过将钢筋交叉放置并施加电流和压力,可以将钢筋牢固地焊接在一起。
3.电器:在电器制造领域,各种金属部件的连接也常常采用电阻点焊的方法。
如电饭煲的内胆、空调器的面板等。
4.包装:在包装领域,一些金属容器的密封可以采用电阻点焊的方法。
如饮料罐的盖子与罐身的焊接等。
四、电阻点焊的发展趋势随着科技的不断发展,电阻点焊技术也在不断进步和完善。
以下是一些电阻点焊的发展趋势:1.高效化:提高焊接效率是电阻点焊的一个重要发展方向。
通过改进焊接设备、优化焊接工艺参数等方法,可以缩短焊接时间,提高焊接效率,从而降低生产成本。
2.自动化:随着工业自动化的不断发展,电阻点焊的自动化程度也越来越高。
自动化焊接设备可以大大提高焊接质量和效率,减少人工操作带来的误差和安全隐患。
3.智能化:随着人工智能技术的发展,电阻点焊的智能化程度也越来越高。
智能化焊接设备可以通过传感器和算法实时监测和调整焊接参数,实现自适应控制和优化,进一步提高焊接质量和效率。
电阻点焊原理
电阻点焊原理电阻点焊是一种利用电流通过工件产生的热量来使两个金属接头在一定的压力下瞬间熔接的焊接方法。
它是利用电阻加热原理进行的一种特殊的电阻焊接工艺,通常用于焊接薄板和线材。
电阻点焊的原理是利用电流通过工件产生的热量,使两个金属接头在一定的压力下瞬间熔接。
在电阻点焊中,焊接电流通过电极传导到工件上,在接头处产生高温,使接头瞬间熔化并在一定的压力下熔接成为一个整体。
这种焊接方法具有焊接速度快、热影响区小、焊接变形小等优点,因此在工业生产中得到了广泛的应用。
电阻点焊的原理主要包括以下几个方面:1. 电流通过工件产生热量。
在电阻点焊中,焊接电流通过电极传导到工件上,由于金属的电阻导致电流通过工件时产生热量。
这种热量使接头处的金属瞬间升温,达到熔点并熔化,从而实现焊接。
2. 一定的压力。
在电阻点焊过程中,除了电流产生的热量外,还需要施加一定的压力。
这样可以确保接头在熔化的同时能够紧密结合,形成牢固的焊接。
3. 瞬间熔接。
电阻点焊的特点之一就是焊接速度快,焊接时间非常短,通常在几十毫秒到几百毫秒之间。
这种瞬间熔接的方式可以减少热影响区,避免对工件造成过多的热变形。
总的来说,电阻点焊的原理就是利用电流通过工件产生的热量,施加一定的压力,使接头在瞬间熔化并结合成为一个整体。
这种焊接方法适用于焊接薄板和线材,具有焊接速度快、热影响区小、焊接变形小等优点,因此在汽车制造、家电制造、金属加工等领域得到了广泛的应用。
在实际应用中,电阻点焊的原理需要结合具体的工件材料、厚度、形状等因素来确定焊接参数,包括焊接电流、焊接时间、压力等。
只有合理地控制这些参数,才能确保焊接质量,达到预期的焊接效果。
总之,电阻点焊作为一种利用电流产生的热量来实现瞬间熔接的焊接方法,其原理简单清晰,应用广泛,是现代工业生产中不可或缺的重要工艺之一。
通过对电阻点焊原理的深入理解和合理应用,可以提高焊接质量,提高生产效率,降低生产成本,推动工业制造的发展。
电阻点焊工作原理
电阻点焊工作原理电阻点焊是一种常见的金属连接技术,广泛应用于汽车制造、家电制造、航空航天等行业。
它的工作原理是利用电流通过金属工件和电极之间的接触电阻产生的热量,将两个工件加热到熔点,然后施加一定的压力使其熔融,最终形成牢固的连接。
电阻点焊的工作原理可以分为三个主要步骤:接触、加热和压力。
首先是接触阶段,即将待焊接的两个金属工件放置在电极之间,并施加一定的压力使其紧密接触。
电极通常由铜制成,因为铜具有良好的导电性能和热传导性能,能够提供足够的电流和热量。
接下来是加热阶段,通过施加电流使电流通过工件和电极之间的接触电阻,产生热量。
电流的大小和时间的长短会影响热量的生成量,进而影响焊接质量。
一般情况下,电流越大、时间越长,产生的热量越多,焊接质量也会更好。
但是过大的电流和时间会引起焊接过热,导致工件变形或者焊点熔化。
最后是压力阶段,通过施加一定的压力使工件紧密贴合,确保熔点的金属在加热后能够均匀地熔融。
压力的大小也会影响焊接质量,过小的压力会导致焊接接头不牢固,过大的压力则容易使工件变形。
因此,需要根据具体的焊接要求来确定合适的压力。
电阻点焊的工作原理是利用电流通过金属工件和电极之间的接触电阻产生的热量进行焊接。
这种焊接方法具有速度快、效率高、成本低的优点,适用于焊接薄板、线材、管材等金属制品。
电阻点焊的应用广泛,特别是在汽车制造领域。
汽车的车身焊接中,电阻点焊被广泛应用于车身骨架、车门、车顶、引擎盖等部位的连接。
电阻点焊可以快速、高效地实现这些部件的连接,保证车身的强度和刚性,提高车辆的安全性。
在家电制造、航空航天等行业中,电阻点焊也有着重要的应用。
例如,家电制造中的冰箱、空调、洗衣机等产品的制造过程中,常常需要使用电阻点焊来连接各个部件。
航空航天领域中,电阻点焊常被用于飞机的蒙皮板焊接,确保飞机在高速飞行时的结构稳定性和安全性。
电阻点焊是一种常见的金属连接技术,其工作原理是利用电流通过金属工件和电极之间的接触电阻产生的热量,将两个工件加热到熔点,然后施加一定的压力使其熔融,最终形成牢固的连接。
电阻点焊焊接原理及焊接技术
电阻点焊焊接原理及焊接技术电阻点焊是通过低压电流流过夹紧在一起的两块金属产生电阻热,局部熔化并施加压力使之焊接在一起的焊接方法。
电阻点焊有许多优点:(1)焊接成本低,不消耗焊丝、焊条和气体。
(2)焊接时不产生烟雾或蒸汽。
(3)焊接部位灵活,且适合焊接镀锌铁板。
(4)焊接速度快,质量高,受热范围小,工件不易变形。
(5)在承载式车身制造及修理中最常用,尤其适合薄板多层焊接。
一、电阻点焊焊接原理利用大电流流过接触点使其发热,在外力作用下使接触点金属熔化,冷凝后形成焊点。
二、电阻点焊机构成主要有变压器、控制器、电极臂及电极三部分构成。
1.变压器变压器的功能是将380V的电压变为7.2-13V的低电压供电阻点焊使用,变压器与电极臂之间用电缆相连,是供电电源。
2.控制器控制器可以调节变压器输出的焊接电流的大小,焊接时间的长短。
一般汽修钣金作业时,焊接时间在1/6-1s之间为宜。
焊接电流的大小由焊接金属板的厚度和电极臂长度来决定。
焊接开关分脚踏开关和手动开关,中间的铜板用来接电缆线,时间调节为0.00数字调节,由加减开关调节。
水管用来传输冷却水。
电压表指示输入电压,焊接指示在焊接时间内点亮,焊接完成后熄灭。
档位用来调节输出电流的大小,焊接时严禁调节。
进水口、出水口用来输入、输出冷却水。
3.电极及电极臂电极利用电极臂向被焊金属施加压力,并通过焊接电流。
我们用的挤压型电阻点焊机一般无增力机构,完全由操作者来控制压力的大小。
电极臂可以根据焊接部位的不同来选择。
三、电阻点焊焊接技术1.焊件的表面处理点焊板件的清洁部位,不仅在于两焊件之间,与点焊电极的接触点同样也需要认真打磨干净(包括板材表面上的油漆)。
对于不便清除的油污,还可以采取火焰法轻烧轻燎,然后再将板材表面用钢丝刷或钢丝磨轮打磨干净(能否用火焰法应视具体情形而定)。
焊件表面的杂质会妨碍电流通入焊件,造成焊接电流减小,影响焊接质量,所以焊接前必须将这些杂物从需要焊接的表面上清除干净。
电阻焊技术及其应用详解
电阻焊技术及其应用详解电阻焊技术是一种常用的焊接方法,通过利用电流在接触电阻上产生热量,来将两个或多个金属工件连接在一起。
本文将详细介绍电阻焊的原理、分类以及其在不同领域的应用。
一、电阻焊的原理电阻焊是利用电流通过金属工件产生的热量来进行焊接的一种方法。
当电流通过接触电阻时,电流会经过电阻而产生大量的热量,从而将接触部分的金属加热至熔点,使其熔化并形成焊缝。
通过适当的压力,使两个金属工件紧密接触,从而实现焊接。
电阻焊的原理主要包括以下几个方面:1. 电流通过金属工件时,会产生焦耳热,使接触部分温度升高。
2. 温度升高后,金属开始熔化。
3. 在适当的压力作用下,两个金属工件紧密接触,形成焊接。
二、电阻焊的分类根据电流的通道方式和焊接材料的状态,电阻焊可分为以下几类:1. 电阻点焊电阻点焊是指将两个或多个金属工件通过电阻变得热融以形成焊点的一种焊接方法。
它适用于薄板、线材等金属零部件的连接。
电阻点焊广泛应用于汽车制造、电子设备制造等领域。
2. 电阻对焊电阻对焊是指将不同材料的两个金属工件通过电阻产生的热量进行连接的一种焊接方法。
它适用于连接铝、铝合金和铜、铜合金等不同材料的金属工件。
电阻对焊常用于航空航天、电力设备等领域。
3. 电阻缝焊电阻缝焊是指将两个或多个金属工件通过电阻加热至熔点,并在一定的压力下,通过液态金属流动而形成的连接方法。
它适用于管道、容器等大型金属结构的连接。
电阻缝焊广泛应用于石油化工、锅炉制造等领域。
三、电阻焊的应用电阻焊技术在工业生产中有广泛的应用,以下是几个典型的领域:1. 汽车制造在汽车制造领域,电阻点焊是连接车身零部件的一种常用方法。
通过电阻点焊,可以将车身各个零部件焊接在一起,确保车身的结构牢固,提高整车的安全性。
2. 电子设备制造电阻焊技术在电子设备制造中也得到了广泛的应用。
例如,电子电路板上的元件连接、电子元器件之间的引线焊接等,都可以通过电阻焊技术来实现。
3. 航空航天在航空航天领域,电阻对焊是常用的焊接方法。
电阻点焊原理
电阻点焊原理
点焊是一种常用的金属连接方法,它通过使用电流在两个金属表面之间产生高温,使得金属表面熔化并形成一层液态金属。
然后,通过施加压力使金属接触并冷却,从而实现金属的连接。
点焊的原理是利用电流在焊接区域产生热量,将金属加热到熔点以上并使其熔化。
在点焊过程中,两个金属被放置在两个电极夹具之间,电极通过施加高电流和压力来产生热量。
当电流通过金属时,会在接触处产生电阻,由于电阻会产生热量,因此焊接区域被加热并熔化。
点焊过程中,主要有三个阶段:预压、焊接和冷却。
首先,在预压阶段,电极施加适当的压力将金属紧密接触在一起,确保良好的电流传导。
然后,在焊接阶段,电流通过电极流过金属接触点,产生局部高温,使金属瞬间熔化。
最后,在冷却阶段,停止施加电流并继续施加压力,使得熔化的金属冷却并凝固。
冷却后,金属表面会形成一个坚固的焊点。
点焊具有操作简单、速度快、效率高的特点,因此在许多行业中被广泛应用。
例如,汽车制造中的车身焊接、家电制造中的金属部件连接等都可以采用点焊技术。
点焊能够产生坚固的连接,并且连接区域的变形较小,保持了金属的原始性能。
总之,点焊利用电流产生的热量将金属熔化并连接在一起,是一种常用的金属连接方法。
它的原理是利用电流通过金属产生的电阻热效应,实现金属的快速、高效连接。
电阻焊的原理和方法
电阻焊的原理和方法
电阻焊的原理是利用电阻体的电阻产生热量,将工件接触在电阻体两端,通过热量传递使接触部位温度升高,从而实现焊接。
电阻焊的方法包括以下几种:
1. 接触电阻焊:将工件通过电极与电能源相连接,产生电流,电流通过工件和电极形成焊接接点,从而产生热量进行焊接。
2. 间接电阻焊:在两个非焊接接点之间设置导电电极,通过电流的流动产生热量进行焊接。
3. 电流脉冲焊:通过控制电流的脉冲,使工件快速加热和冷却,实现快速焊接,适用于对焊接时间要求高的场合。
4. 电弧电阻焊:电阻焊和电弧焊相结合的焊接方法,同时利用电流和电弧进行焊接,焊接质量更稳定可靠。
5. 电阻点焊:在工件上设定焊接接点,通过电流流过焊点产生热量进行焊接,常用于薄板材料连接。
以上是电阻焊的原理和几种常见的方法,根据实际需求和应用场景可以选择不同的方法进行焊接。
电阻点焊基础知识
•改善措施:打磨电极头适当 减小电极面积;改善板材搭 接状况;规范员工操作避免电极压在 板材边缘
图 18 边缘焊点
8.位置偏差焊点
• 与标准焊点 位置的距离 超过10mm 的 焊点不可接 受 • 影响因素: 员工操作不 规范
图 19 位置偏差焊点
9.漏焊
• 应该有焊点的位置 没有焊点成为漏焊 (如图20、21) • 影响因素:员工大 意;
图2 板材贴合面处电流 密度的分布
(二). 焊接电阻 • 1 焊接电阻的构成
如右图3所示:电极与 工件间接触电阻Rew、 工件间的接触电阻Re ( Rew 和Re 被称为接触 电阻)和工件自身的电阻 Rw( Rw 成为内部电阻) 构成了点焊时电阻热的发 生机构。其中,接触电阻 产热约为5%-10%,内部 电阻产热约90%-95%
电阻点焊基础知识
第一部分 电阻点焊基本原理
• • • • 一.电阻点焊的定义 二.电阻点焊的能量 三.电阻点焊的循环过程 四. 焊点形成过程
一.电阻点焊的定义
• 点焊是将被焊工件压紧于两电极之间,并通以电 流,利用电流流经工件接触面及邻近区域产生的 电阻热将其加热到熔化状态,使之形成金属结合 的一种方法. • 定义告诉我们点焊与弧焊不同 的某些特点: (1)接头形式是搭接 (2)焊接过程中始终存在压紧力 (3)电阻点焊的能量是电阻热 另外,点焊还具有通电时间短、焊接 图1 点焊示意图 速度快等特点。
F
二.电阻点焊的能量
电阻点焊的能量是电阻热,因此,它 符合焦耳定律:
Q= I2RT
其中,Q — 电阻点焊能量; I — 焊接电流; R— 电焊过程中的动态电阻; T— 焊接时间
(一).焊接电流
• 由于绕流现象产生的边缘效应, 电流通过焊件时的分布将是不均 匀的。即:两电极间的电流密度 是不均匀的。 • 由右图2可以看到:贴合面的边 缘电流密度出现峰值,该处加热 强度最大,因而将首先出现塑性 连接区,这就是塑性环。熔核就 是在塑性环里形成并长大的。塑 性环的作用:防止熔核氧化和飞 溅。
电阻点焊技术手册
图示 原因调查方向
阐明
漏焊、位置错误
请参 人员换线作业
Miss
照下 1、确认熔接条件四大原因是否在设定值内 属于管理问题
分类
图 电极端面直径 电流值
通电时间
对策方向
2、实例阐明
提议对策
管理问题需以 体制、制度或
加压设力 备防其他呆、防 误组方管理向再强努化力。 例如和能够导 入打点计数器、 机器人、防呆 机、抽检等
所以,电流值太小产生旳热量无法熔融焊接为半融体, 即无法结合,造成弱焊、假焊等缺陷。反之,若电流 值太大,产生热量太高,将造成焊接过熔与变形,或 接头强度减低而变脆,造成焊接飞溅,焊点过烧,焊点 缩孔等焊接缺陷 。
焊接前必须使用试片测试出真正合适之电流值后,才 能够焊接成品。
通电时间
通电时间之长短与产生旳热量有关,时间太短 会造成热量不足,熔接温度又传导辐射或对流 而损失一部分,无法到达焊接旳预期效果;但 若通电时间过长,则造成焊接过熔。
Spot welding 常见问题点-2
不良现象
图示 原因调查方向
阐明
提议对策
一般脱焊
1、是否按工 1、确认焊接条件四大因
子;
分类
艺文件设定; 电极端面直径 电流值2、是否有通点电焊时分间流现象加压力
其他
对策方向 确认平坦度 上升
上升
下降
2、焊点间距
1、确认熔接条件四大原因是否在设定值内? 2、是否有焊点分流现象; 3、是否因冷却水不佳,电极头耗损严重且
焊点金相显微组织比较分析
焊点金相显微组织比较分析
焊点拉伸试验
焊点拉伸试验
焊点显微硬度对比分析
焊点疲劳特征分析
试验总结
结论
电阻点焊机的原理是什么呢
电阻点焊机的原理是什么呢
您好,电阻点焊机的工作原理是一个好的技术讨论话题。
我将尽可能详细地给出解答:
1. 首先,电阻点焊机利用电流通过导线时遇电阻产生热量的原理来进行焊接。
2. 点焊机主要由点焊钳、点焊变压器、脚踏开关等部分组成。
点焊钳两端连接导电的钎尖。
3. 点焊变压器可以将普通220V电压转换为20-40V的低压大电流输出到点焊钳两端。
4. 当开启脚踏开关时,低压大电流在钎尖和焊件之间流动,遇到电阻产生大量热量。
5. 焊件中的原子受热开始振动,发生热运动,金属接触面的原子互相碰撞、纠缠,焊接处迅速融化。
6. 通常几秒钟的时间就可以完成焊料的熔化,形成金属间的相互扩散,焊件牢固地连接在一起。
7. 点焊过程非常快速,可以减少焊接部位过热现象,使焊接质量更好。
8. 通过控制加热时间可以精确控制焊接效果。
点焊焊接也很容易实现自动化操作。
9. 总之,电阻点焊机通过电流加热原理实现快速精确的焊接,是一种广泛应用于工业生产的成熟技术。
感谢您提出这个好问题,说明点焊技术工作原理对工程技术理解很有帮助。
非常乐意继续就相关技术问题进行讨论。
电阻点焊的原理
电阻点焊的原理电阻点焊是一种常见的金属连接方法,它利用电流通过两个金属表面产生的热量,将它们瞬间熔化并连接在一起。
这种焊接方法广泛应用于汽车制造、家电制造、金属制品制造等领域。
电阻点焊的原理主要包括焊接电流、焊接时间和焊接压力三个方面。
首先,焊接电流是电阻点焊中至关重要的参数。
通过电流的作用,金属表面会产生瞬间的高温,使得金属材料瞬间熔化并形成连接。
在实际应用中,焊接电流的大小会影响焊接的质量和效果。
如果电流过小,无法产生足够的热量熔化金属;而电流过大则会导致过热和烧穿现象,影响焊接质量。
因此,选择合适的焊接电流对于保证焊接质量至关重要。
其次,焊接时间也是影响电阻点焊效果的重要因素。
焊接时间过长会导致过度热量传导,从而造成金属材料的变形和焊接点的过热;而焊接时间过短则无法完全熔化金属表面,影响焊接的牢固度。
因此,合理控制焊接时间,确保金属表面能够充分熔化并形成均匀的焊接点,是电阻点焊的关键。
最后,焊接压力也是影响电阻点焊质量的重要因素之一。
适当的焊接压力能够确保焊接点的牢固性和均匀性。
过大的焊接压力会导致金属材料的过度挤压和变形,从而影响焊接质量;而过小的焊接压力则无法确保金属材料的充分接触,影响焊接点的牢固度。
因此,在进行电阻点焊时,需要根据金属材料的性质和厚度,合理控制焊接压力,以确保焊接效果。
综上所述,电阻点焊的原理主要包括焊接电流、焊接时间和焊接压力三个方面。
合理控制这三个参数,能够确保电阻点焊的质量和效果。
在实际应用中,需要根据具体的焊接材料和要求,精准调整这些参数,以实现高质量的焊接连接。
同时,对于电阻点焊操作人员来说,掌握这些原理,能够更好地进行焊接操作,确保焊接质量和安全。
电阻点焊实验报告
电阻点焊实验报告一、实验目的1. 掌握电阻点焊的基本原理和工作特点,了解其应用领域和发展趋势。
2. 掌握不同工况下电阻焊的参数配置方法,了解影响焊接质量的因素。
3. 理解电阻焊的组成结构和使用方法,能够正确认识电阻焊所涉及到的各种设备和工艺。
二、实验器材与材料1. 电阻焊设备:电源,焊枪,电极,工作台。
2. 试验材料:金属板。
三、实验原理电阻点焊即利用电阻加热原理,在两个金属件的接触处进行加热,以使金属在高温下软化或熔化,然后施加一定的压力使其在凝固时形成牢固的连接。
在实际应用中,焊接的结构和位置对焊接质量都有着很大的影响。
板之间的焊接头为“T”字形时,产生的焊接力是板之间压力的三倍,因此焊接的牢固度和持久性将远胜于平面焊接。
实际工程中的电阻点焊设备一般由电源、焊枪和工作台组成。
其中电源是核心部件,通过控制焊接电流和时间,对焊接温度和材质起决定性的影响。
焊枪包含了电极和压力装置,可根据需要改变杆长和电极头尺寸。
而工作台可以根据需要更换工装,来适应不同的焊接需求。
1. 焊接材料的厚度和类型2. 金属材料的热导率和电导率3. 根据焊接时间和施加的压力等控制方法,来控制焊接温度通常,焊接时间越长,接触处的温度就越高;施加的压力越大,金属接触面之间形成的接触电阻就越小,焊接质量也越高。
四、实验步骤1. 准备试验材料:金属板条(不锈钢或其他金属)。
2. 将金属板条置于电阻焊的工作台上,并用夹紧装置将其固定。
3. 打开电源开关,调节电源电压和电流以使其适合实验需要。
4. 调节焊接时间和电极压力,并将电极头放置在待焊接的金属板之上。
5. 按下焊枪开关,开始焊接。
时刻观察电极的状态和焊接效果。
6. 焊接完成后,松开焊枪开关,并取消电源供电。
7. 检查焊接效果和联结状态。
如需重新焊接,重复以上步骤直至焊接成功。
五、实验结果分析在实验中,我们以不锈钢板为实验材料,进行了多次电阻焊实验。
通过实验发现,焊接时间和施加的压力都对焊接质量有着明显的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本原理 : 2 Q=I RT 通过电极压力将工件 夹在一起,电极两端 通大电流。 由于工件间的电阻较 大,在接触面形成热 量熔化金属,形成焊 核。
保证焊接的决定因素:热量
决定热量的因素: ☆电流 ☆工件间电阻 ☆通电时间
决定焊接质量的因素:
热量的产生 热量的扩散→材料特性 :热传导力 电传导能力
低碳钢点焊参数的确认
焊接参数主要包括以下几项
预压时间---减小板件之间的装配间隙 焊接时间---通过电流的时间 焊接电流 维持时间---焊接过后的一个热处理时间 休止时间---第一个焊接结束到第二个焊接开始的时间 (由员工的操作技能确定休止时间的长短)
焊接参数的理论值
选择点焊工艺参数时可以采用计算方法或查 表的方法,无论采用哪种方法,所选择出来 的工艺参数都不可能是十分精确和合适的。 即只能给出一个大概的范围,具体的工作还 需经实测和调试来获得最佳焊接工艺参数。 生产管理手册上有关于各类焊接工艺的焊接 参数的理论值
可淬硬钢的点焊 (含碳量>0.3%)
对于在退水状态点焊(<3㎜)时:单脉冲较 软规范,电极压力、电流要求时间长。 对于大于3㎜的厚板:带缓冷双脉冲点焊 对于调质状态钢点焊: 带回火的双脉冲点焊, 回火脉冲与焊接脉冲时间间隔长。
二层板件的焊接工艺
两种不同厚度的钢板的点焊: 1.当两工件的厚度比小于3:1时,焊接并无困难。 此时工艺参数可按薄件选择,并稍增大一些焊接 电流或通电时间即可。 2.当两工件的厚度比大于3:1时,此时除按上条处 理外,还应采取下列措施以保证质量。 3.在厚板一侧采用较大的电极直径。 4. 在薄板侧选用导电性稍差的电极材料。
点焊的焊接过程:
焊接过程中几个现象:
液态金属搅拌 飞溅 前期飞溅:
☆产生原因:表面清理不佳、接触不充份 ☆防止方法:清理焊件、预压对中、 斜升
预热电流
后期飞溅:
☆产生原因:熔核增长过大 ☆防止方法:减小电流
缩短通电时间:胡径、夹杂物 空隙、裂纹
常用材料的点焊工艺
低碳钢的点焊:
☆表面可不处理 ☆硬规范焊接 ☆厚板加带锻压的压力曲线,带预热 电流脉冲,多脉冲。
自动焊的焊接工艺
在机器人焊接或多点焊机时由于对电极 不进行修磨一般采用斜坡电流的方式, 增加电流,增加的量保证焊接的始终焊 接强度符合工艺要求。
点焊工艺参数 技术要求
1、以试样板件选择工艺参数时,要充分考虑试样板件和 工件的分流以及装配间隙方面的差异,并适当加以调整; 2、焊点直径选取:d≈5√ δ mm;( δ为板厚) 3、通过破坏性检验检查试样板件或直接在工件上做的焊 接试验,撕裂后的熔核直径,不合格时,应重新调整焊接 工艺参数;所选定的焊接工艺参数符合工艺要求的经确认 后 填 写 《 悬 挂 ( 固 定 ) 点 焊 机 参 数 卡 》 (BG.05.051/04-01)、《 班组悬挂点焊机工作参数 检测记录表》 (BG.05.051/04-02) 和《 班组固定点 ( 凸 ) 焊 工 作 参 数 记 录 表 》 ( BG.05.051/04-03) 以 及 《点焊焊接参数验证记录表》(BG.05.051/04-05), 并分别放在控制箱壁和车间技术组进行定置或存档。
镀锌板件的焊接工艺
点焊镀锌或镀铝钢板时,应比不带镀层 的钢板提高电流 20~30% ,并同时提高 电极压力20%,增大锻压时间10%。
加铜块板件的焊接工艺
由于焊点的表面要求比较高时常采用在 板件之间加铜板,加铜板一般需要提高 电流10~20%,并同时提高电极压力 15%左右,增大锻压时间10%。
3、验证时在验证记录表上详细认真填写验证实物状态(焊点直径, 熔核直径,焊点压痕等),并且填写工艺参数更改后的相应车身号, 以便于进行追溯,和验证人的签字(工艺人员).
凸焊焊接的几个基本参数
1电极压力 凸焊的电极压力取决于被焊金属性能、凸点的尺寸一次焊成的凸点数等。电 极压力应足以在凸点达到焊接温度时将其完全压溃,并使两工件紧密贴合;电 极压力过大会过早地压溃凸点,失去凸焊的作用,同时因电流密度减小而降低 接头强度。压力过小又会引起严重飞溅。 2焊接时间 对于给定的工件材料和厚度,焊接时间由焊接电流和凸点刚度决定。多点 凸焊的焊接时间稍长于单点凸焊,以减少因凸点高度不一致而引起各点加热的 差异。 3焊接电流 凸焊每一焊点所需电流比点焊同样一个焊点时小, 但在凸点完全压溃之前电流 必须能使凸点熔化,推荐的电流应该是在采用合适的电极压力下不致于挤出过 多金属的最大电流。凸焊时还应考虑到被焊两板间的热平衡,否则在平板未达 到焊接温度之前凸点便已熔化,因此焊接同种金属时,应将凸点冲在较厚的工 件上;焊接异种金属时,应将凸点冲在电导率较高的工件上,但当在厚板上冲
点焊焊接工艺参数的验证技术要求和方法
1、焊接工艺要求,焊接参数输出值可以在设定焊接参数±10% 范围内波动,但是必须保持恒流,不能在第一点和第二点之间产 生太大的波动,一般第一点和第二点之间的波动在600A范围内, 并且下《设备故障通知单》到设备部焊装维修队,可以在±12% 范围内不进行风险分析和追溯。 2、验证前根据焊点位置的特性(关键焊点和普通焊点),考虑 是否通知质保部焊接实验室和轿车公司制造技术部相关人员,一 起进行焊接参数的验证工作。
R 增大 Q 增大,所需要电源提供更大的功率 ☆以恒流控制为例: 在保持电流不变情况下:电阻越大,形成 热量也就越多,需要功率也越大。
影响接触电阻的因素: 表面状态:化学清洗减小表面接触电阻 电极压力: ☆压力增大: 有利方面:弹性、塑性变增大 不利方面:电阻变小,直径变 小,热量变小。 ☆压力过小时:易产生飞溅 加热温度:温度升高,接触电阻降低。
不同材料对设备及焊接工艺有不同的要求: ⒈ 导电性: 导电性好的金属:散热快、焊接性能差 导电性差的金属:焊接性能好
⒉ 电流:
电流增大、热量增大
⒊ 电阻R
焊件的接触电阻:RC 电极与焊件间接触电阻:
Rew1、 ReW2
焊件本身的电阻:RW1、
RW2
R=RC+Rew1+ReW2+RW1+RW2
R与形成热量的关系:
三层板件的焊接工艺
三层钢板的点焊: 1. 当点焊中间为较厚零件的三层板时,可按薄板选择工 艺参数,但要适当增加焊接电流,约增加10~25%,或者 增加通电时间。 2. 当点焊中间为较薄零件的三层板时,可按厚板选择工 艺参数,但要适当减少焊接电流,约减少10~25%,或者 减少通电时间。